Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.146.2.8
      1  1.146.2.8  wrstuden /*	$NetBSD: kern_time.c,v 1.146.2.8 2008/07/21 19:13:45 wrstuden Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.142        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.146.2.8  wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146.2.8 2008/07/21 19:13:45 wrstuden Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78  1.146.2.3  wrstuden #include <sys/sa.h>
     79  1.146.2.3  wrstuden #include <sys/savar.h>
     80       1.11       cgd #include <sys/syscallargs.h>
     81      1.143        ad #include <sys/cpu.h>
     82       1.19  christos 
     83       1.37   thorpej #include <uvm/uvm_extern.h>
     84       1.37   thorpej 
     85  1.146.2.8  wrstuden #include "opt_sa.h"
     86  1.146.2.8  wrstuden 
     87      1.142        ad static void	timer_intr(void *);
     88      1.142        ad static void	itimerfire(struct ptimer *);
     89      1.142        ad static void	itimerfree(struct ptimers *, int);
     90      1.142        ad 
     91      1.142        ad kmutex_t	timer_lock;
     92      1.142        ad 
     93      1.142        ad static void	*timer_sih;
     94      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95      1.131        ad 
     96       1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98       1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99      1.118        ad     &pool_allocator_nointr, IPL_NONE);
    100       1.97    simonb 
    101      1.131        ad /*
    102      1.131        ad  * Initialize timekeeping.
    103      1.131        ad  */
    104      1.131        ad void
    105      1.131        ad time_init(void)
    106      1.131        ad {
    107      1.131        ad 
    108  1.146.2.4  wrstuden 	/* nothing yet */
    109      1.131        ad }
    110      1.131        ad 
    111      1.142        ad void
    112      1.142        ad time_init2(void)
    113      1.142        ad {
    114      1.142        ad 
    115      1.142        ad 	TAILQ_INIT(&timer_queue);
    116      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118      1.142        ad 	    timer_intr, NULL);
    119      1.142        ad }
    120      1.142        ad 
    121       1.63   thorpej /* Time of day and interval timer support.
    122        1.1       cgd  *
    123        1.1       cgd  * These routines provide the kernel entry points to get and set
    124        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125        1.1       cgd  * here provide support for adding and subtracting timeval structures
    126        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127        1.1       cgd  * timers when they expire.
    128        1.1       cgd  */
    129        1.1       cgd 
    130       1.22       jtc /* This function is used by clock_settime and settimeofday */
    131      1.132      elad static int
    132      1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    133       1.22       jtc {
    134       1.98  christos 	struct timeval delta, tv;
    135      1.101    kardel 	struct timeval now;
    136      1.101    kardel 	struct timespec ts1;
    137      1.137      yamt 	struct bintime btdelta;
    138      1.129        ad 	lwp_t *l;
    139      1.129        ad 	int s;
    140       1.22       jtc 
    141       1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    142       1.98  christos 
    143       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    144      1.129        ad 	s = splclock();
    145      1.101    kardel 	microtime(&now);
    146      1.101    kardel 	timersub(&tv, &now, &delta);
    147      1.132      elad 
    148      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    149      1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    150      1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    151      1.129        ad 		splx(s);
    152       1.29       tls 		return (EPERM);
    153       1.55      tron 	}
    154      1.132      elad 
    155       1.29       tls #ifdef notyet
    156      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    157      1.129        ad 		splx(s);
    158       1.29       tls 		return (EPERM);
    159       1.55      tron 	}
    160       1.29       tls #endif
    161      1.103    kardel 
    162      1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    163      1.101    kardel 	tc_setclock(&ts1);
    164      1.103    kardel 
    165       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    166      1.103    kardel 
    167       1.47   thorpej 	/*
    168      1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    169      1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    170      1.129        ad 	 * pausing all CPUs while we adjust the clock.
    171       1.47   thorpej 	 */
    172      1.137      yamt 	timeval2bintime(&delta, &btdelta);
    173      1.145        ad 	mutex_enter(proc_lock);
    174      1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    175      1.129        ad 		lwp_lock(l);
    176      1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    177      1.129        ad 		lwp_unlock(l);
    178      1.129        ad 	}
    179      1.145        ad 	mutex_exit(proc_lock);
    180       1.22       jtc 	resettodr();
    181      1.129        ad 	splx(s);
    182      1.129        ad 
    183       1.29       tls 	return (0);
    184       1.22       jtc }
    185       1.22       jtc 
    186      1.132      elad int
    187      1.132      elad settime(struct proc *p, struct timespec *ts)
    188      1.132      elad {
    189      1.132      elad 	return (settime1(p, ts, true));
    190      1.132      elad }
    191      1.132      elad 
    192       1.22       jtc /* ARGSUSED */
    193       1.22       jtc int
    194      1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    195      1.140      yamt     register_t *retval)
    196       1.22       jtc {
    197      1.135       dsl 	/* {
    198       1.22       jtc 		syscallarg(clockid_t) clock_id;
    199       1.23       cgd 		syscallarg(struct timespec *) tp;
    200      1.135       dsl 	} */
    201       1.22       jtc 	clockid_t clock_id;
    202       1.22       jtc 	struct timespec ats;
    203       1.22       jtc 
    204       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    205       1.61    simonb 	switch (clock_id) {
    206       1.61    simonb 	case CLOCK_REALTIME:
    207       1.96    simonb 		nanotime(&ats);
    208       1.61    simonb 		break;
    209       1.61    simonb 	case CLOCK_MONOTONIC:
    210      1.101    kardel 		nanouptime(&ats);
    211       1.61    simonb 		break;
    212       1.61    simonb 	default:
    213       1.22       jtc 		return (EINVAL);
    214       1.61    simonb 	}
    215       1.22       jtc 
    216       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    217       1.22       jtc }
    218       1.22       jtc 
    219       1.22       jtc /* ARGSUSED */
    220       1.22       jtc int
    221      1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    222      1.140      yamt     register_t *retval)
    223       1.22       jtc {
    224      1.135       dsl 	/* {
    225       1.22       jtc 		syscallarg(clockid_t) clock_id;
    226       1.23       cgd 		syscallarg(const struct timespec *) tp;
    227      1.135       dsl 	} */
    228       1.22       jtc 
    229      1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    230      1.132      elad 	    true);
    231       1.56      manu }
    232       1.56      manu 
    233       1.56      manu 
    234       1.56      manu int
    235      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    236      1.132      elad     bool check_kauth)
    237       1.56      manu {
    238       1.60      manu 	struct timespec ats;
    239       1.56      manu 	int error;
    240       1.56      manu 
    241       1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    242       1.60      manu 		return (error);
    243       1.60      manu 
    244       1.61    simonb 	switch (clock_id) {
    245       1.61    simonb 	case CLOCK_REALTIME:
    246      1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    247       1.61    simonb 			return (error);
    248       1.61    simonb 		break;
    249       1.61    simonb 	case CLOCK_MONOTONIC:
    250       1.61    simonb 		return (EINVAL);	/* read-only clock */
    251       1.61    simonb 	default:
    252       1.56      manu 		return (EINVAL);
    253       1.61    simonb 	}
    254       1.22       jtc 
    255       1.22       jtc 	return 0;
    256       1.22       jtc }
    257       1.22       jtc 
    258       1.22       jtc int
    259      1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    260      1.140      yamt     register_t *retval)
    261       1.22       jtc {
    262      1.135       dsl 	/* {
    263       1.22       jtc 		syscallarg(clockid_t) clock_id;
    264       1.23       cgd 		syscallarg(struct timespec *) tp;
    265      1.135       dsl 	} */
    266       1.22       jtc 	clockid_t clock_id;
    267       1.22       jtc 	struct timespec ts;
    268       1.22       jtc 	int error = 0;
    269       1.22       jtc 
    270       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    271       1.61    simonb 	switch (clock_id) {
    272       1.61    simonb 	case CLOCK_REALTIME:
    273       1.61    simonb 	case CLOCK_MONOTONIC:
    274       1.22       jtc 		ts.tv_sec = 0;
    275      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    276      1.102    kardel 			ts.tv_nsec = 1;
    277      1.102    kardel 		else
    278      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    279       1.61    simonb 		break;
    280       1.61    simonb 	default:
    281       1.61    simonb 		return (EINVAL);
    282       1.61    simonb 	}
    283       1.22       jtc 
    284       1.61    simonb 	if (SCARG(uap, tp))
    285       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    286       1.22       jtc 
    287       1.22       jtc 	return error;
    288       1.22       jtc }
    289       1.22       jtc 
    290       1.27       jtc /* ARGSUSED */
    291       1.27       jtc int
    292      1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    293      1.140      yamt     register_t *retval)
    294       1.27       jtc {
    295      1.135       dsl 	/* {
    296      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    297      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    298      1.135       dsl 	} */
    299      1.101    kardel 	struct timespec rmt, rqt;
    300      1.120       dsl 	int error, error1;
    301      1.101    kardel 
    302      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    303      1.101    kardel 	if (error)
    304      1.101    kardel 		return (error);
    305      1.101    kardel 
    306      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    307      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    308      1.120       dsl 		return error;
    309      1.120       dsl 
    310      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    311      1.120       dsl 	return error1 ? error1 : error;
    312      1.120       dsl }
    313      1.120       dsl 
    314      1.120       dsl int
    315      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    316      1.120       dsl {
    317      1.141      yamt 	struct timespec rmtstart;
    318      1.120       dsl 	int error, timo;
    319      1.120       dsl 
    320      1.120       dsl 	if (itimespecfix(rqt))
    321      1.101    kardel 		return (EINVAL);
    322      1.101    kardel 
    323      1.120       dsl 	timo = tstohz(rqt);
    324      1.101    kardel 	/*
    325      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    326      1.101    kardel 	 */
    327      1.101    kardel 	if (timo == 0)
    328      1.101    kardel 		timo = 1;
    329      1.141      yamt 	getnanouptime(&rmtstart);
    330      1.141      yamt again:
    331      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    332      1.141      yamt 	if (rmt != NULL || error == 0) {
    333      1.141      yamt 		struct timespec rmtend;
    334      1.141      yamt 		struct timespec t0;
    335      1.141      yamt 		struct timespec *t;
    336      1.101    kardel 
    337      1.141      yamt 		getnanouptime(&rmtend);
    338      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    339      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    340      1.141      yamt 		timespecsub(rqt, t, t);
    341      1.141      yamt 		if (t->tv_sec < 0)
    342      1.141      yamt 			timespecclear(t);
    343      1.141      yamt 		if (error == 0) {
    344      1.141      yamt 			timo = tstohz(t);
    345      1.141      yamt 			if (timo > 0)
    346      1.141      yamt 				goto again;
    347      1.141      yamt 		}
    348      1.141      yamt 	}
    349      1.104    kardel 
    350      1.101    kardel 	if (error == ERESTART)
    351      1.101    kardel 		error = EINTR;
    352      1.101    kardel 	if (error == EWOULDBLOCK)
    353      1.101    kardel 		error = 0;
    354      1.101    kardel 
    355      1.101    kardel 	return error;
    356       1.27       jtc }
    357       1.22       jtc 
    358        1.1       cgd /* ARGSUSED */
    359        1.3    andrew int
    360      1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    361      1.140      yamt     register_t *retval)
    362       1.15   thorpej {
    363      1.135       dsl 	/* {
    364       1.11       cgd 		syscallarg(struct timeval *) tp;
    365      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    366      1.135       dsl 	} */
    367        1.1       cgd 	struct timeval atv;
    368        1.1       cgd 	int error = 0;
    369       1.25     perry 	struct timezone tzfake;
    370        1.1       cgd 
    371       1.11       cgd 	if (SCARG(uap, tp)) {
    372        1.1       cgd 		microtime(&atv);
    373       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    374       1.17  christos 		if (error)
    375        1.1       cgd 			return (error);
    376        1.1       cgd 	}
    377       1.25     perry 	if (SCARG(uap, tzp)) {
    378       1.25     perry 		/*
    379       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    380       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    381       1.25     perry 		 */
    382       1.25     perry 		tzfake.tz_minuteswest = 0;
    383       1.25     perry 		tzfake.tz_dsttime = 0;
    384       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    385       1.25     perry 	}
    386        1.1       cgd 	return (error);
    387        1.1       cgd }
    388        1.1       cgd 
    389        1.1       cgd /* ARGSUSED */
    390        1.3    andrew int
    391      1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    392      1.140      yamt     register_t *retval)
    393       1.15   thorpej {
    394      1.135       dsl 	/* {
    395       1.24       cgd 		syscallarg(const struct timeval *) tv;
    396      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    397      1.135       dsl 	} */
    398       1.60      manu 
    399      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    400       1.60      manu }
    401       1.60      manu 
    402       1.60      manu int
    403      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    404      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    405       1.60      manu {
    406       1.22       jtc 	struct timeval atv;
    407       1.98  christos 	struct timespec ts;
    408       1.22       jtc 	int error;
    409        1.1       cgd 
    410        1.8       cgd 	/* Verify all parameters before changing time. */
    411      1.119       dsl 
    412       1.25     perry 	/*
    413       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    414       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    415       1.25     perry 	 */
    416       1.98  christos 	if (utzp)
    417       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    418      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    419       1.98  christos 
    420       1.98  christos 	if (utv == NULL)
    421       1.98  christos 		return 0;
    422       1.98  christos 
    423      1.119       dsl 	if (userspace) {
    424      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    425      1.119       dsl 			return error;
    426      1.119       dsl 		utv = &atv;
    427      1.119       dsl 	}
    428      1.119       dsl 
    429      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    430      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    431        1.1       cgd }
    432        1.1       cgd 
    433       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    434        1.1       cgd 
    435        1.1       cgd /* ARGSUSED */
    436        1.3    andrew int
    437      1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    438      1.140      yamt     register_t *retval)
    439       1.15   thorpej {
    440      1.135       dsl 	/* {
    441       1.24       cgd 		syscallarg(const struct timeval *) delta;
    442       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    443      1.135       dsl 	} */
    444       1.56      manu 	int error;
    445        1.1       cgd 
    446      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    447      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    448        1.1       cgd 		return (error);
    449       1.17  christos 
    450      1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    451       1.56      manu }
    452       1.56      manu 
    453       1.56      manu int
    454      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    455       1.56      manu {
    456       1.60      manu 	struct timeval atv;
    457      1.101    kardel 	int error = 0;
    458      1.101    kardel 
    459      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    460      1.101    kardel 
    461      1.101    kardel 	if (olddelta) {
    462      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    463      1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    464      1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    465      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    466      1.101    kardel 		if (atv.tv_usec < 0) {
    467      1.101    kardel 			atv.tv_usec += 1000000;
    468      1.101    kardel 			atv.tv_sec--;
    469      1.101    kardel 		}
    470      1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    471      1.101    kardel 		if (error)
    472      1.101    kardel 			return (error);
    473      1.101    kardel 	}
    474      1.101    kardel 
    475      1.101    kardel 	if (delta) {
    476      1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    477      1.101    kardel 		if (error)
    478      1.101    kardel 			return (error);
    479      1.101    kardel 
    480      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    481      1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    482      1.101    kardel 			atv.tv_usec;
    483      1.143        ad 		if (time_adjtime) {
    484      1.101    kardel 			/* We need to save the system time during shutdown */
    485      1.101    kardel 			time_adjusted |= 1;
    486      1.143        ad 		}
    487      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    488      1.101    kardel 	}
    489      1.101    kardel 
    490       1.79       chs 	return error;
    491        1.1       cgd }
    492        1.1       cgd 
    493        1.1       cgd /*
    494       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495       1.63   thorpej  * timer_*() family of routines are supported.
    496        1.1       cgd  *
    497       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    498       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    499       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    500       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    501       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    502       1.63   thorpej  * syscall.
    503        1.1       cgd  *
    504       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    505       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    506        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    507       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    508       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    509       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    510       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    511       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    512       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    513       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    514       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    515       1.63   thorpej 
    516       1.63   thorpej /* Allocate a POSIX realtime timer. */
    517       1.63   thorpej int
    518      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    519      1.140      yamt     register_t *retval)
    520       1.63   thorpej {
    521      1.135       dsl 	/* {
    522       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    523       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    524       1.63   thorpej 		syscallarg(timer_t *) timerid;
    525      1.135       dsl 	} */
    526       1.92      cube 
    527       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    528      1.105        ad 	    SCARG(uap, evp), copyin, l);
    529       1.92      cube }
    530       1.92      cube 
    531       1.92      cube int
    532       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    533      1.105        ad     copyin_t fetch_event, struct lwp *l)
    534       1.92      cube {
    535       1.92      cube 	int error;
    536       1.92      cube 	timer_t timerid;
    537      1.142        ad 	struct ptimers *pts;
    538       1.63   thorpej 	struct ptimer *pt;
    539      1.105        ad 	struct proc *p;
    540      1.105        ad 
    541      1.105        ad 	p = l->l_proc;
    542       1.63   thorpej 
    543      1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    544       1.63   thorpej 		return (EINVAL);
    545       1.63   thorpej 
    546      1.142        ad 	if ((pts = p->p_timers) == NULL)
    547      1.142        ad 		pts = timers_alloc(p);
    548       1.63   thorpej 
    549       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    550      1.142        ad 	if (evp != NULL) {
    551       1.63   thorpej 		if (((error =
    552       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    553       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    554       1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    555       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    556       1.63   thorpej 			return (error ? error : EINVAL);
    557       1.63   thorpej 		}
    558      1.142        ad 	}
    559      1.142        ad 
    560      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    561      1.142        ad 	mutex_spin_enter(&timer_lock);
    562      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    563      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    564      1.142        ad 			break;
    565      1.142        ad 	if (timerid == TIMER_MAX) {
    566      1.142        ad 		mutex_spin_exit(&timer_lock);
    567      1.142        ad 		pool_put(&ptimer_pool, pt);
    568      1.142        ad 		return EAGAIN;
    569      1.142        ad 	}
    570      1.142        ad 	if (evp == NULL) {
    571       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    572       1.63   thorpej 		switch (id) {
    573       1.63   thorpej 		case CLOCK_REALTIME:
    574       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    575       1.63   thorpej 			break;
    576       1.63   thorpej 		case CLOCK_VIRTUAL:
    577       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    578       1.63   thorpej 			break;
    579       1.63   thorpej 		case CLOCK_PROF:
    580       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    581       1.63   thorpej 			break;
    582       1.63   thorpej 		}
    583       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    584       1.63   thorpej 	}
    585       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    586       1.73  christos 	pt->pt_info.ksi_errno = 0;
    587       1.73  christos 	pt->pt_info.ksi_code = 0;
    588       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    589      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    590      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    591       1.63   thorpej 	pt->pt_type = id;
    592       1.63   thorpej 	pt->pt_proc = p;
    593       1.63   thorpej 	pt->pt_overruns = 0;
    594       1.63   thorpej 	pt->pt_poverruns = 0;
    595       1.64   nathanw 	pt->pt_entry = timerid;
    596      1.142        ad 	pt->pt_queued = false;
    597      1.142        ad 	pt->pt_active = 0;
    598       1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    599      1.142        ad 	callout_init(&pt->pt_ch, 0);
    600      1.142        ad 	pts->pts_timers[timerid] = pt;
    601      1.142        ad 	mutex_spin_exit(&timer_lock);
    602       1.63   thorpej 
    603       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    604       1.63   thorpej }
    605       1.63   thorpej 
    606       1.63   thorpej /* Delete a POSIX realtime timer */
    607        1.3    andrew int
    608      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    609      1.140      yamt     register_t *retval)
    610       1.15   thorpej {
    611      1.135       dsl 	/* {
    612       1.63   thorpej 		syscallarg(timer_t) timerid;
    613      1.135       dsl 	} */
    614       1.63   thorpej 	struct proc *p = l->l_proc;
    615       1.65  jdolecek 	timer_t timerid;
    616      1.142        ad 	struct ptimers *pts;
    617       1.63   thorpej 	struct ptimer *pt, *ptn;
    618        1.1       cgd 
    619       1.63   thorpej 	timerid = SCARG(uap, timerid);
    620      1.142        ad 	pts = p->p_timers;
    621      1.142        ad 
    622      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    623      1.142        ad 		return (EINVAL);
    624       1.63   thorpej 
    625      1.142        ad 	mutex_spin_enter(&timer_lock);
    626      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    627      1.142        ad 		mutex_spin_exit(&timer_lock);
    628        1.1       cgd 		return (EINVAL);
    629      1.142        ad 	}
    630      1.142        ad 	if (pt->pt_active) {
    631       1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    632       1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    633       1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    634       1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    635       1.63   thorpej 			    &ptn->pt_time.it_value);
    636      1.142        ad 		pt->pt_active = 0;
    637       1.63   thorpej 	}
    638      1.142        ad 	itimerfree(pts, timerid);
    639       1.63   thorpej 
    640       1.63   thorpej 	return (0);
    641       1.63   thorpej }
    642       1.63   thorpej 
    643       1.63   thorpej /*
    644       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    645       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    646       1.67   nathanw  * time for virtual timers.
    647       1.63   thorpej  * Must be called at splclock().
    648       1.63   thorpej  */
    649       1.63   thorpej void
    650       1.63   thorpej timer_settime(struct ptimer *pt)
    651       1.63   thorpej {
    652       1.63   thorpej 	struct ptimer *ptn, *pptn;
    653       1.63   thorpej 	struct ptlist *ptl;
    654       1.63   thorpej 
    655      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    656      1.142        ad 
    657       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    658       1.63   thorpej 		callout_stop(&pt->pt_ch);
    659       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    660       1.63   thorpej 			/*
    661       1.63   thorpej 			 * Don't need to check hzto() return value, here.
    662       1.63   thorpej 			 * callout_reset() does it for us.
    663       1.63   thorpej 			 */
    664       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    665       1.63   thorpej 			    realtimerexpire, pt);
    666       1.63   thorpej 		}
    667       1.63   thorpej 	} else {
    668       1.63   thorpej 		if (pt->pt_active) {
    669       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    670       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    671       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    672       1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    673       1.63   thorpej 				    &ptn->pt_time.it_value,
    674       1.63   thorpej 				    &ptn->pt_time.it_value);
    675       1.63   thorpej 		}
    676       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    677       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    678       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    679       1.63   thorpej 			else
    680       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    681       1.63   thorpej 
    682       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    683       1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    684       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    685       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    686       1.63   thorpej 				timersub(&pt->pt_time.it_value,
    687       1.63   thorpej 				    &ptn->pt_time.it_value,
    688       1.63   thorpej 				    &pt->pt_time.it_value);
    689       1.63   thorpej 
    690       1.63   thorpej 			if (pptn)
    691       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    692       1.63   thorpej 			else
    693       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    694       1.63   thorpej 
    695       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    696       1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    697       1.63   thorpej 				    &pt->pt_time.it_value,
    698       1.63   thorpej 				    &ptn->pt_time.it_value);
    699       1.63   thorpej 
    700       1.63   thorpej 			pt->pt_active = 1;
    701       1.63   thorpej 		} else
    702       1.63   thorpej 			pt->pt_active = 0;
    703       1.63   thorpej 	}
    704       1.63   thorpej }
    705       1.63   thorpej 
    706       1.63   thorpej void
    707       1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    708       1.63   thorpej {
    709      1.101    kardel 	struct timeval now;
    710       1.63   thorpej 	struct ptimer *ptn;
    711       1.63   thorpej 
    712      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    713      1.142        ad 
    714       1.63   thorpej 	*aitv = pt->pt_time;
    715       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    716        1.1       cgd 		/*
    717       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    718       1.63   thorpej 		 * part of real time timer.  If time for real time
    719       1.63   thorpej 		 * timer has passed return 0, else return difference
    720       1.63   thorpej 		 * between current time and time for the timer to go
    721       1.63   thorpej 		 * off.
    722        1.1       cgd 		 */
    723       1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    724      1.101    kardel 			getmicrotime(&now);
    725      1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    726      1.101    kardel 				timerclear(&aitv->it_value);
    727      1.101    kardel 			else
    728      1.101    kardel 				timersub(&aitv->it_value, &now,
    729      1.101    kardel 				    &aitv->it_value);
    730       1.36   thorpej 		}
    731       1.63   thorpej 	} else if (pt->pt_active) {
    732       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    733       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    734       1.63   thorpej 		else
    735       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    736       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    737       1.63   thorpej 			timeradd(&aitv->it_value,
    738       1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    739       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    740        1.1       cgd 	} else
    741       1.63   thorpej 		timerclear(&aitv->it_value);
    742       1.63   thorpej }
    743       1.63   thorpej 
    744       1.63   thorpej 
    745       1.63   thorpej 
    746       1.63   thorpej /* Set and arm a POSIX realtime timer */
    747       1.63   thorpej int
    748      1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    749      1.140      yamt     register_t *retval)
    750       1.63   thorpej {
    751      1.135       dsl 	/* {
    752       1.63   thorpej 		syscallarg(timer_t) timerid;
    753       1.63   thorpej 		syscallarg(int) flags;
    754       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    755       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    756      1.135       dsl 	} */
    757       1.92      cube 	int error;
    758       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    759       1.92      cube 
    760       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    761       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    762       1.92      cube 		return (error);
    763       1.92      cube 
    764       1.92      cube 	if (SCARG(uap, ovalue))
    765       1.92      cube 		ovp = &ovalue;
    766       1.92      cube 
    767       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    768       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    769       1.92      cube 		return error;
    770       1.92      cube 
    771       1.92      cube 	if (ovp)
    772       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    773       1.92      cube 		    sizeof(struct itimerspec));
    774       1.92      cube 	return 0;
    775       1.92      cube }
    776       1.92      cube 
    777       1.92      cube int
    778       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    779       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    780       1.92      cube {
    781      1.101    kardel 	struct timeval now;
    782       1.63   thorpej 	struct itimerval val, oval;
    783      1.142        ad 	struct ptimers *pts;
    784       1.63   thorpej 	struct ptimer *pt;
    785       1.63   thorpej 
    786      1.142        ad 	pts = p->p_timers;
    787       1.63   thorpej 
    788      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    789      1.142        ad 		return EINVAL;
    790       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    791       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    792       1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    793       1.63   thorpej 		return (EINVAL);
    794       1.63   thorpej 
    795      1.142        ad 	mutex_spin_enter(&timer_lock);
    796      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    797      1.142        ad 		mutex_spin_exit(&timer_lock);
    798      1.142        ad 		return (EINVAL);
    799      1.142        ad 	}
    800      1.142        ad 
    801       1.63   thorpej 	oval = pt->pt_time;
    802       1.63   thorpej 	pt->pt_time = val;
    803       1.63   thorpej 
    804       1.67   nathanw 	/*
    805       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    806       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    807       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    808       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    809       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    810       1.67   nathanw 	 */
    811       1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    812       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    813      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    814      1.101    kardel 				getmicrotime(&now);
    815      1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    816      1.101    kardel 				    &pt->pt_time.it_value);
    817      1.101    kardel 			}
    818       1.67   nathanw 		} else {
    819       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    820      1.101    kardel 				getmicrotime(&now);
    821      1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    822      1.101    kardel 				    &pt->pt_time.it_value);
    823       1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    824       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    825       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    826       1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    827       1.67   nathanw 				}
    828       1.67   nathanw 			}
    829       1.67   nathanw 		}
    830       1.67   nathanw 	}
    831       1.67   nathanw 
    832       1.63   thorpej 	timer_settime(pt);
    833      1.142        ad 	mutex_spin_exit(&timer_lock);
    834       1.63   thorpej 
    835       1.92      cube 	if (ovalue) {
    836       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    837       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    838       1.63   thorpej 	}
    839       1.63   thorpej 
    840       1.63   thorpej 	return (0);
    841       1.63   thorpej }
    842       1.63   thorpej 
    843       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    844       1.63   thorpej int
    845      1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    846      1.140      yamt     register_t *retval)
    847       1.63   thorpej {
    848      1.135       dsl 	/* {
    849       1.63   thorpej 		syscallarg(timer_t) timerid;
    850       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    851      1.135       dsl 	} */
    852       1.63   thorpej 	struct itimerspec its;
    853       1.92      cube 	int error;
    854       1.92      cube 
    855       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    856       1.92      cube 	    &its)) != 0)
    857       1.92      cube 		return error;
    858       1.92      cube 
    859       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    860       1.92      cube }
    861       1.92      cube 
    862       1.92      cube int
    863       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    864       1.92      cube {
    865       1.63   thorpej 	struct ptimer *pt;
    866      1.142        ad 	struct ptimers *pts;
    867       1.92      cube 	struct itimerval aitv;
    868       1.63   thorpej 
    869      1.142        ad 	pts = p->p_timers;
    870      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    871       1.63   thorpej 		return (EINVAL);
    872      1.142        ad 	mutex_spin_enter(&timer_lock);
    873      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    874      1.142        ad 		mutex_spin_exit(&timer_lock);
    875      1.142        ad 		return (EINVAL);
    876      1.142        ad 	}
    877       1.63   thorpej 	timer_gettime(pt, &aitv);
    878      1.142        ad 	mutex_spin_exit(&timer_lock);
    879       1.63   thorpej 
    880       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    881       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    882       1.63   thorpej 
    883       1.92      cube 	return 0;
    884       1.63   thorpej }
    885       1.63   thorpej 
    886       1.63   thorpej /*
    887       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    888       1.63   thorpej  * while a notification was already pending. The counter is reset when
    889       1.63   thorpej  * a timer expires and a notification can be posted.
    890       1.63   thorpej  */
    891       1.63   thorpej int
    892      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    893      1.140      yamt     register_t *retval)
    894       1.63   thorpej {
    895      1.135       dsl 	/* {
    896       1.63   thorpej 		syscallarg(timer_t) timerid;
    897      1.135       dsl 	} */
    898       1.63   thorpej 	struct proc *p = l->l_proc;
    899      1.142        ad 	struct ptimers *pts;
    900       1.63   thorpej 	int timerid;
    901       1.63   thorpej 	struct ptimer *pt;
    902       1.63   thorpej 
    903       1.63   thorpej 	timerid = SCARG(uap, timerid);
    904       1.63   thorpej 
    905      1.142        ad 	pts = p->p_timers;
    906      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    907      1.142        ad 		return (EINVAL);
    908      1.142        ad 	mutex_spin_enter(&timer_lock);
    909      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    910      1.142        ad 		mutex_spin_exit(&timer_lock);
    911       1.63   thorpej 		return (EINVAL);
    912      1.142        ad 	}
    913       1.63   thorpej 	*retval = pt->pt_poverruns;
    914      1.142        ad 	mutex_spin_exit(&timer_lock);
    915       1.63   thorpej 
    916       1.63   thorpej 	return (0);
    917       1.63   thorpej }
    918       1.63   thorpej 
    919  1.146.2.8  wrstuden #ifdef KERN_SA
    920  1.146.2.3  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    921  1.146.2.3  wrstuden void
    922  1.146.2.3  wrstuden timerupcall(struct lwp *l)
    923  1.146.2.3  wrstuden {
    924  1.146.2.3  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    925  1.146.2.3  wrstuden 	struct proc *p = l->l_proc;
    926  1.146.2.3  wrstuden 	unsigned int i, fired, done;
    927  1.146.2.3  wrstuden 
    928  1.146.2.3  wrstuden 	KDASSERT(l->l_proc->p_sa);
    929  1.146.2.3  wrstuden 	/* Bail out if we do not own the virtual processor */
    930  1.146.2.3  wrstuden 	if (l->l_savp->savp_lwp != l)
    931  1.146.2.3  wrstuden 		return ;
    932  1.146.2.3  wrstuden 
    933  1.146.2.3  wrstuden 	mutex_enter(p->p_lock);
    934  1.146.2.3  wrstuden 
    935  1.146.2.3  wrstuden 	fired = pt->pts_fired;
    936  1.146.2.3  wrstuden 	done = 0;
    937  1.146.2.3  wrstuden 	while ((i = ffs(fired)) != 0) {
    938  1.146.2.3  wrstuden 		siginfo_t *si;
    939  1.146.2.3  wrstuden 		int mask = 1 << --i;
    940  1.146.2.3  wrstuden 		int f;
    941  1.146.2.3  wrstuden 
    942  1.146.2.6  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    943  1.146.2.6  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    944  1.146.2.3  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    945  1.146.2.3  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    946  1.146.2.3  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    947  1.146.2.3  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    948  1.146.2.3  wrstuden 			siginfo_free(si);
    949  1.146.2.3  wrstuden 			/* XXX What do we do here?? */
    950  1.146.2.3  wrstuden 		} else
    951  1.146.2.3  wrstuden 			done |= mask;
    952  1.146.2.3  wrstuden 		fired &= ~mask;
    953  1.146.2.6  wrstuden 		l->l_pflag ^= f;
    954  1.146.2.3  wrstuden 	}
    955  1.146.2.3  wrstuden 	pt->pts_fired &= ~done;
    956  1.146.2.3  wrstuden 	if (pt->pts_fired == 0)
    957  1.146.2.3  wrstuden 		l->l_proc->p_timerpend = 0;
    958  1.146.2.3  wrstuden 
    959  1.146.2.3  wrstuden 	mutex_exit(p->p_lock);
    960  1.146.2.3  wrstuden }
    961  1.146.2.8  wrstuden #endif /* KERN_SA */
    962  1.146.2.3  wrstuden 
    963       1.63   thorpej /*
    964       1.63   thorpej  * Real interval timer expired:
    965       1.63   thorpej  * send process whose timer expired an alarm signal.
    966       1.63   thorpej  * If time is not set up to reload, then just return.
    967       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    968       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    969       1.63   thorpej  * SIGALRM calls to be compressed into one.
    970       1.63   thorpej  */
    971       1.63   thorpej void
    972       1.63   thorpej realtimerexpire(void *arg)
    973       1.63   thorpej {
    974  1.146.2.4  wrstuden 	uint64_t last_val, next_val, interval, now_ms;
    975  1.146.2.4  wrstuden 	struct timeval now, next;
    976       1.63   thorpej 	struct ptimer *pt;
    977  1.146.2.4  wrstuden 	int backwards;
    978       1.63   thorpej 
    979      1.142        ad 	pt = arg;
    980       1.63   thorpej 
    981      1.142        ad 	mutex_spin_enter(&timer_lock);
    982       1.63   thorpej 	itimerfire(pt);
    983       1.63   thorpej 
    984       1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    985       1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    986      1.142        ad 		mutex_spin_exit(&timer_lock);
    987       1.63   thorpej 		return;
    988       1.63   thorpej 	}
    989  1.146.2.4  wrstuden 
    990  1.146.2.4  wrstuden 	getmicrotime(&now);
    991  1.146.2.4  wrstuden 	backwards = (timercmp(&pt->pt_time.it_value, &now, >));
    992  1.146.2.4  wrstuden 	timeradd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    993  1.146.2.4  wrstuden 	/* Handle the easy case of non-overflown timers first. */
    994  1.146.2.4  wrstuden 	if (!backwards && timercmp(&next, &now, >)) {
    995  1.146.2.4  wrstuden 		pt->pt_time.it_value = next;
    996  1.146.2.4  wrstuden 	} else {
    997  1.146.2.4  wrstuden #define TV2MS(x) (((uint64_t)(x)->tv_sec) * 1000000 + (x)->tv_usec)
    998  1.146.2.4  wrstuden 		now_ms = TV2MS(&now);
    999  1.146.2.4  wrstuden 		last_val = TV2MS(&pt->pt_time.it_value);
   1000  1.146.2.4  wrstuden 		interval = TV2MS(&pt->pt_time.it_interval);
   1001  1.146.2.4  wrstuden #undef TV2MS
   1002  1.146.2.4  wrstuden 
   1003  1.146.2.4  wrstuden 		next_val = now_ms +
   1004  1.146.2.4  wrstuden 		    (now_ms - last_val + interval - 1) % interval;
   1005  1.146.2.4  wrstuden 
   1006  1.146.2.4  wrstuden 		if (backwards)
   1007  1.146.2.4  wrstuden 			next_val += interval;
   1008  1.146.2.4  wrstuden 		else
   1009  1.146.2.4  wrstuden 			pt->pt_overruns += (now_ms - last_val) / interval;
   1010  1.146.2.4  wrstuden 
   1011  1.146.2.4  wrstuden 		pt->pt_time.it_value.tv_sec = next_val / 1000000;
   1012  1.146.2.4  wrstuden 		pt->pt_time.it_value.tv_usec = next_val % 1000000;
   1013      1.101    kardel 	}
   1014  1.146.2.4  wrstuden 
   1015  1.146.2.4  wrstuden 	/*
   1016  1.146.2.4  wrstuden 	 * Don't need to check hzto() return value, here.
   1017  1.146.2.4  wrstuden 	 * callout_reset() does it for us.
   1018  1.146.2.4  wrstuden 	 */
   1019  1.146.2.4  wrstuden 	callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1020  1.146.2.4  wrstuden 	    realtimerexpire, pt);
   1021  1.146.2.4  wrstuden 	mutex_spin_exit(&timer_lock);
   1022       1.63   thorpej }
   1023       1.63   thorpej 
   1024       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1025       1.63   thorpej /* ARGSUSED */
   1026       1.63   thorpej int
   1027      1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
   1028      1.140      yamt     register_t *retval)
   1029       1.63   thorpej {
   1030      1.135       dsl 	/* {
   1031       1.63   thorpej 		syscallarg(int) which;
   1032       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1033      1.135       dsl 	} */
   1034       1.63   thorpej 	struct proc *p = l->l_proc;
   1035       1.63   thorpej 	struct itimerval aitv;
   1036       1.91      cube 	int error;
   1037       1.91      cube 
   1038       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1039       1.91      cube 	if (error)
   1040       1.91      cube 		return error;
   1041       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1042       1.91      cube }
   1043       1.63   thorpej 
   1044       1.91      cube int
   1045       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1046       1.91      cube {
   1047      1.142        ad 	struct ptimers *pts;
   1048      1.142        ad 	struct ptimer *pt;
   1049       1.63   thorpej 
   1050       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1051       1.63   thorpej 		return (EINVAL);
   1052       1.63   thorpej 
   1053      1.142        ad 	mutex_spin_enter(&timer_lock);
   1054      1.142        ad 	pts = p->p_timers;
   1055      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1056       1.91      cube 		timerclear(&itvp->it_value);
   1057       1.91      cube 		timerclear(&itvp->it_interval);
   1058      1.142        ad 	} else
   1059      1.142        ad 		timer_gettime(pt, itvp);
   1060      1.142        ad 	mutex_spin_exit(&timer_lock);
   1061       1.63   thorpej 
   1062       1.91      cube 	return 0;
   1063        1.1       cgd }
   1064        1.1       cgd 
   1065       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1066        1.1       cgd /* ARGSUSED */
   1067        1.3    andrew int
   1068      1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1069      1.140      yamt     register_t *retval)
   1070       1.15   thorpej {
   1071      1.135       dsl 	/* {
   1072       1.30   mycroft 		syscallarg(int) which;
   1073       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1074       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1075      1.135       dsl 	} */
   1076       1.63   thorpej 	struct proc *p = l->l_proc;
   1077       1.30   mycroft 	int which = SCARG(uap, which);
   1078       1.21       cgd 	struct sys_getitimer_args getargs;
   1079       1.91      cube 	const struct itimerval *itvp;
   1080        1.1       cgd 	struct itimerval aitv;
   1081       1.91      cube 	int error;
   1082        1.1       cgd 
   1083       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1084        1.1       cgd 		return (EINVAL);
   1085       1.11       cgd 	itvp = SCARG(uap, itv);
   1086       1.63   thorpej 	if (itvp &&
   1087       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1088        1.1       cgd 		return (error);
   1089       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1090       1.30   mycroft 		SCARG(&getargs, which) = which;
   1091       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1092       1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1093       1.21       cgd 			return (error);
   1094       1.21       cgd 	}
   1095        1.1       cgd 	if (itvp == 0)
   1096        1.1       cgd 		return (0);
   1097       1.91      cube 
   1098       1.91      cube 	return dosetitimer(p, which, &aitv);
   1099       1.91      cube }
   1100       1.91      cube 
   1101       1.91      cube int
   1102       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1103       1.91      cube {
   1104      1.101    kardel 	struct timeval now;
   1105      1.142        ad 	struct ptimers *pts;
   1106      1.142        ad 	struct ptimer *pt, *spare;
   1107       1.91      cube 
   1108       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1109        1.1       cgd 		return (EINVAL);
   1110       1.63   thorpej 
   1111       1.63   thorpej 	/*
   1112       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1113       1.63   thorpej 	 * wants to clear the timer.
   1114       1.63   thorpej 	 */
   1115      1.142        ad 	spare = NULL;
   1116      1.142        ad 	pts = p->p_timers;
   1117      1.142        ad  retry:
   1118      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1119      1.142        ad 	    pts->pts_timers[which] == NULL))
   1120       1.63   thorpej 		return (0);
   1121      1.142        ad 	if (pts == NULL)
   1122      1.142        ad 		pts = timers_alloc(p);
   1123      1.142        ad 	mutex_spin_enter(&timer_lock);
   1124      1.142        ad 	pt = pts->pts_timers[which];
   1125      1.142        ad 	if (pt == NULL) {
   1126      1.142        ad 		if (spare == NULL) {
   1127      1.142        ad 			mutex_spin_exit(&timer_lock);
   1128      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1129      1.142        ad 			goto retry;
   1130      1.142        ad 		}
   1131      1.142        ad 		pt = spare;
   1132      1.142        ad 		spare = NULL;
   1133       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1134       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1135       1.63   thorpej 		pt->pt_overruns = 0;
   1136       1.63   thorpej 		pt->pt_proc = p;
   1137       1.63   thorpej 		pt->pt_type = which;
   1138       1.64   nathanw 		pt->pt_entry = which;
   1139      1.142        ad 		pt->pt_active = 0;
   1140      1.142        ad 		pt->pt_queued = false;
   1141      1.142        ad 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1142       1.63   thorpej 		switch (which) {
   1143       1.63   thorpej 		case ITIMER_REAL:
   1144       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1145       1.63   thorpej 			break;
   1146       1.63   thorpej 		case ITIMER_VIRTUAL:
   1147       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1148       1.63   thorpej 			break;
   1149       1.63   thorpej 		case ITIMER_PROF:
   1150       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1151       1.63   thorpej 			break;
   1152        1.1       cgd 		}
   1153      1.142        ad 		pts->pts_timers[which] = pt;
   1154      1.142        ad 	}
   1155       1.91      cube 	pt->pt_time = *itvp;
   1156       1.63   thorpej 
   1157       1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1158       1.67   nathanw 		/* Convert to absolute time */
   1159      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1160      1.101    kardel 		getmicrotime(&now);
   1161      1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1162       1.67   nathanw 	}
   1163       1.63   thorpej 	timer_settime(pt);
   1164      1.142        ad 	mutex_spin_exit(&timer_lock);
   1165      1.142        ad 	if (spare != NULL)
   1166      1.142        ad 		pool_put(&ptimer_pool, spare);
   1167       1.63   thorpej 
   1168        1.1       cgd 	return (0);
   1169        1.1       cgd }
   1170        1.1       cgd 
   1171       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1172      1.142        ad struct ptimers *
   1173       1.63   thorpej timers_alloc(struct proc *p)
   1174       1.63   thorpej {
   1175      1.142        ad 	struct ptimers *pts;
   1176       1.63   thorpej 	int i;
   1177       1.63   thorpej 
   1178      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1179       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1180       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1181       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1182       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1183       1.64   nathanw 	pts->pts_fired = 0;
   1184      1.142        ad 	mutex_spin_enter(&timer_lock);
   1185      1.142        ad 	if (p->p_timers == NULL) {
   1186      1.142        ad 		p->p_timers = pts;
   1187      1.142        ad 		mutex_spin_exit(&timer_lock);
   1188      1.142        ad 		return pts;
   1189      1.142        ad 	}
   1190      1.142        ad 	mutex_spin_exit(&timer_lock);
   1191      1.142        ad 	pool_put(&ptimers_pool, pts);
   1192      1.142        ad 	return p->p_timers;
   1193       1.63   thorpej }
   1194       1.63   thorpej 
   1195        1.1       cgd /*
   1196       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1197       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1198       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1199       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1200       1.63   thorpej  * structure if none of those remain.
   1201        1.1       cgd  */
   1202        1.3    andrew void
   1203       1.63   thorpej timers_free(struct proc *p, int which)
   1204        1.6       cgd {
   1205       1.63   thorpej 	struct ptimers *pts;
   1206      1.142        ad 	struct ptimer *ptn;
   1207       1.63   thorpej 	struct timeval tv;
   1208      1.142        ad 	int i;
   1209       1.63   thorpej 
   1210      1.142        ad 	if (p->p_timers == NULL)
   1211      1.142        ad 		return;
   1212       1.63   thorpej 
   1213      1.142        ad 	pts = p->p_timers;
   1214      1.142        ad 	mutex_spin_enter(&timer_lock);
   1215      1.142        ad 	if (which == TIMERS_ALL) {
   1216      1.142        ad 		p->p_timers = NULL;
   1217      1.142        ad 		i = 0;
   1218      1.142        ad 	} else {
   1219      1.142        ad 		timerclear(&tv);
   1220      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1221      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1222      1.142        ad 		     ptn = LIST_NEXT(ptn, pt_list))
   1223      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1224      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1225      1.142        ad 		if (ptn) {
   1226      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1227      1.142        ad 			    &ptn->pt_time.it_value);
   1228      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1229      1.142        ad 		}
   1230      1.142        ad 		timerclear(&tv);
   1231      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1232      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1233      1.142        ad 		     ptn = LIST_NEXT(ptn, pt_list))
   1234      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1235      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1236      1.142        ad 		if (ptn) {
   1237      1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1238      1.142        ad 			    &ptn->pt_time.it_value);
   1239      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1240       1.63   thorpej 		}
   1241      1.142        ad 		i = 3;
   1242      1.142        ad 	}
   1243      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1244      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1245      1.142        ad 			itimerfree(pts, i);
   1246      1.142        ad 			mutex_spin_enter(&timer_lock);
   1247        1.1       cgd 		}
   1248        1.1       cgd 	}
   1249      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1250      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1251      1.142        ad 		p->p_timers = NULL;
   1252      1.142        ad 		mutex_spin_exit(&timer_lock);
   1253      1.142        ad 		pool_put(&ptimers_pool, pts);
   1254      1.142        ad 	} else
   1255      1.142        ad 		mutex_spin_exit(&timer_lock);
   1256      1.142        ad }
   1257      1.142        ad 
   1258      1.142        ad static void
   1259      1.142        ad itimerfree(struct ptimers *pts, int index)
   1260      1.142        ad {
   1261      1.142        ad 	struct ptimer *pt;
   1262      1.142        ad 
   1263      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1264      1.142        ad 
   1265      1.142        ad 	pt = pts->pts_timers[index];
   1266      1.142        ad 	pts->pts_timers[index] = NULL;
   1267      1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1268      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1269      1.144        ad 	else if (pt->pt_queued)
   1270      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1271      1.144        ad 	mutex_spin_exit(&timer_lock);
   1272      1.142        ad 	callout_destroy(&pt->pt_ch);
   1273      1.142        ad 	pool_put(&ptimer_pool, pt);
   1274        1.1       cgd }
   1275        1.1       cgd 
   1276        1.1       cgd /*
   1277        1.1       cgd  * Decrement an interval timer by a specified number
   1278        1.1       cgd  * of microseconds, which must be less than a second,
   1279        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1280        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1281        1.8       cgd  * reduce the value reloaded into the timer so that
   1282        1.1       cgd  * the timer does not drift.  This routine assumes
   1283        1.1       cgd  * that it is called in a context where the timers
   1284        1.1       cgd  * on which it is operating cannot change in value.
   1285        1.1       cgd  */
   1286      1.142        ad static int
   1287       1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1288       1.63   thorpej {
   1289       1.45  augustss 	struct itimerval *itp;
   1290        1.1       cgd 
   1291      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1292      1.142        ad 
   1293       1.63   thorpej 	itp = &pt->pt_time;
   1294        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1295        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1296        1.1       cgd 			/* expired, and already in next interval */
   1297        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1298        1.1       cgd 			goto expire;
   1299        1.1       cgd 		}
   1300        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1301        1.1       cgd 		itp->it_value.tv_sec--;
   1302        1.1       cgd 	}
   1303        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1304        1.1       cgd 	usec = 0;
   1305        1.1       cgd 	if (timerisset(&itp->it_value))
   1306        1.1       cgd 		return (1);
   1307        1.1       cgd 	/* expired, exactly at end of interval */
   1308        1.1       cgd expire:
   1309        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1310        1.1       cgd 		itp->it_value = itp->it_interval;
   1311        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1312        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1313        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1314        1.1       cgd 			itp->it_value.tv_sec--;
   1315        1.1       cgd 		}
   1316       1.63   thorpej 		timer_settime(pt);
   1317        1.1       cgd 	} else
   1318        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1319        1.1       cgd 	return (0);
   1320       1.42       cgd }
   1321       1.42       cgd 
   1322      1.142        ad static void
   1323       1.63   thorpej itimerfire(struct ptimer *pt)
   1324       1.63   thorpej {
   1325       1.78        cl 
   1326      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1327      1.142        ad 
   1328      1.142        ad 	/*
   1329      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1330      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1331      1.142        ad 	 */
   1332  1.146.2.3  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1333  1.146.2.3  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1334  1.146.2.3  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1335      1.142        ad 		return;
   1336      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1337      1.142        ad 	pt->pt_queued = true;
   1338      1.142        ad 	softint_schedule(timer_sih);
   1339      1.142        ad }
   1340      1.142        ad 
   1341      1.142        ad void
   1342      1.142        ad timer_tick(lwp_t *l, bool user)
   1343      1.142        ad {
   1344      1.142        ad 	struct ptimers *pts;
   1345      1.142        ad 	struct ptimer *pt;
   1346      1.142        ad 	proc_t *p;
   1347      1.142        ad 
   1348      1.142        ad 	p = l->l_proc;
   1349      1.142        ad 	if (p->p_timers == NULL)
   1350      1.142        ad 		return;
   1351      1.142        ad 
   1352      1.142        ad 	mutex_spin_enter(&timer_lock);
   1353      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1354       1.63   thorpej 		/*
   1355      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1356       1.63   thorpej 		 */
   1357      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1358      1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1359      1.142        ad 				itimerfire(pt);
   1360      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1361      1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1362      1.142        ad 				itimerfire(pt);
   1363      1.142        ad 	}
   1364      1.142        ad 	mutex_spin_exit(&timer_lock);
   1365      1.142        ad }
   1366      1.142        ad 
   1367  1.146.2.8  wrstuden #ifdef KERN_SA
   1368  1.146.2.3  wrstuden /*
   1369  1.146.2.3  wrstuden  * timer_sa_intr:
   1370  1.146.2.3  wrstuden  *
   1371  1.146.2.3  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1372  1.146.2.3  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1373  1.146.2.3  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1374  1.146.2.3  wrstuden  * handler, SA should still be enabled by the time we get here.
   1375  1.146.2.3  wrstuden  *
   1376  1.146.2.3  wrstuden  * XXX Is it legit to lock p_lock and the lwp at this time?
   1377  1.146.2.3  wrstuden  */
   1378  1.146.2.3  wrstuden static void
   1379  1.146.2.3  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1380  1.146.2.3  wrstuden {
   1381  1.146.2.3  wrstuden 	unsigned int i;
   1382  1.146.2.3  wrstuden 	struct sadata_vp *vp;
   1383  1.146.2.3  wrstuden 
   1384  1.146.2.3  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1385  1.146.2.3  wrstuden 	if (!p->p_timerpend) {
   1386  1.146.2.3  wrstuden 		/*
   1387  1.146.2.3  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1388  1.146.2.3  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1389  1.146.2.3  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1390  1.146.2.3  wrstuden 		 * determine if we really should call setrunnable.
   1391  1.146.2.3  wrstuden 		 */
   1392  1.146.2.3  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1393  1.146.2.3  wrstuden 		pt->pt_overruns = 0;
   1394  1.146.2.3  wrstuden 		i = 1 << pt->pt_entry;
   1395  1.146.2.3  wrstuden 		p->p_timers->pts_fired = i;
   1396  1.146.2.3  wrstuden 		p->p_timerpend = 1;
   1397  1.146.2.3  wrstuden 
   1398  1.146.2.3  wrstuden 		mutex_enter(p->p_lock);
   1399  1.146.2.3  wrstuden 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1400  1.146.2.3  wrstuden 			lwp_lock(vp->savp_lwp);
   1401  1.146.2.7  wrstuden 			lwp_need_userret(vp->savp_lwp);
   1402  1.146.2.3  wrstuden 			if (vp->savp_lwp->l_flag & LW_SA_IDLE) {
   1403  1.146.2.3  wrstuden 				vp->savp_lwp->l_flag &= ~LW_SA_IDLE;
   1404  1.146.2.5  wrstuden 				lwp_unsleep(vp->savp_lwp, true);
   1405  1.146.2.3  wrstuden 				break;
   1406  1.146.2.3  wrstuden 			}
   1407  1.146.2.3  wrstuden 			lwp_unlock(vp->savp_lwp);
   1408  1.146.2.3  wrstuden 		}
   1409  1.146.2.3  wrstuden 		mutex_exit(p->p_lock);
   1410  1.146.2.3  wrstuden 	} else {
   1411  1.146.2.3  wrstuden 		i = 1 << pt->pt_entry;
   1412  1.146.2.3  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1413  1.146.2.3  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1414  1.146.2.3  wrstuden 			pt->pt_overruns = 0;
   1415  1.146.2.3  wrstuden 			p->p_timers->pts_fired |= i;
   1416  1.146.2.3  wrstuden 		} else
   1417  1.146.2.3  wrstuden 			pt->pt_overruns++;
   1418  1.146.2.3  wrstuden 	}
   1419  1.146.2.3  wrstuden }
   1420  1.146.2.8  wrstuden #endif /* KERN_SA */
   1421  1.146.2.3  wrstuden 
   1422      1.142        ad static void
   1423      1.142        ad timer_intr(void *cookie)
   1424      1.142        ad {
   1425      1.142        ad 	ksiginfo_t ksi;
   1426      1.142        ad 	struct ptimer *pt;
   1427      1.142        ad 	proc_t *p;
   1428      1.142        ad 
   1429      1.142        ad 	mutex_spin_enter(&timer_lock);
   1430      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1431      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1432      1.142        ad 		KASSERT(pt->pt_queued);
   1433      1.142        ad 		pt->pt_queued = false;
   1434      1.142        ad 
   1435      1.142        ad 		if (pt->pt_proc->p_timers == NULL) {
   1436      1.142        ad 			/* Process is dying. */
   1437      1.142        ad 			continue;
   1438      1.142        ad 		}
   1439  1.146.2.3  wrstuden 		p = pt->pt_proc;
   1440  1.146.2.8  wrstuden #ifdef KERN_SA
   1441  1.146.2.3  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1442  1.146.2.3  wrstuden 			timer_sa_intr(pt, p);
   1443  1.146.2.3  wrstuden 			continue;
   1444  1.146.2.3  wrstuden 		}
   1445  1.146.2.8  wrstuden #endif /* KERN_SA */
   1446  1.146.2.3  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1447  1.146.2.3  wrstuden 			continue;
   1448      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1449       1.63   thorpej 			pt->pt_overruns++;
   1450      1.142        ad 			continue;
   1451       1.64   nathanw 		}
   1452      1.142        ad 
   1453      1.142        ad 		KSI_INIT(&ksi);
   1454      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1455      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1456      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1457      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1458      1.142        ad 		pt->pt_overruns = 0;
   1459      1.142        ad 		mutex_spin_exit(&timer_lock);
   1460      1.142        ad 
   1461      1.145        ad 		mutex_enter(proc_lock);
   1462      1.142        ad 		kpsignal(p, &ksi, NULL);
   1463      1.145        ad 		mutex_exit(proc_lock);
   1464      1.142        ad 
   1465      1.142        ad 		mutex_spin_enter(&timer_lock);
   1466       1.63   thorpej 	}
   1467      1.142        ad 	mutex_spin_exit(&timer_lock);
   1468       1.63   thorpej }
   1469       1.63   thorpej 
   1470       1.42       cgd /*
   1471       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1472       1.42       cgd  * for usage and rationale.
   1473       1.42       cgd  */
   1474       1.42       cgd int
   1475       1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1476       1.42       cgd {
   1477       1.49    itojun 	struct timeval tv, delta;
   1478      1.101    kardel 	int rv = 0;
   1479       1.42       cgd 
   1480      1.101    kardel 	getmicrouptime(&tv);
   1481       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1482       1.42       cgd 
   1483       1.42       cgd 	/*
   1484       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1485       1.42       cgd 	 * even if interval is huge.
   1486       1.42       cgd 	 */
   1487       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1488       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1489       1.49    itojun 		*lasttime = tv;
   1490       1.42       cgd 		rv = 1;
   1491       1.42       cgd 	}
   1492       1.50    itojun 
   1493       1.50    itojun 	return (rv);
   1494       1.50    itojun }
   1495       1.50    itojun 
   1496       1.50    itojun /*
   1497       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1498       1.50    itojun  */
   1499       1.50    itojun int
   1500       1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1501       1.50    itojun {
   1502       1.50    itojun 	struct timeval tv, delta;
   1503      1.101    kardel 	int rv;
   1504       1.50    itojun 
   1505      1.101    kardel 	getmicrouptime(&tv);
   1506       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1507       1.50    itojun 
   1508       1.50    itojun 	/*
   1509       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1510       1.50    itojun 	 * if more than one second have passed since the last update of
   1511       1.50    itojun 	 * lasttime, reset the counter.
   1512       1.50    itojun 	 *
   1513       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1514       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1515       1.50    itojun 	 */
   1516       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1517       1.50    itojun 	    delta.tv_sec >= 1) {
   1518       1.50    itojun 		*lasttime = tv;
   1519       1.50    itojun 		*curpps = 0;
   1520       1.69    dyoung 	}
   1521       1.69    dyoung 	if (maxpps < 0)
   1522       1.53    itojun 		rv = 1;
   1523       1.53    itojun 	else if (*curpps < maxpps)
   1524       1.50    itojun 		rv = 1;
   1525       1.50    itojun 	else
   1526       1.50    itojun 		rv = 0;
   1527       1.50    itojun 
   1528       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1529       1.50    itojun 	/* be careful about wrap-around */
   1530       1.50    itojun 	if (*curpps + 1 > *curpps)
   1531       1.50    itojun 		*curpps = *curpps + 1;
   1532       1.50    itojun #else
   1533       1.50    itojun 	/*
   1534       1.50    itojun 	 * assume that there's not too many calls to this function.
   1535       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1536       1.50    itojun 	 * behavior, not the behavior of this function.
   1537       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1538       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1539       1.50    itojun 	 */
   1540       1.50    itojun 	*curpps = *curpps + 1;
   1541       1.50    itojun #endif
   1542       1.42       cgd 
   1543       1.42       cgd 	return (rv);
   1544        1.1       cgd }
   1545