Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.146.2.6
      1  1.146.2.6  wrstuden /*	$NetBSD: kern_time.c,v 1.146.2.6 2008/06/30 04:55:56 wrstuden Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.142        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.146.2.6  wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146.2.6 2008/06/30 04:55:56 wrstuden Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78  1.146.2.3  wrstuden #include <sys/sa.h>
     79  1.146.2.3  wrstuden #include <sys/savar.h>
     80       1.11       cgd #include <sys/syscallargs.h>
     81      1.143        ad #include <sys/cpu.h>
     82       1.19  christos 
     83       1.37   thorpej #include <uvm/uvm_extern.h>
     84       1.37   thorpej 
     85      1.142        ad static void	timer_intr(void *);
     86      1.142        ad static void	itimerfire(struct ptimer *);
     87      1.142        ad static void	itimerfree(struct ptimers *, int);
     88      1.142        ad 
     89      1.142        ad kmutex_t	timer_lock;
     90      1.142        ad 
     91      1.142        ad static void	*timer_sih;
     92      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     93      1.131        ad 
     94       1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     95      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     96       1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     97      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98       1.97    simonb 
     99      1.131        ad /*
    100      1.131        ad  * Initialize timekeeping.
    101      1.131        ad  */
    102      1.131        ad void
    103      1.131        ad time_init(void)
    104      1.131        ad {
    105      1.131        ad 
    106  1.146.2.4  wrstuden 	/* nothing yet */
    107      1.131        ad }
    108      1.131        ad 
    109      1.142        ad void
    110      1.142        ad time_init2(void)
    111      1.142        ad {
    112      1.142        ad 
    113      1.142        ad 	TAILQ_INIT(&timer_queue);
    114      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    115      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    116      1.142        ad 	    timer_intr, NULL);
    117      1.142        ad }
    118      1.142        ad 
    119       1.63   thorpej /* Time of day and interval timer support.
    120        1.1       cgd  *
    121        1.1       cgd  * These routines provide the kernel entry points to get and set
    122        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    123        1.1       cgd  * here provide support for adding and subtracting timeval structures
    124        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    125        1.1       cgd  * timers when they expire.
    126        1.1       cgd  */
    127        1.1       cgd 
    128       1.22       jtc /* This function is used by clock_settime and settimeofday */
    129      1.132      elad static int
    130      1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    131       1.22       jtc {
    132       1.98  christos 	struct timeval delta, tv;
    133      1.101    kardel 	struct timeval now;
    134      1.101    kardel 	struct timespec ts1;
    135      1.137      yamt 	struct bintime btdelta;
    136      1.129        ad 	lwp_t *l;
    137      1.129        ad 	int s;
    138       1.22       jtc 
    139       1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    140       1.98  christos 
    141       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142      1.129        ad 	s = splclock();
    143      1.101    kardel 	microtime(&now);
    144      1.101    kardel 	timersub(&tv, &now, &delta);
    145      1.132      elad 
    146      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147      1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    148      1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149      1.129        ad 		splx(s);
    150       1.29       tls 		return (EPERM);
    151       1.55      tron 	}
    152      1.132      elad 
    153       1.29       tls #ifdef notyet
    154      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155      1.129        ad 		splx(s);
    156       1.29       tls 		return (EPERM);
    157       1.55      tron 	}
    158       1.29       tls #endif
    159      1.103    kardel 
    160      1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    161      1.101    kardel 	tc_setclock(&ts1);
    162      1.103    kardel 
    163       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    164      1.103    kardel 
    165       1.47   thorpej 	/*
    166      1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    167      1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    168      1.129        ad 	 * pausing all CPUs while we adjust the clock.
    169       1.47   thorpej 	 */
    170      1.137      yamt 	timeval2bintime(&delta, &btdelta);
    171      1.145        ad 	mutex_enter(proc_lock);
    172      1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    173      1.129        ad 		lwp_lock(l);
    174      1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    175      1.129        ad 		lwp_unlock(l);
    176      1.129        ad 	}
    177      1.145        ad 	mutex_exit(proc_lock);
    178       1.22       jtc 	resettodr();
    179      1.129        ad 	splx(s);
    180      1.129        ad 
    181       1.29       tls 	return (0);
    182       1.22       jtc }
    183       1.22       jtc 
    184      1.132      elad int
    185      1.132      elad settime(struct proc *p, struct timespec *ts)
    186      1.132      elad {
    187      1.132      elad 	return (settime1(p, ts, true));
    188      1.132      elad }
    189      1.132      elad 
    190       1.22       jtc /* ARGSUSED */
    191       1.22       jtc int
    192      1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    193      1.140      yamt     register_t *retval)
    194       1.22       jtc {
    195      1.135       dsl 	/* {
    196       1.22       jtc 		syscallarg(clockid_t) clock_id;
    197       1.23       cgd 		syscallarg(struct timespec *) tp;
    198      1.135       dsl 	} */
    199       1.22       jtc 	clockid_t clock_id;
    200       1.22       jtc 	struct timespec ats;
    201       1.22       jtc 
    202       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    203       1.61    simonb 	switch (clock_id) {
    204       1.61    simonb 	case CLOCK_REALTIME:
    205       1.96    simonb 		nanotime(&ats);
    206       1.61    simonb 		break;
    207       1.61    simonb 	case CLOCK_MONOTONIC:
    208      1.101    kardel 		nanouptime(&ats);
    209       1.61    simonb 		break;
    210       1.61    simonb 	default:
    211       1.22       jtc 		return (EINVAL);
    212       1.61    simonb 	}
    213       1.22       jtc 
    214       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    215       1.22       jtc }
    216       1.22       jtc 
    217       1.22       jtc /* ARGSUSED */
    218       1.22       jtc int
    219      1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    220      1.140      yamt     register_t *retval)
    221       1.22       jtc {
    222      1.135       dsl 	/* {
    223       1.22       jtc 		syscallarg(clockid_t) clock_id;
    224       1.23       cgd 		syscallarg(const struct timespec *) tp;
    225      1.135       dsl 	} */
    226       1.22       jtc 
    227      1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    228      1.132      elad 	    true);
    229       1.56      manu }
    230       1.56      manu 
    231       1.56      manu 
    232       1.56      manu int
    233      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    234      1.132      elad     bool check_kauth)
    235       1.56      manu {
    236       1.60      manu 	struct timespec ats;
    237       1.56      manu 	int error;
    238       1.56      manu 
    239       1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    240       1.60      manu 		return (error);
    241       1.60      manu 
    242       1.61    simonb 	switch (clock_id) {
    243       1.61    simonb 	case CLOCK_REALTIME:
    244      1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    245       1.61    simonb 			return (error);
    246       1.61    simonb 		break;
    247       1.61    simonb 	case CLOCK_MONOTONIC:
    248       1.61    simonb 		return (EINVAL);	/* read-only clock */
    249       1.61    simonb 	default:
    250       1.56      manu 		return (EINVAL);
    251       1.61    simonb 	}
    252       1.22       jtc 
    253       1.22       jtc 	return 0;
    254       1.22       jtc }
    255       1.22       jtc 
    256       1.22       jtc int
    257      1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    258      1.140      yamt     register_t *retval)
    259       1.22       jtc {
    260      1.135       dsl 	/* {
    261       1.22       jtc 		syscallarg(clockid_t) clock_id;
    262       1.23       cgd 		syscallarg(struct timespec *) tp;
    263      1.135       dsl 	} */
    264       1.22       jtc 	clockid_t clock_id;
    265       1.22       jtc 	struct timespec ts;
    266       1.22       jtc 	int error = 0;
    267       1.22       jtc 
    268       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    269       1.61    simonb 	switch (clock_id) {
    270       1.61    simonb 	case CLOCK_REALTIME:
    271       1.61    simonb 	case CLOCK_MONOTONIC:
    272       1.22       jtc 		ts.tv_sec = 0;
    273      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    274      1.102    kardel 			ts.tv_nsec = 1;
    275      1.102    kardel 		else
    276      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    277       1.61    simonb 		break;
    278       1.61    simonb 	default:
    279       1.61    simonb 		return (EINVAL);
    280       1.61    simonb 	}
    281       1.22       jtc 
    282       1.61    simonb 	if (SCARG(uap, tp))
    283       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    284       1.22       jtc 
    285       1.22       jtc 	return error;
    286       1.22       jtc }
    287       1.22       jtc 
    288       1.27       jtc /* ARGSUSED */
    289       1.27       jtc int
    290      1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    291      1.140      yamt     register_t *retval)
    292       1.27       jtc {
    293      1.135       dsl 	/* {
    294      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    295      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    296      1.135       dsl 	} */
    297      1.101    kardel 	struct timespec rmt, rqt;
    298      1.120       dsl 	int error, error1;
    299      1.101    kardel 
    300      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    301      1.101    kardel 	if (error)
    302      1.101    kardel 		return (error);
    303      1.101    kardel 
    304      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    305      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    306      1.120       dsl 		return error;
    307      1.120       dsl 
    308      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    309      1.120       dsl 	return error1 ? error1 : error;
    310      1.120       dsl }
    311      1.120       dsl 
    312      1.120       dsl int
    313      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    314      1.120       dsl {
    315      1.141      yamt 	struct timespec rmtstart;
    316      1.120       dsl 	int error, timo;
    317      1.120       dsl 
    318      1.120       dsl 	if (itimespecfix(rqt))
    319      1.101    kardel 		return (EINVAL);
    320      1.101    kardel 
    321      1.120       dsl 	timo = tstohz(rqt);
    322      1.101    kardel 	/*
    323      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    324      1.101    kardel 	 */
    325      1.101    kardel 	if (timo == 0)
    326      1.101    kardel 		timo = 1;
    327      1.141      yamt 	getnanouptime(&rmtstart);
    328      1.141      yamt again:
    329      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    330      1.141      yamt 	if (rmt != NULL || error == 0) {
    331      1.141      yamt 		struct timespec rmtend;
    332      1.141      yamt 		struct timespec t0;
    333      1.141      yamt 		struct timespec *t;
    334      1.101    kardel 
    335      1.141      yamt 		getnanouptime(&rmtend);
    336      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    337      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    338      1.141      yamt 		timespecsub(rqt, t, t);
    339      1.141      yamt 		if (t->tv_sec < 0)
    340      1.141      yamt 			timespecclear(t);
    341      1.141      yamt 		if (error == 0) {
    342      1.141      yamt 			timo = tstohz(t);
    343      1.141      yamt 			if (timo > 0)
    344      1.141      yamt 				goto again;
    345      1.141      yamt 		}
    346      1.141      yamt 	}
    347      1.104    kardel 
    348      1.101    kardel 	if (error == ERESTART)
    349      1.101    kardel 		error = EINTR;
    350      1.101    kardel 	if (error == EWOULDBLOCK)
    351      1.101    kardel 		error = 0;
    352      1.101    kardel 
    353      1.101    kardel 	return error;
    354       1.27       jtc }
    355       1.22       jtc 
    356        1.1       cgd /* ARGSUSED */
    357        1.3    andrew int
    358      1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    359      1.140      yamt     register_t *retval)
    360       1.15   thorpej {
    361      1.135       dsl 	/* {
    362       1.11       cgd 		syscallarg(struct timeval *) tp;
    363      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    364      1.135       dsl 	} */
    365        1.1       cgd 	struct timeval atv;
    366        1.1       cgd 	int error = 0;
    367       1.25     perry 	struct timezone tzfake;
    368        1.1       cgd 
    369       1.11       cgd 	if (SCARG(uap, tp)) {
    370        1.1       cgd 		microtime(&atv);
    371       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    372       1.17  christos 		if (error)
    373        1.1       cgd 			return (error);
    374        1.1       cgd 	}
    375       1.25     perry 	if (SCARG(uap, tzp)) {
    376       1.25     perry 		/*
    377       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    378       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    379       1.25     perry 		 */
    380       1.25     perry 		tzfake.tz_minuteswest = 0;
    381       1.25     perry 		tzfake.tz_dsttime = 0;
    382       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    383       1.25     perry 	}
    384        1.1       cgd 	return (error);
    385        1.1       cgd }
    386        1.1       cgd 
    387        1.1       cgd /* ARGSUSED */
    388        1.3    andrew int
    389      1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    390      1.140      yamt     register_t *retval)
    391       1.15   thorpej {
    392      1.135       dsl 	/* {
    393       1.24       cgd 		syscallarg(const struct timeval *) tv;
    394      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    395      1.135       dsl 	} */
    396       1.60      manu 
    397      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    398       1.60      manu }
    399       1.60      manu 
    400       1.60      manu int
    401      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    402      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    403       1.60      manu {
    404       1.22       jtc 	struct timeval atv;
    405       1.98  christos 	struct timespec ts;
    406       1.22       jtc 	int error;
    407        1.1       cgd 
    408        1.8       cgd 	/* Verify all parameters before changing time. */
    409      1.119       dsl 
    410       1.25     perry 	/*
    411       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    412       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    413       1.25     perry 	 */
    414       1.98  christos 	if (utzp)
    415       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    416      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    417       1.98  christos 
    418       1.98  christos 	if (utv == NULL)
    419       1.98  christos 		return 0;
    420       1.98  christos 
    421      1.119       dsl 	if (userspace) {
    422      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    423      1.119       dsl 			return error;
    424      1.119       dsl 		utv = &atv;
    425      1.119       dsl 	}
    426      1.119       dsl 
    427      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    428      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    429        1.1       cgd }
    430        1.1       cgd 
    431       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    432        1.1       cgd 
    433        1.1       cgd /* ARGSUSED */
    434        1.3    andrew int
    435      1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    436      1.140      yamt     register_t *retval)
    437       1.15   thorpej {
    438      1.135       dsl 	/* {
    439       1.24       cgd 		syscallarg(const struct timeval *) delta;
    440       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    441      1.135       dsl 	} */
    442       1.56      manu 	int error;
    443        1.1       cgd 
    444      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    445      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    446        1.1       cgd 		return (error);
    447       1.17  christos 
    448      1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    449       1.56      manu }
    450       1.56      manu 
    451       1.56      manu int
    452      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    453       1.56      manu {
    454       1.60      manu 	struct timeval atv;
    455      1.101    kardel 	int error = 0;
    456      1.101    kardel 
    457      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    458      1.101    kardel 
    459      1.101    kardel 	if (olddelta) {
    460      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    461      1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    462      1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    463      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    464      1.101    kardel 		if (atv.tv_usec < 0) {
    465      1.101    kardel 			atv.tv_usec += 1000000;
    466      1.101    kardel 			atv.tv_sec--;
    467      1.101    kardel 		}
    468      1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    469      1.101    kardel 		if (error)
    470      1.101    kardel 			return (error);
    471      1.101    kardel 	}
    472      1.101    kardel 
    473      1.101    kardel 	if (delta) {
    474      1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    475      1.101    kardel 		if (error)
    476      1.101    kardel 			return (error);
    477      1.101    kardel 
    478      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    479      1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    480      1.101    kardel 			atv.tv_usec;
    481      1.143        ad 		if (time_adjtime) {
    482      1.101    kardel 			/* We need to save the system time during shutdown */
    483      1.101    kardel 			time_adjusted |= 1;
    484      1.143        ad 		}
    485      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    486      1.101    kardel 	}
    487      1.101    kardel 
    488       1.79       chs 	return error;
    489        1.1       cgd }
    490        1.1       cgd 
    491        1.1       cgd /*
    492       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    493       1.63   thorpej  * timer_*() family of routines are supported.
    494        1.1       cgd  *
    495       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    496       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    497       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    498       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    499       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    500       1.63   thorpej  * syscall.
    501        1.1       cgd  *
    502       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    503       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    504        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    505       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    506       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    507       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    508       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    509       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    510       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    511       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    512       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    513       1.63   thorpej 
    514       1.63   thorpej /* Allocate a POSIX realtime timer. */
    515       1.63   thorpej int
    516      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    517      1.140      yamt     register_t *retval)
    518       1.63   thorpej {
    519      1.135       dsl 	/* {
    520       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    521       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    522       1.63   thorpej 		syscallarg(timer_t *) timerid;
    523      1.135       dsl 	} */
    524       1.92      cube 
    525       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    526      1.105        ad 	    SCARG(uap, evp), copyin, l);
    527       1.92      cube }
    528       1.92      cube 
    529       1.92      cube int
    530       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    531      1.105        ad     copyin_t fetch_event, struct lwp *l)
    532       1.92      cube {
    533       1.92      cube 	int error;
    534       1.92      cube 	timer_t timerid;
    535      1.142        ad 	struct ptimers *pts;
    536       1.63   thorpej 	struct ptimer *pt;
    537      1.105        ad 	struct proc *p;
    538      1.105        ad 
    539      1.105        ad 	p = l->l_proc;
    540       1.63   thorpej 
    541      1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    542       1.63   thorpej 		return (EINVAL);
    543       1.63   thorpej 
    544      1.142        ad 	if ((pts = p->p_timers) == NULL)
    545      1.142        ad 		pts = timers_alloc(p);
    546       1.63   thorpej 
    547       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    548      1.142        ad 	if (evp != NULL) {
    549       1.63   thorpej 		if (((error =
    550       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    551       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552       1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    553       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    554       1.63   thorpej 			return (error ? error : EINVAL);
    555       1.63   thorpej 		}
    556      1.142        ad 	}
    557      1.142        ad 
    558      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    559      1.142        ad 	mutex_spin_enter(&timer_lock);
    560      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    561      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    562      1.142        ad 			break;
    563      1.142        ad 	if (timerid == TIMER_MAX) {
    564      1.142        ad 		mutex_spin_exit(&timer_lock);
    565      1.142        ad 		pool_put(&ptimer_pool, pt);
    566      1.142        ad 		return EAGAIN;
    567      1.142        ad 	}
    568      1.142        ad 	if (evp == NULL) {
    569       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    570       1.63   thorpej 		switch (id) {
    571       1.63   thorpej 		case CLOCK_REALTIME:
    572       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    573       1.63   thorpej 			break;
    574       1.63   thorpej 		case CLOCK_VIRTUAL:
    575       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    576       1.63   thorpej 			break;
    577       1.63   thorpej 		case CLOCK_PROF:
    578       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    579       1.63   thorpej 			break;
    580       1.63   thorpej 		}
    581       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    582       1.63   thorpej 	}
    583       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    584       1.73  christos 	pt->pt_info.ksi_errno = 0;
    585       1.73  christos 	pt->pt_info.ksi_code = 0;
    586       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    587      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    588      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    589       1.63   thorpej 	pt->pt_type = id;
    590       1.63   thorpej 	pt->pt_proc = p;
    591       1.63   thorpej 	pt->pt_overruns = 0;
    592       1.63   thorpej 	pt->pt_poverruns = 0;
    593       1.64   nathanw 	pt->pt_entry = timerid;
    594      1.142        ad 	pt->pt_queued = false;
    595      1.142        ad 	pt->pt_active = 0;
    596       1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    597      1.142        ad 	callout_init(&pt->pt_ch, 0);
    598      1.142        ad 	pts->pts_timers[timerid] = pt;
    599      1.142        ad 	mutex_spin_exit(&timer_lock);
    600       1.63   thorpej 
    601       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    602       1.63   thorpej }
    603       1.63   thorpej 
    604       1.63   thorpej /* Delete a POSIX realtime timer */
    605        1.3    andrew int
    606      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    607      1.140      yamt     register_t *retval)
    608       1.15   thorpej {
    609      1.135       dsl 	/* {
    610       1.63   thorpej 		syscallarg(timer_t) timerid;
    611      1.135       dsl 	} */
    612       1.63   thorpej 	struct proc *p = l->l_proc;
    613       1.65  jdolecek 	timer_t timerid;
    614      1.142        ad 	struct ptimers *pts;
    615       1.63   thorpej 	struct ptimer *pt, *ptn;
    616        1.1       cgd 
    617       1.63   thorpej 	timerid = SCARG(uap, timerid);
    618      1.142        ad 	pts = p->p_timers;
    619      1.142        ad 
    620      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    621      1.142        ad 		return (EINVAL);
    622       1.63   thorpej 
    623      1.142        ad 	mutex_spin_enter(&timer_lock);
    624      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    625      1.142        ad 		mutex_spin_exit(&timer_lock);
    626        1.1       cgd 		return (EINVAL);
    627      1.142        ad 	}
    628      1.142        ad 	if (pt->pt_active) {
    629       1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    630       1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    631       1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    632       1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    633       1.63   thorpej 			    &ptn->pt_time.it_value);
    634      1.142        ad 		pt->pt_active = 0;
    635       1.63   thorpej 	}
    636      1.142        ad 	itimerfree(pts, timerid);
    637       1.63   thorpej 
    638       1.63   thorpej 	return (0);
    639       1.63   thorpej }
    640       1.63   thorpej 
    641       1.63   thorpej /*
    642       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    643       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    644       1.67   nathanw  * time for virtual timers.
    645       1.63   thorpej  * Must be called at splclock().
    646       1.63   thorpej  */
    647       1.63   thorpej void
    648       1.63   thorpej timer_settime(struct ptimer *pt)
    649       1.63   thorpej {
    650       1.63   thorpej 	struct ptimer *ptn, *pptn;
    651       1.63   thorpej 	struct ptlist *ptl;
    652       1.63   thorpej 
    653      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    654      1.142        ad 
    655       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    656       1.63   thorpej 		callout_stop(&pt->pt_ch);
    657       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    658       1.63   thorpej 			/*
    659       1.63   thorpej 			 * Don't need to check hzto() return value, here.
    660       1.63   thorpej 			 * callout_reset() does it for us.
    661       1.63   thorpej 			 */
    662       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    663       1.63   thorpej 			    realtimerexpire, pt);
    664       1.63   thorpej 		}
    665       1.63   thorpej 	} else {
    666       1.63   thorpej 		if (pt->pt_active) {
    667       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    668       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    669       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    670       1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    671       1.63   thorpej 				    &ptn->pt_time.it_value,
    672       1.63   thorpej 				    &ptn->pt_time.it_value);
    673       1.63   thorpej 		}
    674       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    675       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    676       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    677       1.63   thorpej 			else
    678       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    679       1.63   thorpej 
    680       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    681       1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    682       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    683       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    684       1.63   thorpej 				timersub(&pt->pt_time.it_value,
    685       1.63   thorpej 				    &ptn->pt_time.it_value,
    686       1.63   thorpej 				    &pt->pt_time.it_value);
    687       1.63   thorpej 
    688       1.63   thorpej 			if (pptn)
    689       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    690       1.63   thorpej 			else
    691       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    692       1.63   thorpej 
    693       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    694       1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    695       1.63   thorpej 				    &pt->pt_time.it_value,
    696       1.63   thorpej 				    &ptn->pt_time.it_value);
    697       1.63   thorpej 
    698       1.63   thorpej 			pt->pt_active = 1;
    699       1.63   thorpej 		} else
    700       1.63   thorpej 			pt->pt_active = 0;
    701       1.63   thorpej 	}
    702       1.63   thorpej }
    703       1.63   thorpej 
    704       1.63   thorpej void
    705       1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    706       1.63   thorpej {
    707      1.101    kardel 	struct timeval now;
    708       1.63   thorpej 	struct ptimer *ptn;
    709       1.63   thorpej 
    710      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    711      1.142        ad 
    712       1.63   thorpej 	*aitv = pt->pt_time;
    713       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    714        1.1       cgd 		/*
    715       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    716       1.63   thorpej 		 * part of real time timer.  If time for real time
    717       1.63   thorpej 		 * timer has passed return 0, else return difference
    718       1.63   thorpej 		 * between current time and time for the timer to go
    719       1.63   thorpej 		 * off.
    720        1.1       cgd 		 */
    721       1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    722      1.101    kardel 			getmicrotime(&now);
    723      1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    724      1.101    kardel 				timerclear(&aitv->it_value);
    725      1.101    kardel 			else
    726      1.101    kardel 				timersub(&aitv->it_value, &now,
    727      1.101    kardel 				    &aitv->it_value);
    728       1.36   thorpej 		}
    729       1.63   thorpej 	} else if (pt->pt_active) {
    730       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    731       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    732       1.63   thorpej 		else
    733       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    734       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    735       1.63   thorpej 			timeradd(&aitv->it_value,
    736       1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    737       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    738        1.1       cgd 	} else
    739       1.63   thorpej 		timerclear(&aitv->it_value);
    740       1.63   thorpej }
    741       1.63   thorpej 
    742       1.63   thorpej 
    743       1.63   thorpej 
    744       1.63   thorpej /* Set and arm a POSIX realtime timer */
    745       1.63   thorpej int
    746      1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    747      1.140      yamt     register_t *retval)
    748       1.63   thorpej {
    749      1.135       dsl 	/* {
    750       1.63   thorpej 		syscallarg(timer_t) timerid;
    751       1.63   thorpej 		syscallarg(int) flags;
    752       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    753       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    754      1.135       dsl 	} */
    755       1.92      cube 	int error;
    756       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    757       1.92      cube 
    758       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    759       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    760       1.92      cube 		return (error);
    761       1.92      cube 
    762       1.92      cube 	if (SCARG(uap, ovalue))
    763       1.92      cube 		ovp = &ovalue;
    764       1.92      cube 
    765       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    766       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    767       1.92      cube 		return error;
    768       1.92      cube 
    769       1.92      cube 	if (ovp)
    770       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    771       1.92      cube 		    sizeof(struct itimerspec));
    772       1.92      cube 	return 0;
    773       1.92      cube }
    774       1.92      cube 
    775       1.92      cube int
    776       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    777       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    778       1.92      cube {
    779      1.101    kardel 	struct timeval now;
    780       1.63   thorpej 	struct itimerval val, oval;
    781      1.142        ad 	struct ptimers *pts;
    782       1.63   thorpej 	struct ptimer *pt;
    783       1.63   thorpej 
    784      1.142        ad 	pts = p->p_timers;
    785       1.63   thorpej 
    786      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    787      1.142        ad 		return EINVAL;
    788       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    789       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    790       1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    791       1.63   thorpej 		return (EINVAL);
    792       1.63   thorpej 
    793      1.142        ad 	mutex_spin_enter(&timer_lock);
    794      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    795      1.142        ad 		mutex_spin_exit(&timer_lock);
    796      1.142        ad 		return (EINVAL);
    797      1.142        ad 	}
    798      1.142        ad 
    799       1.63   thorpej 	oval = pt->pt_time;
    800       1.63   thorpej 	pt->pt_time = val;
    801       1.63   thorpej 
    802       1.67   nathanw 	/*
    803       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    804       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    805       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    806       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    807       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    808       1.67   nathanw 	 */
    809       1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    810       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    811      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    812      1.101    kardel 				getmicrotime(&now);
    813      1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    814      1.101    kardel 				    &pt->pt_time.it_value);
    815      1.101    kardel 			}
    816       1.67   nathanw 		} else {
    817       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    818      1.101    kardel 				getmicrotime(&now);
    819      1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    820      1.101    kardel 				    &pt->pt_time.it_value);
    821       1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    822       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    823       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    824       1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    825       1.67   nathanw 				}
    826       1.67   nathanw 			}
    827       1.67   nathanw 		}
    828       1.67   nathanw 	}
    829       1.67   nathanw 
    830       1.63   thorpej 	timer_settime(pt);
    831      1.142        ad 	mutex_spin_exit(&timer_lock);
    832       1.63   thorpej 
    833       1.92      cube 	if (ovalue) {
    834       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    835       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    836       1.63   thorpej 	}
    837       1.63   thorpej 
    838       1.63   thorpej 	return (0);
    839       1.63   thorpej }
    840       1.63   thorpej 
    841       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    842       1.63   thorpej int
    843      1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    844      1.140      yamt     register_t *retval)
    845       1.63   thorpej {
    846      1.135       dsl 	/* {
    847       1.63   thorpej 		syscallarg(timer_t) timerid;
    848       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    849      1.135       dsl 	} */
    850       1.63   thorpej 	struct itimerspec its;
    851       1.92      cube 	int error;
    852       1.92      cube 
    853       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    854       1.92      cube 	    &its)) != 0)
    855       1.92      cube 		return error;
    856       1.92      cube 
    857       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    858       1.92      cube }
    859       1.92      cube 
    860       1.92      cube int
    861       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    862       1.92      cube {
    863       1.63   thorpej 	struct ptimer *pt;
    864      1.142        ad 	struct ptimers *pts;
    865       1.92      cube 	struct itimerval aitv;
    866       1.63   thorpej 
    867      1.142        ad 	pts = p->p_timers;
    868      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    869       1.63   thorpej 		return (EINVAL);
    870      1.142        ad 	mutex_spin_enter(&timer_lock);
    871      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    872      1.142        ad 		mutex_spin_exit(&timer_lock);
    873      1.142        ad 		return (EINVAL);
    874      1.142        ad 	}
    875       1.63   thorpej 	timer_gettime(pt, &aitv);
    876      1.142        ad 	mutex_spin_exit(&timer_lock);
    877       1.63   thorpej 
    878       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    879       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    880       1.63   thorpej 
    881       1.92      cube 	return 0;
    882       1.63   thorpej }
    883       1.63   thorpej 
    884       1.63   thorpej /*
    885       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    886       1.63   thorpej  * while a notification was already pending. The counter is reset when
    887       1.63   thorpej  * a timer expires and a notification can be posted.
    888       1.63   thorpej  */
    889       1.63   thorpej int
    890      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    891      1.140      yamt     register_t *retval)
    892       1.63   thorpej {
    893      1.135       dsl 	/* {
    894       1.63   thorpej 		syscallarg(timer_t) timerid;
    895      1.135       dsl 	} */
    896       1.63   thorpej 	struct proc *p = l->l_proc;
    897      1.142        ad 	struct ptimers *pts;
    898       1.63   thorpej 	int timerid;
    899       1.63   thorpej 	struct ptimer *pt;
    900       1.63   thorpej 
    901       1.63   thorpej 	timerid = SCARG(uap, timerid);
    902       1.63   thorpej 
    903      1.142        ad 	pts = p->p_timers;
    904      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    905      1.142        ad 		return (EINVAL);
    906      1.142        ad 	mutex_spin_enter(&timer_lock);
    907      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    908      1.142        ad 		mutex_spin_exit(&timer_lock);
    909       1.63   thorpej 		return (EINVAL);
    910      1.142        ad 	}
    911       1.63   thorpej 	*retval = pt->pt_poverruns;
    912      1.142        ad 	mutex_spin_exit(&timer_lock);
    913       1.63   thorpej 
    914       1.63   thorpej 	return (0);
    915       1.63   thorpej }
    916       1.63   thorpej 
    917  1.146.2.3  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    918  1.146.2.3  wrstuden void
    919  1.146.2.3  wrstuden timerupcall(struct lwp *l)
    920  1.146.2.3  wrstuden {
    921  1.146.2.3  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    922  1.146.2.3  wrstuden 	struct proc *p = l->l_proc;
    923  1.146.2.3  wrstuden 	unsigned int i, fired, done;
    924  1.146.2.3  wrstuden 
    925  1.146.2.3  wrstuden 	KDASSERT(l->l_proc->p_sa);
    926  1.146.2.3  wrstuden 	/* Bail out if we do not own the virtual processor */
    927  1.146.2.3  wrstuden 	if (l->l_savp->savp_lwp != l)
    928  1.146.2.3  wrstuden 		return ;
    929  1.146.2.3  wrstuden 
    930  1.146.2.3  wrstuden 	mutex_enter(p->p_lock);
    931  1.146.2.3  wrstuden 
    932  1.146.2.3  wrstuden 	fired = pt->pts_fired;
    933  1.146.2.3  wrstuden 	done = 0;
    934  1.146.2.3  wrstuden 	while ((i = ffs(fired)) != 0) {
    935  1.146.2.3  wrstuden 		siginfo_t *si;
    936  1.146.2.3  wrstuden 		int mask = 1 << --i;
    937  1.146.2.3  wrstuden 		int f;
    938  1.146.2.3  wrstuden 
    939  1.146.2.6  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    940  1.146.2.6  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    941  1.146.2.3  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    942  1.146.2.3  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    943  1.146.2.3  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    944  1.146.2.3  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    945  1.146.2.3  wrstuden 			siginfo_free(si);
    946  1.146.2.3  wrstuden 			/* XXX What do we do here?? */
    947  1.146.2.3  wrstuden 		} else
    948  1.146.2.3  wrstuden 			done |= mask;
    949  1.146.2.3  wrstuden 		fired &= ~mask;
    950  1.146.2.6  wrstuden 		l->l_pflag ^= f;
    951  1.146.2.3  wrstuden 	}
    952  1.146.2.3  wrstuden 	pt->pts_fired &= ~done;
    953  1.146.2.3  wrstuden 	if (pt->pts_fired == 0)
    954  1.146.2.3  wrstuden 		l->l_proc->p_timerpend = 0;
    955  1.146.2.3  wrstuden 
    956  1.146.2.3  wrstuden 	mutex_exit(p->p_lock);
    957  1.146.2.3  wrstuden }
    958  1.146.2.3  wrstuden 
    959       1.63   thorpej /*
    960       1.63   thorpej  * Real interval timer expired:
    961       1.63   thorpej  * send process whose timer expired an alarm signal.
    962       1.63   thorpej  * If time is not set up to reload, then just return.
    963       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    964       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    965       1.63   thorpej  * SIGALRM calls to be compressed into one.
    966       1.63   thorpej  */
    967       1.63   thorpej void
    968       1.63   thorpej realtimerexpire(void *arg)
    969       1.63   thorpej {
    970  1.146.2.4  wrstuden 	uint64_t last_val, next_val, interval, now_ms;
    971  1.146.2.4  wrstuden 	struct timeval now, next;
    972       1.63   thorpej 	struct ptimer *pt;
    973  1.146.2.4  wrstuden 	int backwards;
    974       1.63   thorpej 
    975      1.142        ad 	pt = arg;
    976       1.63   thorpej 
    977      1.142        ad 	mutex_spin_enter(&timer_lock);
    978       1.63   thorpej 	itimerfire(pt);
    979       1.63   thorpej 
    980       1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    981       1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    982      1.142        ad 		mutex_spin_exit(&timer_lock);
    983       1.63   thorpej 		return;
    984       1.63   thorpej 	}
    985  1.146.2.4  wrstuden 
    986  1.146.2.4  wrstuden 	getmicrotime(&now);
    987  1.146.2.4  wrstuden 	backwards = (timercmp(&pt->pt_time.it_value, &now, >));
    988  1.146.2.4  wrstuden 	timeradd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    989  1.146.2.4  wrstuden 	/* Handle the easy case of non-overflown timers first. */
    990  1.146.2.4  wrstuden 	if (!backwards && timercmp(&next, &now, >)) {
    991  1.146.2.4  wrstuden 		pt->pt_time.it_value = next;
    992  1.146.2.4  wrstuden 	} else {
    993  1.146.2.4  wrstuden #define TV2MS(x) (((uint64_t)(x)->tv_sec) * 1000000 + (x)->tv_usec)
    994  1.146.2.4  wrstuden 		now_ms = TV2MS(&now);
    995  1.146.2.4  wrstuden 		last_val = TV2MS(&pt->pt_time.it_value);
    996  1.146.2.4  wrstuden 		interval = TV2MS(&pt->pt_time.it_interval);
    997  1.146.2.4  wrstuden #undef TV2MS
    998  1.146.2.4  wrstuden 
    999  1.146.2.4  wrstuden 		next_val = now_ms +
   1000  1.146.2.4  wrstuden 		    (now_ms - last_val + interval - 1) % interval;
   1001  1.146.2.4  wrstuden 
   1002  1.146.2.4  wrstuden 		if (backwards)
   1003  1.146.2.4  wrstuden 			next_val += interval;
   1004  1.146.2.4  wrstuden 		else
   1005  1.146.2.4  wrstuden 			pt->pt_overruns += (now_ms - last_val) / interval;
   1006  1.146.2.4  wrstuden 
   1007  1.146.2.4  wrstuden 		pt->pt_time.it_value.tv_sec = next_val / 1000000;
   1008  1.146.2.4  wrstuden 		pt->pt_time.it_value.tv_usec = next_val % 1000000;
   1009      1.101    kardel 	}
   1010  1.146.2.4  wrstuden 
   1011  1.146.2.4  wrstuden 	/*
   1012  1.146.2.4  wrstuden 	 * Don't need to check hzto() return value, here.
   1013  1.146.2.4  wrstuden 	 * callout_reset() does it for us.
   1014  1.146.2.4  wrstuden 	 */
   1015  1.146.2.4  wrstuden 	callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1016  1.146.2.4  wrstuden 	    realtimerexpire, pt);
   1017  1.146.2.4  wrstuden 	mutex_spin_exit(&timer_lock);
   1018       1.63   thorpej }
   1019       1.63   thorpej 
   1020       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1021       1.63   thorpej /* ARGSUSED */
   1022       1.63   thorpej int
   1023      1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
   1024      1.140      yamt     register_t *retval)
   1025       1.63   thorpej {
   1026      1.135       dsl 	/* {
   1027       1.63   thorpej 		syscallarg(int) which;
   1028       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1029      1.135       dsl 	} */
   1030       1.63   thorpej 	struct proc *p = l->l_proc;
   1031       1.63   thorpej 	struct itimerval aitv;
   1032       1.91      cube 	int error;
   1033       1.91      cube 
   1034       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1035       1.91      cube 	if (error)
   1036       1.91      cube 		return error;
   1037       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1038       1.91      cube }
   1039       1.63   thorpej 
   1040       1.91      cube int
   1041       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1042       1.91      cube {
   1043      1.142        ad 	struct ptimers *pts;
   1044      1.142        ad 	struct ptimer *pt;
   1045       1.63   thorpej 
   1046       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1047       1.63   thorpej 		return (EINVAL);
   1048       1.63   thorpej 
   1049      1.142        ad 	mutex_spin_enter(&timer_lock);
   1050      1.142        ad 	pts = p->p_timers;
   1051      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1052       1.91      cube 		timerclear(&itvp->it_value);
   1053       1.91      cube 		timerclear(&itvp->it_interval);
   1054      1.142        ad 	} else
   1055      1.142        ad 		timer_gettime(pt, itvp);
   1056      1.142        ad 	mutex_spin_exit(&timer_lock);
   1057       1.63   thorpej 
   1058       1.91      cube 	return 0;
   1059        1.1       cgd }
   1060        1.1       cgd 
   1061       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1062        1.1       cgd /* ARGSUSED */
   1063        1.3    andrew int
   1064      1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1065      1.140      yamt     register_t *retval)
   1066       1.15   thorpej {
   1067      1.135       dsl 	/* {
   1068       1.30   mycroft 		syscallarg(int) which;
   1069       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1070       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1071      1.135       dsl 	} */
   1072       1.63   thorpej 	struct proc *p = l->l_proc;
   1073       1.30   mycroft 	int which = SCARG(uap, which);
   1074       1.21       cgd 	struct sys_getitimer_args getargs;
   1075       1.91      cube 	const struct itimerval *itvp;
   1076        1.1       cgd 	struct itimerval aitv;
   1077       1.91      cube 	int error;
   1078        1.1       cgd 
   1079       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1080        1.1       cgd 		return (EINVAL);
   1081       1.11       cgd 	itvp = SCARG(uap, itv);
   1082       1.63   thorpej 	if (itvp &&
   1083       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1084        1.1       cgd 		return (error);
   1085       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1086       1.30   mycroft 		SCARG(&getargs, which) = which;
   1087       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1088       1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1089       1.21       cgd 			return (error);
   1090       1.21       cgd 	}
   1091        1.1       cgd 	if (itvp == 0)
   1092        1.1       cgd 		return (0);
   1093       1.91      cube 
   1094       1.91      cube 	return dosetitimer(p, which, &aitv);
   1095       1.91      cube }
   1096       1.91      cube 
   1097       1.91      cube int
   1098       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1099       1.91      cube {
   1100      1.101    kardel 	struct timeval now;
   1101      1.142        ad 	struct ptimers *pts;
   1102      1.142        ad 	struct ptimer *pt, *spare;
   1103       1.91      cube 
   1104       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1105        1.1       cgd 		return (EINVAL);
   1106       1.63   thorpej 
   1107       1.63   thorpej 	/*
   1108       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1109       1.63   thorpej 	 * wants to clear the timer.
   1110       1.63   thorpej 	 */
   1111      1.142        ad 	spare = NULL;
   1112      1.142        ad 	pts = p->p_timers;
   1113      1.142        ad  retry:
   1114      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1115      1.142        ad 	    pts->pts_timers[which] == NULL))
   1116       1.63   thorpej 		return (0);
   1117      1.142        ad 	if (pts == NULL)
   1118      1.142        ad 		pts = timers_alloc(p);
   1119      1.142        ad 	mutex_spin_enter(&timer_lock);
   1120      1.142        ad 	pt = pts->pts_timers[which];
   1121      1.142        ad 	if (pt == NULL) {
   1122      1.142        ad 		if (spare == NULL) {
   1123      1.142        ad 			mutex_spin_exit(&timer_lock);
   1124      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1125      1.142        ad 			goto retry;
   1126      1.142        ad 		}
   1127      1.142        ad 		pt = spare;
   1128      1.142        ad 		spare = NULL;
   1129       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1130       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1131       1.63   thorpej 		pt->pt_overruns = 0;
   1132       1.63   thorpej 		pt->pt_proc = p;
   1133       1.63   thorpej 		pt->pt_type = which;
   1134       1.64   nathanw 		pt->pt_entry = which;
   1135      1.142        ad 		pt->pt_active = 0;
   1136      1.142        ad 		pt->pt_queued = false;
   1137      1.142        ad 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1138       1.63   thorpej 		switch (which) {
   1139       1.63   thorpej 		case ITIMER_REAL:
   1140       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1141       1.63   thorpej 			break;
   1142       1.63   thorpej 		case ITIMER_VIRTUAL:
   1143       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1144       1.63   thorpej 			break;
   1145       1.63   thorpej 		case ITIMER_PROF:
   1146       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1147       1.63   thorpej 			break;
   1148        1.1       cgd 		}
   1149      1.142        ad 		pts->pts_timers[which] = pt;
   1150      1.142        ad 	}
   1151       1.91      cube 	pt->pt_time = *itvp;
   1152       1.63   thorpej 
   1153       1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1154       1.67   nathanw 		/* Convert to absolute time */
   1155      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1156      1.101    kardel 		getmicrotime(&now);
   1157      1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1158       1.67   nathanw 	}
   1159       1.63   thorpej 	timer_settime(pt);
   1160      1.142        ad 	mutex_spin_exit(&timer_lock);
   1161      1.142        ad 	if (spare != NULL)
   1162      1.142        ad 		pool_put(&ptimer_pool, spare);
   1163       1.63   thorpej 
   1164        1.1       cgd 	return (0);
   1165        1.1       cgd }
   1166        1.1       cgd 
   1167       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1168      1.142        ad struct ptimers *
   1169       1.63   thorpej timers_alloc(struct proc *p)
   1170       1.63   thorpej {
   1171      1.142        ad 	struct ptimers *pts;
   1172       1.63   thorpej 	int i;
   1173       1.63   thorpej 
   1174      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1175       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1176       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1177       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1178       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1179       1.64   nathanw 	pts->pts_fired = 0;
   1180      1.142        ad 	mutex_spin_enter(&timer_lock);
   1181      1.142        ad 	if (p->p_timers == NULL) {
   1182      1.142        ad 		p->p_timers = pts;
   1183      1.142        ad 		mutex_spin_exit(&timer_lock);
   1184      1.142        ad 		return pts;
   1185      1.142        ad 	}
   1186      1.142        ad 	mutex_spin_exit(&timer_lock);
   1187      1.142        ad 	pool_put(&ptimers_pool, pts);
   1188      1.142        ad 	return p->p_timers;
   1189       1.63   thorpej }
   1190       1.63   thorpej 
   1191        1.1       cgd /*
   1192       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1193       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1194       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1195       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1196       1.63   thorpej  * structure if none of those remain.
   1197        1.1       cgd  */
   1198        1.3    andrew void
   1199       1.63   thorpej timers_free(struct proc *p, int which)
   1200        1.6       cgd {
   1201       1.63   thorpej 	struct ptimers *pts;
   1202      1.142        ad 	struct ptimer *ptn;
   1203       1.63   thorpej 	struct timeval tv;
   1204      1.142        ad 	int i;
   1205       1.63   thorpej 
   1206      1.142        ad 	if (p->p_timers == NULL)
   1207      1.142        ad 		return;
   1208       1.63   thorpej 
   1209      1.142        ad 	pts = p->p_timers;
   1210      1.142        ad 	mutex_spin_enter(&timer_lock);
   1211      1.142        ad 	if (which == TIMERS_ALL) {
   1212      1.142        ad 		p->p_timers = NULL;
   1213      1.142        ad 		i = 0;
   1214      1.142        ad 	} else {
   1215      1.142        ad 		timerclear(&tv);
   1216      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1217      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1218      1.142        ad 		     ptn = LIST_NEXT(ptn, pt_list))
   1219      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1220      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1221      1.142        ad 		if (ptn) {
   1222      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1223      1.142        ad 			    &ptn->pt_time.it_value);
   1224      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1225      1.142        ad 		}
   1226      1.142        ad 		timerclear(&tv);
   1227      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1228      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1229      1.142        ad 		     ptn = LIST_NEXT(ptn, pt_list))
   1230      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1231      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1232      1.142        ad 		if (ptn) {
   1233      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1234      1.142        ad 			    &ptn->pt_time.it_value);
   1235      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1236       1.63   thorpej 		}
   1237      1.142        ad 		i = 3;
   1238      1.142        ad 	}
   1239      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1240      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1241      1.142        ad 			itimerfree(pts, i);
   1242      1.142        ad 			mutex_spin_enter(&timer_lock);
   1243        1.1       cgd 		}
   1244        1.1       cgd 	}
   1245      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1246      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1247      1.142        ad 		p->p_timers = NULL;
   1248      1.142        ad 		mutex_spin_exit(&timer_lock);
   1249      1.142        ad 		pool_put(&ptimers_pool, pts);
   1250      1.142        ad 	} else
   1251      1.142        ad 		mutex_spin_exit(&timer_lock);
   1252      1.142        ad }
   1253      1.142        ad 
   1254      1.142        ad static void
   1255      1.142        ad itimerfree(struct ptimers *pts, int index)
   1256      1.142        ad {
   1257      1.142        ad 	struct ptimer *pt;
   1258      1.142        ad 
   1259      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1260      1.142        ad 
   1261      1.142        ad 	pt = pts->pts_timers[index];
   1262      1.142        ad 	pts->pts_timers[index] = NULL;
   1263      1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1264      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1265      1.144        ad 	else if (pt->pt_queued)
   1266      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1267      1.144        ad 	mutex_spin_exit(&timer_lock);
   1268      1.142        ad 	callout_destroy(&pt->pt_ch);
   1269      1.142        ad 	pool_put(&ptimer_pool, pt);
   1270        1.1       cgd }
   1271        1.1       cgd 
   1272        1.1       cgd /*
   1273        1.1       cgd  * Decrement an interval timer by a specified number
   1274        1.1       cgd  * of microseconds, which must be less than a second,
   1275        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1276        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1277        1.8       cgd  * reduce the value reloaded into the timer so that
   1278        1.1       cgd  * the timer does not drift.  This routine assumes
   1279        1.1       cgd  * that it is called in a context where the timers
   1280        1.1       cgd  * on which it is operating cannot change in value.
   1281        1.1       cgd  */
   1282      1.142        ad static int
   1283       1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1284       1.63   thorpej {
   1285       1.45  augustss 	struct itimerval *itp;
   1286        1.1       cgd 
   1287      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1288      1.142        ad 
   1289       1.63   thorpej 	itp = &pt->pt_time;
   1290        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1291        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1292        1.1       cgd 			/* expired, and already in next interval */
   1293        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1294        1.1       cgd 			goto expire;
   1295        1.1       cgd 		}
   1296        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1297        1.1       cgd 		itp->it_value.tv_sec--;
   1298        1.1       cgd 	}
   1299        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1300        1.1       cgd 	usec = 0;
   1301        1.1       cgd 	if (timerisset(&itp->it_value))
   1302        1.1       cgd 		return (1);
   1303        1.1       cgd 	/* expired, exactly at end of interval */
   1304        1.1       cgd expire:
   1305        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1306        1.1       cgd 		itp->it_value = itp->it_interval;
   1307        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1308        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1309        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1310        1.1       cgd 			itp->it_value.tv_sec--;
   1311        1.1       cgd 		}
   1312       1.63   thorpej 		timer_settime(pt);
   1313        1.1       cgd 	} else
   1314        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1315        1.1       cgd 	return (0);
   1316       1.42       cgd }
   1317       1.42       cgd 
   1318      1.142        ad static void
   1319       1.63   thorpej itimerfire(struct ptimer *pt)
   1320       1.63   thorpej {
   1321       1.78        cl 
   1322      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1323      1.142        ad 
   1324      1.142        ad 	/*
   1325      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1326      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1327      1.142        ad 	 */
   1328  1.146.2.3  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1329  1.146.2.3  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1330  1.146.2.3  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1331      1.142        ad 		return;
   1332      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1333      1.142        ad 	pt->pt_queued = true;
   1334      1.142        ad 	softint_schedule(timer_sih);
   1335      1.142        ad }
   1336      1.142        ad 
   1337      1.142        ad void
   1338      1.142        ad timer_tick(lwp_t *l, bool user)
   1339      1.142        ad {
   1340      1.142        ad 	struct ptimers *pts;
   1341      1.142        ad 	struct ptimer *pt;
   1342      1.142        ad 	proc_t *p;
   1343      1.142        ad 
   1344      1.142        ad 	p = l->l_proc;
   1345      1.142        ad 	if (p->p_timers == NULL)
   1346      1.142        ad 		return;
   1347      1.142        ad 
   1348      1.142        ad 	mutex_spin_enter(&timer_lock);
   1349      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1350       1.63   thorpej 		/*
   1351      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1352       1.63   thorpej 		 */
   1353      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1354      1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1355      1.142        ad 				itimerfire(pt);
   1356      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1357      1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1358      1.142        ad 				itimerfire(pt);
   1359      1.142        ad 	}
   1360      1.142        ad 	mutex_spin_exit(&timer_lock);
   1361      1.142        ad }
   1362      1.142        ad 
   1363  1.146.2.3  wrstuden /*
   1364  1.146.2.3  wrstuden  * timer_sa_intr:
   1365  1.146.2.3  wrstuden  *
   1366  1.146.2.3  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1367  1.146.2.3  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1368  1.146.2.3  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1369  1.146.2.3  wrstuden  * handler, SA should still be enabled by the time we get here.
   1370  1.146.2.3  wrstuden  *
   1371  1.146.2.3  wrstuden  * XXX Is it legit to lock p_lock and the lwp at this time?
   1372  1.146.2.3  wrstuden  */
   1373  1.146.2.3  wrstuden static void
   1374  1.146.2.3  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1375  1.146.2.3  wrstuden {
   1376  1.146.2.3  wrstuden 	unsigned int i;
   1377  1.146.2.3  wrstuden 	struct sadata_vp *vp;
   1378  1.146.2.3  wrstuden 
   1379  1.146.2.3  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1380  1.146.2.3  wrstuden 	if (!p->p_timerpend) {
   1381  1.146.2.3  wrstuden 		/*
   1382  1.146.2.3  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1383  1.146.2.3  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1384  1.146.2.3  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1385  1.146.2.3  wrstuden 		 * determine if we really should call setrunnable.
   1386  1.146.2.3  wrstuden 		 */
   1387  1.146.2.3  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1388  1.146.2.3  wrstuden 		pt->pt_overruns = 0;
   1389  1.146.2.3  wrstuden 		i = 1 << pt->pt_entry;
   1390  1.146.2.3  wrstuden 		p->p_timers->pts_fired = i;
   1391  1.146.2.3  wrstuden 		p->p_timerpend = 1;
   1392  1.146.2.3  wrstuden 
   1393  1.146.2.3  wrstuden 		mutex_enter(p->p_lock);
   1394  1.146.2.3  wrstuden 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1395  1.146.2.3  wrstuden 			lwp_need_userret(vp->savp_lwp);
   1396  1.146.2.3  wrstuden 			lwp_lock(vp->savp_lwp);
   1397  1.146.2.3  wrstuden 			if (vp->savp_lwp->l_flag & LW_SA_IDLE) {
   1398  1.146.2.3  wrstuden 				vp->savp_lwp->l_flag &= ~LW_SA_IDLE;
   1399  1.146.2.5  wrstuden 				lwp_unsleep(vp->savp_lwp, true);
   1400  1.146.2.3  wrstuden 				break;
   1401  1.146.2.3  wrstuden 			}
   1402  1.146.2.3  wrstuden 			lwp_unlock(vp->savp_lwp);
   1403  1.146.2.3  wrstuden 		}
   1404  1.146.2.3  wrstuden 		mutex_exit(p->p_lock);
   1405  1.146.2.3  wrstuden 	} else {
   1406  1.146.2.3  wrstuden 		i = 1 << pt->pt_entry;
   1407  1.146.2.3  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1408  1.146.2.3  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1409  1.146.2.3  wrstuden 			pt->pt_overruns = 0;
   1410  1.146.2.3  wrstuden 			p->p_timers->pts_fired |= i;
   1411  1.146.2.3  wrstuden 		} else
   1412  1.146.2.3  wrstuden 			pt->pt_overruns++;
   1413  1.146.2.3  wrstuden 	}
   1414  1.146.2.3  wrstuden }
   1415  1.146.2.3  wrstuden 
   1416      1.142        ad static void
   1417      1.142        ad timer_intr(void *cookie)
   1418      1.142        ad {
   1419      1.142        ad 	ksiginfo_t ksi;
   1420      1.142        ad 	struct ptimer *pt;
   1421      1.142        ad 	proc_t *p;
   1422      1.142        ad 
   1423      1.142        ad 	mutex_spin_enter(&timer_lock);
   1424      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1425      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1426      1.142        ad 		KASSERT(pt->pt_queued);
   1427      1.142        ad 		pt->pt_queued = false;
   1428      1.142        ad 
   1429      1.142        ad 		if (pt->pt_proc->p_timers == NULL) {
   1430      1.142        ad 			/* Process is dying. */
   1431      1.142        ad 			continue;
   1432      1.142        ad 		}
   1433  1.146.2.3  wrstuden 		p = pt->pt_proc;
   1434  1.146.2.3  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1435  1.146.2.3  wrstuden 			timer_sa_intr(pt, p);
   1436  1.146.2.3  wrstuden 			continue;
   1437  1.146.2.3  wrstuden 		}
   1438  1.146.2.3  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1439  1.146.2.3  wrstuden 			continue;
   1440      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1441       1.63   thorpej 			pt->pt_overruns++;
   1442      1.142        ad 			continue;
   1443       1.64   nathanw 		}
   1444      1.142        ad 
   1445      1.142        ad 		KSI_INIT(&ksi);
   1446      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1447      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1448      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1449      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1450      1.142        ad 		pt->pt_overruns = 0;
   1451      1.142        ad 		mutex_spin_exit(&timer_lock);
   1452      1.142        ad 
   1453      1.145        ad 		mutex_enter(proc_lock);
   1454      1.142        ad 		kpsignal(p, &ksi, NULL);
   1455      1.145        ad 		mutex_exit(proc_lock);
   1456      1.142        ad 
   1457      1.142        ad 		mutex_spin_enter(&timer_lock);
   1458       1.63   thorpej 	}
   1459      1.142        ad 	mutex_spin_exit(&timer_lock);
   1460       1.63   thorpej }
   1461       1.63   thorpej 
   1462       1.42       cgd /*
   1463       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1464       1.42       cgd  * for usage and rationale.
   1465       1.42       cgd  */
   1466       1.42       cgd int
   1467       1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1468       1.42       cgd {
   1469       1.49    itojun 	struct timeval tv, delta;
   1470      1.101    kardel 	int rv = 0;
   1471       1.42       cgd 
   1472      1.101    kardel 	getmicrouptime(&tv);
   1473       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1474       1.42       cgd 
   1475       1.42       cgd 	/*
   1476       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1477       1.42       cgd 	 * even if interval is huge.
   1478       1.42       cgd 	 */
   1479       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1480       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1481       1.49    itojun 		*lasttime = tv;
   1482       1.42       cgd 		rv = 1;
   1483       1.42       cgd 	}
   1484       1.50    itojun 
   1485       1.50    itojun 	return (rv);
   1486       1.50    itojun }
   1487       1.50    itojun 
   1488       1.50    itojun /*
   1489       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1490       1.50    itojun  */
   1491       1.50    itojun int
   1492       1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1493       1.50    itojun {
   1494       1.50    itojun 	struct timeval tv, delta;
   1495      1.101    kardel 	int rv;
   1496       1.50    itojun 
   1497      1.101    kardel 	getmicrouptime(&tv);
   1498       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1499       1.50    itojun 
   1500       1.50    itojun 	/*
   1501       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1502       1.50    itojun 	 * if more than one second have passed since the last update of
   1503       1.50    itojun 	 * lasttime, reset the counter.
   1504       1.50    itojun 	 *
   1505       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1506       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1507       1.50    itojun 	 */
   1508       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1509       1.50    itojun 	    delta.tv_sec >= 1) {
   1510       1.50    itojun 		*lasttime = tv;
   1511       1.50    itojun 		*curpps = 0;
   1512       1.69    dyoung 	}
   1513       1.69    dyoung 	if (maxpps < 0)
   1514       1.53    itojun 		rv = 1;
   1515       1.53    itojun 	else if (*curpps < maxpps)
   1516       1.50    itojun 		rv = 1;
   1517       1.50    itojun 	else
   1518       1.50    itojun 		rv = 0;
   1519       1.50    itojun 
   1520       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1521       1.50    itojun 	/* be careful about wrap-around */
   1522       1.50    itojun 	if (*curpps + 1 > *curpps)
   1523       1.50    itojun 		*curpps = *curpps + 1;
   1524       1.50    itojun #else
   1525       1.50    itojun 	/*
   1526       1.50    itojun 	 * assume that there's not too many calls to this function.
   1527       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1528       1.50    itojun 	 * behavior, not the behavior of this function.
   1529       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1530       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1531       1.50    itojun 	 */
   1532       1.50    itojun 	*curpps = *curpps + 1;
   1533       1.50    itojun #endif
   1534       1.42       cgd 
   1535       1.42       cgd 	return (rv);
   1536        1.1       cgd }
   1537