Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.146.2.10
      1  1.146.2.10  wrstuden /*	$NetBSD: kern_time.c,v 1.146.2.10 2008/09/25 06:12:28 wrstuden Exp $	*/
      2        1.42       cgd 
      3        1.42       cgd /*-
      4       1.142        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.42       cgd  * All rights reserved.
      6        1.42       cgd  *
      7        1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8        1.42       cgd  * by Christopher G. Demetriou.
      9        1.42       cgd  *
     10        1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11        1.42       cgd  * modification, are permitted provided that the following conditions
     12        1.42       cgd  * are met:
     13        1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14        1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15        1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17        1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18        1.42       cgd  *
     19        1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30        1.42       cgd  */
     31         1.9       cgd 
     32         1.1       cgd /*
     33         1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34         1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35         1.1       cgd  *
     36         1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37         1.1       cgd  * modification, are permitted provided that the following conditions
     38         1.1       cgd  * are met:
     39         1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40         1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41         1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42         1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43         1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44        1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45         1.1       cgd  *    may be used to endorse or promote products derived from this software
     46         1.1       cgd  *    without specific prior written permission.
     47         1.1       cgd  *
     48         1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49         1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50         1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51         1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52         1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53         1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54         1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55         1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56         1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57         1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58         1.1       cgd  * SUCH DAMAGE.
     59         1.1       cgd  *
     60        1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61         1.1       cgd  */
     62        1.58     lukem 
     63        1.58     lukem #include <sys/cdefs.h>
     64  1.146.2.10  wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146.2.10 2008/09/25 06:12:28 wrstuden Exp $");
     65         1.1       cgd 
     66         1.5   mycroft #include <sys/param.h>
     67         1.5   mycroft #include <sys/resourcevar.h>
     68         1.5   mycroft #include <sys/kernel.h>
     69         1.8       cgd #include <sys/systm.h>
     70         1.5   mycroft #include <sys/proc.h>
     71         1.8       cgd #include <sys/vnode.h>
     72        1.17  christos #include <sys/signalvar.h>
     73        1.25     perry #include <sys/syslog.h>
     74       1.101    kardel #include <sys/timetc.h>
     75       1.143        ad #include <sys/timex.h>
     76        1.99      elad #include <sys/kauth.h>
     77        1.11       cgd #include <sys/mount.h>
     78   1.146.2.3  wrstuden #include <sys/sa.h>
     79   1.146.2.3  wrstuden #include <sys/savar.h>
     80        1.11       cgd #include <sys/syscallargs.h>
     81       1.143        ad #include <sys/cpu.h>
     82        1.19  christos 
     83        1.37   thorpej #include <uvm/uvm_extern.h>
     84        1.37   thorpej 
     85   1.146.2.8  wrstuden #include "opt_sa.h"
     86   1.146.2.8  wrstuden 
     87       1.142        ad static void	timer_intr(void *);
     88       1.142        ad static void	itimerfire(struct ptimer *);
     89       1.142        ad static void	itimerfree(struct ptimers *, int);
     90       1.142        ad 
     91       1.142        ad kmutex_t	timer_lock;
     92       1.142        ad 
     93       1.142        ad static void	*timer_sih;
     94       1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95       1.131        ad 
     96        1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97       1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98        1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99       1.118        ad     &pool_allocator_nointr, IPL_NONE);
    100        1.97    simonb 
    101       1.131        ad /*
    102       1.131        ad  * Initialize timekeeping.
    103       1.131        ad  */
    104       1.131        ad void
    105       1.131        ad time_init(void)
    106       1.131        ad {
    107       1.131        ad 
    108   1.146.2.4  wrstuden 	/* nothing yet */
    109       1.131        ad }
    110       1.131        ad 
    111       1.142        ad void
    112       1.142        ad time_init2(void)
    113       1.142        ad {
    114       1.142        ad 
    115       1.142        ad 	TAILQ_INIT(&timer_queue);
    116       1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117       1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118       1.142        ad 	    timer_intr, NULL);
    119       1.142        ad }
    120       1.142        ad 
    121        1.63   thorpej /* Time of day and interval timer support.
    122         1.1       cgd  *
    123         1.1       cgd  * These routines provide the kernel entry points to get and set
    124         1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125         1.1       cgd  * here provide support for adding and subtracting timeval structures
    126         1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127         1.1       cgd  * timers when they expire.
    128         1.1       cgd  */
    129         1.1       cgd 
    130        1.22       jtc /* This function is used by clock_settime and settimeofday */
    131       1.132      elad static int
    132       1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    133        1.22       jtc {
    134        1.98  christos 	struct timeval delta, tv;
    135       1.101    kardel 	struct timeval now;
    136       1.101    kardel 	struct timespec ts1;
    137       1.137      yamt 	struct bintime btdelta;
    138       1.129        ad 	lwp_t *l;
    139       1.129        ad 	int s;
    140        1.22       jtc 
    141        1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    142        1.98  christos 
    143        1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    144       1.129        ad 	s = splclock();
    145       1.101    kardel 	microtime(&now);
    146       1.101    kardel 	timersub(&tv, &now, &delta);
    147       1.132      elad 
    148       1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    149       1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    150       1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    151       1.129        ad 		splx(s);
    152        1.29       tls 		return (EPERM);
    153        1.55      tron 	}
    154       1.132      elad 
    155        1.29       tls #ifdef notyet
    156       1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    157       1.129        ad 		splx(s);
    158        1.29       tls 		return (EPERM);
    159        1.55      tron 	}
    160        1.29       tls #endif
    161       1.103    kardel 
    162       1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    163       1.101    kardel 	tc_setclock(&ts1);
    164       1.103    kardel 
    165        1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    166       1.103    kardel 
    167        1.47   thorpej 	/*
    168       1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    169       1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    170       1.129        ad 	 * pausing all CPUs while we adjust the clock.
    171        1.47   thorpej 	 */
    172       1.137      yamt 	timeval2bintime(&delta, &btdelta);
    173       1.145        ad 	mutex_enter(proc_lock);
    174       1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    175       1.129        ad 		lwp_lock(l);
    176       1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    177       1.129        ad 		lwp_unlock(l);
    178       1.129        ad 	}
    179       1.145        ad 	mutex_exit(proc_lock);
    180        1.22       jtc 	resettodr();
    181       1.129        ad 	splx(s);
    182       1.129        ad 
    183        1.29       tls 	return (0);
    184        1.22       jtc }
    185        1.22       jtc 
    186       1.132      elad int
    187       1.132      elad settime(struct proc *p, struct timespec *ts)
    188       1.132      elad {
    189       1.132      elad 	return (settime1(p, ts, true));
    190       1.132      elad }
    191       1.132      elad 
    192        1.22       jtc /* ARGSUSED */
    193        1.22       jtc int
    194       1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    195       1.140      yamt     register_t *retval)
    196        1.22       jtc {
    197       1.135       dsl 	/* {
    198        1.22       jtc 		syscallarg(clockid_t) clock_id;
    199        1.23       cgd 		syscallarg(struct timespec *) tp;
    200       1.135       dsl 	} */
    201        1.22       jtc 	clockid_t clock_id;
    202        1.22       jtc 	struct timespec ats;
    203        1.22       jtc 
    204        1.22       jtc 	clock_id = SCARG(uap, clock_id);
    205        1.61    simonb 	switch (clock_id) {
    206        1.61    simonb 	case CLOCK_REALTIME:
    207        1.96    simonb 		nanotime(&ats);
    208        1.61    simonb 		break;
    209        1.61    simonb 	case CLOCK_MONOTONIC:
    210       1.101    kardel 		nanouptime(&ats);
    211        1.61    simonb 		break;
    212        1.61    simonb 	default:
    213        1.22       jtc 		return (EINVAL);
    214        1.61    simonb 	}
    215        1.22       jtc 
    216        1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    217        1.22       jtc }
    218        1.22       jtc 
    219        1.22       jtc /* ARGSUSED */
    220        1.22       jtc int
    221       1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    222       1.140      yamt     register_t *retval)
    223        1.22       jtc {
    224       1.135       dsl 	/* {
    225        1.22       jtc 		syscallarg(clockid_t) clock_id;
    226        1.23       cgd 		syscallarg(const struct timespec *) tp;
    227       1.135       dsl 	} */
    228        1.22       jtc 
    229       1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    230       1.132      elad 	    true);
    231        1.56      manu }
    232        1.56      manu 
    233        1.56      manu 
    234        1.56      manu int
    235       1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    236       1.132      elad     bool check_kauth)
    237        1.56      manu {
    238        1.60      manu 	struct timespec ats;
    239        1.56      manu 	int error;
    240        1.56      manu 
    241        1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    242        1.60      manu 		return (error);
    243        1.60      manu 
    244        1.61    simonb 	switch (clock_id) {
    245        1.61    simonb 	case CLOCK_REALTIME:
    246       1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    247        1.61    simonb 			return (error);
    248        1.61    simonb 		break;
    249        1.61    simonb 	case CLOCK_MONOTONIC:
    250        1.61    simonb 		return (EINVAL);	/* read-only clock */
    251        1.61    simonb 	default:
    252        1.56      manu 		return (EINVAL);
    253        1.61    simonb 	}
    254        1.22       jtc 
    255        1.22       jtc 	return 0;
    256        1.22       jtc }
    257        1.22       jtc 
    258        1.22       jtc int
    259       1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    260       1.140      yamt     register_t *retval)
    261        1.22       jtc {
    262       1.135       dsl 	/* {
    263        1.22       jtc 		syscallarg(clockid_t) clock_id;
    264        1.23       cgd 		syscallarg(struct timespec *) tp;
    265       1.135       dsl 	} */
    266        1.22       jtc 	clockid_t clock_id;
    267        1.22       jtc 	struct timespec ts;
    268        1.22       jtc 	int error = 0;
    269        1.22       jtc 
    270        1.22       jtc 	clock_id = SCARG(uap, clock_id);
    271        1.61    simonb 	switch (clock_id) {
    272        1.61    simonb 	case CLOCK_REALTIME:
    273        1.61    simonb 	case CLOCK_MONOTONIC:
    274        1.22       jtc 		ts.tv_sec = 0;
    275       1.102    kardel 		if (tc_getfrequency() > 1000000000)
    276       1.102    kardel 			ts.tv_nsec = 1;
    277       1.102    kardel 		else
    278       1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    279        1.61    simonb 		break;
    280        1.61    simonb 	default:
    281        1.61    simonb 		return (EINVAL);
    282        1.61    simonb 	}
    283        1.22       jtc 
    284        1.61    simonb 	if (SCARG(uap, tp))
    285        1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    286        1.22       jtc 
    287        1.22       jtc 	return error;
    288        1.22       jtc }
    289        1.22       jtc 
    290        1.27       jtc /* ARGSUSED */
    291        1.27       jtc int
    292       1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    293       1.140      yamt     register_t *retval)
    294        1.27       jtc {
    295       1.135       dsl 	/* {
    296       1.101    kardel 		syscallarg(struct timespec *) rqtp;
    297       1.101    kardel 		syscallarg(struct timespec *) rmtp;
    298       1.135       dsl 	} */
    299       1.101    kardel 	struct timespec rmt, rqt;
    300       1.120       dsl 	int error, error1;
    301       1.101    kardel 
    302       1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    303       1.101    kardel 	if (error)
    304       1.101    kardel 		return (error);
    305       1.101    kardel 
    306       1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    307       1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    308       1.120       dsl 		return error;
    309       1.120       dsl 
    310       1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    311       1.120       dsl 	return error1 ? error1 : error;
    312       1.120       dsl }
    313       1.120       dsl 
    314       1.120       dsl int
    315       1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    316       1.120       dsl {
    317       1.141      yamt 	struct timespec rmtstart;
    318       1.120       dsl 	int error, timo;
    319       1.120       dsl 
    320       1.120       dsl 	if (itimespecfix(rqt))
    321       1.101    kardel 		return (EINVAL);
    322       1.101    kardel 
    323       1.120       dsl 	timo = tstohz(rqt);
    324       1.101    kardel 	/*
    325       1.101    kardel 	 * Avoid inadvertantly sleeping forever
    326       1.101    kardel 	 */
    327       1.101    kardel 	if (timo == 0)
    328       1.101    kardel 		timo = 1;
    329       1.141      yamt 	getnanouptime(&rmtstart);
    330       1.141      yamt again:
    331       1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    332       1.141      yamt 	if (rmt != NULL || error == 0) {
    333       1.141      yamt 		struct timespec rmtend;
    334       1.141      yamt 		struct timespec t0;
    335       1.141      yamt 		struct timespec *t;
    336       1.101    kardel 
    337       1.141      yamt 		getnanouptime(&rmtend);
    338       1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    339       1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    340       1.141      yamt 		timespecsub(rqt, t, t);
    341       1.141      yamt 		if (t->tv_sec < 0)
    342       1.141      yamt 			timespecclear(t);
    343       1.141      yamt 		if (error == 0) {
    344       1.141      yamt 			timo = tstohz(t);
    345       1.141      yamt 			if (timo > 0)
    346       1.141      yamt 				goto again;
    347       1.141      yamt 		}
    348       1.141      yamt 	}
    349       1.104    kardel 
    350       1.101    kardel 	if (error == ERESTART)
    351       1.101    kardel 		error = EINTR;
    352       1.101    kardel 	if (error == EWOULDBLOCK)
    353       1.101    kardel 		error = 0;
    354       1.101    kardel 
    355       1.101    kardel 	return error;
    356        1.27       jtc }
    357        1.22       jtc 
    358         1.1       cgd /* ARGSUSED */
    359         1.3    andrew int
    360       1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    361       1.140      yamt     register_t *retval)
    362        1.15   thorpej {
    363       1.135       dsl 	/* {
    364        1.11       cgd 		syscallarg(struct timeval *) tp;
    365       1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    366       1.135       dsl 	} */
    367         1.1       cgd 	struct timeval atv;
    368         1.1       cgd 	int error = 0;
    369        1.25     perry 	struct timezone tzfake;
    370         1.1       cgd 
    371        1.11       cgd 	if (SCARG(uap, tp)) {
    372         1.1       cgd 		microtime(&atv);
    373        1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    374        1.17  christos 		if (error)
    375         1.1       cgd 			return (error);
    376         1.1       cgd 	}
    377        1.25     perry 	if (SCARG(uap, tzp)) {
    378        1.25     perry 		/*
    379        1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    380        1.25     perry 		 * fake up a timezone struct and return it if demanded.
    381        1.25     perry 		 */
    382        1.25     perry 		tzfake.tz_minuteswest = 0;
    383        1.25     perry 		tzfake.tz_dsttime = 0;
    384        1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    385        1.25     perry 	}
    386         1.1       cgd 	return (error);
    387         1.1       cgd }
    388         1.1       cgd 
    389         1.1       cgd /* ARGSUSED */
    390         1.3    andrew int
    391       1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    392       1.140      yamt     register_t *retval)
    393        1.15   thorpej {
    394       1.135       dsl 	/* {
    395        1.24       cgd 		syscallarg(const struct timeval *) tv;
    396       1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    397       1.135       dsl 	} */
    398        1.60      manu 
    399       1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    400        1.60      manu }
    401        1.60      manu 
    402        1.60      manu int
    403       1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    404       1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    405        1.60      manu {
    406        1.22       jtc 	struct timeval atv;
    407        1.98  christos 	struct timespec ts;
    408        1.22       jtc 	int error;
    409         1.1       cgd 
    410         1.8       cgd 	/* Verify all parameters before changing time. */
    411       1.119       dsl 
    412        1.25     perry 	/*
    413        1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    414        1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    415        1.25     perry 	 */
    416        1.98  christos 	if (utzp)
    417        1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    418       1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    419        1.98  christos 
    420        1.98  christos 	if (utv == NULL)
    421        1.98  christos 		return 0;
    422        1.98  christos 
    423       1.119       dsl 	if (userspace) {
    424       1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    425       1.119       dsl 			return error;
    426       1.119       dsl 		utv = &atv;
    427       1.119       dsl 	}
    428       1.119       dsl 
    429       1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    430       1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    431         1.1       cgd }
    432         1.1       cgd 
    433        1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    434         1.1       cgd 
    435         1.1       cgd /* ARGSUSED */
    436         1.3    andrew int
    437       1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    438       1.140      yamt     register_t *retval)
    439        1.15   thorpej {
    440       1.135       dsl 	/* {
    441        1.24       cgd 		syscallarg(const struct timeval *) delta;
    442        1.11       cgd 		syscallarg(struct timeval *) olddelta;
    443       1.135       dsl 	} */
    444        1.56      manu 	int error;
    445         1.1       cgd 
    446       1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    447       1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    448         1.1       cgd 		return (error);
    449        1.17  christos 
    450       1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    451        1.56      manu }
    452        1.56      manu 
    453        1.56      manu int
    454       1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    455        1.56      manu {
    456        1.60      manu 	struct timeval atv;
    457       1.101    kardel 	int error = 0;
    458       1.101    kardel 
    459       1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    460       1.101    kardel 
    461       1.101    kardel 	if (olddelta) {
    462       1.143        ad 		mutex_spin_enter(&timecounter_lock);
    463       1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    464       1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    465       1.143        ad 		mutex_spin_exit(&timecounter_lock);
    466       1.101    kardel 		if (atv.tv_usec < 0) {
    467       1.101    kardel 			atv.tv_usec += 1000000;
    468       1.101    kardel 			atv.tv_sec--;
    469       1.101    kardel 		}
    470       1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    471       1.101    kardel 		if (error)
    472       1.101    kardel 			return (error);
    473       1.101    kardel 	}
    474       1.101    kardel 
    475       1.101    kardel 	if (delta) {
    476       1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    477       1.101    kardel 		if (error)
    478       1.101    kardel 			return (error);
    479       1.101    kardel 
    480       1.143        ad 		mutex_spin_enter(&timecounter_lock);
    481       1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    482       1.101    kardel 			atv.tv_usec;
    483       1.143        ad 		if (time_adjtime) {
    484       1.101    kardel 			/* We need to save the system time during shutdown */
    485       1.101    kardel 			time_adjusted |= 1;
    486       1.143        ad 		}
    487       1.143        ad 		mutex_spin_exit(&timecounter_lock);
    488       1.101    kardel 	}
    489       1.101    kardel 
    490        1.79       chs 	return error;
    491         1.1       cgd }
    492         1.1       cgd 
    493         1.1       cgd /*
    494        1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495        1.63   thorpej  * timer_*() family of routines are supported.
    496         1.1       cgd  *
    497        1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    498        1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    499        1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    500        1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    501        1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    502        1.63   thorpej  * syscall.
    503         1.1       cgd  *
    504        1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    505        1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    506         1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    507        1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    508        1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    509        1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    510        1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    511        1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    512        1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    513        1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    514        1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    515        1.63   thorpej 
    516        1.63   thorpej /* Allocate a POSIX realtime timer. */
    517        1.63   thorpej int
    518       1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    519       1.140      yamt     register_t *retval)
    520        1.63   thorpej {
    521       1.135       dsl 	/* {
    522        1.63   thorpej 		syscallarg(clockid_t) clock_id;
    523        1.63   thorpej 		syscallarg(struct sigevent *) evp;
    524        1.63   thorpej 		syscallarg(timer_t *) timerid;
    525       1.135       dsl 	} */
    526        1.92      cube 
    527        1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    528       1.105        ad 	    SCARG(uap, evp), copyin, l);
    529        1.92      cube }
    530        1.92      cube 
    531        1.92      cube int
    532        1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    533       1.105        ad     copyin_t fetch_event, struct lwp *l)
    534        1.92      cube {
    535        1.92      cube 	int error;
    536        1.92      cube 	timer_t timerid;
    537       1.142        ad 	struct ptimers *pts;
    538        1.63   thorpej 	struct ptimer *pt;
    539       1.105        ad 	struct proc *p;
    540       1.105        ad 
    541       1.105        ad 	p = l->l_proc;
    542        1.63   thorpej 
    543       1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    544        1.63   thorpej 		return (EINVAL);
    545        1.63   thorpej 
    546       1.142        ad 	if ((pts = p->p_timers) == NULL)
    547       1.142        ad 		pts = timers_alloc(p);
    548        1.63   thorpej 
    549        1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    550       1.142        ad 	if (evp != NULL) {
    551        1.63   thorpej 		if (((error =
    552        1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    553        1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    554        1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    555        1.63   thorpej 			pool_put(&ptimer_pool, pt);
    556        1.63   thorpej 			return (error ? error : EINVAL);
    557        1.63   thorpej 		}
    558       1.142        ad 	}
    559       1.142        ad 
    560       1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    561       1.142        ad 	mutex_spin_enter(&timer_lock);
    562       1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    563       1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    564       1.142        ad 			break;
    565       1.142        ad 	if (timerid == TIMER_MAX) {
    566       1.142        ad 		mutex_spin_exit(&timer_lock);
    567       1.142        ad 		pool_put(&ptimer_pool, pt);
    568       1.142        ad 		return EAGAIN;
    569       1.142        ad 	}
    570       1.142        ad 	if (evp == NULL) {
    571        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    572        1.63   thorpej 		switch (id) {
    573        1.63   thorpej 		case CLOCK_REALTIME:
    574        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    575        1.63   thorpej 			break;
    576        1.63   thorpej 		case CLOCK_VIRTUAL:
    577        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    578        1.63   thorpej 			break;
    579        1.63   thorpej 		case CLOCK_PROF:
    580        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    581        1.63   thorpej 			break;
    582        1.63   thorpej 		}
    583        1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    584        1.63   thorpej 	}
    585        1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    586        1.73  christos 	pt->pt_info.ksi_errno = 0;
    587        1.73  christos 	pt->pt_info.ksi_code = 0;
    588        1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    589       1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    590       1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    591        1.63   thorpej 	pt->pt_type = id;
    592        1.63   thorpej 	pt->pt_proc = p;
    593        1.63   thorpej 	pt->pt_overruns = 0;
    594        1.63   thorpej 	pt->pt_poverruns = 0;
    595        1.64   nathanw 	pt->pt_entry = timerid;
    596       1.142        ad 	pt->pt_queued = false;
    597   1.146.2.9  wrstuden 	timespecclear(&pt->pt_time.it_value);
    598   1.146.2.9  wrstuden 	if (id == CLOCK_REALTIME)
    599   1.146.2.9  wrstuden 		callout_init(&pt->pt_ch, 0);
    600   1.146.2.9  wrstuden 	else
    601   1.146.2.9  wrstuden 		pt->pt_active = 0;
    602   1.146.2.9  wrstuden 
    603       1.142        ad 	pts->pts_timers[timerid] = pt;
    604       1.142        ad 	mutex_spin_exit(&timer_lock);
    605        1.63   thorpej 
    606        1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    607        1.63   thorpej }
    608        1.63   thorpej 
    609        1.63   thorpej /* Delete a POSIX realtime timer */
    610         1.3    andrew int
    611       1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    612       1.140      yamt     register_t *retval)
    613        1.15   thorpej {
    614       1.135       dsl 	/* {
    615        1.63   thorpej 		syscallarg(timer_t) timerid;
    616       1.135       dsl 	} */
    617        1.63   thorpej 	struct proc *p = l->l_proc;
    618        1.65  jdolecek 	timer_t timerid;
    619       1.142        ad 	struct ptimers *pts;
    620        1.63   thorpej 	struct ptimer *pt, *ptn;
    621         1.1       cgd 
    622        1.63   thorpej 	timerid = SCARG(uap, timerid);
    623       1.142        ad 	pts = p->p_timers;
    624       1.142        ad 
    625       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    626       1.142        ad 		return (EINVAL);
    627        1.63   thorpej 
    628       1.142        ad 	mutex_spin_enter(&timer_lock);
    629       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    630       1.142        ad 		mutex_spin_exit(&timer_lock);
    631         1.1       cgd 		return (EINVAL);
    632       1.142        ad 	}
    633   1.146.2.9  wrstuden 	if (pt->pt_type != CLOCK_REALTIME) {
    634   1.146.2.9  wrstuden 		if (pt->pt_active) {
    635   1.146.2.9  wrstuden 			ptn = LIST_NEXT(pt, pt_list);
    636   1.146.2.9  wrstuden 			LIST_REMOVE(pt, pt_list);
    637   1.146.2.9  wrstuden 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    638   1.146.2.9  wrstuden 				timespecadd(&pt->pt_time.it_value,
    639   1.146.2.9  wrstuden 				    &ptn->pt_time.it_value,
    640   1.146.2.9  wrstuden 				    &ptn->pt_time.it_value);
    641   1.146.2.9  wrstuden 			pt->pt_active = 0;
    642   1.146.2.9  wrstuden 		}
    643        1.63   thorpej 	}
    644       1.142        ad 	itimerfree(pts, timerid);
    645        1.63   thorpej 
    646        1.63   thorpej 	return (0);
    647        1.63   thorpej }
    648        1.63   thorpej 
    649        1.63   thorpej /*
    650        1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    651        1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    652        1.67   nathanw  * time for virtual timers.
    653        1.63   thorpej  * Must be called at splclock().
    654        1.63   thorpej  */
    655        1.63   thorpej void
    656        1.63   thorpej timer_settime(struct ptimer *pt)
    657        1.63   thorpej {
    658        1.63   thorpej 	struct ptimer *ptn, *pptn;
    659        1.63   thorpej 	struct ptlist *ptl;
    660        1.63   thorpej 
    661       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    662       1.142        ad 
    663        1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    664        1.63   thorpej 		callout_stop(&pt->pt_ch);
    665   1.146.2.9  wrstuden 		if (timespecisset(&pt->pt_time.it_value)) {
    666        1.63   thorpej 			/*
    667   1.146.2.9  wrstuden 			 * Don't need to check tshzto() return value, here.
    668        1.63   thorpej 			 * callout_reset() does it for us.
    669        1.63   thorpej 			 */
    670   1.146.2.9  wrstuden 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    671        1.63   thorpej 			    realtimerexpire, pt);
    672        1.63   thorpej 		}
    673        1.63   thorpej 	} else {
    674        1.63   thorpej 		if (pt->pt_active) {
    675        1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    676        1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    677        1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    678   1.146.2.9  wrstuden 				timespecadd(&pt->pt_time.it_value,
    679        1.63   thorpej 				    &ptn->pt_time.it_value,
    680        1.63   thorpej 				    &ptn->pt_time.it_value);
    681        1.63   thorpej 		}
    682   1.146.2.9  wrstuden 		if (timespecisset(&pt->pt_time.it_value)) {
    683        1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    684        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    685        1.63   thorpej 			else
    686        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    687        1.63   thorpej 
    688        1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    689   1.146.2.9  wrstuden 			     ptn && timespeccmp(&pt->pt_time.it_value,
    690        1.63   thorpej 				 &ptn->pt_time.it_value, >);
    691        1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    692   1.146.2.9  wrstuden 				timespecsub(&pt->pt_time.it_value,
    693        1.63   thorpej 				    &ptn->pt_time.it_value,
    694        1.63   thorpej 				    &pt->pt_time.it_value);
    695        1.63   thorpej 
    696        1.63   thorpej 			if (pptn)
    697        1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    698        1.63   thorpej 			else
    699        1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    700        1.63   thorpej 
    701        1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    702   1.146.2.9  wrstuden 				timespecsub(&ptn->pt_time.it_value,
    703        1.63   thorpej 				    &pt->pt_time.it_value,
    704        1.63   thorpej 				    &ptn->pt_time.it_value);
    705        1.63   thorpej 
    706        1.63   thorpej 			pt->pt_active = 1;
    707        1.63   thorpej 		} else
    708        1.63   thorpej 			pt->pt_active = 0;
    709        1.63   thorpej 	}
    710        1.63   thorpej }
    711        1.63   thorpej 
    712        1.63   thorpej void
    713   1.146.2.9  wrstuden timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    714        1.63   thorpej {
    715   1.146.2.9  wrstuden 	struct timespec now;
    716        1.63   thorpej 	struct ptimer *ptn;
    717        1.63   thorpej 
    718       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    719       1.142        ad 
    720   1.146.2.9  wrstuden 	*aits = pt->pt_time;
    721        1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    722         1.1       cgd 		/*
    723        1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    724        1.63   thorpej 		 * part of real time timer.  If time for real time
    725        1.63   thorpej 		 * timer has passed return 0, else return difference
    726        1.63   thorpej 		 * between current time and time for the timer to go
    727        1.63   thorpej 		 * off.
    728         1.1       cgd 		 */
    729   1.146.2.9  wrstuden 		if (timespecisset(&aits->it_value)) {
    730   1.146.2.9  wrstuden 			getnanotime(&now);
    731   1.146.2.9  wrstuden 			if (timespeccmp(&aits->it_value, &now, <))
    732   1.146.2.9  wrstuden 				timespecclear(&aits->it_value);
    733       1.101    kardel 			else
    734   1.146.2.9  wrstuden 				timespecsub(&aits->it_value, &now,
    735   1.146.2.9  wrstuden 				    &aits->it_value);
    736        1.36   thorpej 		}
    737        1.63   thorpej 	} else if (pt->pt_active) {
    738        1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    739        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    740        1.63   thorpej 		else
    741        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    742        1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    743   1.146.2.9  wrstuden 			timespecadd(&aits->it_value,
    744   1.146.2.9  wrstuden 			    &ptn->pt_time.it_value, &aits->it_value);
    745        1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    746         1.1       cgd 	} else
    747   1.146.2.9  wrstuden 		timespecclear(&aits->it_value);
    748        1.63   thorpej }
    749        1.63   thorpej 
    750        1.63   thorpej 
    751        1.63   thorpej 
    752        1.63   thorpej /* Set and arm a POSIX realtime timer */
    753        1.63   thorpej int
    754       1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    755       1.140      yamt     register_t *retval)
    756        1.63   thorpej {
    757       1.135       dsl 	/* {
    758        1.63   thorpej 		syscallarg(timer_t) timerid;
    759        1.63   thorpej 		syscallarg(int) flags;
    760        1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    761        1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    762       1.135       dsl 	} */
    763        1.92      cube 	int error;
    764        1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    765        1.92      cube 
    766        1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    767        1.92      cube 	    sizeof(struct itimerspec))) != 0)
    768        1.92      cube 		return (error);
    769        1.92      cube 
    770        1.92      cube 	if (SCARG(uap, ovalue))
    771        1.92      cube 		ovp = &ovalue;
    772        1.92      cube 
    773        1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    774        1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    775        1.92      cube 		return error;
    776        1.92      cube 
    777        1.92      cube 	if (ovp)
    778        1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    779        1.92      cube 		    sizeof(struct itimerspec));
    780        1.92      cube 	return 0;
    781        1.92      cube }
    782        1.92      cube 
    783        1.92      cube int
    784        1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    785        1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    786        1.92      cube {
    787   1.146.2.9  wrstuden 	struct timespec now;
    788   1.146.2.9  wrstuden 	struct itimerspec val, oval;
    789       1.142        ad 	struct ptimers *pts;
    790        1.63   thorpej 	struct ptimer *pt;
    791        1.63   thorpej 
    792       1.142        ad 	pts = p->p_timers;
    793        1.63   thorpej 
    794       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    795       1.142        ad 		return EINVAL;
    796   1.146.2.9  wrstuden 	val = *value;
    797   1.146.2.9  wrstuden 	if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
    798   1.146.2.9  wrstuden 		return EINVAL;
    799        1.63   thorpej 
    800       1.142        ad 	mutex_spin_enter(&timer_lock);
    801       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    802       1.142        ad 		mutex_spin_exit(&timer_lock);
    803   1.146.2.9  wrstuden 		return EINVAL;
    804       1.142        ad 	}
    805       1.142        ad 
    806        1.63   thorpej 	oval = pt->pt_time;
    807        1.63   thorpej 	pt->pt_time = val;
    808        1.63   thorpej 
    809        1.67   nathanw 	/*
    810        1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    811        1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    812        1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    813        1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    814        1.67   nathanw 	 * negative, which would confuse the comparison tests.
    815        1.67   nathanw 	 */
    816   1.146.2.9  wrstuden 	if (timespecisset(&pt->pt_time.it_value)) {
    817        1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    818       1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    819   1.146.2.9  wrstuden 				getnanotime(&now);
    820   1.146.2.9  wrstuden 				timespecadd(&pt->pt_time.it_value, &now,
    821       1.101    kardel 				    &pt->pt_time.it_value);
    822       1.101    kardel 			}
    823        1.67   nathanw 		} else {
    824        1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    825   1.146.2.9  wrstuden 				getnanotime(&now);
    826   1.146.2.9  wrstuden 				timespecsub(&pt->pt_time.it_value, &now,
    827       1.101    kardel 				    &pt->pt_time.it_value);
    828   1.146.2.9  wrstuden 				if (!timespecisset(&pt->pt_time.it_value) ||
    829        1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    830        1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    831   1.146.2.9  wrstuden 					pt->pt_time.it_value.tv_nsec = 1;
    832        1.67   nathanw 				}
    833        1.67   nathanw 			}
    834        1.67   nathanw 		}
    835        1.67   nathanw 	}
    836        1.67   nathanw 
    837        1.63   thorpej 	timer_settime(pt);
    838       1.142        ad 	mutex_spin_exit(&timer_lock);
    839        1.63   thorpej 
    840   1.146.2.9  wrstuden 	if (ovalue)
    841   1.146.2.9  wrstuden 		*ovalue = oval;
    842        1.63   thorpej 
    843        1.63   thorpej 	return (0);
    844        1.63   thorpej }
    845        1.63   thorpej 
    846        1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    847        1.63   thorpej int
    848       1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    849       1.140      yamt     register_t *retval)
    850        1.63   thorpej {
    851       1.135       dsl 	/* {
    852        1.63   thorpej 		syscallarg(timer_t) timerid;
    853        1.63   thorpej 		syscallarg(struct itimerspec *) value;
    854       1.135       dsl 	} */
    855        1.63   thorpej 	struct itimerspec its;
    856        1.92      cube 	int error;
    857        1.92      cube 
    858        1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    859        1.92      cube 	    &its)) != 0)
    860        1.92      cube 		return error;
    861        1.92      cube 
    862        1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    863        1.92      cube }
    864        1.92      cube 
    865        1.92      cube int
    866        1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    867        1.92      cube {
    868        1.63   thorpej 	struct ptimer *pt;
    869       1.142        ad 	struct ptimers *pts;
    870        1.63   thorpej 
    871       1.142        ad 	pts = p->p_timers;
    872       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    873        1.63   thorpej 		return (EINVAL);
    874       1.142        ad 	mutex_spin_enter(&timer_lock);
    875       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    876       1.142        ad 		mutex_spin_exit(&timer_lock);
    877       1.142        ad 		return (EINVAL);
    878       1.142        ad 	}
    879   1.146.2.9  wrstuden 	timer_gettime(pt, its);
    880       1.142        ad 	mutex_spin_exit(&timer_lock);
    881        1.63   thorpej 
    882        1.92      cube 	return 0;
    883        1.63   thorpej }
    884        1.63   thorpej 
    885        1.63   thorpej /*
    886        1.63   thorpej  * Return the count of the number of times a periodic timer expired
    887        1.63   thorpej  * while a notification was already pending. The counter is reset when
    888        1.63   thorpej  * a timer expires and a notification can be posted.
    889        1.63   thorpej  */
    890        1.63   thorpej int
    891       1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    892       1.140      yamt     register_t *retval)
    893        1.63   thorpej {
    894       1.135       dsl 	/* {
    895        1.63   thorpej 		syscallarg(timer_t) timerid;
    896       1.135       dsl 	} */
    897        1.63   thorpej 	struct proc *p = l->l_proc;
    898       1.142        ad 	struct ptimers *pts;
    899        1.63   thorpej 	int timerid;
    900        1.63   thorpej 	struct ptimer *pt;
    901        1.63   thorpej 
    902        1.63   thorpej 	timerid = SCARG(uap, timerid);
    903        1.63   thorpej 
    904       1.142        ad 	pts = p->p_timers;
    905       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    906       1.142        ad 		return (EINVAL);
    907       1.142        ad 	mutex_spin_enter(&timer_lock);
    908       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    909       1.142        ad 		mutex_spin_exit(&timer_lock);
    910        1.63   thorpej 		return (EINVAL);
    911       1.142        ad 	}
    912        1.63   thorpej 	*retval = pt->pt_poverruns;
    913       1.142        ad 	mutex_spin_exit(&timer_lock);
    914        1.63   thorpej 
    915        1.63   thorpej 	return (0);
    916        1.63   thorpej }
    917        1.63   thorpej 
    918   1.146.2.8  wrstuden #ifdef KERN_SA
    919   1.146.2.3  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    920   1.146.2.3  wrstuden void
    921   1.146.2.3  wrstuden timerupcall(struct lwp *l)
    922   1.146.2.3  wrstuden {
    923   1.146.2.3  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    924   1.146.2.3  wrstuden 	struct proc *p = l->l_proc;
    925   1.146.2.3  wrstuden 	unsigned int i, fired, done;
    926   1.146.2.3  wrstuden 
    927   1.146.2.3  wrstuden 	KDASSERT(l->l_proc->p_sa);
    928   1.146.2.3  wrstuden 	/* Bail out if we do not own the virtual processor */
    929   1.146.2.3  wrstuden 	if (l->l_savp->savp_lwp != l)
    930   1.146.2.3  wrstuden 		return ;
    931   1.146.2.3  wrstuden 
    932   1.146.2.3  wrstuden 	mutex_enter(p->p_lock);
    933   1.146.2.3  wrstuden 
    934   1.146.2.3  wrstuden 	fired = pt->pts_fired;
    935   1.146.2.3  wrstuden 	done = 0;
    936   1.146.2.3  wrstuden 	while ((i = ffs(fired)) != 0) {
    937   1.146.2.3  wrstuden 		siginfo_t *si;
    938   1.146.2.3  wrstuden 		int mask = 1 << --i;
    939   1.146.2.3  wrstuden 		int f;
    940   1.146.2.3  wrstuden 
    941   1.146.2.6  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    942   1.146.2.6  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    943   1.146.2.3  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    944   1.146.2.3  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    945   1.146.2.3  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    946   1.146.2.3  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    947   1.146.2.3  wrstuden 			siginfo_free(si);
    948   1.146.2.3  wrstuden 			/* XXX What do we do here?? */
    949   1.146.2.3  wrstuden 		} else
    950   1.146.2.3  wrstuden 			done |= mask;
    951   1.146.2.3  wrstuden 		fired &= ~mask;
    952   1.146.2.6  wrstuden 		l->l_pflag ^= f;
    953   1.146.2.3  wrstuden 	}
    954   1.146.2.3  wrstuden 	pt->pts_fired &= ~done;
    955   1.146.2.3  wrstuden 	if (pt->pts_fired == 0)
    956   1.146.2.3  wrstuden 		l->l_proc->p_timerpend = 0;
    957   1.146.2.3  wrstuden 
    958   1.146.2.3  wrstuden 	mutex_exit(p->p_lock);
    959   1.146.2.3  wrstuden }
    960   1.146.2.8  wrstuden #endif /* KERN_SA */
    961   1.146.2.3  wrstuden 
    962        1.63   thorpej /*
    963        1.63   thorpej  * Real interval timer expired:
    964        1.63   thorpej  * send process whose timer expired an alarm signal.
    965        1.63   thorpej  * If time is not set up to reload, then just return.
    966        1.63   thorpej  * Else compute next time timer should go off which is > current time.
    967        1.63   thorpej  * This is where delay in processing this timeout causes multiple
    968        1.63   thorpej  * SIGALRM calls to be compressed into one.
    969        1.63   thorpej  */
    970        1.63   thorpej void
    971        1.63   thorpej realtimerexpire(void *arg)
    972        1.63   thorpej {
    973   1.146.2.4  wrstuden 	uint64_t last_val, next_val, interval, now_ms;
    974   1.146.2.9  wrstuden 	struct timespec now, next;
    975        1.63   thorpej 	struct ptimer *pt;
    976   1.146.2.4  wrstuden 	int backwards;
    977        1.63   thorpej 
    978       1.142        ad 	pt = arg;
    979        1.63   thorpej 
    980       1.142        ad 	mutex_spin_enter(&timer_lock);
    981        1.63   thorpej 	itimerfire(pt);
    982        1.63   thorpej 
    983   1.146.2.9  wrstuden 	if (!timespecisset(&pt->pt_time.it_interval)) {
    984   1.146.2.9  wrstuden 		timespecclear(&pt->pt_time.it_value);
    985       1.142        ad 		mutex_spin_exit(&timer_lock);
    986        1.63   thorpej 		return;
    987        1.63   thorpej 	}
    988   1.146.2.4  wrstuden 
    989   1.146.2.9  wrstuden 	getnanotime(&now);
    990   1.146.2.9  wrstuden 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    991   1.146.2.9  wrstuden 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    992   1.146.2.4  wrstuden 	/* Handle the easy case of non-overflown timers first. */
    993   1.146.2.9  wrstuden 	if (!backwards && timespeccmp(&next, &now, >)) {
    994   1.146.2.4  wrstuden 		pt->pt_time.it_value = next;
    995   1.146.2.4  wrstuden 	} else {
    996   1.146.2.9  wrstuden 		now_ms = timespec2ns(&now);
    997   1.146.2.9  wrstuden 		last_val = timespec2ns(&pt->pt_time.it_value);
    998   1.146.2.9  wrstuden 		interval = timespec2ns(&pt->pt_time.it_interval);
    999   1.146.2.4  wrstuden 
   1000   1.146.2.4  wrstuden 		next_val = now_ms +
   1001   1.146.2.4  wrstuden 		    (now_ms - last_val + interval - 1) % interval;
   1002   1.146.2.4  wrstuden 
   1003   1.146.2.4  wrstuden 		if (backwards)
   1004   1.146.2.4  wrstuden 			next_val += interval;
   1005   1.146.2.4  wrstuden 		else
   1006   1.146.2.4  wrstuden 			pt->pt_overruns += (now_ms - last_val) / interval;
   1007   1.146.2.4  wrstuden 
   1008   1.146.2.9  wrstuden 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1009   1.146.2.9  wrstuden 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1010       1.101    kardel 	}
   1011   1.146.2.4  wrstuden 
   1012   1.146.2.4  wrstuden 	/*
   1013   1.146.2.9  wrstuden 	 * Don't need to check tshzto() return value, here.
   1014   1.146.2.4  wrstuden 	 * callout_reset() does it for us.
   1015   1.146.2.4  wrstuden 	 */
   1016   1.146.2.9  wrstuden 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1017   1.146.2.4  wrstuden 	    realtimerexpire, pt);
   1018   1.146.2.4  wrstuden 	mutex_spin_exit(&timer_lock);
   1019        1.63   thorpej }
   1020        1.63   thorpej 
   1021        1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1022        1.63   thorpej /* ARGSUSED */
   1023        1.63   thorpej int
   1024       1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
   1025       1.140      yamt     register_t *retval)
   1026        1.63   thorpej {
   1027       1.135       dsl 	/* {
   1028        1.63   thorpej 		syscallarg(int) which;
   1029        1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1030       1.135       dsl 	} */
   1031        1.63   thorpej 	struct proc *p = l->l_proc;
   1032        1.63   thorpej 	struct itimerval aitv;
   1033        1.91      cube 	int error;
   1034        1.91      cube 
   1035        1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1036        1.91      cube 	if (error)
   1037        1.91      cube 		return error;
   1038        1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1039        1.91      cube }
   1040        1.63   thorpej 
   1041        1.91      cube int
   1042        1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1043        1.91      cube {
   1044       1.142        ad 	struct ptimers *pts;
   1045       1.142        ad 	struct ptimer *pt;
   1046   1.146.2.9  wrstuden 	struct itimerspec its;
   1047        1.63   thorpej 
   1048        1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1049        1.63   thorpej 		return (EINVAL);
   1050        1.63   thorpej 
   1051       1.142        ad 	mutex_spin_enter(&timer_lock);
   1052       1.142        ad 	pts = p->p_timers;
   1053       1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1054        1.91      cube 		timerclear(&itvp->it_value);
   1055        1.91      cube 		timerclear(&itvp->it_interval);
   1056   1.146.2.9  wrstuden 	} else {
   1057   1.146.2.9  wrstuden 		timer_gettime(pt, &its);
   1058   1.146.2.9  wrstuden 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1059   1.146.2.9  wrstuden 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1060   1.146.2.9  wrstuden 	}
   1061       1.142        ad 	mutex_spin_exit(&timer_lock);
   1062        1.63   thorpej 
   1063        1.91      cube 	return 0;
   1064         1.1       cgd }
   1065         1.1       cgd 
   1066        1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1067         1.1       cgd /* ARGSUSED */
   1068         1.3    andrew int
   1069       1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1070       1.140      yamt     register_t *retval)
   1071        1.15   thorpej {
   1072       1.135       dsl 	/* {
   1073        1.30   mycroft 		syscallarg(int) which;
   1074        1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1075        1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1076       1.135       dsl 	} */
   1077        1.63   thorpej 	struct proc *p = l->l_proc;
   1078        1.30   mycroft 	int which = SCARG(uap, which);
   1079        1.21       cgd 	struct sys_getitimer_args getargs;
   1080        1.91      cube 	const struct itimerval *itvp;
   1081         1.1       cgd 	struct itimerval aitv;
   1082        1.91      cube 	int error;
   1083         1.1       cgd 
   1084        1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1085         1.1       cgd 		return (EINVAL);
   1086        1.11       cgd 	itvp = SCARG(uap, itv);
   1087        1.63   thorpej 	if (itvp &&
   1088        1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1089         1.1       cgd 		return (error);
   1090        1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1091        1.30   mycroft 		SCARG(&getargs, which) = which;
   1092        1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1093        1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1094        1.21       cgd 			return (error);
   1095        1.21       cgd 	}
   1096         1.1       cgd 	if (itvp == 0)
   1097         1.1       cgd 		return (0);
   1098        1.91      cube 
   1099        1.91      cube 	return dosetitimer(p, which, &aitv);
   1100        1.91      cube }
   1101        1.91      cube 
   1102        1.91      cube int
   1103        1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1104        1.91      cube {
   1105   1.146.2.9  wrstuden 	struct timespec now;
   1106       1.142        ad 	struct ptimers *pts;
   1107       1.142        ad 	struct ptimer *pt, *spare;
   1108        1.91      cube 
   1109        1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1110         1.1       cgd 		return (EINVAL);
   1111        1.63   thorpej 
   1112        1.63   thorpej 	/*
   1113        1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1114        1.63   thorpej 	 * wants to clear the timer.
   1115        1.63   thorpej 	 */
   1116       1.142        ad 	spare = NULL;
   1117       1.142        ad 	pts = p->p_timers;
   1118       1.142        ad  retry:
   1119       1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1120       1.142        ad 	    pts->pts_timers[which] == NULL))
   1121        1.63   thorpej 		return (0);
   1122       1.142        ad 	if (pts == NULL)
   1123       1.142        ad 		pts = timers_alloc(p);
   1124       1.142        ad 	mutex_spin_enter(&timer_lock);
   1125       1.142        ad 	pt = pts->pts_timers[which];
   1126       1.142        ad 	if (pt == NULL) {
   1127       1.142        ad 		if (spare == NULL) {
   1128       1.142        ad 			mutex_spin_exit(&timer_lock);
   1129       1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1130       1.142        ad 			goto retry;
   1131       1.142        ad 		}
   1132       1.142        ad 		pt = spare;
   1133       1.142        ad 		spare = NULL;
   1134        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1135        1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1136        1.63   thorpej 		pt->pt_overruns = 0;
   1137        1.63   thorpej 		pt->pt_proc = p;
   1138        1.63   thorpej 		pt->pt_type = which;
   1139        1.64   nathanw 		pt->pt_entry = which;
   1140       1.142        ad 		pt->pt_queued = false;
   1141   1.146.2.9  wrstuden 		if (pt->pt_type == CLOCK_REALTIME)
   1142   1.146.2.9  wrstuden 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1143   1.146.2.9  wrstuden 		else
   1144   1.146.2.9  wrstuden 			pt->pt_active = 0;
   1145   1.146.2.9  wrstuden 
   1146        1.63   thorpej 		switch (which) {
   1147        1.63   thorpej 		case ITIMER_REAL:
   1148        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1149        1.63   thorpej 			break;
   1150        1.63   thorpej 		case ITIMER_VIRTUAL:
   1151        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1152        1.63   thorpej 			break;
   1153        1.63   thorpej 		case ITIMER_PROF:
   1154        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1155        1.63   thorpej 			break;
   1156         1.1       cgd 		}
   1157       1.142        ad 		pts->pts_timers[which] = pt;
   1158       1.142        ad 	}
   1159        1.63   thorpej 
   1160   1.146.2.9  wrstuden 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1161   1.146.2.9  wrstuden 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1162   1.146.2.9  wrstuden 
   1163   1.146.2.9  wrstuden 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1164        1.67   nathanw 		/* Convert to absolute time */
   1165       1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1166   1.146.2.9  wrstuden 		getnanotime(&now);
   1167   1.146.2.9  wrstuden 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1168        1.67   nathanw 	}
   1169        1.63   thorpej 	timer_settime(pt);
   1170       1.142        ad 	mutex_spin_exit(&timer_lock);
   1171       1.142        ad 	if (spare != NULL)
   1172       1.142        ad 		pool_put(&ptimer_pool, spare);
   1173        1.63   thorpej 
   1174         1.1       cgd 	return (0);
   1175         1.1       cgd }
   1176         1.1       cgd 
   1177        1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1178       1.142        ad struct ptimers *
   1179        1.63   thorpej timers_alloc(struct proc *p)
   1180        1.63   thorpej {
   1181       1.142        ad 	struct ptimers *pts;
   1182        1.63   thorpej 	int i;
   1183        1.63   thorpej 
   1184       1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1185        1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1186        1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1187        1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1188        1.63   thorpej 		pts->pts_timers[i] = NULL;
   1189        1.64   nathanw 	pts->pts_fired = 0;
   1190       1.142        ad 	mutex_spin_enter(&timer_lock);
   1191       1.142        ad 	if (p->p_timers == NULL) {
   1192       1.142        ad 		p->p_timers = pts;
   1193       1.142        ad 		mutex_spin_exit(&timer_lock);
   1194       1.142        ad 		return pts;
   1195       1.142        ad 	}
   1196       1.142        ad 	mutex_spin_exit(&timer_lock);
   1197       1.142        ad 	pool_put(&ptimers_pool, pts);
   1198       1.142        ad 	return p->p_timers;
   1199        1.63   thorpej }
   1200        1.63   thorpej 
   1201         1.1       cgd /*
   1202        1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1203        1.63   thorpej  * then clean up all timers and free all the data structures. If
   1204        1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1205        1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1206        1.63   thorpej  * structure if none of those remain.
   1207         1.1       cgd  */
   1208         1.3    andrew void
   1209        1.63   thorpej timers_free(struct proc *p, int which)
   1210         1.6       cgd {
   1211        1.63   thorpej 	struct ptimers *pts;
   1212       1.142        ad 	struct ptimer *ptn;
   1213   1.146.2.9  wrstuden 	struct timespec ts;
   1214       1.142        ad 	int i;
   1215        1.63   thorpej 
   1216       1.142        ad 	if (p->p_timers == NULL)
   1217       1.142        ad 		return;
   1218        1.63   thorpej 
   1219       1.142        ad 	pts = p->p_timers;
   1220       1.142        ad 	mutex_spin_enter(&timer_lock);
   1221       1.142        ad 	if (which == TIMERS_ALL) {
   1222       1.142        ad 		p->p_timers = NULL;
   1223       1.142        ad 		i = 0;
   1224       1.142        ad 	} else {
   1225   1.146.2.9  wrstuden 		timespecclear(&ts);
   1226       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1227       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1228   1.146.2.9  wrstuden 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1229   1.146.2.9  wrstuden 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1230   1.146.2.9  wrstuden 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1231   1.146.2.9  wrstuden 		}
   1232       1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1233       1.142        ad 		if (ptn) {
   1234   1.146.2.9  wrstuden 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1235   1.146.2.9  wrstuden 			timespecadd(&ts, &ptn->pt_time.it_value,
   1236       1.142        ad 			    &ptn->pt_time.it_value);
   1237       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1238       1.142        ad 		}
   1239   1.146.2.9  wrstuden 		timespecclear(&ts);
   1240       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1241       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1242   1.146.2.9  wrstuden 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1243   1.146.2.9  wrstuden 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1244   1.146.2.9  wrstuden 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1245   1.146.2.9  wrstuden 		}
   1246       1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1247       1.142        ad 		if (ptn) {
   1248   1.146.2.9  wrstuden 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1249   1.146.2.9  wrstuden 			timespecadd(&ts, &ptn->pt_time.it_value,
   1250       1.142        ad 			    &ptn->pt_time.it_value);
   1251       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1252        1.63   thorpej 		}
   1253       1.142        ad 		i = 3;
   1254       1.142        ad 	}
   1255       1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1256       1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1257       1.142        ad 			itimerfree(pts, i);
   1258       1.142        ad 			mutex_spin_enter(&timer_lock);
   1259         1.1       cgd 		}
   1260         1.1       cgd 	}
   1261       1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1262       1.142        ad 	    pts->pts_timers[2] == NULL) {
   1263       1.142        ad 		p->p_timers = NULL;
   1264       1.142        ad 		mutex_spin_exit(&timer_lock);
   1265       1.142        ad 		pool_put(&ptimers_pool, pts);
   1266       1.142        ad 	} else
   1267       1.142        ad 		mutex_spin_exit(&timer_lock);
   1268       1.142        ad }
   1269       1.142        ad 
   1270       1.142        ad static void
   1271       1.142        ad itimerfree(struct ptimers *pts, int index)
   1272       1.142        ad {
   1273       1.142        ad 	struct ptimer *pt;
   1274       1.142        ad 
   1275       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1276       1.142        ad 
   1277       1.142        ad 	pt = pts->pts_timers[index];
   1278       1.142        ad 	pts->pts_timers[index] = NULL;
   1279       1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1280       1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1281       1.144        ad 	else if (pt->pt_queued)
   1282       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1283       1.144        ad 	mutex_spin_exit(&timer_lock);
   1284   1.146.2.9  wrstuden 	if (pt->pt_type == CLOCK_REALTIME)
   1285   1.146.2.9  wrstuden 		callout_destroy(&pt->pt_ch);
   1286       1.142        ad 	pool_put(&ptimer_pool, pt);
   1287         1.1       cgd }
   1288         1.1       cgd 
   1289         1.1       cgd /*
   1290         1.1       cgd  * Decrement an interval timer by a specified number
   1291  1.146.2.10  wrstuden  * of nanoseconds, which must be less than a second,
   1292  1.146.2.10  wrstuden  * i.e. < 1000000000.  If the timer expires, then reload
   1293  1.146.2.10  wrstuden  * it.  In this case, carry over (nsec - old value) to
   1294         1.8       cgd  * reduce the value reloaded into the timer so that
   1295         1.1       cgd  * the timer does not drift.  This routine assumes
   1296         1.1       cgd  * that it is called in a context where the timers
   1297         1.1       cgd  * on which it is operating cannot change in value.
   1298         1.1       cgd  */
   1299       1.142        ad static int
   1300  1.146.2.10  wrstuden itimerdecr(struct ptimer *pt, int nsec)
   1301        1.63   thorpej {
   1302   1.146.2.9  wrstuden 	struct itimerspec *itp;
   1303         1.1       cgd 
   1304       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1305       1.142        ad 
   1306        1.63   thorpej 	itp = &pt->pt_time;
   1307   1.146.2.9  wrstuden 	if (itp->it_value.tv_nsec < nsec) {
   1308         1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1309         1.1       cgd 			/* expired, and already in next interval */
   1310   1.146.2.9  wrstuden 			nsec -= itp->it_value.tv_nsec;
   1311         1.1       cgd 			goto expire;
   1312         1.1       cgd 		}
   1313   1.146.2.9  wrstuden 		itp->it_value.tv_nsec += 1000000000;
   1314         1.1       cgd 		itp->it_value.tv_sec--;
   1315         1.1       cgd 	}
   1316  1.146.2.10  wrstuden 	itp->it_value.tv_nsec -= nsec;
   1317  1.146.2.10  wrstuden 	nsec = 0;
   1318   1.146.2.9  wrstuden 	if (timespecisset(&itp->it_value))
   1319         1.1       cgd 		return (1);
   1320         1.1       cgd 	/* expired, exactly at end of interval */
   1321         1.1       cgd expire:
   1322   1.146.2.9  wrstuden 	if (timespecisset(&itp->it_interval)) {
   1323         1.1       cgd 		itp->it_value = itp->it_interval;
   1324   1.146.2.9  wrstuden 		itp->it_value.tv_nsec -= nsec;
   1325   1.146.2.9  wrstuden 		if (itp->it_value.tv_nsec < 0) {
   1326   1.146.2.9  wrstuden 			itp->it_value.tv_nsec += 1000000000;
   1327         1.1       cgd 			itp->it_value.tv_sec--;
   1328         1.1       cgd 		}
   1329        1.63   thorpej 		timer_settime(pt);
   1330         1.1       cgd 	} else
   1331   1.146.2.9  wrstuden 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1332         1.1       cgd 	return (0);
   1333        1.42       cgd }
   1334        1.42       cgd 
   1335       1.142        ad static void
   1336        1.63   thorpej itimerfire(struct ptimer *pt)
   1337        1.63   thorpej {
   1338        1.78        cl 
   1339       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1340       1.142        ad 
   1341       1.142        ad 	/*
   1342       1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1343       1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1344       1.142        ad 	 */
   1345   1.146.2.3  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1346   1.146.2.3  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1347   1.146.2.3  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1348       1.142        ad 		return;
   1349       1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1350       1.142        ad 	pt->pt_queued = true;
   1351       1.142        ad 	softint_schedule(timer_sih);
   1352       1.142        ad }
   1353       1.142        ad 
   1354       1.142        ad void
   1355       1.142        ad timer_tick(lwp_t *l, bool user)
   1356       1.142        ad {
   1357       1.142        ad 	struct ptimers *pts;
   1358       1.142        ad 	struct ptimer *pt;
   1359       1.142        ad 	proc_t *p;
   1360       1.142        ad 
   1361       1.142        ad 	p = l->l_proc;
   1362       1.142        ad 	if (p->p_timers == NULL)
   1363       1.142        ad 		return;
   1364       1.142        ad 
   1365       1.142        ad 	mutex_spin_enter(&timer_lock);
   1366       1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1367        1.63   thorpej 		/*
   1368       1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1369        1.63   thorpej 		 */
   1370       1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1371  1.146.2.10  wrstuden 			if (itimerdecr(pt, tick * 1000) == 0)
   1372       1.142        ad 				itimerfire(pt);
   1373       1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1374  1.146.2.10  wrstuden 			if (itimerdecr(pt, tick * 1000) == 0)
   1375       1.142        ad 				itimerfire(pt);
   1376       1.142        ad 	}
   1377       1.142        ad 	mutex_spin_exit(&timer_lock);
   1378       1.142        ad }
   1379       1.142        ad 
   1380   1.146.2.8  wrstuden #ifdef KERN_SA
   1381   1.146.2.3  wrstuden /*
   1382   1.146.2.3  wrstuden  * timer_sa_intr:
   1383   1.146.2.3  wrstuden  *
   1384   1.146.2.3  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1385   1.146.2.3  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1386   1.146.2.3  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1387   1.146.2.3  wrstuden  * handler, SA should still be enabled by the time we get here.
   1388   1.146.2.3  wrstuden  *
   1389   1.146.2.3  wrstuden  * XXX Is it legit to lock p_lock and the lwp at this time?
   1390   1.146.2.3  wrstuden  */
   1391   1.146.2.3  wrstuden static void
   1392   1.146.2.3  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1393   1.146.2.3  wrstuden {
   1394   1.146.2.3  wrstuden 	unsigned int i;
   1395   1.146.2.3  wrstuden 	struct sadata_vp *vp;
   1396   1.146.2.3  wrstuden 
   1397   1.146.2.3  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1398   1.146.2.3  wrstuden 	if (!p->p_timerpend) {
   1399   1.146.2.3  wrstuden 		/*
   1400   1.146.2.3  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1401   1.146.2.3  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1402   1.146.2.3  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1403   1.146.2.3  wrstuden 		 * determine if we really should call setrunnable.
   1404   1.146.2.3  wrstuden 		 */
   1405   1.146.2.3  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1406   1.146.2.3  wrstuden 		pt->pt_overruns = 0;
   1407   1.146.2.3  wrstuden 		i = 1 << pt->pt_entry;
   1408   1.146.2.3  wrstuden 		p->p_timers->pts_fired = i;
   1409   1.146.2.3  wrstuden 		p->p_timerpend = 1;
   1410   1.146.2.3  wrstuden 
   1411   1.146.2.3  wrstuden 		mutex_enter(p->p_lock);
   1412   1.146.2.3  wrstuden 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1413   1.146.2.3  wrstuden 			lwp_lock(vp->savp_lwp);
   1414   1.146.2.7  wrstuden 			lwp_need_userret(vp->savp_lwp);
   1415   1.146.2.3  wrstuden 			if (vp->savp_lwp->l_flag & LW_SA_IDLE) {
   1416   1.146.2.3  wrstuden 				vp->savp_lwp->l_flag &= ~LW_SA_IDLE;
   1417   1.146.2.5  wrstuden 				lwp_unsleep(vp->savp_lwp, true);
   1418   1.146.2.3  wrstuden 				break;
   1419   1.146.2.3  wrstuden 			}
   1420   1.146.2.3  wrstuden 			lwp_unlock(vp->savp_lwp);
   1421   1.146.2.3  wrstuden 		}
   1422   1.146.2.3  wrstuden 		mutex_exit(p->p_lock);
   1423   1.146.2.3  wrstuden 	} else {
   1424   1.146.2.3  wrstuden 		i = 1 << pt->pt_entry;
   1425   1.146.2.3  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1426   1.146.2.3  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1427   1.146.2.3  wrstuden 			pt->pt_overruns = 0;
   1428   1.146.2.3  wrstuden 			p->p_timers->pts_fired |= i;
   1429   1.146.2.3  wrstuden 		} else
   1430   1.146.2.3  wrstuden 			pt->pt_overruns++;
   1431   1.146.2.3  wrstuden 	}
   1432   1.146.2.3  wrstuden }
   1433   1.146.2.8  wrstuden #endif /* KERN_SA */
   1434   1.146.2.3  wrstuden 
   1435       1.142        ad static void
   1436       1.142        ad timer_intr(void *cookie)
   1437       1.142        ad {
   1438       1.142        ad 	ksiginfo_t ksi;
   1439       1.142        ad 	struct ptimer *pt;
   1440       1.142        ad 	proc_t *p;
   1441       1.142        ad 
   1442       1.142        ad 	mutex_spin_enter(&timer_lock);
   1443       1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1444       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1445       1.142        ad 		KASSERT(pt->pt_queued);
   1446       1.142        ad 		pt->pt_queued = false;
   1447       1.142        ad 
   1448       1.142        ad 		if (pt->pt_proc->p_timers == NULL) {
   1449       1.142        ad 			/* Process is dying. */
   1450       1.142        ad 			continue;
   1451       1.142        ad 		}
   1452   1.146.2.3  wrstuden 		p = pt->pt_proc;
   1453   1.146.2.8  wrstuden #ifdef KERN_SA
   1454   1.146.2.3  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1455   1.146.2.3  wrstuden 			timer_sa_intr(pt, p);
   1456   1.146.2.3  wrstuden 			continue;
   1457   1.146.2.3  wrstuden 		}
   1458   1.146.2.8  wrstuden #endif /* KERN_SA */
   1459   1.146.2.3  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1460   1.146.2.3  wrstuden 			continue;
   1461       1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1462        1.63   thorpej 			pt->pt_overruns++;
   1463       1.142        ad 			continue;
   1464        1.64   nathanw 		}
   1465       1.142        ad 
   1466       1.142        ad 		KSI_INIT(&ksi);
   1467       1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1468       1.142        ad 		ksi.ksi_code = SI_TIMER;
   1469       1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1470       1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1471       1.142        ad 		pt->pt_overruns = 0;
   1472       1.142        ad 		mutex_spin_exit(&timer_lock);
   1473       1.142        ad 
   1474       1.145        ad 		mutex_enter(proc_lock);
   1475       1.142        ad 		kpsignal(p, &ksi, NULL);
   1476       1.145        ad 		mutex_exit(proc_lock);
   1477       1.142        ad 
   1478       1.142        ad 		mutex_spin_enter(&timer_lock);
   1479        1.63   thorpej 	}
   1480       1.142        ad 	mutex_spin_exit(&timer_lock);
   1481        1.63   thorpej }
   1482        1.63   thorpej 
   1483        1.42       cgd /*
   1484        1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1485        1.42       cgd  * for usage and rationale.
   1486        1.42       cgd  */
   1487        1.42       cgd int
   1488        1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1489        1.42       cgd {
   1490        1.49    itojun 	struct timeval tv, delta;
   1491       1.101    kardel 	int rv = 0;
   1492        1.42       cgd 
   1493       1.101    kardel 	getmicrouptime(&tv);
   1494        1.49    itojun 	timersub(&tv, lasttime, &delta);
   1495        1.42       cgd 
   1496        1.42       cgd 	/*
   1497        1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1498        1.42       cgd 	 * even if interval is huge.
   1499        1.42       cgd 	 */
   1500        1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1501        1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1502        1.49    itojun 		*lasttime = tv;
   1503        1.42       cgd 		rv = 1;
   1504        1.42       cgd 	}
   1505        1.50    itojun 
   1506        1.50    itojun 	return (rv);
   1507        1.50    itojun }
   1508        1.50    itojun 
   1509        1.50    itojun /*
   1510        1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1511        1.50    itojun  */
   1512        1.50    itojun int
   1513        1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1514        1.50    itojun {
   1515        1.50    itojun 	struct timeval tv, delta;
   1516       1.101    kardel 	int rv;
   1517        1.50    itojun 
   1518       1.101    kardel 	getmicrouptime(&tv);
   1519        1.50    itojun 	timersub(&tv, lasttime, &delta);
   1520        1.50    itojun 
   1521        1.50    itojun 	/*
   1522        1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1523        1.50    itojun 	 * if more than one second have passed since the last update of
   1524        1.50    itojun 	 * lasttime, reset the counter.
   1525        1.50    itojun 	 *
   1526        1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1527        1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1528        1.50    itojun 	 */
   1529        1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1530        1.50    itojun 	    delta.tv_sec >= 1) {
   1531        1.50    itojun 		*lasttime = tv;
   1532        1.50    itojun 		*curpps = 0;
   1533        1.69    dyoung 	}
   1534        1.69    dyoung 	if (maxpps < 0)
   1535        1.53    itojun 		rv = 1;
   1536        1.53    itojun 	else if (*curpps < maxpps)
   1537        1.50    itojun 		rv = 1;
   1538        1.50    itojun 	else
   1539        1.50    itojun 		rv = 0;
   1540        1.50    itojun 
   1541        1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1542        1.50    itojun 	/* be careful about wrap-around */
   1543        1.50    itojun 	if (*curpps + 1 > *curpps)
   1544        1.50    itojun 		*curpps = *curpps + 1;
   1545        1.50    itojun #else
   1546        1.50    itojun 	/*
   1547        1.50    itojun 	 * assume that there's not too many calls to this function.
   1548        1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1549        1.50    itojun 	 * behavior, not the behavior of this function.
   1550        1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1551        1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1552        1.50    itojun 	 */
   1553        1.50    itojun 	*curpps = *curpps + 1;
   1554        1.50    itojun #endif
   1555        1.42       cgd 
   1556        1.42       cgd 	return (rv);
   1557         1.1       cgd }
   1558