kern_time.c revision 1.146.2.6 1 1.146.2.6 wrstuden /* $NetBSD: kern_time.c,v 1.146.2.6 2008/06/30 04:55:56 wrstuden Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.142 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd *
19 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
30 1.42 cgd */
31 1.9 cgd
32 1.1 cgd /*
33 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.8 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * Redistribution and use in source and binary forms, with or without
37 1.1 cgd * modification, are permitted provided that the following conditions
38 1.1 cgd * are met:
39 1.1 cgd * 1. Redistributions of source code must retain the above copyright
40 1.1 cgd * notice, this list of conditions and the following disclaimer.
41 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer in the
43 1.1 cgd * documentation and/or other materials provided with the distribution.
44 1.72 agc * 3. Neither the name of the University nor the names of its contributors
45 1.1 cgd * may be used to endorse or promote products derived from this software
46 1.1 cgd * without specific prior written permission.
47 1.1 cgd *
48 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 1.1 cgd * SUCH DAMAGE.
59 1.1 cgd *
60 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 1.1 cgd */
62 1.58 lukem
63 1.58 lukem #include <sys/cdefs.h>
64 1.146.2.6 wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146.2.6 2008/06/30 04:55:56 wrstuden Exp $");
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/resourcevar.h>
68 1.5 mycroft #include <sys/kernel.h>
69 1.8 cgd #include <sys/systm.h>
70 1.5 mycroft #include <sys/proc.h>
71 1.8 cgd #include <sys/vnode.h>
72 1.17 christos #include <sys/signalvar.h>
73 1.25 perry #include <sys/syslog.h>
74 1.101 kardel #include <sys/timetc.h>
75 1.143 ad #include <sys/timex.h>
76 1.99 elad #include <sys/kauth.h>
77 1.11 cgd #include <sys/mount.h>
78 1.146.2.3 wrstuden #include <sys/sa.h>
79 1.146.2.3 wrstuden #include <sys/savar.h>
80 1.11 cgd #include <sys/syscallargs.h>
81 1.143 ad #include <sys/cpu.h>
82 1.19 christos
83 1.37 thorpej #include <uvm/uvm_extern.h>
84 1.37 thorpej
85 1.142 ad static void timer_intr(void *);
86 1.142 ad static void itimerfire(struct ptimer *);
87 1.142 ad static void itimerfree(struct ptimers *, int);
88 1.142 ad
89 1.142 ad kmutex_t timer_lock;
90 1.142 ad
91 1.142 ad static void *timer_sih;
92 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
93 1.131 ad
94 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 1.118 ad &pool_allocator_nointr, IPL_NONE);
96 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 1.118 ad &pool_allocator_nointr, IPL_NONE);
98 1.97 simonb
99 1.131 ad /*
100 1.131 ad * Initialize timekeeping.
101 1.131 ad */
102 1.131 ad void
103 1.131 ad time_init(void)
104 1.131 ad {
105 1.131 ad
106 1.146.2.4 wrstuden /* nothing yet */
107 1.131 ad }
108 1.131 ad
109 1.142 ad void
110 1.142 ad time_init2(void)
111 1.142 ad {
112 1.142 ad
113 1.142 ad TAILQ_INIT(&timer_queue);
114 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
115 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
116 1.142 ad timer_intr, NULL);
117 1.142 ad }
118 1.142 ad
119 1.63 thorpej /* Time of day and interval timer support.
120 1.1 cgd *
121 1.1 cgd * These routines provide the kernel entry points to get and set
122 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
123 1.1 cgd * here provide support for adding and subtracting timeval structures
124 1.1 cgd * and decrementing interval timers, optionally reloading the interval
125 1.1 cgd * timers when they expire.
126 1.1 cgd */
127 1.1 cgd
128 1.22 jtc /* This function is used by clock_settime and settimeofday */
129 1.132 elad static int
130 1.132 elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
131 1.22 jtc {
132 1.98 christos struct timeval delta, tv;
133 1.101 kardel struct timeval now;
134 1.101 kardel struct timespec ts1;
135 1.137 yamt struct bintime btdelta;
136 1.129 ad lwp_t *l;
137 1.129 ad int s;
138 1.22 jtc
139 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
140 1.98 christos
141 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 1.129 ad s = splclock();
143 1.101 kardel microtime(&now);
144 1.101 kardel timersub(&tv, &now, &delta);
145 1.132 elad
146 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 1.134 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
148 1.132 elad KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 1.129 ad splx(s);
150 1.29 tls return (EPERM);
151 1.55 tron }
152 1.132 elad
153 1.29 tls #ifdef notyet
154 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 1.129 ad splx(s);
156 1.29 tls return (EPERM);
157 1.55 tron }
158 1.29 tls #endif
159 1.103 kardel
160 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
161 1.101 kardel tc_setclock(&ts1);
162 1.103 kardel
163 1.22 jtc timeradd(&boottime, &delta, &boottime);
164 1.103 kardel
165 1.47 thorpej /*
166 1.129 ad * XXXSMP: There is a short race between setting the time above
167 1.129 ad * and adjusting LWP's run times. Fixing this properly means
168 1.129 ad * pausing all CPUs while we adjust the clock.
169 1.47 thorpej */
170 1.137 yamt timeval2bintime(&delta, &btdelta);
171 1.145 ad mutex_enter(proc_lock);
172 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
173 1.129 ad lwp_lock(l);
174 1.137 yamt bintime_add(&l->l_stime, &btdelta);
175 1.129 ad lwp_unlock(l);
176 1.129 ad }
177 1.145 ad mutex_exit(proc_lock);
178 1.22 jtc resettodr();
179 1.129 ad splx(s);
180 1.129 ad
181 1.29 tls return (0);
182 1.22 jtc }
183 1.22 jtc
184 1.132 elad int
185 1.132 elad settime(struct proc *p, struct timespec *ts)
186 1.132 elad {
187 1.132 elad return (settime1(p, ts, true));
188 1.132 elad }
189 1.132 elad
190 1.22 jtc /* ARGSUSED */
191 1.22 jtc int
192 1.140 yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
193 1.140 yamt register_t *retval)
194 1.22 jtc {
195 1.135 dsl /* {
196 1.22 jtc syscallarg(clockid_t) clock_id;
197 1.23 cgd syscallarg(struct timespec *) tp;
198 1.135 dsl } */
199 1.22 jtc clockid_t clock_id;
200 1.22 jtc struct timespec ats;
201 1.22 jtc
202 1.22 jtc clock_id = SCARG(uap, clock_id);
203 1.61 simonb switch (clock_id) {
204 1.61 simonb case CLOCK_REALTIME:
205 1.96 simonb nanotime(&ats);
206 1.61 simonb break;
207 1.61 simonb case CLOCK_MONOTONIC:
208 1.101 kardel nanouptime(&ats);
209 1.61 simonb break;
210 1.61 simonb default:
211 1.22 jtc return (EINVAL);
212 1.61 simonb }
213 1.22 jtc
214 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
215 1.22 jtc }
216 1.22 jtc
217 1.22 jtc /* ARGSUSED */
218 1.22 jtc int
219 1.140 yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
220 1.140 yamt register_t *retval)
221 1.22 jtc {
222 1.135 dsl /* {
223 1.22 jtc syscallarg(clockid_t) clock_id;
224 1.23 cgd syscallarg(const struct timespec *) tp;
225 1.135 dsl } */
226 1.22 jtc
227 1.132 elad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
228 1.132 elad true);
229 1.56 manu }
230 1.56 manu
231 1.56 manu
232 1.56 manu int
233 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
234 1.132 elad bool check_kauth)
235 1.56 manu {
236 1.60 manu struct timespec ats;
237 1.56 manu int error;
238 1.56 manu
239 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
240 1.60 manu return (error);
241 1.60 manu
242 1.61 simonb switch (clock_id) {
243 1.61 simonb case CLOCK_REALTIME:
244 1.132 elad if ((error = settime1(p, &ats, check_kauth)) != 0)
245 1.61 simonb return (error);
246 1.61 simonb break;
247 1.61 simonb case CLOCK_MONOTONIC:
248 1.61 simonb return (EINVAL); /* read-only clock */
249 1.61 simonb default:
250 1.56 manu return (EINVAL);
251 1.61 simonb }
252 1.22 jtc
253 1.22 jtc return 0;
254 1.22 jtc }
255 1.22 jtc
256 1.22 jtc int
257 1.140 yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
258 1.140 yamt register_t *retval)
259 1.22 jtc {
260 1.135 dsl /* {
261 1.22 jtc syscallarg(clockid_t) clock_id;
262 1.23 cgd syscallarg(struct timespec *) tp;
263 1.135 dsl } */
264 1.22 jtc clockid_t clock_id;
265 1.22 jtc struct timespec ts;
266 1.22 jtc int error = 0;
267 1.22 jtc
268 1.22 jtc clock_id = SCARG(uap, clock_id);
269 1.61 simonb switch (clock_id) {
270 1.61 simonb case CLOCK_REALTIME:
271 1.61 simonb case CLOCK_MONOTONIC:
272 1.22 jtc ts.tv_sec = 0;
273 1.102 kardel if (tc_getfrequency() > 1000000000)
274 1.102 kardel ts.tv_nsec = 1;
275 1.102 kardel else
276 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
277 1.61 simonb break;
278 1.61 simonb default:
279 1.61 simonb return (EINVAL);
280 1.61 simonb }
281 1.22 jtc
282 1.61 simonb if (SCARG(uap, tp))
283 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
284 1.22 jtc
285 1.22 jtc return error;
286 1.22 jtc }
287 1.22 jtc
288 1.27 jtc /* ARGSUSED */
289 1.27 jtc int
290 1.140 yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
291 1.140 yamt register_t *retval)
292 1.27 jtc {
293 1.135 dsl /* {
294 1.101 kardel syscallarg(struct timespec *) rqtp;
295 1.101 kardel syscallarg(struct timespec *) rmtp;
296 1.135 dsl } */
297 1.101 kardel struct timespec rmt, rqt;
298 1.120 dsl int error, error1;
299 1.101 kardel
300 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
301 1.101 kardel if (error)
302 1.101 kardel return (error);
303 1.101 kardel
304 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
305 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
306 1.120 dsl return error;
307 1.120 dsl
308 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
309 1.120 dsl return error1 ? error1 : error;
310 1.120 dsl }
311 1.120 dsl
312 1.120 dsl int
313 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
314 1.120 dsl {
315 1.141 yamt struct timespec rmtstart;
316 1.120 dsl int error, timo;
317 1.120 dsl
318 1.120 dsl if (itimespecfix(rqt))
319 1.101 kardel return (EINVAL);
320 1.101 kardel
321 1.120 dsl timo = tstohz(rqt);
322 1.101 kardel /*
323 1.101 kardel * Avoid inadvertantly sleeping forever
324 1.101 kardel */
325 1.101 kardel if (timo == 0)
326 1.101 kardel timo = 1;
327 1.141 yamt getnanouptime(&rmtstart);
328 1.141 yamt again:
329 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
330 1.141 yamt if (rmt != NULL || error == 0) {
331 1.141 yamt struct timespec rmtend;
332 1.141 yamt struct timespec t0;
333 1.141 yamt struct timespec *t;
334 1.101 kardel
335 1.141 yamt getnanouptime(&rmtend);
336 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
337 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
338 1.141 yamt timespecsub(rqt, t, t);
339 1.141 yamt if (t->tv_sec < 0)
340 1.141 yamt timespecclear(t);
341 1.141 yamt if (error == 0) {
342 1.141 yamt timo = tstohz(t);
343 1.141 yamt if (timo > 0)
344 1.141 yamt goto again;
345 1.141 yamt }
346 1.141 yamt }
347 1.104 kardel
348 1.101 kardel if (error == ERESTART)
349 1.101 kardel error = EINTR;
350 1.101 kardel if (error == EWOULDBLOCK)
351 1.101 kardel error = 0;
352 1.101 kardel
353 1.101 kardel return error;
354 1.27 jtc }
355 1.22 jtc
356 1.1 cgd /* ARGSUSED */
357 1.3 andrew int
358 1.140 yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
359 1.140 yamt register_t *retval)
360 1.15 thorpej {
361 1.135 dsl /* {
362 1.11 cgd syscallarg(struct timeval *) tp;
363 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
364 1.135 dsl } */
365 1.1 cgd struct timeval atv;
366 1.1 cgd int error = 0;
367 1.25 perry struct timezone tzfake;
368 1.1 cgd
369 1.11 cgd if (SCARG(uap, tp)) {
370 1.1 cgd microtime(&atv);
371 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
372 1.17 christos if (error)
373 1.1 cgd return (error);
374 1.1 cgd }
375 1.25 perry if (SCARG(uap, tzp)) {
376 1.25 perry /*
377 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
378 1.25 perry * fake up a timezone struct and return it if demanded.
379 1.25 perry */
380 1.25 perry tzfake.tz_minuteswest = 0;
381 1.25 perry tzfake.tz_dsttime = 0;
382 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
383 1.25 perry }
384 1.1 cgd return (error);
385 1.1 cgd }
386 1.1 cgd
387 1.1 cgd /* ARGSUSED */
388 1.3 andrew int
389 1.140 yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
390 1.140 yamt register_t *retval)
391 1.15 thorpej {
392 1.135 dsl /* {
393 1.24 cgd syscallarg(const struct timeval *) tv;
394 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
395 1.135 dsl } */
396 1.60 manu
397 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
398 1.60 manu }
399 1.60 manu
400 1.60 manu int
401 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
402 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
403 1.60 manu {
404 1.22 jtc struct timeval atv;
405 1.98 christos struct timespec ts;
406 1.22 jtc int error;
407 1.1 cgd
408 1.8 cgd /* Verify all parameters before changing time. */
409 1.119 dsl
410 1.25 perry /*
411 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
412 1.25 perry * obsolete program would try to set it, so we log a warning.
413 1.25 perry */
414 1.98 christos if (utzp)
415 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
416 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
417 1.98 christos
418 1.98 christos if (utv == NULL)
419 1.98 christos return 0;
420 1.98 christos
421 1.119 dsl if (userspace) {
422 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
423 1.119 dsl return error;
424 1.119 dsl utv = &atv;
425 1.119 dsl }
426 1.119 dsl
427 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
428 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
429 1.1 cgd }
430 1.1 cgd
431 1.68 dsl int time_adjusted; /* set if an adjustment is made */
432 1.1 cgd
433 1.1 cgd /* ARGSUSED */
434 1.3 andrew int
435 1.140 yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
436 1.140 yamt register_t *retval)
437 1.15 thorpej {
438 1.135 dsl /* {
439 1.24 cgd syscallarg(const struct timeval *) delta;
440 1.11 cgd syscallarg(struct timeval *) olddelta;
441 1.135 dsl } */
442 1.56 manu int error;
443 1.1 cgd
444 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
445 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
446 1.1 cgd return (error);
447 1.17 christos
448 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
449 1.56 manu }
450 1.56 manu
451 1.56 manu int
452 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
453 1.56 manu {
454 1.60 manu struct timeval atv;
455 1.101 kardel int error = 0;
456 1.101 kardel
457 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
458 1.101 kardel
459 1.101 kardel if (olddelta) {
460 1.143 ad mutex_spin_enter(&timecounter_lock);
461 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
462 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
463 1.143 ad mutex_spin_exit(&timecounter_lock);
464 1.101 kardel if (atv.tv_usec < 0) {
465 1.101 kardel atv.tv_usec += 1000000;
466 1.101 kardel atv.tv_sec--;
467 1.101 kardel }
468 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
469 1.101 kardel if (error)
470 1.101 kardel return (error);
471 1.101 kardel }
472 1.101 kardel
473 1.101 kardel if (delta) {
474 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
475 1.101 kardel if (error)
476 1.101 kardel return (error);
477 1.101 kardel
478 1.143 ad mutex_spin_enter(&timecounter_lock);
479 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
480 1.101 kardel atv.tv_usec;
481 1.143 ad if (time_adjtime) {
482 1.101 kardel /* We need to save the system time during shutdown */
483 1.101 kardel time_adjusted |= 1;
484 1.143 ad }
485 1.143 ad mutex_spin_exit(&timecounter_lock);
486 1.101 kardel }
487 1.101 kardel
488 1.79 chs return error;
489 1.1 cgd }
490 1.1 cgd
491 1.1 cgd /*
492 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
493 1.63 thorpej * timer_*() family of routines are supported.
494 1.1 cgd *
495 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
496 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
497 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
498 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
499 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
500 1.63 thorpej * syscall.
501 1.1 cgd *
502 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
503 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
504 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
505 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
506 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
507 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
508 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
509 1.63 thorpej * given below), to be delayed in real time past when it is supposed
510 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
511 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
512 1.63 thorpej * compute the next time in absolute time the timer should go off. */
513 1.63 thorpej
514 1.63 thorpej /* Allocate a POSIX realtime timer. */
515 1.63 thorpej int
516 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
517 1.140 yamt register_t *retval)
518 1.63 thorpej {
519 1.135 dsl /* {
520 1.63 thorpej syscallarg(clockid_t) clock_id;
521 1.63 thorpej syscallarg(struct sigevent *) evp;
522 1.63 thorpej syscallarg(timer_t *) timerid;
523 1.135 dsl } */
524 1.92 cube
525 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
526 1.105 ad SCARG(uap, evp), copyin, l);
527 1.92 cube }
528 1.92 cube
529 1.92 cube int
530 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
531 1.105 ad copyin_t fetch_event, struct lwp *l)
532 1.92 cube {
533 1.92 cube int error;
534 1.92 cube timer_t timerid;
535 1.142 ad struct ptimers *pts;
536 1.63 thorpej struct ptimer *pt;
537 1.105 ad struct proc *p;
538 1.105 ad
539 1.105 ad p = l->l_proc;
540 1.63 thorpej
541 1.142 ad if (id < CLOCK_REALTIME || id > CLOCK_PROF)
542 1.63 thorpej return (EINVAL);
543 1.63 thorpej
544 1.142 ad if ((pts = p->p_timers) == NULL)
545 1.142 ad pts = timers_alloc(p);
546 1.63 thorpej
547 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
548 1.142 ad if (evp != NULL) {
549 1.63 thorpej if (((error =
550 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
551 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
552 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
553 1.63 thorpej pool_put(&ptimer_pool, pt);
554 1.63 thorpej return (error ? error : EINVAL);
555 1.63 thorpej }
556 1.142 ad }
557 1.142 ad
558 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
559 1.142 ad mutex_spin_enter(&timer_lock);
560 1.142 ad for (timerid = 3; timerid < TIMER_MAX; timerid++)
561 1.142 ad if (pts->pts_timers[timerid] == NULL)
562 1.142 ad break;
563 1.142 ad if (timerid == TIMER_MAX) {
564 1.142 ad mutex_spin_exit(&timer_lock);
565 1.142 ad pool_put(&ptimer_pool, pt);
566 1.142 ad return EAGAIN;
567 1.142 ad }
568 1.142 ad if (evp == NULL) {
569 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
570 1.63 thorpej switch (id) {
571 1.63 thorpej case CLOCK_REALTIME:
572 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
573 1.63 thorpej break;
574 1.63 thorpej case CLOCK_VIRTUAL:
575 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
576 1.63 thorpej break;
577 1.63 thorpej case CLOCK_PROF:
578 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
579 1.63 thorpej break;
580 1.63 thorpej }
581 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
582 1.63 thorpej }
583 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
584 1.73 christos pt->pt_info.ksi_errno = 0;
585 1.73 christos pt->pt_info.ksi_code = 0;
586 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
587 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
588 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
589 1.63 thorpej pt->pt_type = id;
590 1.63 thorpej pt->pt_proc = p;
591 1.63 thorpej pt->pt_overruns = 0;
592 1.63 thorpej pt->pt_poverruns = 0;
593 1.64 nathanw pt->pt_entry = timerid;
594 1.142 ad pt->pt_queued = false;
595 1.142 ad pt->pt_active = 0;
596 1.63 thorpej timerclear(&pt->pt_time.it_value);
597 1.142 ad callout_init(&pt->pt_ch, 0);
598 1.142 ad pts->pts_timers[timerid] = pt;
599 1.142 ad mutex_spin_exit(&timer_lock);
600 1.63 thorpej
601 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
602 1.63 thorpej }
603 1.63 thorpej
604 1.63 thorpej /* Delete a POSIX realtime timer */
605 1.3 andrew int
606 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
607 1.140 yamt register_t *retval)
608 1.15 thorpej {
609 1.135 dsl /* {
610 1.63 thorpej syscallarg(timer_t) timerid;
611 1.135 dsl } */
612 1.63 thorpej struct proc *p = l->l_proc;
613 1.65 jdolecek timer_t timerid;
614 1.142 ad struct ptimers *pts;
615 1.63 thorpej struct ptimer *pt, *ptn;
616 1.1 cgd
617 1.63 thorpej timerid = SCARG(uap, timerid);
618 1.142 ad pts = p->p_timers;
619 1.142 ad
620 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
621 1.142 ad return (EINVAL);
622 1.63 thorpej
623 1.142 ad mutex_spin_enter(&timer_lock);
624 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
625 1.142 ad mutex_spin_exit(&timer_lock);
626 1.1 cgd return (EINVAL);
627 1.142 ad }
628 1.142 ad if (pt->pt_active) {
629 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
630 1.63 thorpej LIST_REMOVE(pt, pt_list);
631 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
632 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
633 1.63 thorpej &ptn->pt_time.it_value);
634 1.142 ad pt->pt_active = 0;
635 1.63 thorpej }
636 1.142 ad itimerfree(pts, timerid);
637 1.63 thorpej
638 1.63 thorpej return (0);
639 1.63 thorpej }
640 1.63 thorpej
641 1.63 thorpej /*
642 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
643 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
644 1.67 nathanw * time for virtual timers.
645 1.63 thorpej * Must be called at splclock().
646 1.63 thorpej */
647 1.63 thorpej void
648 1.63 thorpej timer_settime(struct ptimer *pt)
649 1.63 thorpej {
650 1.63 thorpej struct ptimer *ptn, *pptn;
651 1.63 thorpej struct ptlist *ptl;
652 1.63 thorpej
653 1.142 ad KASSERT(mutex_owned(&timer_lock));
654 1.142 ad
655 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
656 1.63 thorpej callout_stop(&pt->pt_ch);
657 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
658 1.63 thorpej /*
659 1.63 thorpej * Don't need to check hzto() return value, here.
660 1.63 thorpej * callout_reset() does it for us.
661 1.63 thorpej */
662 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
663 1.63 thorpej realtimerexpire, pt);
664 1.63 thorpej }
665 1.63 thorpej } else {
666 1.63 thorpej if (pt->pt_active) {
667 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
668 1.63 thorpej LIST_REMOVE(pt, pt_list);
669 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
670 1.63 thorpej timeradd(&pt->pt_time.it_value,
671 1.63 thorpej &ptn->pt_time.it_value,
672 1.63 thorpej &ptn->pt_time.it_value);
673 1.63 thorpej }
674 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
675 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
676 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
677 1.63 thorpej else
678 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
679 1.63 thorpej
680 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
681 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
682 1.63 thorpej &ptn->pt_time.it_value, >);
683 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
684 1.63 thorpej timersub(&pt->pt_time.it_value,
685 1.63 thorpej &ptn->pt_time.it_value,
686 1.63 thorpej &pt->pt_time.it_value);
687 1.63 thorpej
688 1.63 thorpej if (pptn)
689 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
690 1.63 thorpej else
691 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
692 1.63 thorpej
693 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
694 1.63 thorpej timersub(&ptn->pt_time.it_value,
695 1.63 thorpej &pt->pt_time.it_value,
696 1.63 thorpej &ptn->pt_time.it_value);
697 1.63 thorpej
698 1.63 thorpej pt->pt_active = 1;
699 1.63 thorpej } else
700 1.63 thorpej pt->pt_active = 0;
701 1.63 thorpej }
702 1.63 thorpej }
703 1.63 thorpej
704 1.63 thorpej void
705 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
706 1.63 thorpej {
707 1.101 kardel struct timeval now;
708 1.63 thorpej struct ptimer *ptn;
709 1.63 thorpej
710 1.142 ad KASSERT(mutex_owned(&timer_lock));
711 1.142 ad
712 1.63 thorpej *aitv = pt->pt_time;
713 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
714 1.1 cgd /*
715 1.12 mycroft * Convert from absolute to relative time in .it_value
716 1.63 thorpej * part of real time timer. If time for real time
717 1.63 thorpej * timer has passed return 0, else return difference
718 1.63 thorpej * between current time and time for the timer to go
719 1.63 thorpej * off.
720 1.1 cgd */
721 1.63 thorpej if (timerisset(&aitv->it_value)) {
722 1.101 kardel getmicrotime(&now);
723 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
724 1.101 kardel timerclear(&aitv->it_value);
725 1.101 kardel else
726 1.101 kardel timersub(&aitv->it_value, &now,
727 1.101 kardel &aitv->it_value);
728 1.36 thorpej }
729 1.63 thorpej } else if (pt->pt_active) {
730 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
731 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
732 1.63 thorpej else
733 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
734 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
735 1.63 thorpej timeradd(&aitv->it_value,
736 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
737 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
738 1.1 cgd } else
739 1.63 thorpej timerclear(&aitv->it_value);
740 1.63 thorpej }
741 1.63 thorpej
742 1.63 thorpej
743 1.63 thorpej
744 1.63 thorpej /* Set and arm a POSIX realtime timer */
745 1.63 thorpej int
746 1.140 yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
747 1.140 yamt register_t *retval)
748 1.63 thorpej {
749 1.135 dsl /* {
750 1.63 thorpej syscallarg(timer_t) timerid;
751 1.63 thorpej syscallarg(int) flags;
752 1.63 thorpej syscallarg(const struct itimerspec *) value;
753 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
754 1.135 dsl } */
755 1.92 cube int error;
756 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
757 1.92 cube
758 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
759 1.92 cube sizeof(struct itimerspec))) != 0)
760 1.92 cube return (error);
761 1.92 cube
762 1.92 cube if (SCARG(uap, ovalue))
763 1.92 cube ovp = &ovalue;
764 1.92 cube
765 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
766 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
767 1.92 cube return error;
768 1.92 cube
769 1.92 cube if (ovp)
770 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
771 1.92 cube sizeof(struct itimerspec));
772 1.92 cube return 0;
773 1.92 cube }
774 1.92 cube
775 1.92 cube int
776 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
777 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
778 1.92 cube {
779 1.101 kardel struct timeval now;
780 1.63 thorpej struct itimerval val, oval;
781 1.142 ad struct ptimers *pts;
782 1.63 thorpej struct ptimer *pt;
783 1.63 thorpej
784 1.142 ad pts = p->p_timers;
785 1.63 thorpej
786 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
787 1.142 ad return EINVAL;
788 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
789 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
790 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
791 1.63 thorpej return (EINVAL);
792 1.63 thorpej
793 1.142 ad mutex_spin_enter(&timer_lock);
794 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
795 1.142 ad mutex_spin_exit(&timer_lock);
796 1.142 ad return (EINVAL);
797 1.142 ad }
798 1.142 ad
799 1.63 thorpej oval = pt->pt_time;
800 1.63 thorpej pt->pt_time = val;
801 1.63 thorpej
802 1.67 nathanw /*
803 1.67 nathanw * If we've been passed a relative time for a realtime timer,
804 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
805 1.67 nathanw * timer, convert it to relative and make sure we don't set it
806 1.67 nathanw * to zero, which would cancel the timer, or let it go
807 1.67 nathanw * negative, which would confuse the comparison tests.
808 1.67 nathanw */
809 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
810 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
811 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
812 1.101 kardel getmicrotime(&now);
813 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
814 1.101 kardel &pt->pt_time.it_value);
815 1.101 kardel }
816 1.67 nathanw } else {
817 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
818 1.101 kardel getmicrotime(&now);
819 1.101 kardel timersub(&pt->pt_time.it_value, &now,
820 1.101 kardel &pt->pt_time.it_value);
821 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
822 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
823 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
824 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
825 1.67 nathanw }
826 1.67 nathanw }
827 1.67 nathanw }
828 1.67 nathanw }
829 1.67 nathanw
830 1.63 thorpej timer_settime(pt);
831 1.142 ad mutex_spin_exit(&timer_lock);
832 1.63 thorpej
833 1.92 cube if (ovalue) {
834 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
835 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
836 1.63 thorpej }
837 1.63 thorpej
838 1.63 thorpej return (0);
839 1.63 thorpej }
840 1.63 thorpej
841 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
842 1.63 thorpej int
843 1.140 yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
844 1.140 yamt register_t *retval)
845 1.63 thorpej {
846 1.135 dsl /* {
847 1.63 thorpej syscallarg(timer_t) timerid;
848 1.63 thorpej syscallarg(struct itimerspec *) value;
849 1.135 dsl } */
850 1.63 thorpej struct itimerspec its;
851 1.92 cube int error;
852 1.92 cube
853 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
854 1.92 cube &its)) != 0)
855 1.92 cube return error;
856 1.92 cube
857 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
858 1.92 cube }
859 1.92 cube
860 1.92 cube int
861 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
862 1.92 cube {
863 1.63 thorpej struct ptimer *pt;
864 1.142 ad struct ptimers *pts;
865 1.92 cube struct itimerval aitv;
866 1.63 thorpej
867 1.142 ad pts = p->p_timers;
868 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
869 1.63 thorpej return (EINVAL);
870 1.142 ad mutex_spin_enter(&timer_lock);
871 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
872 1.142 ad mutex_spin_exit(&timer_lock);
873 1.142 ad return (EINVAL);
874 1.142 ad }
875 1.63 thorpej timer_gettime(pt, &aitv);
876 1.142 ad mutex_spin_exit(&timer_lock);
877 1.63 thorpej
878 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
879 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
880 1.63 thorpej
881 1.92 cube return 0;
882 1.63 thorpej }
883 1.63 thorpej
884 1.63 thorpej /*
885 1.63 thorpej * Return the count of the number of times a periodic timer expired
886 1.63 thorpej * while a notification was already pending. The counter is reset when
887 1.63 thorpej * a timer expires and a notification can be posted.
888 1.63 thorpej */
889 1.63 thorpej int
890 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
891 1.140 yamt register_t *retval)
892 1.63 thorpej {
893 1.135 dsl /* {
894 1.63 thorpej syscallarg(timer_t) timerid;
895 1.135 dsl } */
896 1.63 thorpej struct proc *p = l->l_proc;
897 1.142 ad struct ptimers *pts;
898 1.63 thorpej int timerid;
899 1.63 thorpej struct ptimer *pt;
900 1.63 thorpej
901 1.63 thorpej timerid = SCARG(uap, timerid);
902 1.63 thorpej
903 1.142 ad pts = p->p_timers;
904 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
905 1.142 ad return (EINVAL);
906 1.142 ad mutex_spin_enter(&timer_lock);
907 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
908 1.142 ad mutex_spin_exit(&timer_lock);
909 1.63 thorpej return (EINVAL);
910 1.142 ad }
911 1.63 thorpej *retval = pt->pt_poverruns;
912 1.142 ad mutex_spin_exit(&timer_lock);
913 1.63 thorpej
914 1.63 thorpej return (0);
915 1.63 thorpej }
916 1.63 thorpej
917 1.146.2.3 wrstuden /* Glue function that triggers an upcall; called from userret(). */
918 1.146.2.3 wrstuden void
919 1.146.2.3 wrstuden timerupcall(struct lwp *l)
920 1.146.2.3 wrstuden {
921 1.146.2.3 wrstuden struct ptimers *pt = l->l_proc->p_timers;
922 1.146.2.3 wrstuden struct proc *p = l->l_proc;
923 1.146.2.3 wrstuden unsigned int i, fired, done;
924 1.146.2.3 wrstuden
925 1.146.2.3 wrstuden KDASSERT(l->l_proc->p_sa);
926 1.146.2.3 wrstuden /* Bail out if we do not own the virtual processor */
927 1.146.2.3 wrstuden if (l->l_savp->savp_lwp != l)
928 1.146.2.3 wrstuden return ;
929 1.146.2.3 wrstuden
930 1.146.2.3 wrstuden mutex_enter(p->p_lock);
931 1.146.2.3 wrstuden
932 1.146.2.3 wrstuden fired = pt->pts_fired;
933 1.146.2.3 wrstuden done = 0;
934 1.146.2.3 wrstuden while ((i = ffs(fired)) != 0) {
935 1.146.2.3 wrstuden siginfo_t *si;
936 1.146.2.3 wrstuden int mask = 1 << --i;
937 1.146.2.3 wrstuden int f;
938 1.146.2.3 wrstuden
939 1.146.2.6 wrstuden f = ~l->l_pflag & LP_SA_NOBLOCK;
940 1.146.2.6 wrstuden l->l_pflag |= LP_SA_NOBLOCK;
941 1.146.2.3 wrstuden si = siginfo_alloc(PR_WAITOK);
942 1.146.2.3 wrstuden si->_info = pt->pts_timers[i]->pt_info.ksi_info;
943 1.146.2.3 wrstuden if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
944 1.146.2.3 wrstuden sizeof(*si), si, siginfo_free) != 0) {
945 1.146.2.3 wrstuden siginfo_free(si);
946 1.146.2.3 wrstuden /* XXX What do we do here?? */
947 1.146.2.3 wrstuden } else
948 1.146.2.3 wrstuden done |= mask;
949 1.146.2.3 wrstuden fired &= ~mask;
950 1.146.2.6 wrstuden l->l_pflag ^= f;
951 1.146.2.3 wrstuden }
952 1.146.2.3 wrstuden pt->pts_fired &= ~done;
953 1.146.2.3 wrstuden if (pt->pts_fired == 0)
954 1.146.2.3 wrstuden l->l_proc->p_timerpend = 0;
955 1.146.2.3 wrstuden
956 1.146.2.3 wrstuden mutex_exit(p->p_lock);
957 1.146.2.3 wrstuden }
958 1.146.2.3 wrstuden
959 1.63 thorpej /*
960 1.63 thorpej * Real interval timer expired:
961 1.63 thorpej * send process whose timer expired an alarm signal.
962 1.63 thorpej * If time is not set up to reload, then just return.
963 1.63 thorpej * Else compute next time timer should go off which is > current time.
964 1.63 thorpej * This is where delay in processing this timeout causes multiple
965 1.63 thorpej * SIGALRM calls to be compressed into one.
966 1.63 thorpej */
967 1.63 thorpej void
968 1.63 thorpej realtimerexpire(void *arg)
969 1.63 thorpej {
970 1.146.2.4 wrstuden uint64_t last_val, next_val, interval, now_ms;
971 1.146.2.4 wrstuden struct timeval now, next;
972 1.63 thorpej struct ptimer *pt;
973 1.146.2.4 wrstuden int backwards;
974 1.63 thorpej
975 1.142 ad pt = arg;
976 1.63 thorpej
977 1.142 ad mutex_spin_enter(&timer_lock);
978 1.63 thorpej itimerfire(pt);
979 1.63 thorpej
980 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
981 1.63 thorpej timerclear(&pt->pt_time.it_value);
982 1.142 ad mutex_spin_exit(&timer_lock);
983 1.63 thorpej return;
984 1.63 thorpej }
985 1.146.2.4 wrstuden
986 1.146.2.4 wrstuden getmicrotime(&now);
987 1.146.2.4 wrstuden backwards = (timercmp(&pt->pt_time.it_value, &now, >));
988 1.146.2.4 wrstuden timeradd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
989 1.146.2.4 wrstuden /* Handle the easy case of non-overflown timers first. */
990 1.146.2.4 wrstuden if (!backwards && timercmp(&next, &now, >)) {
991 1.146.2.4 wrstuden pt->pt_time.it_value = next;
992 1.146.2.4 wrstuden } else {
993 1.146.2.4 wrstuden #define TV2MS(x) (((uint64_t)(x)->tv_sec) * 1000000 + (x)->tv_usec)
994 1.146.2.4 wrstuden now_ms = TV2MS(&now);
995 1.146.2.4 wrstuden last_val = TV2MS(&pt->pt_time.it_value);
996 1.146.2.4 wrstuden interval = TV2MS(&pt->pt_time.it_interval);
997 1.146.2.4 wrstuden #undef TV2MS
998 1.146.2.4 wrstuden
999 1.146.2.4 wrstuden next_val = now_ms +
1000 1.146.2.4 wrstuden (now_ms - last_val + interval - 1) % interval;
1001 1.146.2.4 wrstuden
1002 1.146.2.4 wrstuden if (backwards)
1003 1.146.2.4 wrstuden next_val += interval;
1004 1.146.2.4 wrstuden else
1005 1.146.2.4 wrstuden pt->pt_overruns += (now_ms - last_val) / interval;
1006 1.146.2.4 wrstuden
1007 1.146.2.4 wrstuden pt->pt_time.it_value.tv_sec = next_val / 1000000;
1008 1.146.2.4 wrstuden pt->pt_time.it_value.tv_usec = next_val % 1000000;
1009 1.101 kardel }
1010 1.146.2.4 wrstuden
1011 1.146.2.4 wrstuden /*
1012 1.146.2.4 wrstuden * Don't need to check hzto() return value, here.
1013 1.146.2.4 wrstuden * callout_reset() does it for us.
1014 1.146.2.4 wrstuden */
1015 1.146.2.4 wrstuden callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1016 1.146.2.4 wrstuden realtimerexpire, pt);
1017 1.146.2.4 wrstuden mutex_spin_exit(&timer_lock);
1018 1.63 thorpej }
1019 1.63 thorpej
1020 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1021 1.63 thorpej /* ARGSUSED */
1022 1.63 thorpej int
1023 1.140 yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
1024 1.140 yamt register_t *retval)
1025 1.63 thorpej {
1026 1.135 dsl /* {
1027 1.63 thorpej syscallarg(int) which;
1028 1.63 thorpej syscallarg(struct itimerval *) itv;
1029 1.135 dsl } */
1030 1.63 thorpej struct proc *p = l->l_proc;
1031 1.63 thorpej struct itimerval aitv;
1032 1.91 cube int error;
1033 1.91 cube
1034 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1035 1.91 cube if (error)
1036 1.91 cube return error;
1037 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1038 1.91 cube }
1039 1.63 thorpej
1040 1.91 cube int
1041 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1042 1.91 cube {
1043 1.142 ad struct ptimers *pts;
1044 1.142 ad struct ptimer *pt;
1045 1.63 thorpej
1046 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1047 1.63 thorpej return (EINVAL);
1048 1.63 thorpej
1049 1.142 ad mutex_spin_enter(&timer_lock);
1050 1.142 ad pts = p->p_timers;
1051 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1052 1.91 cube timerclear(&itvp->it_value);
1053 1.91 cube timerclear(&itvp->it_interval);
1054 1.142 ad } else
1055 1.142 ad timer_gettime(pt, itvp);
1056 1.142 ad mutex_spin_exit(&timer_lock);
1057 1.63 thorpej
1058 1.91 cube return 0;
1059 1.1 cgd }
1060 1.1 cgd
1061 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1062 1.1 cgd /* ARGSUSED */
1063 1.3 andrew int
1064 1.140 yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1065 1.140 yamt register_t *retval)
1066 1.15 thorpej {
1067 1.135 dsl /* {
1068 1.30 mycroft syscallarg(int) which;
1069 1.24 cgd syscallarg(const struct itimerval *) itv;
1070 1.11 cgd syscallarg(struct itimerval *) oitv;
1071 1.135 dsl } */
1072 1.63 thorpej struct proc *p = l->l_proc;
1073 1.30 mycroft int which = SCARG(uap, which);
1074 1.21 cgd struct sys_getitimer_args getargs;
1075 1.91 cube const struct itimerval *itvp;
1076 1.1 cgd struct itimerval aitv;
1077 1.91 cube int error;
1078 1.1 cgd
1079 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1080 1.1 cgd return (EINVAL);
1081 1.11 cgd itvp = SCARG(uap, itv);
1082 1.63 thorpej if (itvp &&
1083 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1084 1.1 cgd return (error);
1085 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1086 1.30 mycroft SCARG(&getargs, which) = which;
1087 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1088 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1089 1.21 cgd return (error);
1090 1.21 cgd }
1091 1.1 cgd if (itvp == 0)
1092 1.1 cgd return (0);
1093 1.91 cube
1094 1.91 cube return dosetitimer(p, which, &aitv);
1095 1.91 cube }
1096 1.91 cube
1097 1.91 cube int
1098 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1099 1.91 cube {
1100 1.101 kardel struct timeval now;
1101 1.142 ad struct ptimers *pts;
1102 1.142 ad struct ptimer *pt, *spare;
1103 1.91 cube
1104 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1105 1.1 cgd return (EINVAL);
1106 1.63 thorpej
1107 1.63 thorpej /*
1108 1.63 thorpej * Don't bother allocating data structures if the process just
1109 1.63 thorpej * wants to clear the timer.
1110 1.63 thorpej */
1111 1.142 ad spare = NULL;
1112 1.142 ad pts = p->p_timers;
1113 1.142 ad retry:
1114 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1115 1.142 ad pts->pts_timers[which] == NULL))
1116 1.63 thorpej return (0);
1117 1.142 ad if (pts == NULL)
1118 1.142 ad pts = timers_alloc(p);
1119 1.142 ad mutex_spin_enter(&timer_lock);
1120 1.142 ad pt = pts->pts_timers[which];
1121 1.142 ad if (pt == NULL) {
1122 1.142 ad if (spare == NULL) {
1123 1.142 ad mutex_spin_exit(&timer_lock);
1124 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1125 1.142 ad goto retry;
1126 1.142 ad }
1127 1.142 ad pt = spare;
1128 1.142 ad spare = NULL;
1129 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1130 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1131 1.63 thorpej pt->pt_overruns = 0;
1132 1.63 thorpej pt->pt_proc = p;
1133 1.63 thorpej pt->pt_type = which;
1134 1.64 nathanw pt->pt_entry = which;
1135 1.142 ad pt->pt_active = 0;
1136 1.142 ad pt->pt_queued = false;
1137 1.142 ad callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1138 1.63 thorpej switch (which) {
1139 1.63 thorpej case ITIMER_REAL:
1140 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1141 1.63 thorpej break;
1142 1.63 thorpej case ITIMER_VIRTUAL:
1143 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1144 1.63 thorpej break;
1145 1.63 thorpej case ITIMER_PROF:
1146 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1147 1.63 thorpej break;
1148 1.1 cgd }
1149 1.142 ad pts->pts_timers[which] = pt;
1150 1.142 ad }
1151 1.91 cube pt->pt_time = *itvp;
1152 1.63 thorpej
1153 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1154 1.67 nathanw /* Convert to absolute time */
1155 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1156 1.101 kardel getmicrotime(&now);
1157 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1158 1.67 nathanw }
1159 1.63 thorpej timer_settime(pt);
1160 1.142 ad mutex_spin_exit(&timer_lock);
1161 1.142 ad if (spare != NULL)
1162 1.142 ad pool_put(&ptimer_pool, spare);
1163 1.63 thorpej
1164 1.1 cgd return (0);
1165 1.1 cgd }
1166 1.1 cgd
1167 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1168 1.142 ad struct ptimers *
1169 1.63 thorpej timers_alloc(struct proc *p)
1170 1.63 thorpej {
1171 1.142 ad struct ptimers *pts;
1172 1.63 thorpej int i;
1173 1.63 thorpej
1174 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1175 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1176 1.63 thorpej LIST_INIT(&pts->pts_prof);
1177 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1178 1.63 thorpej pts->pts_timers[i] = NULL;
1179 1.64 nathanw pts->pts_fired = 0;
1180 1.142 ad mutex_spin_enter(&timer_lock);
1181 1.142 ad if (p->p_timers == NULL) {
1182 1.142 ad p->p_timers = pts;
1183 1.142 ad mutex_spin_exit(&timer_lock);
1184 1.142 ad return pts;
1185 1.142 ad }
1186 1.142 ad mutex_spin_exit(&timer_lock);
1187 1.142 ad pool_put(&ptimers_pool, pts);
1188 1.142 ad return p->p_timers;
1189 1.63 thorpej }
1190 1.63 thorpej
1191 1.1 cgd /*
1192 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1193 1.63 thorpej * then clean up all timers and free all the data structures. If
1194 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1195 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1196 1.63 thorpej * structure if none of those remain.
1197 1.1 cgd */
1198 1.3 andrew void
1199 1.63 thorpej timers_free(struct proc *p, int which)
1200 1.6 cgd {
1201 1.63 thorpej struct ptimers *pts;
1202 1.142 ad struct ptimer *ptn;
1203 1.63 thorpej struct timeval tv;
1204 1.142 ad int i;
1205 1.63 thorpej
1206 1.142 ad if (p->p_timers == NULL)
1207 1.142 ad return;
1208 1.63 thorpej
1209 1.142 ad pts = p->p_timers;
1210 1.142 ad mutex_spin_enter(&timer_lock);
1211 1.142 ad if (which == TIMERS_ALL) {
1212 1.142 ad p->p_timers = NULL;
1213 1.142 ad i = 0;
1214 1.142 ad } else {
1215 1.142 ad timerclear(&tv);
1216 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1217 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1218 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1219 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1220 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1221 1.142 ad if (ptn) {
1222 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1223 1.142 ad &ptn->pt_time.it_value);
1224 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1225 1.142 ad }
1226 1.142 ad timerclear(&tv);
1227 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1228 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1229 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1230 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1231 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1232 1.142 ad if (ptn) {
1233 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1234 1.142 ad &ptn->pt_time.it_value);
1235 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1236 1.63 thorpej }
1237 1.142 ad i = 3;
1238 1.142 ad }
1239 1.142 ad for ( ; i < TIMER_MAX; i++) {
1240 1.142 ad if (pts->pts_timers[i] != NULL) {
1241 1.142 ad itimerfree(pts, i);
1242 1.142 ad mutex_spin_enter(&timer_lock);
1243 1.1 cgd }
1244 1.1 cgd }
1245 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1246 1.142 ad pts->pts_timers[2] == NULL) {
1247 1.142 ad p->p_timers = NULL;
1248 1.142 ad mutex_spin_exit(&timer_lock);
1249 1.142 ad pool_put(&ptimers_pool, pts);
1250 1.142 ad } else
1251 1.142 ad mutex_spin_exit(&timer_lock);
1252 1.142 ad }
1253 1.142 ad
1254 1.142 ad static void
1255 1.142 ad itimerfree(struct ptimers *pts, int index)
1256 1.142 ad {
1257 1.142 ad struct ptimer *pt;
1258 1.142 ad
1259 1.142 ad KASSERT(mutex_owned(&timer_lock));
1260 1.142 ad
1261 1.142 ad pt = pts->pts_timers[index];
1262 1.142 ad pts->pts_timers[index] = NULL;
1263 1.144 ad if (pt->pt_type == CLOCK_REALTIME)
1264 1.144 ad callout_halt(&pt->pt_ch, &timer_lock);
1265 1.144 ad else if (pt->pt_queued)
1266 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1267 1.144 ad mutex_spin_exit(&timer_lock);
1268 1.142 ad callout_destroy(&pt->pt_ch);
1269 1.142 ad pool_put(&ptimer_pool, pt);
1270 1.1 cgd }
1271 1.1 cgd
1272 1.1 cgd /*
1273 1.1 cgd * Decrement an interval timer by a specified number
1274 1.1 cgd * of microseconds, which must be less than a second,
1275 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1276 1.1 cgd * it. In this case, carry over (usec - old value) to
1277 1.8 cgd * reduce the value reloaded into the timer so that
1278 1.1 cgd * the timer does not drift. This routine assumes
1279 1.1 cgd * that it is called in a context where the timers
1280 1.1 cgd * on which it is operating cannot change in value.
1281 1.1 cgd */
1282 1.142 ad static int
1283 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1284 1.63 thorpej {
1285 1.45 augustss struct itimerval *itp;
1286 1.1 cgd
1287 1.142 ad KASSERT(mutex_owned(&timer_lock));
1288 1.142 ad
1289 1.63 thorpej itp = &pt->pt_time;
1290 1.1 cgd if (itp->it_value.tv_usec < usec) {
1291 1.1 cgd if (itp->it_value.tv_sec == 0) {
1292 1.1 cgd /* expired, and already in next interval */
1293 1.1 cgd usec -= itp->it_value.tv_usec;
1294 1.1 cgd goto expire;
1295 1.1 cgd }
1296 1.1 cgd itp->it_value.tv_usec += 1000000;
1297 1.1 cgd itp->it_value.tv_sec--;
1298 1.1 cgd }
1299 1.1 cgd itp->it_value.tv_usec -= usec;
1300 1.1 cgd usec = 0;
1301 1.1 cgd if (timerisset(&itp->it_value))
1302 1.1 cgd return (1);
1303 1.1 cgd /* expired, exactly at end of interval */
1304 1.1 cgd expire:
1305 1.1 cgd if (timerisset(&itp->it_interval)) {
1306 1.1 cgd itp->it_value = itp->it_interval;
1307 1.1 cgd itp->it_value.tv_usec -= usec;
1308 1.1 cgd if (itp->it_value.tv_usec < 0) {
1309 1.1 cgd itp->it_value.tv_usec += 1000000;
1310 1.1 cgd itp->it_value.tv_sec--;
1311 1.1 cgd }
1312 1.63 thorpej timer_settime(pt);
1313 1.1 cgd } else
1314 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1315 1.1 cgd return (0);
1316 1.42 cgd }
1317 1.42 cgd
1318 1.142 ad static void
1319 1.63 thorpej itimerfire(struct ptimer *pt)
1320 1.63 thorpej {
1321 1.78 cl
1322 1.142 ad KASSERT(mutex_owned(&timer_lock));
1323 1.142 ad
1324 1.142 ad /*
1325 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1326 1.142 ad * XXX Relying on the clock interrupt is stupid.
1327 1.142 ad */
1328 1.146.2.3 wrstuden if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1329 1.146.2.3 wrstuden (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1330 1.146.2.3 wrstuden pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1331 1.142 ad return;
1332 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1333 1.142 ad pt->pt_queued = true;
1334 1.142 ad softint_schedule(timer_sih);
1335 1.142 ad }
1336 1.142 ad
1337 1.142 ad void
1338 1.142 ad timer_tick(lwp_t *l, bool user)
1339 1.142 ad {
1340 1.142 ad struct ptimers *pts;
1341 1.142 ad struct ptimer *pt;
1342 1.142 ad proc_t *p;
1343 1.142 ad
1344 1.142 ad p = l->l_proc;
1345 1.142 ad if (p->p_timers == NULL)
1346 1.142 ad return;
1347 1.142 ad
1348 1.142 ad mutex_spin_enter(&timer_lock);
1349 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1350 1.63 thorpej /*
1351 1.142 ad * Run current process's virtual and profile time, as needed.
1352 1.63 thorpej */
1353 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1354 1.142 ad if (itimerdecr(pt, tick) == 0)
1355 1.142 ad itimerfire(pt);
1356 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1357 1.142 ad if (itimerdecr(pt, tick) == 0)
1358 1.142 ad itimerfire(pt);
1359 1.142 ad }
1360 1.142 ad mutex_spin_exit(&timer_lock);
1361 1.142 ad }
1362 1.142 ad
1363 1.146.2.3 wrstuden /*
1364 1.146.2.3 wrstuden * timer_sa_intr:
1365 1.146.2.3 wrstuden *
1366 1.146.2.3 wrstuden * SIGEV_SA handling for timer_intr(). We are called (and return)
1367 1.146.2.3 wrstuden * with the timer lock held. We know that the process had SA enabled
1368 1.146.2.3 wrstuden * when this timer was enqueued. As timer_intr() is a soft interrupt
1369 1.146.2.3 wrstuden * handler, SA should still be enabled by the time we get here.
1370 1.146.2.3 wrstuden *
1371 1.146.2.3 wrstuden * XXX Is it legit to lock p_lock and the lwp at this time?
1372 1.146.2.3 wrstuden */
1373 1.146.2.3 wrstuden static void
1374 1.146.2.3 wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
1375 1.146.2.3 wrstuden {
1376 1.146.2.3 wrstuden unsigned int i;
1377 1.146.2.3 wrstuden struct sadata_vp *vp;
1378 1.146.2.3 wrstuden
1379 1.146.2.3 wrstuden /* Cause the process to generate an upcall when it returns. */
1380 1.146.2.3 wrstuden if (!p->p_timerpend) {
1381 1.146.2.3 wrstuden /*
1382 1.146.2.3 wrstuden * XXX stop signals can be processed inside tsleep,
1383 1.146.2.3 wrstuden * which can be inside sa_yield's inner loop, which
1384 1.146.2.3 wrstuden * makes testing for sa_idle alone insuffucent to
1385 1.146.2.3 wrstuden * determine if we really should call setrunnable.
1386 1.146.2.3 wrstuden */
1387 1.146.2.3 wrstuden pt->pt_poverruns = pt->pt_overruns;
1388 1.146.2.3 wrstuden pt->pt_overruns = 0;
1389 1.146.2.3 wrstuden i = 1 << pt->pt_entry;
1390 1.146.2.3 wrstuden p->p_timers->pts_fired = i;
1391 1.146.2.3 wrstuden p->p_timerpend = 1;
1392 1.146.2.3 wrstuden
1393 1.146.2.3 wrstuden mutex_enter(p->p_lock);
1394 1.146.2.3 wrstuden SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1395 1.146.2.3 wrstuden lwp_need_userret(vp->savp_lwp);
1396 1.146.2.3 wrstuden lwp_lock(vp->savp_lwp);
1397 1.146.2.3 wrstuden if (vp->savp_lwp->l_flag & LW_SA_IDLE) {
1398 1.146.2.3 wrstuden vp->savp_lwp->l_flag &= ~LW_SA_IDLE;
1399 1.146.2.5 wrstuden lwp_unsleep(vp->savp_lwp, true);
1400 1.146.2.3 wrstuden break;
1401 1.146.2.3 wrstuden }
1402 1.146.2.3 wrstuden lwp_unlock(vp->savp_lwp);
1403 1.146.2.3 wrstuden }
1404 1.146.2.3 wrstuden mutex_exit(p->p_lock);
1405 1.146.2.3 wrstuden } else {
1406 1.146.2.3 wrstuden i = 1 << pt->pt_entry;
1407 1.146.2.3 wrstuden if ((p->p_timers->pts_fired & i) == 0) {
1408 1.146.2.3 wrstuden pt->pt_poverruns = pt->pt_overruns;
1409 1.146.2.3 wrstuden pt->pt_overruns = 0;
1410 1.146.2.3 wrstuden p->p_timers->pts_fired |= i;
1411 1.146.2.3 wrstuden } else
1412 1.146.2.3 wrstuden pt->pt_overruns++;
1413 1.146.2.3 wrstuden }
1414 1.146.2.3 wrstuden }
1415 1.146.2.3 wrstuden
1416 1.142 ad static void
1417 1.142 ad timer_intr(void *cookie)
1418 1.142 ad {
1419 1.142 ad ksiginfo_t ksi;
1420 1.142 ad struct ptimer *pt;
1421 1.142 ad proc_t *p;
1422 1.142 ad
1423 1.142 ad mutex_spin_enter(&timer_lock);
1424 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1425 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1426 1.142 ad KASSERT(pt->pt_queued);
1427 1.142 ad pt->pt_queued = false;
1428 1.142 ad
1429 1.142 ad if (pt->pt_proc->p_timers == NULL) {
1430 1.142 ad /* Process is dying. */
1431 1.142 ad continue;
1432 1.142 ad }
1433 1.146.2.3 wrstuden p = pt->pt_proc;
1434 1.146.2.3 wrstuden if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1435 1.146.2.3 wrstuden timer_sa_intr(pt, p);
1436 1.146.2.3 wrstuden continue;
1437 1.146.2.3 wrstuden }
1438 1.146.2.3 wrstuden if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1439 1.146.2.3 wrstuden continue;
1440 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1441 1.63 thorpej pt->pt_overruns++;
1442 1.142 ad continue;
1443 1.64 nathanw }
1444 1.142 ad
1445 1.142 ad KSI_INIT(&ksi);
1446 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1447 1.142 ad ksi.ksi_code = SI_TIMER;
1448 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1449 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1450 1.142 ad pt->pt_overruns = 0;
1451 1.142 ad mutex_spin_exit(&timer_lock);
1452 1.142 ad
1453 1.145 ad mutex_enter(proc_lock);
1454 1.142 ad kpsignal(p, &ksi, NULL);
1455 1.145 ad mutex_exit(proc_lock);
1456 1.142 ad
1457 1.142 ad mutex_spin_enter(&timer_lock);
1458 1.63 thorpej }
1459 1.142 ad mutex_spin_exit(&timer_lock);
1460 1.63 thorpej }
1461 1.63 thorpej
1462 1.42 cgd /*
1463 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1464 1.42 cgd * for usage and rationale.
1465 1.42 cgd */
1466 1.42 cgd int
1467 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1468 1.42 cgd {
1469 1.49 itojun struct timeval tv, delta;
1470 1.101 kardel int rv = 0;
1471 1.42 cgd
1472 1.101 kardel getmicrouptime(&tv);
1473 1.49 itojun timersub(&tv, lasttime, &delta);
1474 1.42 cgd
1475 1.42 cgd /*
1476 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1477 1.42 cgd * even if interval is huge.
1478 1.42 cgd */
1479 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1480 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1481 1.49 itojun *lasttime = tv;
1482 1.42 cgd rv = 1;
1483 1.42 cgd }
1484 1.50 itojun
1485 1.50 itojun return (rv);
1486 1.50 itojun }
1487 1.50 itojun
1488 1.50 itojun /*
1489 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1490 1.50 itojun */
1491 1.50 itojun int
1492 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1493 1.50 itojun {
1494 1.50 itojun struct timeval tv, delta;
1495 1.101 kardel int rv;
1496 1.50 itojun
1497 1.101 kardel getmicrouptime(&tv);
1498 1.50 itojun timersub(&tv, lasttime, &delta);
1499 1.50 itojun
1500 1.50 itojun /*
1501 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1502 1.50 itojun * if more than one second have passed since the last update of
1503 1.50 itojun * lasttime, reset the counter.
1504 1.50 itojun *
1505 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1506 1.50 itojun * try to use *curpps for stat purposes as well.
1507 1.50 itojun */
1508 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1509 1.50 itojun delta.tv_sec >= 1) {
1510 1.50 itojun *lasttime = tv;
1511 1.50 itojun *curpps = 0;
1512 1.69 dyoung }
1513 1.69 dyoung if (maxpps < 0)
1514 1.53 itojun rv = 1;
1515 1.53 itojun else if (*curpps < maxpps)
1516 1.50 itojun rv = 1;
1517 1.50 itojun else
1518 1.50 itojun rv = 0;
1519 1.50 itojun
1520 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1521 1.50 itojun /* be careful about wrap-around */
1522 1.50 itojun if (*curpps + 1 > *curpps)
1523 1.50 itojun *curpps = *curpps + 1;
1524 1.50 itojun #else
1525 1.50 itojun /*
1526 1.50 itojun * assume that there's not too many calls to this function.
1527 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1528 1.50 itojun * behavior, not the behavior of this function.
1529 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1530 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1531 1.50 itojun */
1532 1.50 itojun *curpps = *curpps + 1;
1533 1.50 itojun #endif
1534 1.42 cgd
1535 1.42 cgd return (rv);
1536 1.1 cgd }
1537