kern_time.c revision 1.146 1 1.146 martin /* $NetBSD: kern_time.c,v 1.146 2008/04/28 20:24:03 martin Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.142 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd *
19 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
30 1.42 cgd */
31 1.9 cgd
32 1.1 cgd /*
33 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.8 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * Redistribution and use in source and binary forms, with or without
37 1.1 cgd * modification, are permitted provided that the following conditions
38 1.1 cgd * are met:
39 1.1 cgd * 1. Redistributions of source code must retain the above copyright
40 1.1 cgd * notice, this list of conditions and the following disclaimer.
41 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer in the
43 1.1 cgd * documentation and/or other materials provided with the distribution.
44 1.72 agc * 3. Neither the name of the University nor the names of its contributors
45 1.1 cgd * may be used to endorse or promote products derived from this software
46 1.1 cgd * without specific prior written permission.
47 1.1 cgd *
48 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 1.1 cgd * SUCH DAMAGE.
59 1.1 cgd *
60 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 1.1 cgd */
62 1.58 lukem
63 1.58 lukem #include <sys/cdefs.h>
64 1.146 martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146 2008/04/28 20:24:03 martin Exp $");
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/resourcevar.h>
68 1.5 mycroft #include <sys/kernel.h>
69 1.8 cgd #include <sys/systm.h>
70 1.5 mycroft #include <sys/proc.h>
71 1.8 cgd #include <sys/vnode.h>
72 1.17 christos #include <sys/signalvar.h>
73 1.25 perry #include <sys/syslog.h>
74 1.101 kardel #include <sys/timetc.h>
75 1.143 ad #include <sys/timex.h>
76 1.99 elad #include <sys/kauth.h>
77 1.11 cgd #include <sys/mount.h>
78 1.11 cgd #include <sys/syscallargs.h>
79 1.143 ad #include <sys/cpu.h>
80 1.19 christos
81 1.37 thorpej #include <uvm/uvm_extern.h>
82 1.37 thorpej
83 1.142 ad static void timer_intr(void *);
84 1.142 ad static void itimerfire(struct ptimer *);
85 1.142 ad static void itimerfree(struct ptimers *, int);
86 1.142 ad
87 1.131 ad kmutex_t time_lock;
88 1.142 ad kmutex_t timer_lock;
89 1.142 ad
90 1.142 ad static void *timer_sih;
91 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
92 1.131 ad
93 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94 1.118 ad &pool_allocator_nointr, IPL_NONE);
95 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96 1.118 ad &pool_allocator_nointr, IPL_NONE);
97 1.97 simonb
98 1.131 ad /*
99 1.131 ad * Initialize timekeeping.
100 1.131 ad */
101 1.131 ad void
102 1.131 ad time_init(void)
103 1.131 ad {
104 1.131 ad
105 1.131 ad mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106 1.131 ad }
107 1.131 ad
108 1.142 ad void
109 1.142 ad time_init2(void)
110 1.142 ad {
111 1.142 ad
112 1.142 ad TAILQ_INIT(&timer_queue);
113 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
114 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
115 1.142 ad timer_intr, NULL);
116 1.142 ad }
117 1.142 ad
118 1.63 thorpej /* Time of day and interval timer support.
119 1.1 cgd *
120 1.1 cgd * These routines provide the kernel entry points to get and set
121 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
122 1.1 cgd * here provide support for adding and subtracting timeval structures
123 1.1 cgd * and decrementing interval timers, optionally reloading the interval
124 1.1 cgd * timers when they expire.
125 1.1 cgd */
126 1.1 cgd
127 1.22 jtc /* This function is used by clock_settime and settimeofday */
128 1.132 elad static int
129 1.132 elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
130 1.22 jtc {
131 1.98 christos struct timeval delta, tv;
132 1.101 kardel struct timeval now;
133 1.101 kardel struct timespec ts1;
134 1.137 yamt struct bintime btdelta;
135 1.129 ad lwp_t *l;
136 1.129 ad int s;
137 1.22 jtc
138 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
139 1.98 christos
140 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141 1.129 ad s = splclock();
142 1.101 kardel microtime(&now);
143 1.101 kardel timersub(&tv, &now, &delta);
144 1.132 elad
145 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
146 1.134 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
147 1.132 elad KAUTH_ARG(check_kauth ? false : true)) != 0) {
148 1.129 ad splx(s);
149 1.29 tls return (EPERM);
150 1.55 tron }
151 1.132 elad
152 1.29 tls #ifdef notyet
153 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
154 1.129 ad splx(s);
155 1.29 tls return (EPERM);
156 1.55 tron }
157 1.29 tls #endif
158 1.103 kardel
159 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
160 1.101 kardel tc_setclock(&ts1);
161 1.103 kardel
162 1.22 jtc timeradd(&boottime, &delta, &boottime);
163 1.103 kardel
164 1.47 thorpej /*
165 1.129 ad * XXXSMP: There is a short race between setting the time above
166 1.129 ad * and adjusting LWP's run times. Fixing this properly means
167 1.129 ad * pausing all CPUs while we adjust the clock.
168 1.47 thorpej */
169 1.137 yamt timeval2bintime(&delta, &btdelta);
170 1.145 ad mutex_enter(proc_lock);
171 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
172 1.129 ad lwp_lock(l);
173 1.137 yamt bintime_add(&l->l_stime, &btdelta);
174 1.129 ad lwp_unlock(l);
175 1.129 ad }
176 1.145 ad mutex_exit(proc_lock);
177 1.22 jtc resettodr();
178 1.129 ad splx(s);
179 1.129 ad
180 1.29 tls return (0);
181 1.22 jtc }
182 1.22 jtc
183 1.132 elad int
184 1.132 elad settime(struct proc *p, struct timespec *ts)
185 1.132 elad {
186 1.132 elad return (settime1(p, ts, true));
187 1.132 elad }
188 1.132 elad
189 1.22 jtc /* ARGSUSED */
190 1.22 jtc int
191 1.140 yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
192 1.140 yamt register_t *retval)
193 1.22 jtc {
194 1.135 dsl /* {
195 1.22 jtc syscallarg(clockid_t) clock_id;
196 1.23 cgd syscallarg(struct timespec *) tp;
197 1.135 dsl } */
198 1.22 jtc clockid_t clock_id;
199 1.22 jtc struct timespec ats;
200 1.22 jtc
201 1.22 jtc clock_id = SCARG(uap, clock_id);
202 1.61 simonb switch (clock_id) {
203 1.61 simonb case CLOCK_REALTIME:
204 1.96 simonb nanotime(&ats);
205 1.61 simonb break;
206 1.61 simonb case CLOCK_MONOTONIC:
207 1.101 kardel nanouptime(&ats);
208 1.61 simonb break;
209 1.61 simonb default:
210 1.22 jtc return (EINVAL);
211 1.61 simonb }
212 1.22 jtc
213 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
214 1.22 jtc }
215 1.22 jtc
216 1.22 jtc /* ARGSUSED */
217 1.22 jtc int
218 1.140 yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
219 1.140 yamt register_t *retval)
220 1.22 jtc {
221 1.135 dsl /* {
222 1.22 jtc syscallarg(clockid_t) clock_id;
223 1.23 cgd syscallarg(const struct timespec *) tp;
224 1.135 dsl } */
225 1.22 jtc
226 1.132 elad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
227 1.132 elad true);
228 1.56 manu }
229 1.56 manu
230 1.56 manu
231 1.56 manu int
232 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
233 1.132 elad bool check_kauth)
234 1.56 manu {
235 1.60 manu struct timespec ats;
236 1.56 manu int error;
237 1.56 manu
238 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
239 1.60 manu return (error);
240 1.60 manu
241 1.61 simonb switch (clock_id) {
242 1.61 simonb case CLOCK_REALTIME:
243 1.132 elad if ((error = settime1(p, &ats, check_kauth)) != 0)
244 1.61 simonb return (error);
245 1.61 simonb break;
246 1.61 simonb case CLOCK_MONOTONIC:
247 1.61 simonb return (EINVAL); /* read-only clock */
248 1.61 simonb default:
249 1.56 manu return (EINVAL);
250 1.61 simonb }
251 1.22 jtc
252 1.22 jtc return 0;
253 1.22 jtc }
254 1.22 jtc
255 1.22 jtc int
256 1.140 yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
257 1.140 yamt register_t *retval)
258 1.22 jtc {
259 1.135 dsl /* {
260 1.22 jtc syscallarg(clockid_t) clock_id;
261 1.23 cgd syscallarg(struct timespec *) tp;
262 1.135 dsl } */
263 1.22 jtc clockid_t clock_id;
264 1.22 jtc struct timespec ts;
265 1.22 jtc int error = 0;
266 1.22 jtc
267 1.22 jtc clock_id = SCARG(uap, clock_id);
268 1.61 simonb switch (clock_id) {
269 1.61 simonb case CLOCK_REALTIME:
270 1.61 simonb case CLOCK_MONOTONIC:
271 1.22 jtc ts.tv_sec = 0;
272 1.102 kardel if (tc_getfrequency() > 1000000000)
273 1.102 kardel ts.tv_nsec = 1;
274 1.102 kardel else
275 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
276 1.61 simonb break;
277 1.61 simonb default:
278 1.61 simonb return (EINVAL);
279 1.61 simonb }
280 1.22 jtc
281 1.61 simonb if (SCARG(uap, tp))
282 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
283 1.22 jtc
284 1.22 jtc return error;
285 1.22 jtc }
286 1.22 jtc
287 1.27 jtc /* ARGSUSED */
288 1.27 jtc int
289 1.140 yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
290 1.140 yamt register_t *retval)
291 1.27 jtc {
292 1.135 dsl /* {
293 1.101 kardel syscallarg(struct timespec *) rqtp;
294 1.101 kardel syscallarg(struct timespec *) rmtp;
295 1.135 dsl } */
296 1.101 kardel struct timespec rmt, rqt;
297 1.120 dsl int error, error1;
298 1.101 kardel
299 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
300 1.101 kardel if (error)
301 1.101 kardel return (error);
302 1.101 kardel
303 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
304 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
305 1.120 dsl return error;
306 1.120 dsl
307 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
308 1.120 dsl return error1 ? error1 : error;
309 1.120 dsl }
310 1.120 dsl
311 1.120 dsl int
312 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
313 1.120 dsl {
314 1.141 yamt struct timespec rmtstart;
315 1.120 dsl int error, timo;
316 1.120 dsl
317 1.120 dsl if (itimespecfix(rqt))
318 1.101 kardel return (EINVAL);
319 1.101 kardel
320 1.120 dsl timo = tstohz(rqt);
321 1.101 kardel /*
322 1.101 kardel * Avoid inadvertantly sleeping forever
323 1.101 kardel */
324 1.101 kardel if (timo == 0)
325 1.101 kardel timo = 1;
326 1.141 yamt getnanouptime(&rmtstart);
327 1.141 yamt again:
328 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
329 1.141 yamt if (rmt != NULL || error == 0) {
330 1.141 yamt struct timespec rmtend;
331 1.141 yamt struct timespec t0;
332 1.141 yamt struct timespec *t;
333 1.101 kardel
334 1.141 yamt getnanouptime(&rmtend);
335 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
336 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
337 1.141 yamt timespecsub(rqt, t, t);
338 1.141 yamt if (t->tv_sec < 0)
339 1.141 yamt timespecclear(t);
340 1.141 yamt if (error == 0) {
341 1.141 yamt timo = tstohz(t);
342 1.141 yamt if (timo > 0)
343 1.141 yamt goto again;
344 1.141 yamt }
345 1.141 yamt }
346 1.104 kardel
347 1.101 kardel if (error == ERESTART)
348 1.101 kardel error = EINTR;
349 1.101 kardel if (error == EWOULDBLOCK)
350 1.101 kardel error = 0;
351 1.101 kardel
352 1.101 kardel return error;
353 1.27 jtc }
354 1.22 jtc
355 1.1 cgd /* ARGSUSED */
356 1.3 andrew int
357 1.140 yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
358 1.140 yamt register_t *retval)
359 1.15 thorpej {
360 1.135 dsl /* {
361 1.11 cgd syscallarg(struct timeval *) tp;
362 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
363 1.135 dsl } */
364 1.1 cgd struct timeval atv;
365 1.1 cgd int error = 0;
366 1.25 perry struct timezone tzfake;
367 1.1 cgd
368 1.11 cgd if (SCARG(uap, tp)) {
369 1.1 cgd microtime(&atv);
370 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
371 1.17 christos if (error)
372 1.1 cgd return (error);
373 1.1 cgd }
374 1.25 perry if (SCARG(uap, tzp)) {
375 1.25 perry /*
376 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
377 1.25 perry * fake up a timezone struct and return it if demanded.
378 1.25 perry */
379 1.25 perry tzfake.tz_minuteswest = 0;
380 1.25 perry tzfake.tz_dsttime = 0;
381 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
382 1.25 perry }
383 1.1 cgd return (error);
384 1.1 cgd }
385 1.1 cgd
386 1.1 cgd /* ARGSUSED */
387 1.3 andrew int
388 1.140 yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
389 1.140 yamt register_t *retval)
390 1.15 thorpej {
391 1.135 dsl /* {
392 1.24 cgd syscallarg(const struct timeval *) tv;
393 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
394 1.135 dsl } */
395 1.60 manu
396 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
397 1.60 manu }
398 1.60 manu
399 1.60 manu int
400 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
401 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
402 1.60 manu {
403 1.22 jtc struct timeval atv;
404 1.98 christos struct timespec ts;
405 1.22 jtc int error;
406 1.1 cgd
407 1.8 cgd /* Verify all parameters before changing time. */
408 1.119 dsl
409 1.25 perry /*
410 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
411 1.25 perry * obsolete program would try to set it, so we log a warning.
412 1.25 perry */
413 1.98 christos if (utzp)
414 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
415 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
416 1.98 christos
417 1.98 christos if (utv == NULL)
418 1.98 christos return 0;
419 1.98 christos
420 1.119 dsl if (userspace) {
421 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
422 1.119 dsl return error;
423 1.119 dsl utv = &atv;
424 1.119 dsl }
425 1.119 dsl
426 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
427 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
428 1.1 cgd }
429 1.1 cgd
430 1.68 dsl int time_adjusted; /* set if an adjustment is made */
431 1.1 cgd
432 1.1 cgd /* ARGSUSED */
433 1.3 andrew int
434 1.140 yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
435 1.140 yamt register_t *retval)
436 1.15 thorpej {
437 1.135 dsl /* {
438 1.24 cgd syscallarg(const struct timeval *) delta;
439 1.11 cgd syscallarg(struct timeval *) olddelta;
440 1.135 dsl } */
441 1.56 manu int error;
442 1.1 cgd
443 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
444 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
445 1.1 cgd return (error);
446 1.17 christos
447 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
448 1.56 manu }
449 1.56 manu
450 1.56 manu int
451 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
452 1.56 manu {
453 1.60 manu struct timeval atv;
454 1.101 kardel int error = 0;
455 1.101 kardel
456 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
457 1.101 kardel
458 1.101 kardel if (olddelta) {
459 1.143 ad mutex_spin_enter(&timecounter_lock);
460 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
461 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
462 1.143 ad mutex_spin_exit(&timecounter_lock);
463 1.101 kardel if (atv.tv_usec < 0) {
464 1.101 kardel atv.tv_usec += 1000000;
465 1.101 kardel atv.tv_sec--;
466 1.101 kardel }
467 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
468 1.101 kardel if (error)
469 1.101 kardel return (error);
470 1.101 kardel }
471 1.101 kardel
472 1.101 kardel if (delta) {
473 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
474 1.101 kardel if (error)
475 1.101 kardel return (error);
476 1.101 kardel
477 1.143 ad mutex_spin_enter(&timecounter_lock);
478 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
479 1.101 kardel atv.tv_usec;
480 1.143 ad if (time_adjtime) {
481 1.101 kardel /* We need to save the system time during shutdown */
482 1.101 kardel time_adjusted |= 1;
483 1.143 ad }
484 1.143 ad mutex_spin_exit(&timecounter_lock);
485 1.101 kardel }
486 1.101 kardel
487 1.79 chs return error;
488 1.1 cgd }
489 1.1 cgd
490 1.1 cgd /*
491 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
492 1.63 thorpej * timer_*() family of routines are supported.
493 1.1 cgd *
494 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
495 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
496 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
497 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
498 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
499 1.63 thorpej * syscall.
500 1.1 cgd *
501 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
502 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
503 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
504 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
505 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
506 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
507 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
508 1.63 thorpej * given below), to be delayed in real time past when it is supposed
509 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
510 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
511 1.63 thorpej * compute the next time in absolute time the timer should go off. */
512 1.63 thorpej
513 1.63 thorpej /* Allocate a POSIX realtime timer. */
514 1.63 thorpej int
515 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
516 1.140 yamt register_t *retval)
517 1.63 thorpej {
518 1.135 dsl /* {
519 1.63 thorpej syscallarg(clockid_t) clock_id;
520 1.63 thorpej syscallarg(struct sigevent *) evp;
521 1.63 thorpej syscallarg(timer_t *) timerid;
522 1.135 dsl } */
523 1.92 cube
524 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
525 1.105 ad SCARG(uap, evp), copyin, l);
526 1.92 cube }
527 1.92 cube
528 1.92 cube int
529 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
530 1.105 ad copyin_t fetch_event, struct lwp *l)
531 1.92 cube {
532 1.92 cube int error;
533 1.92 cube timer_t timerid;
534 1.142 ad struct ptimers *pts;
535 1.63 thorpej struct ptimer *pt;
536 1.105 ad struct proc *p;
537 1.105 ad
538 1.105 ad p = l->l_proc;
539 1.63 thorpej
540 1.142 ad if (id < CLOCK_REALTIME || id > CLOCK_PROF)
541 1.63 thorpej return (EINVAL);
542 1.63 thorpej
543 1.142 ad if ((pts = p->p_timers) == NULL)
544 1.142 ad pts = timers_alloc(p);
545 1.63 thorpej
546 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
547 1.142 ad if (evp != NULL) {
548 1.63 thorpej if (((error =
549 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
550 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
551 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
552 1.63 thorpej pool_put(&ptimer_pool, pt);
553 1.63 thorpej return (error ? error : EINVAL);
554 1.63 thorpej }
555 1.142 ad }
556 1.142 ad
557 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
558 1.142 ad mutex_spin_enter(&timer_lock);
559 1.142 ad for (timerid = 3; timerid < TIMER_MAX; timerid++)
560 1.142 ad if (pts->pts_timers[timerid] == NULL)
561 1.142 ad break;
562 1.142 ad if (timerid == TIMER_MAX) {
563 1.142 ad mutex_spin_exit(&timer_lock);
564 1.142 ad pool_put(&ptimer_pool, pt);
565 1.142 ad return EAGAIN;
566 1.142 ad }
567 1.142 ad if (evp == NULL) {
568 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
569 1.63 thorpej switch (id) {
570 1.63 thorpej case CLOCK_REALTIME:
571 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
572 1.63 thorpej break;
573 1.63 thorpej case CLOCK_VIRTUAL:
574 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
575 1.63 thorpej break;
576 1.63 thorpej case CLOCK_PROF:
577 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
578 1.63 thorpej break;
579 1.63 thorpej }
580 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
581 1.63 thorpej }
582 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
583 1.73 christos pt->pt_info.ksi_errno = 0;
584 1.73 christos pt->pt_info.ksi_code = 0;
585 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
586 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
587 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
588 1.63 thorpej pt->pt_type = id;
589 1.63 thorpej pt->pt_proc = p;
590 1.63 thorpej pt->pt_overruns = 0;
591 1.63 thorpej pt->pt_poverruns = 0;
592 1.64 nathanw pt->pt_entry = timerid;
593 1.142 ad pt->pt_queued = false;
594 1.142 ad pt->pt_active = 0;
595 1.63 thorpej timerclear(&pt->pt_time.it_value);
596 1.142 ad callout_init(&pt->pt_ch, 0);
597 1.142 ad pts->pts_timers[timerid] = pt;
598 1.142 ad mutex_spin_exit(&timer_lock);
599 1.63 thorpej
600 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
601 1.63 thorpej }
602 1.63 thorpej
603 1.63 thorpej /* Delete a POSIX realtime timer */
604 1.3 andrew int
605 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
606 1.140 yamt register_t *retval)
607 1.15 thorpej {
608 1.135 dsl /* {
609 1.63 thorpej syscallarg(timer_t) timerid;
610 1.135 dsl } */
611 1.63 thorpej struct proc *p = l->l_proc;
612 1.65 jdolecek timer_t timerid;
613 1.142 ad struct ptimers *pts;
614 1.63 thorpej struct ptimer *pt, *ptn;
615 1.1 cgd
616 1.63 thorpej timerid = SCARG(uap, timerid);
617 1.142 ad pts = p->p_timers;
618 1.142 ad
619 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
620 1.142 ad return (EINVAL);
621 1.63 thorpej
622 1.142 ad mutex_spin_enter(&timer_lock);
623 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
624 1.142 ad mutex_spin_exit(&timer_lock);
625 1.1 cgd return (EINVAL);
626 1.142 ad }
627 1.142 ad if (pt->pt_active) {
628 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
629 1.63 thorpej LIST_REMOVE(pt, pt_list);
630 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
631 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
632 1.63 thorpej &ptn->pt_time.it_value);
633 1.142 ad pt->pt_active = 0;
634 1.63 thorpej }
635 1.142 ad itimerfree(pts, timerid);
636 1.63 thorpej
637 1.63 thorpej return (0);
638 1.63 thorpej }
639 1.63 thorpej
640 1.63 thorpej /*
641 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
642 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
643 1.67 nathanw * time for virtual timers.
644 1.63 thorpej * Must be called at splclock().
645 1.63 thorpej */
646 1.63 thorpej void
647 1.63 thorpej timer_settime(struct ptimer *pt)
648 1.63 thorpej {
649 1.63 thorpej struct ptimer *ptn, *pptn;
650 1.63 thorpej struct ptlist *ptl;
651 1.63 thorpej
652 1.142 ad KASSERT(mutex_owned(&timer_lock));
653 1.142 ad
654 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
655 1.63 thorpej callout_stop(&pt->pt_ch);
656 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
657 1.63 thorpej /*
658 1.63 thorpej * Don't need to check hzto() return value, here.
659 1.63 thorpej * callout_reset() does it for us.
660 1.63 thorpej */
661 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
662 1.63 thorpej realtimerexpire, pt);
663 1.63 thorpej }
664 1.63 thorpej } else {
665 1.63 thorpej if (pt->pt_active) {
666 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
667 1.63 thorpej LIST_REMOVE(pt, pt_list);
668 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
669 1.63 thorpej timeradd(&pt->pt_time.it_value,
670 1.63 thorpej &ptn->pt_time.it_value,
671 1.63 thorpej &ptn->pt_time.it_value);
672 1.63 thorpej }
673 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
674 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
675 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
676 1.63 thorpej else
677 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
678 1.63 thorpej
679 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
680 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
681 1.63 thorpej &ptn->pt_time.it_value, >);
682 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
683 1.63 thorpej timersub(&pt->pt_time.it_value,
684 1.63 thorpej &ptn->pt_time.it_value,
685 1.63 thorpej &pt->pt_time.it_value);
686 1.63 thorpej
687 1.63 thorpej if (pptn)
688 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
689 1.63 thorpej else
690 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
691 1.63 thorpej
692 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
693 1.63 thorpej timersub(&ptn->pt_time.it_value,
694 1.63 thorpej &pt->pt_time.it_value,
695 1.63 thorpej &ptn->pt_time.it_value);
696 1.63 thorpej
697 1.63 thorpej pt->pt_active = 1;
698 1.63 thorpej } else
699 1.63 thorpej pt->pt_active = 0;
700 1.63 thorpej }
701 1.63 thorpej }
702 1.63 thorpej
703 1.63 thorpej void
704 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
705 1.63 thorpej {
706 1.101 kardel struct timeval now;
707 1.63 thorpej struct ptimer *ptn;
708 1.63 thorpej
709 1.142 ad KASSERT(mutex_owned(&timer_lock));
710 1.142 ad
711 1.63 thorpej *aitv = pt->pt_time;
712 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
713 1.1 cgd /*
714 1.12 mycroft * Convert from absolute to relative time in .it_value
715 1.63 thorpej * part of real time timer. If time for real time
716 1.63 thorpej * timer has passed return 0, else return difference
717 1.63 thorpej * between current time and time for the timer to go
718 1.63 thorpej * off.
719 1.1 cgd */
720 1.63 thorpej if (timerisset(&aitv->it_value)) {
721 1.101 kardel getmicrotime(&now);
722 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
723 1.101 kardel timerclear(&aitv->it_value);
724 1.101 kardel else
725 1.101 kardel timersub(&aitv->it_value, &now,
726 1.101 kardel &aitv->it_value);
727 1.36 thorpej }
728 1.63 thorpej } else if (pt->pt_active) {
729 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
730 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
731 1.63 thorpej else
732 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
733 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
734 1.63 thorpej timeradd(&aitv->it_value,
735 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
736 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
737 1.1 cgd } else
738 1.63 thorpej timerclear(&aitv->it_value);
739 1.63 thorpej }
740 1.63 thorpej
741 1.63 thorpej
742 1.63 thorpej
743 1.63 thorpej /* Set and arm a POSIX realtime timer */
744 1.63 thorpej int
745 1.140 yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
746 1.140 yamt register_t *retval)
747 1.63 thorpej {
748 1.135 dsl /* {
749 1.63 thorpej syscallarg(timer_t) timerid;
750 1.63 thorpej syscallarg(int) flags;
751 1.63 thorpej syscallarg(const struct itimerspec *) value;
752 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
753 1.135 dsl } */
754 1.92 cube int error;
755 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
756 1.92 cube
757 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
758 1.92 cube sizeof(struct itimerspec))) != 0)
759 1.92 cube return (error);
760 1.92 cube
761 1.92 cube if (SCARG(uap, ovalue))
762 1.92 cube ovp = &ovalue;
763 1.92 cube
764 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
765 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
766 1.92 cube return error;
767 1.92 cube
768 1.92 cube if (ovp)
769 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
770 1.92 cube sizeof(struct itimerspec));
771 1.92 cube return 0;
772 1.92 cube }
773 1.92 cube
774 1.92 cube int
775 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
776 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
777 1.92 cube {
778 1.101 kardel struct timeval now;
779 1.63 thorpej struct itimerval val, oval;
780 1.142 ad struct ptimers *pts;
781 1.63 thorpej struct ptimer *pt;
782 1.63 thorpej
783 1.142 ad pts = p->p_timers;
784 1.63 thorpej
785 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
786 1.142 ad return EINVAL;
787 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
788 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
789 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
790 1.63 thorpej return (EINVAL);
791 1.63 thorpej
792 1.142 ad mutex_spin_enter(&timer_lock);
793 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
794 1.142 ad mutex_spin_exit(&timer_lock);
795 1.142 ad return (EINVAL);
796 1.142 ad }
797 1.142 ad
798 1.63 thorpej oval = pt->pt_time;
799 1.63 thorpej pt->pt_time = val;
800 1.63 thorpej
801 1.67 nathanw /*
802 1.67 nathanw * If we've been passed a relative time for a realtime timer,
803 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
804 1.67 nathanw * timer, convert it to relative and make sure we don't set it
805 1.67 nathanw * to zero, which would cancel the timer, or let it go
806 1.67 nathanw * negative, which would confuse the comparison tests.
807 1.67 nathanw */
808 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
809 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
810 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
811 1.101 kardel getmicrotime(&now);
812 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
813 1.101 kardel &pt->pt_time.it_value);
814 1.101 kardel }
815 1.67 nathanw } else {
816 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
817 1.101 kardel getmicrotime(&now);
818 1.101 kardel timersub(&pt->pt_time.it_value, &now,
819 1.101 kardel &pt->pt_time.it_value);
820 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
821 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
822 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
823 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
824 1.67 nathanw }
825 1.67 nathanw }
826 1.67 nathanw }
827 1.67 nathanw }
828 1.67 nathanw
829 1.63 thorpej timer_settime(pt);
830 1.142 ad mutex_spin_exit(&timer_lock);
831 1.63 thorpej
832 1.92 cube if (ovalue) {
833 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
834 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
835 1.63 thorpej }
836 1.63 thorpej
837 1.63 thorpej return (0);
838 1.63 thorpej }
839 1.63 thorpej
840 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
841 1.63 thorpej int
842 1.140 yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
843 1.140 yamt register_t *retval)
844 1.63 thorpej {
845 1.135 dsl /* {
846 1.63 thorpej syscallarg(timer_t) timerid;
847 1.63 thorpej syscallarg(struct itimerspec *) value;
848 1.135 dsl } */
849 1.63 thorpej struct itimerspec its;
850 1.92 cube int error;
851 1.92 cube
852 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
853 1.92 cube &its)) != 0)
854 1.92 cube return error;
855 1.92 cube
856 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
857 1.92 cube }
858 1.92 cube
859 1.92 cube int
860 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
861 1.92 cube {
862 1.63 thorpej struct ptimer *pt;
863 1.142 ad struct ptimers *pts;
864 1.92 cube struct itimerval aitv;
865 1.63 thorpej
866 1.142 ad pts = p->p_timers;
867 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
868 1.63 thorpej return (EINVAL);
869 1.142 ad mutex_spin_enter(&timer_lock);
870 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
871 1.142 ad mutex_spin_exit(&timer_lock);
872 1.142 ad return (EINVAL);
873 1.142 ad }
874 1.63 thorpej timer_gettime(pt, &aitv);
875 1.142 ad mutex_spin_exit(&timer_lock);
876 1.63 thorpej
877 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
878 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
879 1.63 thorpej
880 1.92 cube return 0;
881 1.63 thorpej }
882 1.63 thorpej
883 1.63 thorpej /*
884 1.63 thorpej * Return the count of the number of times a periodic timer expired
885 1.63 thorpej * while a notification was already pending. The counter is reset when
886 1.63 thorpej * a timer expires and a notification can be posted.
887 1.63 thorpej */
888 1.63 thorpej int
889 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
890 1.140 yamt register_t *retval)
891 1.63 thorpej {
892 1.135 dsl /* {
893 1.63 thorpej syscallarg(timer_t) timerid;
894 1.135 dsl } */
895 1.63 thorpej struct proc *p = l->l_proc;
896 1.142 ad struct ptimers *pts;
897 1.63 thorpej int timerid;
898 1.63 thorpej struct ptimer *pt;
899 1.63 thorpej
900 1.63 thorpej timerid = SCARG(uap, timerid);
901 1.63 thorpej
902 1.142 ad pts = p->p_timers;
903 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
904 1.142 ad return (EINVAL);
905 1.142 ad mutex_spin_enter(&timer_lock);
906 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
907 1.142 ad mutex_spin_exit(&timer_lock);
908 1.63 thorpej return (EINVAL);
909 1.142 ad }
910 1.63 thorpej *retval = pt->pt_poverruns;
911 1.142 ad mutex_spin_exit(&timer_lock);
912 1.63 thorpej
913 1.63 thorpej return (0);
914 1.63 thorpej }
915 1.63 thorpej
916 1.63 thorpej /*
917 1.63 thorpej * Real interval timer expired:
918 1.63 thorpej * send process whose timer expired an alarm signal.
919 1.63 thorpej * If time is not set up to reload, then just return.
920 1.63 thorpej * Else compute next time timer should go off which is > current time.
921 1.63 thorpej * This is where delay in processing this timeout causes multiple
922 1.63 thorpej * SIGALRM calls to be compressed into one.
923 1.63 thorpej */
924 1.63 thorpej void
925 1.63 thorpej realtimerexpire(void *arg)
926 1.63 thorpej {
927 1.101 kardel struct timeval now;
928 1.63 thorpej struct ptimer *pt;
929 1.63 thorpej
930 1.142 ad pt = arg;
931 1.63 thorpej
932 1.142 ad mutex_spin_enter(&timer_lock);
933 1.63 thorpej itimerfire(pt);
934 1.63 thorpej
935 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
936 1.63 thorpej timerclear(&pt->pt_time.it_value);
937 1.142 ad mutex_spin_exit(&timer_lock);
938 1.63 thorpej return;
939 1.63 thorpej }
940 1.101 kardel for (;;) {
941 1.101 kardel timeradd(&pt->pt_time.it_value,
942 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
943 1.101 kardel getmicrotime(&now);
944 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
945 1.101 kardel /*
946 1.101 kardel * Don't need to check hzto() return value, here.
947 1.101 kardel * callout_reset() does it for us.
948 1.101 kardel */
949 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
950 1.101 kardel realtimerexpire, pt);
951 1.142 ad mutex_spin_exit(&timer_lock);
952 1.101 kardel return;
953 1.101 kardel }
954 1.142 ad mutex_spin_exit(&timer_lock);
955 1.101 kardel pt->pt_overruns++;
956 1.142 ad mutex_spin_enter(&timer_lock);
957 1.101 kardel }
958 1.63 thorpej }
959 1.63 thorpej
960 1.63 thorpej /* BSD routine to get the value of an interval timer. */
961 1.63 thorpej /* ARGSUSED */
962 1.63 thorpej int
963 1.140 yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
964 1.140 yamt register_t *retval)
965 1.63 thorpej {
966 1.135 dsl /* {
967 1.63 thorpej syscallarg(int) which;
968 1.63 thorpej syscallarg(struct itimerval *) itv;
969 1.135 dsl } */
970 1.63 thorpej struct proc *p = l->l_proc;
971 1.63 thorpej struct itimerval aitv;
972 1.91 cube int error;
973 1.91 cube
974 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
975 1.91 cube if (error)
976 1.91 cube return error;
977 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
978 1.91 cube }
979 1.63 thorpej
980 1.91 cube int
981 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
982 1.91 cube {
983 1.142 ad struct ptimers *pts;
984 1.142 ad struct ptimer *pt;
985 1.63 thorpej
986 1.63 thorpej if ((u_int)which > ITIMER_PROF)
987 1.63 thorpej return (EINVAL);
988 1.63 thorpej
989 1.142 ad mutex_spin_enter(&timer_lock);
990 1.142 ad pts = p->p_timers;
991 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
992 1.91 cube timerclear(&itvp->it_value);
993 1.91 cube timerclear(&itvp->it_interval);
994 1.142 ad } else
995 1.142 ad timer_gettime(pt, itvp);
996 1.142 ad mutex_spin_exit(&timer_lock);
997 1.63 thorpej
998 1.91 cube return 0;
999 1.1 cgd }
1000 1.1 cgd
1001 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1002 1.1 cgd /* ARGSUSED */
1003 1.3 andrew int
1004 1.140 yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1005 1.140 yamt register_t *retval)
1006 1.15 thorpej {
1007 1.135 dsl /* {
1008 1.30 mycroft syscallarg(int) which;
1009 1.24 cgd syscallarg(const struct itimerval *) itv;
1010 1.11 cgd syscallarg(struct itimerval *) oitv;
1011 1.135 dsl } */
1012 1.63 thorpej struct proc *p = l->l_proc;
1013 1.30 mycroft int which = SCARG(uap, which);
1014 1.21 cgd struct sys_getitimer_args getargs;
1015 1.91 cube const struct itimerval *itvp;
1016 1.1 cgd struct itimerval aitv;
1017 1.91 cube int error;
1018 1.1 cgd
1019 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1020 1.1 cgd return (EINVAL);
1021 1.11 cgd itvp = SCARG(uap, itv);
1022 1.63 thorpej if (itvp &&
1023 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1024 1.1 cgd return (error);
1025 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1026 1.30 mycroft SCARG(&getargs, which) = which;
1027 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1028 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1029 1.21 cgd return (error);
1030 1.21 cgd }
1031 1.1 cgd if (itvp == 0)
1032 1.1 cgd return (0);
1033 1.91 cube
1034 1.91 cube return dosetitimer(p, which, &aitv);
1035 1.91 cube }
1036 1.91 cube
1037 1.91 cube int
1038 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1039 1.91 cube {
1040 1.101 kardel struct timeval now;
1041 1.142 ad struct ptimers *pts;
1042 1.142 ad struct ptimer *pt, *spare;
1043 1.91 cube
1044 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1045 1.1 cgd return (EINVAL);
1046 1.63 thorpej
1047 1.63 thorpej /*
1048 1.63 thorpej * Don't bother allocating data structures if the process just
1049 1.63 thorpej * wants to clear the timer.
1050 1.63 thorpej */
1051 1.142 ad spare = NULL;
1052 1.142 ad pts = p->p_timers;
1053 1.142 ad retry:
1054 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1055 1.142 ad pts->pts_timers[which] == NULL))
1056 1.63 thorpej return (0);
1057 1.142 ad if (pts == NULL)
1058 1.142 ad pts = timers_alloc(p);
1059 1.142 ad mutex_spin_enter(&timer_lock);
1060 1.142 ad pt = pts->pts_timers[which];
1061 1.142 ad if (pt == NULL) {
1062 1.142 ad if (spare == NULL) {
1063 1.142 ad mutex_spin_exit(&timer_lock);
1064 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1065 1.142 ad goto retry;
1066 1.142 ad }
1067 1.142 ad pt = spare;
1068 1.142 ad spare = NULL;
1069 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1070 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1071 1.63 thorpej pt->pt_overruns = 0;
1072 1.63 thorpej pt->pt_proc = p;
1073 1.63 thorpej pt->pt_type = which;
1074 1.64 nathanw pt->pt_entry = which;
1075 1.142 ad pt->pt_active = 0;
1076 1.142 ad pt->pt_queued = false;
1077 1.142 ad callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1078 1.63 thorpej switch (which) {
1079 1.63 thorpej case ITIMER_REAL:
1080 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1081 1.63 thorpej break;
1082 1.63 thorpej case ITIMER_VIRTUAL:
1083 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1084 1.63 thorpej break;
1085 1.63 thorpej case ITIMER_PROF:
1086 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1087 1.63 thorpej break;
1088 1.1 cgd }
1089 1.142 ad pts->pts_timers[which] = pt;
1090 1.142 ad }
1091 1.91 cube pt->pt_time = *itvp;
1092 1.63 thorpej
1093 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1094 1.67 nathanw /* Convert to absolute time */
1095 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1096 1.101 kardel getmicrotime(&now);
1097 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1098 1.67 nathanw }
1099 1.63 thorpej timer_settime(pt);
1100 1.142 ad mutex_spin_exit(&timer_lock);
1101 1.142 ad if (spare != NULL)
1102 1.142 ad pool_put(&ptimer_pool, spare);
1103 1.63 thorpej
1104 1.1 cgd return (0);
1105 1.1 cgd }
1106 1.1 cgd
1107 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1108 1.142 ad struct ptimers *
1109 1.63 thorpej timers_alloc(struct proc *p)
1110 1.63 thorpej {
1111 1.142 ad struct ptimers *pts;
1112 1.63 thorpej int i;
1113 1.63 thorpej
1114 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1115 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1116 1.63 thorpej LIST_INIT(&pts->pts_prof);
1117 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1118 1.63 thorpej pts->pts_timers[i] = NULL;
1119 1.64 nathanw pts->pts_fired = 0;
1120 1.142 ad mutex_spin_enter(&timer_lock);
1121 1.142 ad if (p->p_timers == NULL) {
1122 1.142 ad p->p_timers = pts;
1123 1.142 ad mutex_spin_exit(&timer_lock);
1124 1.142 ad return pts;
1125 1.142 ad }
1126 1.142 ad mutex_spin_exit(&timer_lock);
1127 1.142 ad pool_put(&ptimers_pool, pts);
1128 1.142 ad return p->p_timers;
1129 1.63 thorpej }
1130 1.63 thorpej
1131 1.1 cgd /*
1132 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1133 1.63 thorpej * then clean up all timers and free all the data structures. If
1134 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1135 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1136 1.63 thorpej * structure if none of those remain.
1137 1.1 cgd */
1138 1.3 andrew void
1139 1.63 thorpej timers_free(struct proc *p, int which)
1140 1.6 cgd {
1141 1.63 thorpej struct ptimers *pts;
1142 1.142 ad struct ptimer *ptn;
1143 1.63 thorpej struct timeval tv;
1144 1.142 ad int i;
1145 1.63 thorpej
1146 1.142 ad if (p->p_timers == NULL)
1147 1.142 ad return;
1148 1.63 thorpej
1149 1.142 ad pts = p->p_timers;
1150 1.142 ad mutex_spin_enter(&timer_lock);
1151 1.142 ad if (which == TIMERS_ALL) {
1152 1.142 ad p->p_timers = NULL;
1153 1.142 ad i = 0;
1154 1.142 ad } else {
1155 1.142 ad timerclear(&tv);
1156 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1157 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1158 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1159 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1160 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1161 1.142 ad if (ptn) {
1162 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1163 1.142 ad &ptn->pt_time.it_value);
1164 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1165 1.142 ad }
1166 1.142 ad timerclear(&tv);
1167 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1168 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1169 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1170 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1171 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1172 1.142 ad if (ptn) {
1173 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1174 1.142 ad &ptn->pt_time.it_value);
1175 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1176 1.63 thorpej }
1177 1.142 ad i = 3;
1178 1.142 ad }
1179 1.142 ad for ( ; i < TIMER_MAX; i++) {
1180 1.142 ad if (pts->pts_timers[i] != NULL) {
1181 1.142 ad itimerfree(pts, i);
1182 1.142 ad mutex_spin_enter(&timer_lock);
1183 1.1 cgd }
1184 1.1 cgd }
1185 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1186 1.142 ad pts->pts_timers[2] == NULL) {
1187 1.142 ad p->p_timers = NULL;
1188 1.142 ad mutex_spin_exit(&timer_lock);
1189 1.142 ad pool_put(&ptimers_pool, pts);
1190 1.142 ad } else
1191 1.142 ad mutex_spin_exit(&timer_lock);
1192 1.142 ad }
1193 1.142 ad
1194 1.142 ad static void
1195 1.142 ad itimerfree(struct ptimers *pts, int index)
1196 1.142 ad {
1197 1.142 ad struct ptimer *pt;
1198 1.142 ad
1199 1.142 ad KASSERT(mutex_owned(&timer_lock));
1200 1.142 ad
1201 1.142 ad pt = pts->pts_timers[index];
1202 1.142 ad pts->pts_timers[index] = NULL;
1203 1.144 ad if (pt->pt_type == CLOCK_REALTIME)
1204 1.144 ad callout_halt(&pt->pt_ch, &timer_lock);
1205 1.144 ad else if (pt->pt_queued)
1206 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1207 1.144 ad mutex_spin_exit(&timer_lock);
1208 1.142 ad callout_destroy(&pt->pt_ch);
1209 1.142 ad pool_put(&ptimer_pool, pt);
1210 1.1 cgd }
1211 1.1 cgd
1212 1.1 cgd /*
1213 1.1 cgd * Decrement an interval timer by a specified number
1214 1.1 cgd * of microseconds, which must be less than a second,
1215 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1216 1.1 cgd * it. In this case, carry over (usec - old value) to
1217 1.8 cgd * reduce the value reloaded into the timer so that
1218 1.1 cgd * the timer does not drift. This routine assumes
1219 1.1 cgd * that it is called in a context where the timers
1220 1.1 cgd * on which it is operating cannot change in value.
1221 1.1 cgd */
1222 1.142 ad static int
1223 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1224 1.63 thorpej {
1225 1.45 augustss struct itimerval *itp;
1226 1.1 cgd
1227 1.142 ad KASSERT(mutex_owned(&timer_lock));
1228 1.142 ad
1229 1.63 thorpej itp = &pt->pt_time;
1230 1.1 cgd if (itp->it_value.tv_usec < usec) {
1231 1.1 cgd if (itp->it_value.tv_sec == 0) {
1232 1.1 cgd /* expired, and already in next interval */
1233 1.1 cgd usec -= itp->it_value.tv_usec;
1234 1.1 cgd goto expire;
1235 1.1 cgd }
1236 1.1 cgd itp->it_value.tv_usec += 1000000;
1237 1.1 cgd itp->it_value.tv_sec--;
1238 1.1 cgd }
1239 1.1 cgd itp->it_value.tv_usec -= usec;
1240 1.1 cgd usec = 0;
1241 1.1 cgd if (timerisset(&itp->it_value))
1242 1.1 cgd return (1);
1243 1.1 cgd /* expired, exactly at end of interval */
1244 1.1 cgd expire:
1245 1.1 cgd if (timerisset(&itp->it_interval)) {
1246 1.1 cgd itp->it_value = itp->it_interval;
1247 1.1 cgd itp->it_value.tv_usec -= usec;
1248 1.1 cgd if (itp->it_value.tv_usec < 0) {
1249 1.1 cgd itp->it_value.tv_usec += 1000000;
1250 1.1 cgd itp->it_value.tv_sec--;
1251 1.1 cgd }
1252 1.63 thorpej timer_settime(pt);
1253 1.1 cgd } else
1254 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1255 1.1 cgd return (0);
1256 1.42 cgd }
1257 1.42 cgd
1258 1.142 ad static void
1259 1.63 thorpej itimerfire(struct ptimer *pt)
1260 1.63 thorpej {
1261 1.78 cl
1262 1.142 ad KASSERT(mutex_owned(&timer_lock));
1263 1.142 ad
1264 1.142 ad /*
1265 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1266 1.142 ad * XXX Relying on the clock interrupt is stupid.
1267 1.142 ad */
1268 1.142 ad if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1269 1.142 ad return;
1270 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1271 1.142 ad pt->pt_queued = true;
1272 1.142 ad softint_schedule(timer_sih);
1273 1.142 ad }
1274 1.142 ad
1275 1.142 ad void
1276 1.142 ad timer_tick(lwp_t *l, bool user)
1277 1.142 ad {
1278 1.142 ad struct ptimers *pts;
1279 1.142 ad struct ptimer *pt;
1280 1.142 ad proc_t *p;
1281 1.142 ad
1282 1.142 ad p = l->l_proc;
1283 1.142 ad if (p->p_timers == NULL)
1284 1.142 ad return;
1285 1.142 ad
1286 1.142 ad mutex_spin_enter(&timer_lock);
1287 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1288 1.63 thorpej /*
1289 1.142 ad * Run current process's virtual and profile time, as needed.
1290 1.63 thorpej */
1291 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1292 1.142 ad if (itimerdecr(pt, tick) == 0)
1293 1.142 ad itimerfire(pt);
1294 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1295 1.142 ad if (itimerdecr(pt, tick) == 0)
1296 1.142 ad itimerfire(pt);
1297 1.142 ad }
1298 1.142 ad mutex_spin_exit(&timer_lock);
1299 1.142 ad }
1300 1.142 ad
1301 1.142 ad static void
1302 1.142 ad timer_intr(void *cookie)
1303 1.142 ad {
1304 1.142 ad ksiginfo_t ksi;
1305 1.142 ad struct ptimer *pt;
1306 1.142 ad proc_t *p;
1307 1.142 ad
1308 1.142 ad mutex_spin_enter(&timer_lock);
1309 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1310 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1311 1.142 ad KASSERT(pt->pt_queued);
1312 1.142 ad pt->pt_queued = false;
1313 1.142 ad
1314 1.142 ad if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1315 1.142 ad continue;
1316 1.142 ad p = pt->pt_proc;
1317 1.142 ad if (pt->pt_proc->p_timers == NULL) {
1318 1.142 ad /* Process is dying. */
1319 1.142 ad continue;
1320 1.142 ad }
1321 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1322 1.63 thorpej pt->pt_overruns++;
1323 1.142 ad continue;
1324 1.64 nathanw }
1325 1.142 ad
1326 1.142 ad KSI_INIT(&ksi);
1327 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1328 1.142 ad ksi.ksi_code = SI_TIMER;
1329 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1330 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1331 1.142 ad pt->pt_overruns = 0;
1332 1.142 ad mutex_spin_exit(&timer_lock);
1333 1.142 ad
1334 1.145 ad mutex_enter(proc_lock);
1335 1.142 ad kpsignal(p, &ksi, NULL);
1336 1.145 ad mutex_exit(proc_lock);
1337 1.142 ad
1338 1.142 ad mutex_spin_enter(&timer_lock);
1339 1.63 thorpej }
1340 1.142 ad mutex_spin_exit(&timer_lock);
1341 1.63 thorpej }
1342 1.63 thorpej
1343 1.42 cgd /*
1344 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1345 1.42 cgd * for usage and rationale.
1346 1.42 cgd */
1347 1.42 cgd int
1348 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1349 1.42 cgd {
1350 1.49 itojun struct timeval tv, delta;
1351 1.101 kardel int rv = 0;
1352 1.42 cgd
1353 1.101 kardel getmicrouptime(&tv);
1354 1.49 itojun timersub(&tv, lasttime, &delta);
1355 1.42 cgd
1356 1.42 cgd /*
1357 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1358 1.42 cgd * even if interval is huge.
1359 1.42 cgd */
1360 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1361 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1362 1.49 itojun *lasttime = tv;
1363 1.42 cgd rv = 1;
1364 1.42 cgd }
1365 1.50 itojun
1366 1.50 itojun return (rv);
1367 1.50 itojun }
1368 1.50 itojun
1369 1.50 itojun /*
1370 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1371 1.50 itojun */
1372 1.50 itojun int
1373 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1374 1.50 itojun {
1375 1.50 itojun struct timeval tv, delta;
1376 1.101 kardel int rv;
1377 1.50 itojun
1378 1.101 kardel getmicrouptime(&tv);
1379 1.50 itojun timersub(&tv, lasttime, &delta);
1380 1.50 itojun
1381 1.50 itojun /*
1382 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1383 1.50 itojun * if more than one second have passed since the last update of
1384 1.50 itojun * lasttime, reset the counter.
1385 1.50 itojun *
1386 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1387 1.50 itojun * try to use *curpps for stat purposes as well.
1388 1.50 itojun */
1389 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1390 1.50 itojun delta.tv_sec >= 1) {
1391 1.50 itojun *lasttime = tv;
1392 1.50 itojun *curpps = 0;
1393 1.69 dyoung }
1394 1.69 dyoung if (maxpps < 0)
1395 1.53 itojun rv = 1;
1396 1.53 itojun else if (*curpps < maxpps)
1397 1.50 itojun rv = 1;
1398 1.50 itojun else
1399 1.50 itojun rv = 0;
1400 1.50 itojun
1401 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1402 1.50 itojun /* be careful about wrap-around */
1403 1.50 itojun if (*curpps + 1 > *curpps)
1404 1.50 itojun *curpps = *curpps + 1;
1405 1.50 itojun #else
1406 1.50 itojun /*
1407 1.50 itojun * assume that there's not too many calls to this function.
1408 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1409 1.50 itojun * behavior, not the behavior of this function.
1410 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1411 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1412 1.50 itojun */
1413 1.50 itojun *curpps = *curpps + 1;
1414 1.50 itojun #endif
1415 1.42 cgd
1416 1.42 cgd return (rv);
1417 1.1 cgd }
1418