Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.149
      1  1.149  christos /*	$NetBSD: kern_time.c,v 1.149 2008/07/08 20:53:02 christos Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.142        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  *
     19   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30   1.42       cgd  */
     31    1.9       cgd 
     32    1.1       cgd /*
     33    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37    1.1       cgd  * modification, are permitted provided that the following conditions
     38    1.1       cgd  * are met:
     39    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45    1.1       cgd  *    may be used to endorse or promote products derived from this software
     46    1.1       cgd  *    without specific prior written permission.
     47    1.1       cgd  *
     48    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58    1.1       cgd  * SUCH DAMAGE.
     59    1.1       cgd  *
     60   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61    1.1       cgd  */
     62   1.58     lukem 
     63   1.58     lukem #include <sys/cdefs.h>
     64  1.149  christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.149 2008/07/08 20:53:02 christos Exp $");
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/resourcevar.h>
     68    1.5   mycroft #include <sys/kernel.h>
     69    1.8       cgd #include <sys/systm.h>
     70    1.5   mycroft #include <sys/proc.h>
     71    1.8       cgd #include <sys/vnode.h>
     72   1.17  christos #include <sys/signalvar.h>
     73   1.25     perry #include <sys/syslog.h>
     74  1.101    kardel #include <sys/timetc.h>
     75  1.143        ad #include <sys/timex.h>
     76   1.99      elad #include <sys/kauth.h>
     77   1.11       cgd #include <sys/mount.h>
     78   1.11       cgd #include <sys/syscallargs.h>
     79  1.143        ad #include <sys/cpu.h>
     80   1.19  christos 
     81   1.37   thorpej #include <uvm/uvm_extern.h>
     82   1.37   thorpej 
     83  1.142        ad static void	timer_intr(void *);
     84  1.142        ad static void	itimerfire(struct ptimer *);
     85  1.142        ad static void	itimerfree(struct ptimers *, int);
     86  1.142        ad 
     87  1.142        ad kmutex_t	timer_lock;
     88  1.142        ad 
     89  1.142        ad static void	*timer_sih;
     90  1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     91  1.131        ad 
     92   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     93  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     94   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     95  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     96   1.97    simonb 
     97  1.131        ad /*
     98  1.131        ad  * Initialize timekeeping.
     99  1.131        ad  */
    100  1.131        ad void
    101  1.131        ad time_init(void)
    102  1.131        ad {
    103  1.131        ad 
    104  1.147        ad 	/* nothing yet */
    105  1.131        ad }
    106  1.131        ad 
    107  1.142        ad void
    108  1.142        ad time_init2(void)
    109  1.142        ad {
    110  1.142        ad 
    111  1.142        ad 	TAILQ_INIT(&timer_queue);
    112  1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    113  1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    114  1.142        ad 	    timer_intr, NULL);
    115  1.142        ad }
    116  1.142        ad 
    117   1.63   thorpej /* Time of day and interval timer support.
    118    1.1       cgd  *
    119    1.1       cgd  * These routines provide the kernel entry points to get and set
    120    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    121    1.1       cgd  * here provide support for adding and subtracting timeval structures
    122    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    123    1.1       cgd  * timers when they expire.
    124    1.1       cgd  */
    125    1.1       cgd 
    126   1.22       jtc /* This function is used by clock_settime and settimeofday */
    127  1.132      elad static int
    128  1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    129   1.22       jtc {
    130   1.98  christos 	struct timeval delta, tv;
    131  1.101    kardel 	struct timeval now;
    132  1.101    kardel 	struct timespec ts1;
    133  1.137      yamt 	struct bintime btdelta;
    134  1.129        ad 	lwp_t *l;
    135  1.129        ad 	int s;
    136   1.22       jtc 
    137   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    138   1.98  christos 
    139   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140  1.129        ad 	s = splclock();
    141  1.101    kardel 	microtime(&now);
    142  1.101    kardel 	timersub(&tv, &now, &delta);
    143  1.132      elad 
    144  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145  1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    146  1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147  1.129        ad 		splx(s);
    148   1.29       tls 		return (EPERM);
    149   1.55      tron 	}
    150  1.132      elad 
    151   1.29       tls #ifdef notyet
    152  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153  1.129        ad 		splx(s);
    154   1.29       tls 		return (EPERM);
    155   1.55      tron 	}
    156   1.29       tls #endif
    157  1.103    kardel 
    158  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    159  1.101    kardel 	tc_setclock(&ts1);
    160  1.103    kardel 
    161   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    162  1.103    kardel 
    163   1.47   thorpej 	/*
    164  1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    165  1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    166  1.129        ad 	 * pausing all CPUs while we adjust the clock.
    167   1.47   thorpej 	 */
    168  1.137      yamt 	timeval2bintime(&delta, &btdelta);
    169  1.145        ad 	mutex_enter(proc_lock);
    170  1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    171  1.129        ad 		lwp_lock(l);
    172  1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    173  1.129        ad 		lwp_unlock(l);
    174  1.129        ad 	}
    175  1.145        ad 	mutex_exit(proc_lock);
    176   1.22       jtc 	resettodr();
    177  1.129        ad 	splx(s);
    178  1.129        ad 
    179   1.29       tls 	return (0);
    180   1.22       jtc }
    181   1.22       jtc 
    182  1.132      elad int
    183  1.132      elad settime(struct proc *p, struct timespec *ts)
    184  1.132      elad {
    185  1.132      elad 	return (settime1(p, ts, true));
    186  1.132      elad }
    187  1.132      elad 
    188   1.22       jtc /* ARGSUSED */
    189   1.22       jtc int
    190  1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    191  1.140      yamt     register_t *retval)
    192   1.22       jtc {
    193  1.135       dsl 	/* {
    194   1.22       jtc 		syscallarg(clockid_t) clock_id;
    195   1.23       cgd 		syscallarg(struct timespec *) tp;
    196  1.135       dsl 	} */
    197   1.22       jtc 	clockid_t clock_id;
    198   1.22       jtc 	struct timespec ats;
    199   1.22       jtc 
    200   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    201   1.61    simonb 	switch (clock_id) {
    202   1.61    simonb 	case CLOCK_REALTIME:
    203   1.96    simonb 		nanotime(&ats);
    204   1.61    simonb 		break;
    205   1.61    simonb 	case CLOCK_MONOTONIC:
    206  1.101    kardel 		nanouptime(&ats);
    207   1.61    simonb 		break;
    208   1.61    simonb 	default:
    209   1.22       jtc 		return (EINVAL);
    210   1.61    simonb 	}
    211   1.22       jtc 
    212   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    213   1.22       jtc }
    214   1.22       jtc 
    215   1.22       jtc /* ARGSUSED */
    216   1.22       jtc int
    217  1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    218  1.140      yamt     register_t *retval)
    219   1.22       jtc {
    220  1.135       dsl 	/* {
    221   1.22       jtc 		syscallarg(clockid_t) clock_id;
    222   1.23       cgd 		syscallarg(const struct timespec *) tp;
    223  1.135       dsl 	} */
    224   1.22       jtc 
    225  1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    226  1.132      elad 	    true);
    227   1.56      manu }
    228   1.56      manu 
    229   1.56      manu 
    230   1.56      manu int
    231  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    232  1.132      elad     bool check_kauth)
    233   1.56      manu {
    234   1.60      manu 	struct timespec ats;
    235   1.56      manu 	int error;
    236   1.56      manu 
    237   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    238   1.60      manu 		return (error);
    239   1.60      manu 
    240   1.61    simonb 	switch (clock_id) {
    241   1.61    simonb 	case CLOCK_REALTIME:
    242  1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    243   1.61    simonb 			return (error);
    244   1.61    simonb 		break;
    245   1.61    simonb 	case CLOCK_MONOTONIC:
    246   1.61    simonb 		return (EINVAL);	/* read-only clock */
    247   1.61    simonb 	default:
    248   1.56      manu 		return (EINVAL);
    249   1.61    simonb 	}
    250   1.22       jtc 
    251   1.22       jtc 	return 0;
    252   1.22       jtc }
    253   1.22       jtc 
    254   1.22       jtc int
    255  1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    256  1.140      yamt     register_t *retval)
    257   1.22       jtc {
    258  1.135       dsl 	/* {
    259   1.22       jtc 		syscallarg(clockid_t) clock_id;
    260   1.23       cgd 		syscallarg(struct timespec *) tp;
    261  1.135       dsl 	} */
    262   1.22       jtc 	clockid_t clock_id;
    263   1.22       jtc 	struct timespec ts;
    264   1.22       jtc 	int error = 0;
    265   1.22       jtc 
    266   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    267   1.61    simonb 	switch (clock_id) {
    268   1.61    simonb 	case CLOCK_REALTIME:
    269   1.61    simonb 	case CLOCK_MONOTONIC:
    270   1.22       jtc 		ts.tv_sec = 0;
    271  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    272  1.102    kardel 			ts.tv_nsec = 1;
    273  1.102    kardel 		else
    274  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    275   1.61    simonb 		break;
    276   1.61    simonb 	default:
    277   1.61    simonb 		return (EINVAL);
    278   1.61    simonb 	}
    279   1.22       jtc 
    280   1.61    simonb 	if (SCARG(uap, tp))
    281   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    282   1.22       jtc 
    283   1.22       jtc 	return error;
    284   1.22       jtc }
    285   1.22       jtc 
    286   1.27       jtc /* ARGSUSED */
    287   1.27       jtc int
    288  1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    289  1.140      yamt     register_t *retval)
    290   1.27       jtc {
    291  1.135       dsl 	/* {
    292  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    293  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    294  1.135       dsl 	} */
    295  1.101    kardel 	struct timespec rmt, rqt;
    296  1.120       dsl 	int error, error1;
    297  1.101    kardel 
    298  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    299  1.101    kardel 	if (error)
    300  1.101    kardel 		return (error);
    301  1.101    kardel 
    302  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    303  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    304  1.120       dsl 		return error;
    305  1.120       dsl 
    306  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    307  1.120       dsl 	return error1 ? error1 : error;
    308  1.120       dsl }
    309  1.120       dsl 
    310  1.120       dsl int
    311  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    312  1.120       dsl {
    313  1.141      yamt 	struct timespec rmtstart;
    314  1.120       dsl 	int error, timo;
    315  1.120       dsl 
    316  1.120       dsl 	if (itimespecfix(rqt))
    317  1.101    kardel 		return (EINVAL);
    318  1.101    kardel 
    319  1.120       dsl 	timo = tstohz(rqt);
    320  1.101    kardel 	/*
    321  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    322  1.101    kardel 	 */
    323  1.101    kardel 	if (timo == 0)
    324  1.101    kardel 		timo = 1;
    325  1.141      yamt 	getnanouptime(&rmtstart);
    326  1.141      yamt again:
    327  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    328  1.141      yamt 	if (rmt != NULL || error == 0) {
    329  1.141      yamt 		struct timespec rmtend;
    330  1.141      yamt 		struct timespec t0;
    331  1.141      yamt 		struct timespec *t;
    332  1.101    kardel 
    333  1.141      yamt 		getnanouptime(&rmtend);
    334  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    335  1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    336  1.141      yamt 		timespecsub(rqt, t, t);
    337  1.141      yamt 		if (t->tv_sec < 0)
    338  1.141      yamt 			timespecclear(t);
    339  1.141      yamt 		if (error == 0) {
    340  1.141      yamt 			timo = tstohz(t);
    341  1.141      yamt 			if (timo > 0)
    342  1.141      yamt 				goto again;
    343  1.141      yamt 		}
    344  1.141      yamt 	}
    345  1.104    kardel 
    346  1.101    kardel 	if (error == ERESTART)
    347  1.101    kardel 		error = EINTR;
    348  1.101    kardel 	if (error == EWOULDBLOCK)
    349  1.101    kardel 		error = 0;
    350  1.101    kardel 
    351  1.101    kardel 	return error;
    352   1.27       jtc }
    353   1.22       jtc 
    354    1.1       cgd /* ARGSUSED */
    355    1.3    andrew int
    356  1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    357  1.140      yamt     register_t *retval)
    358   1.15   thorpej {
    359  1.135       dsl 	/* {
    360   1.11       cgd 		syscallarg(struct timeval *) tp;
    361  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    362  1.135       dsl 	} */
    363    1.1       cgd 	struct timeval atv;
    364    1.1       cgd 	int error = 0;
    365   1.25     perry 	struct timezone tzfake;
    366    1.1       cgd 
    367   1.11       cgd 	if (SCARG(uap, tp)) {
    368    1.1       cgd 		microtime(&atv);
    369   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    370   1.17  christos 		if (error)
    371    1.1       cgd 			return (error);
    372    1.1       cgd 	}
    373   1.25     perry 	if (SCARG(uap, tzp)) {
    374   1.25     perry 		/*
    375   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    376   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    377   1.25     perry 		 */
    378   1.25     perry 		tzfake.tz_minuteswest = 0;
    379   1.25     perry 		tzfake.tz_dsttime = 0;
    380   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    381   1.25     perry 	}
    382    1.1       cgd 	return (error);
    383    1.1       cgd }
    384    1.1       cgd 
    385    1.1       cgd /* ARGSUSED */
    386    1.3    andrew int
    387  1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    388  1.140      yamt     register_t *retval)
    389   1.15   thorpej {
    390  1.135       dsl 	/* {
    391   1.24       cgd 		syscallarg(const struct timeval *) tv;
    392  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    393  1.135       dsl 	} */
    394   1.60      manu 
    395  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    396   1.60      manu }
    397   1.60      manu 
    398   1.60      manu int
    399  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    400  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    401   1.60      manu {
    402   1.22       jtc 	struct timeval atv;
    403   1.98  christos 	struct timespec ts;
    404   1.22       jtc 	int error;
    405    1.1       cgd 
    406    1.8       cgd 	/* Verify all parameters before changing time. */
    407  1.119       dsl 
    408   1.25     perry 	/*
    409   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    410   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    411   1.25     perry 	 */
    412   1.98  christos 	if (utzp)
    413   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    414  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    415   1.98  christos 
    416   1.98  christos 	if (utv == NULL)
    417   1.98  christos 		return 0;
    418   1.98  christos 
    419  1.119       dsl 	if (userspace) {
    420  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    421  1.119       dsl 			return error;
    422  1.119       dsl 		utv = &atv;
    423  1.119       dsl 	}
    424  1.119       dsl 
    425  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    426  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    427    1.1       cgd }
    428    1.1       cgd 
    429   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    430    1.1       cgd 
    431    1.1       cgd /* ARGSUSED */
    432    1.3    andrew int
    433  1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    434  1.140      yamt     register_t *retval)
    435   1.15   thorpej {
    436  1.135       dsl 	/* {
    437   1.24       cgd 		syscallarg(const struct timeval *) delta;
    438   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    439  1.135       dsl 	} */
    440   1.56      manu 	int error;
    441    1.1       cgd 
    442  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    443  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    444    1.1       cgd 		return (error);
    445   1.17  christos 
    446  1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    447   1.56      manu }
    448   1.56      manu 
    449   1.56      manu int
    450  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    451   1.56      manu {
    452   1.60      manu 	struct timeval atv;
    453  1.101    kardel 	int error = 0;
    454  1.101    kardel 
    455  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    456  1.101    kardel 
    457  1.101    kardel 	if (olddelta) {
    458  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    459  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    460  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    461  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    462  1.101    kardel 		if (atv.tv_usec < 0) {
    463  1.101    kardel 			atv.tv_usec += 1000000;
    464  1.101    kardel 			atv.tv_sec--;
    465  1.101    kardel 		}
    466  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    467  1.101    kardel 		if (error)
    468  1.101    kardel 			return (error);
    469  1.101    kardel 	}
    470  1.101    kardel 
    471  1.101    kardel 	if (delta) {
    472  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    473  1.101    kardel 		if (error)
    474  1.101    kardel 			return (error);
    475  1.101    kardel 
    476  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    477  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    478  1.101    kardel 			atv.tv_usec;
    479  1.143        ad 		if (time_adjtime) {
    480  1.101    kardel 			/* We need to save the system time during shutdown */
    481  1.101    kardel 			time_adjusted |= 1;
    482  1.143        ad 		}
    483  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    484  1.101    kardel 	}
    485  1.101    kardel 
    486   1.79       chs 	return error;
    487    1.1       cgd }
    488    1.1       cgd 
    489    1.1       cgd /*
    490   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    491   1.63   thorpej  * timer_*() family of routines are supported.
    492    1.1       cgd  *
    493   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    494   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    495   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    496   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    497   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    498   1.63   thorpej  * syscall.
    499    1.1       cgd  *
    500   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    501   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    502    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    503   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    504   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    505   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    506   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    507   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    508   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    509   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    510   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    511   1.63   thorpej 
    512   1.63   thorpej /* Allocate a POSIX realtime timer. */
    513   1.63   thorpej int
    514  1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    515  1.140      yamt     register_t *retval)
    516   1.63   thorpej {
    517  1.135       dsl 	/* {
    518   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    519   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    520   1.63   thorpej 		syscallarg(timer_t *) timerid;
    521  1.135       dsl 	} */
    522   1.92      cube 
    523   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    524  1.105        ad 	    SCARG(uap, evp), copyin, l);
    525   1.92      cube }
    526   1.92      cube 
    527   1.92      cube int
    528   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    529  1.105        ad     copyin_t fetch_event, struct lwp *l)
    530   1.92      cube {
    531   1.92      cube 	int error;
    532   1.92      cube 	timer_t timerid;
    533  1.142        ad 	struct ptimers *pts;
    534   1.63   thorpej 	struct ptimer *pt;
    535  1.105        ad 	struct proc *p;
    536  1.105        ad 
    537  1.105        ad 	p = l->l_proc;
    538   1.63   thorpej 
    539  1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    540   1.63   thorpej 		return (EINVAL);
    541   1.63   thorpej 
    542  1.142        ad 	if ((pts = p->p_timers) == NULL)
    543  1.142        ad 		pts = timers_alloc(p);
    544   1.63   thorpej 
    545   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    546  1.142        ad 	if (evp != NULL) {
    547   1.63   thorpej 		if (((error =
    548   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    549   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    550   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    551   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    552   1.63   thorpej 			return (error ? error : EINVAL);
    553   1.63   thorpej 		}
    554  1.142        ad 	}
    555  1.142        ad 
    556  1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    557  1.142        ad 	mutex_spin_enter(&timer_lock);
    558  1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    559  1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    560  1.142        ad 			break;
    561  1.142        ad 	if (timerid == TIMER_MAX) {
    562  1.142        ad 		mutex_spin_exit(&timer_lock);
    563  1.142        ad 		pool_put(&ptimer_pool, pt);
    564  1.142        ad 		return EAGAIN;
    565  1.142        ad 	}
    566  1.142        ad 	if (evp == NULL) {
    567   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    568   1.63   thorpej 		switch (id) {
    569   1.63   thorpej 		case CLOCK_REALTIME:
    570   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    571   1.63   thorpej 			break;
    572   1.63   thorpej 		case CLOCK_VIRTUAL:
    573   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    574   1.63   thorpej 			break;
    575   1.63   thorpej 		case CLOCK_PROF:
    576   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    577   1.63   thorpej 			break;
    578   1.63   thorpej 		}
    579   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    580   1.63   thorpej 	}
    581   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    582   1.73  christos 	pt->pt_info.ksi_errno = 0;
    583   1.73  christos 	pt->pt_info.ksi_code = 0;
    584   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    585  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    586  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    587   1.63   thorpej 	pt->pt_type = id;
    588   1.63   thorpej 	pt->pt_proc = p;
    589   1.63   thorpej 	pt->pt_overruns = 0;
    590   1.63   thorpej 	pt->pt_poverruns = 0;
    591   1.64   nathanw 	pt->pt_entry = timerid;
    592  1.142        ad 	pt->pt_queued = false;
    593   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    594  1.149  christos 	if (id == CLOCK_REALTIME)
    595  1.149  christos 		callout_init(&pt->pt_ch, 0);
    596  1.149  christos 	else
    597  1.149  christos 		pt->pt_active = 0;
    598  1.149  christos 
    599  1.142        ad 	pts->pts_timers[timerid] = pt;
    600  1.142        ad 	mutex_spin_exit(&timer_lock);
    601   1.63   thorpej 
    602   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    603   1.63   thorpej }
    604   1.63   thorpej 
    605   1.63   thorpej /* Delete a POSIX realtime timer */
    606    1.3    andrew int
    607  1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    608  1.140      yamt     register_t *retval)
    609   1.15   thorpej {
    610  1.135       dsl 	/* {
    611   1.63   thorpej 		syscallarg(timer_t) timerid;
    612  1.135       dsl 	} */
    613   1.63   thorpej 	struct proc *p = l->l_proc;
    614   1.65  jdolecek 	timer_t timerid;
    615  1.142        ad 	struct ptimers *pts;
    616   1.63   thorpej 	struct ptimer *pt, *ptn;
    617    1.1       cgd 
    618   1.63   thorpej 	timerid = SCARG(uap, timerid);
    619  1.142        ad 	pts = p->p_timers;
    620  1.142        ad 
    621  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    622  1.142        ad 		return (EINVAL);
    623   1.63   thorpej 
    624  1.142        ad 	mutex_spin_enter(&timer_lock);
    625  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    626  1.142        ad 		mutex_spin_exit(&timer_lock);
    627    1.1       cgd 		return (EINVAL);
    628  1.142        ad 	}
    629  1.149  christos 	if (pt->pt_type != CLOCK_REALTIME) {
    630  1.149  christos 		if (pt->pt_active) {
    631  1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    632  1.149  christos 			LIST_REMOVE(pt, pt_list);
    633  1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    634  1.149  christos 				timeradd(&pt->pt_time.it_value,
    635  1.149  christos 				    &ptn->pt_time.it_value,
    636  1.149  christos 				    &ptn->pt_time.it_value);
    637  1.149  christos 			pt->pt_active = 0;
    638  1.149  christos 		}
    639   1.63   thorpej 	}
    640  1.142        ad 	itimerfree(pts, timerid);
    641   1.63   thorpej 
    642   1.63   thorpej 	return (0);
    643   1.63   thorpej }
    644   1.63   thorpej 
    645   1.63   thorpej /*
    646   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    647   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    648   1.67   nathanw  * time for virtual timers.
    649   1.63   thorpej  * Must be called at splclock().
    650   1.63   thorpej  */
    651   1.63   thorpej void
    652   1.63   thorpej timer_settime(struct ptimer *pt)
    653   1.63   thorpej {
    654   1.63   thorpej 	struct ptimer *ptn, *pptn;
    655   1.63   thorpej 	struct ptlist *ptl;
    656   1.63   thorpej 
    657  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    658  1.142        ad 
    659   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    660   1.63   thorpej 		callout_stop(&pt->pt_ch);
    661   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    662   1.63   thorpej 			/*
    663   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    664   1.63   thorpej 			 * callout_reset() does it for us.
    665   1.63   thorpej 			 */
    666   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    667   1.63   thorpej 			    realtimerexpire, pt);
    668   1.63   thorpej 		}
    669   1.63   thorpej 	} else {
    670   1.63   thorpej 		if (pt->pt_active) {
    671   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    672   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    673   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    674   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    675   1.63   thorpej 				    &ptn->pt_time.it_value,
    676   1.63   thorpej 				    &ptn->pt_time.it_value);
    677   1.63   thorpej 		}
    678   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    679   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    680   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    681   1.63   thorpej 			else
    682   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    683   1.63   thorpej 
    684   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    685   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    686   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    687   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    688   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    689   1.63   thorpej 				    &ptn->pt_time.it_value,
    690   1.63   thorpej 				    &pt->pt_time.it_value);
    691   1.63   thorpej 
    692   1.63   thorpej 			if (pptn)
    693   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    694   1.63   thorpej 			else
    695   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    696   1.63   thorpej 
    697   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    698   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    699   1.63   thorpej 				    &pt->pt_time.it_value,
    700   1.63   thorpej 				    &ptn->pt_time.it_value);
    701   1.63   thorpej 
    702   1.63   thorpej 			pt->pt_active = 1;
    703   1.63   thorpej 		} else
    704   1.63   thorpej 			pt->pt_active = 0;
    705   1.63   thorpej 	}
    706   1.63   thorpej }
    707   1.63   thorpej 
    708   1.63   thorpej void
    709   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    710   1.63   thorpej {
    711  1.101    kardel 	struct timeval now;
    712   1.63   thorpej 	struct ptimer *ptn;
    713   1.63   thorpej 
    714  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    715  1.142        ad 
    716   1.63   thorpej 	*aitv = pt->pt_time;
    717   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    718    1.1       cgd 		/*
    719   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    720   1.63   thorpej 		 * part of real time timer.  If time for real time
    721   1.63   thorpej 		 * timer has passed return 0, else return difference
    722   1.63   thorpej 		 * between current time and time for the timer to go
    723   1.63   thorpej 		 * off.
    724    1.1       cgd 		 */
    725   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    726  1.101    kardel 			getmicrotime(&now);
    727  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    728  1.101    kardel 				timerclear(&aitv->it_value);
    729  1.101    kardel 			else
    730  1.101    kardel 				timersub(&aitv->it_value, &now,
    731  1.101    kardel 				    &aitv->it_value);
    732   1.36   thorpej 		}
    733   1.63   thorpej 	} else if (pt->pt_active) {
    734   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    735   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    736   1.63   thorpej 		else
    737   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    738   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    739   1.63   thorpej 			timeradd(&aitv->it_value,
    740   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    741   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    742    1.1       cgd 	} else
    743   1.63   thorpej 		timerclear(&aitv->it_value);
    744   1.63   thorpej }
    745   1.63   thorpej 
    746   1.63   thorpej 
    747   1.63   thorpej 
    748   1.63   thorpej /* Set and arm a POSIX realtime timer */
    749   1.63   thorpej int
    750  1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    751  1.140      yamt     register_t *retval)
    752   1.63   thorpej {
    753  1.135       dsl 	/* {
    754   1.63   thorpej 		syscallarg(timer_t) timerid;
    755   1.63   thorpej 		syscallarg(int) flags;
    756   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    757   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    758  1.135       dsl 	} */
    759   1.92      cube 	int error;
    760   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    761   1.92      cube 
    762   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    763   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    764   1.92      cube 		return (error);
    765   1.92      cube 
    766   1.92      cube 	if (SCARG(uap, ovalue))
    767   1.92      cube 		ovp = &ovalue;
    768   1.92      cube 
    769   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    770   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    771   1.92      cube 		return error;
    772   1.92      cube 
    773   1.92      cube 	if (ovp)
    774   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    775   1.92      cube 		    sizeof(struct itimerspec));
    776   1.92      cube 	return 0;
    777   1.92      cube }
    778   1.92      cube 
    779   1.92      cube int
    780   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    781   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    782   1.92      cube {
    783  1.101    kardel 	struct timeval now;
    784   1.63   thorpej 	struct itimerval val, oval;
    785  1.142        ad 	struct ptimers *pts;
    786   1.63   thorpej 	struct ptimer *pt;
    787   1.63   thorpej 
    788  1.142        ad 	pts = p->p_timers;
    789   1.63   thorpej 
    790  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    791  1.142        ad 		return EINVAL;
    792   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    793   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    794   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    795   1.63   thorpej 		return (EINVAL);
    796   1.63   thorpej 
    797  1.142        ad 	mutex_spin_enter(&timer_lock);
    798  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    799  1.142        ad 		mutex_spin_exit(&timer_lock);
    800  1.142        ad 		return (EINVAL);
    801  1.142        ad 	}
    802  1.142        ad 
    803   1.63   thorpej 	oval = pt->pt_time;
    804   1.63   thorpej 	pt->pt_time = val;
    805   1.63   thorpej 
    806   1.67   nathanw 	/*
    807   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    808   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    809   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    810   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    811   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    812   1.67   nathanw 	 */
    813   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    814   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    815  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    816  1.101    kardel 				getmicrotime(&now);
    817  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    818  1.101    kardel 				    &pt->pt_time.it_value);
    819  1.101    kardel 			}
    820   1.67   nathanw 		} else {
    821   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    822  1.101    kardel 				getmicrotime(&now);
    823  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    824  1.101    kardel 				    &pt->pt_time.it_value);
    825   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    826   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    827   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    828   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    829   1.67   nathanw 				}
    830   1.67   nathanw 			}
    831   1.67   nathanw 		}
    832   1.67   nathanw 	}
    833   1.67   nathanw 
    834   1.63   thorpej 	timer_settime(pt);
    835  1.142        ad 	mutex_spin_exit(&timer_lock);
    836   1.63   thorpej 
    837   1.92      cube 	if (ovalue) {
    838   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    839   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    840   1.63   thorpej 	}
    841   1.63   thorpej 
    842   1.63   thorpej 	return (0);
    843   1.63   thorpej }
    844   1.63   thorpej 
    845   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    846   1.63   thorpej int
    847  1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    848  1.140      yamt     register_t *retval)
    849   1.63   thorpej {
    850  1.135       dsl 	/* {
    851   1.63   thorpej 		syscallarg(timer_t) timerid;
    852   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    853  1.135       dsl 	} */
    854   1.63   thorpej 	struct itimerspec its;
    855   1.92      cube 	int error;
    856   1.92      cube 
    857   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    858   1.92      cube 	    &its)) != 0)
    859   1.92      cube 		return error;
    860   1.92      cube 
    861   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    862   1.92      cube }
    863   1.92      cube 
    864   1.92      cube int
    865   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    866   1.92      cube {
    867   1.63   thorpej 	struct ptimer *pt;
    868  1.142        ad 	struct ptimers *pts;
    869   1.92      cube 	struct itimerval aitv;
    870   1.63   thorpej 
    871  1.142        ad 	pts = p->p_timers;
    872  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    873   1.63   thorpej 		return (EINVAL);
    874  1.142        ad 	mutex_spin_enter(&timer_lock);
    875  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    876  1.142        ad 		mutex_spin_exit(&timer_lock);
    877  1.142        ad 		return (EINVAL);
    878  1.142        ad 	}
    879   1.63   thorpej 	timer_gettime(pt, &aitv);
    880  1.142        ad 	mutex_spin_exit(&timer_lock);
    881   1.63   thorpej 
    882   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    883   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    884   1.63   thorpej 
    885   1.92      cube 	return 0;
    886   1.63   thorpej }
    887   1.63   thorpej 
    888   1.63   thorpej /*
    889   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    890   1.63   thorpej  * while a notification was already pending. The counter is reset when
    891   1.63   thorpej  * a timer expires and a notification can be posted.
    892   1.63   thorpej  */
    893   1.63   thorpej int
    894  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    895  1.140      yamt     register_t *retval)
    896   1.63   thorpej {
    897  1.135       dsl 	/* {
    898   1.63   thorpej 		syscallarg(timer_t) timerid;
    899  1.135       dsl 	} */
    900   1.63   thorpej 	struct proc *p = l->l_proc;
    901  1.142        ad 	struct ptimers *pts;
    902   1.63   thorpej 	int timerid;
    903   1.63   thorpej 	struct ptimer *pt;
    904   1.63   thorpej 
    905   1.63   thorpej 	timerid = SCARG(uap, timerid);
    906   1.63   thorpej 
    907  1.142        ad 	pts = p->p_timers;
    908  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    909  1.142        ad 		return (EINVAL);
    910  1.142        ad 	mutex_spin_enter(&timer_lock);
    911  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    912  1.142        ad 		mutex_spin_exit(&timer_lock);
    913   1.63   thorpej 		return (EINVAL);
    914  1.142        ad 	}
    915   1.63   thorpej 	*retval = pt->pt_poverruns;
    916  1.142        ad 	mutex_spin_exit(&timer_lock);
    917   1.63   thorpej 
    918   1.63   thorpej 	return (0);
    919   1.63   thorpej }
    920   1.63   thorpej 
    921   1.63   thorpej /*
    922   1.63   thorpej  * Real interval timer expired:
    923   1.63   thorpej  * send process whose timer expired an alarm signal.
    924   1.63   thorpej  * If time is not set up to reload, then just return.
    925   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    926   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    927   1.63   thorpej  * SIGALRM calls to be compressed into one.
    928   1.63   thorpej  */
    929   1.63   thorpej void
    930   1.63   thorpej realtimerexpire(void *arg)
    931   1.63   thorpej {
    932  1.148     joerg 	uint64_t last_val, next_val, interval, now_ms;
    933  1.148     joerg 	struct timeval now, next;
    934   1.63   thorpej 	struct ptimer *pt;
    935  1.148     joerg 	int backwards;
    936   1.63   thorpej 
    937  1.142        ad 	pt = arg;
    938   1.63   thorpej 
    939  1.142        ad 	mutex_spin_enter(&timer_lock);
    940   1.63   thorpej 	itimerfire(pt);
    941   1.63   thorpej 
    942   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    943   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    944  1.142        ad 		mutex_spin_exit(&timer_lock);
    945   1.63   thorpej 		return;
    946   1.63   thorpej 	}
    947  1.148     joerg 
    948  1.148     joerg 	getmicrotime(&now);
    949  1.148     joerg 	backwards = (timercmp(&pt->pt_time.it_value, &now, >));
    950  1.148     joerg 	timeradd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    951  1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    952  1.148     joerg 	if (!backwards && timercmp(&next, &now, >)) {
    953  1.148     joerg 		pt->pt_time.it_value = next;
    954  1.148     joerg 	} else {
    955  1.148     joerg #define TV2MS(x) (((uint64_t)(x)->tv_sec) * 1000000 + (x)->tv_usec)
    956  1.148     joerg 		now_ms = TV2MS(&now);
    957  1.148     joerg 		last_val = TV2MS(&pt->pt_time.it_value);
    958  1.148     joerg 		interval = TV2MS(&pt->pt_time.it_interval);
    959  1.148     joerg #undef TV2MS
    960  1.148     joerg 
    961  1.148     joerg 		next_val = now_ms +
    962  1.148     joerg 		    (now_ms - last_val + interval - 1) % interval;
    963  1.148     joerg 
    964  1.148     joerg 		if (backwards)
    965  1.148     joerg 			next_val += interval;
    966  1.148     joerg 		else
    967  1.148     joerg 			pt->pt_overruns += (now_ms - last_val) / interval;
    968  1.148     joerg 
    969  1.148     joerg 		pt->pt_time.it_value.tv_sec = next_val / 1000000;
    970  1.148     joerg 		pt->pt_time.it_value.tv_usec = next_val % 1000000;
    971  1.101    kardel 	}
    972  1.148     joerg 
    973  1.148     joerg 	/*
    974  1.148     joerg 	 * Don't need to check hzto() return value, here.
    975  1.148     joerg 	 * callout_reset() does it for us.
    976  1.148     joerg 	 */
    977  1.148     joerg 	callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    978  1.148     joerg 	    realtimerexpire, pt);
    979  1.148     joerg 	mutex_spin_exit(&timer_lock);
    980   1.63   thorpej }
    981   1.63   thorpej 
    982   1.63   thorpej /* BSD routine to get the value of an interval timer. */
    983   1.63   thorpej /* ARGSUSED */
    984   1.63   thorpej int
    985  1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
    986  1.140      yamt     register_t *retval)
    987   1.63   thorpej {
    988  1.135       dsl 	/* {
    989   1.63   thorpej 		syscallarg(int) which;
    990   1.63   thorpej 		syscallarg(struct itimerval *) itv;
    991  1.135       dsl 	} */
    992   1.63   thorpej 	struct proc *p = l->l_proc;
    993   1.63   thorpej 	struct itimerval aitv;
    994   1.91      cube 	int error;
    995   1.91      cube 
    996   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    997   1.91      cube 	if (error)
    998   1.91      cube 		return error;
    999   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1000   1.91      cube }
   1001   1.63   thorpej 
   1002   1.91      cube int
   1003   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1004   1.91      cube {
   1005  1.142        ad 	struct ptimers *pts;
   1006  1.142        ad 	struct ptimer *pt;
   1007   1.63   thorpej 
   1008   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1009   1.63   thorpej 		return (EINVAL);
   1010   1.63   thorpej 
   1011  1.142        ad 	mutex_spin_enter(&timer_lock);
   1012  1.142        ad 	pts = p->p_timers;
   1013  1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1014   1.91      cube 		timerclear(&itvp->it_value);
   1015   1.91      cube 		timerclear(&itvp->it_interval);
   1016  1.142        ad 	} else
   1017  1.142        ad 		timer_gettime(pt, itvp);
   1018  1.142        ad 	mutex_spin_exit(&timer_lock);
   1019   1.63   thorpej 
   1020   1.91      cube 	return 0;
   1021    1.1       cgd }
   1022    1.1       cgd 
   1023   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1024    1.1       cgd /* ARGSUSED */
   1025    1.3    andrew int
   1026  1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1027  1.140      yamt     register_t *retval)
   1028   1.15   thorpej {
   1029  1.135       dsl 	/* {
   1030   1.30   mycroft 		syscallarg(int) which;
   1031   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1032   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1033  1.135       dsl 	} */
   1034   1.63   thorpej 	struct proc *p = l->l_proc;
   1035   1.30   mycroft 	int which = SCARG(uap, which);
   1036   1.21       cgd 	struct sys_getitimer_args getargs;
   1037   1.91      cube 	const struct itimerval *itvp;
   1038    1.1       cgd 	struct itimerval aitv;
   1039   1.91      cube 	int error;
   1040    1.1       cgd 
   1041   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1042    1.1       cgd 		return (EINVAL);
   1043   1.11       cgd 	itvp = SCARG(uap, itv);
   1044   1.63   thorpej 	if (itvp &&
   1045   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1046    1.1       cgd 		return (error);
   1047   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1048   1.30   mycroft 		SCARG(&getargs, which) = which;
   1049   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1050   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1051   1.21       cgd 			return (error);
   1052   1.21       cgd 	}
   1053    1.1       cgd 	if (itvp == 0)
   1054    1.1       cgd 		return (0);
   1055   1.91      cube 
   1056   1.91      cube 	return dosetitimer(p, which, &aitv);
   1057   1.91      cube }
   1058   1.91      cube 
   1059   1.91      cube int
   1060   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1061   1.91      cube {
   1062  1.101    kardel 	struct timeval now;
   1063  1.142        ad 	struct ptimers *pts;
   1064  1.142        ad 	struct ptimer *pt, *spare;
   1065   1.91      cube 
   1066   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1067    1.1       cgd 		return (EINVAL);
   1068   1.63   thorpej 
   1069   1.63   thorpej 	/*
   1070   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1071   1.63   thorpej 	 * wants to clear the timer.
   1072   1.63   thorpej 	 */
   1073  1.142        ad 	spare = NULL;
   1074  1.142        ad 	pts = p->p_timers;
   1075  1.142        ad  retry:
   1076  1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1077  1.142        ad 	    pts->pts_timers[which] == NULL))
   1078   1.63   thorpej 		return (0);
   1079  1.142        ad 	if (pts == NULL)
   1080  1.142        ad 		pts = timers_alloc(p);
   1081  1.142        ad 	mutex_spin_enter(&timer_lock);
   1082  1.142        ad 	pt = pts->pts_timers[which];
   1083  1.142        ad 	if (pt == NULL) {
   1084  1.142        ad 		if (spare == NULL) {
   1085  1.142        ad 			mutex_spin_exit(&timer_lock);
   1086  1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1087  1.142        ad 			goto retry;
   1088  1.142        ad 		}
   1089  1.142        ad 		pt = spare;
   1090  1.142        ad 		spare = NULL;
   1091   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1092   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1093   1.63   thorpej 		pt->pt_overruns = 0;
   1094   1.63   thorpej 		pt->pt_proc = p;
   1095   1.63   thorpej 		pt->pt_type = which;
   1096   1.64   nathanw 		pt->pt_entry = which;
   1097  1.142        ad 		pt->pt_queued = false;
   1098  1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1099  1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1100  1.149  christos 		else
   1101  1.149  christos 			pt->pt_active = 0;
   1102  1.149  christos 
   1103   1.63   thorpej 		switch (which) {
   1104   1.63   thorpej 		case ITIMER_REAL:
   1105   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1106   1.63   thorpej 			break;
   1107   1.63   thorpej 		case ITIMER_VIRTUAL:
   1108   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1109   1.63   thorpej 			break;
   1110   1.63   thorpej 		case ITIMER_PROF:
   1111   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1112   1.63   thorpej 			break;
   1113    1.1       cgd 		}
   1114  1.142        ad 		pts->pts_timers[which] = pt;
   1115  1.142        ad 	}
   1116   1.91      cube 	pt->pt_time = *itvp;
   1117   1.63   thorpej 
   1118   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1119   1.67   nathanw 		/* Convert to absolute time */
   1120  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1121  1.101    kardel 		getmicrotime(&now);
   1122  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1123   1.67   nathanw 	}
   1124   1.63   thorpej 	timer_settime(pt);
   1125  1.142        ad 	mutex_spin_exit(&timer_lock);
   1126  1.142        ad 	if (spare != NULL)
   1127  1.142        ad 		pool_put(&ptimer_pool, spare);
   1128   1.63   thorpej 
   1129    1.1       cgd 	return (0);
   1130    1.1       cgd }
   1131    1.1       cgd 
   1132   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1133  1.142        ad struct ptimers *
   1134   1.63   thorpej timers_alloc(struct proc *p)
   1135   1.63   thorpej {
   1136  1.142        ad 	struct ptimers *pts;
   1137   1.63   thorpej 	int i;
   1138   1.63   thorpej 
   1139  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1140   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1141   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1142   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1143   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1144   1.64   nathanw 	pts->pts_fired = 0;
   1145  1.142        ad 	mutex_spin_enter(&timer_lock);
   1146  1.142        ad 	if (p->p_timers == NULL) {
   1147  1.142        ad 		p->p_timers = pts;
   1148  1.142        ad 		mutex_spin_exit(&timer_lock);
   1149  1.142        ad 		return pts;
   1150  1.142        ad 	}
   1151  1.142        ad 	mutex_spin_exit(&timer_lock);
   1152  1.142        ad 	pool_put(&ptimers_pool, pts);
   1153  1.142        ad 	return p->p_timers;
   1154   1.63   thorpej }
   1155   1.63   thorpej 
   1156    1.1       cgd /*
   1157   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1158   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1159   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1160   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1161   1.63   thorpej  * structure if none of those remain.
   1162    1.1       cgd  */
   1163    1.3    andrew void
   1164   1.63   thorpej timers_free(struct proc *p, int which)
   1165    1.6       cgd {
   1166   1.63   thorpej 	struct ptimers *pts;
   1167  1.142        ad 	struct ptimer *ptn;
   1168   1.63   thorpej 	struct timeval tv;
   1169  1.142        ad 	int i;
   1170   1.63   thorpej 
   1171  1.142        ad 	if (p->p_timers == NULL)
   1172  1.142        ad 		return;
   1173   1.63   thorpej 
   1174  1.142        ad 	pts = p->p_timers;
   1175  1.142        ad 	mutex_spin_enter(&timer_lock);
   1176  1.142        ad 	if (which == TIMERS_ALL) {
   1177  1.142        ad 		p->p_timers = NULL;
   1178  1.142        ad 		i = 0;
   1179  1.142        ad 	} else {
   1180  1.142        ad 		timerclear(&tv);
   1181  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1182  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1183  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1184  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1185  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1186  1.149  christos 		}
   1187  1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1188  1.142        ad 		if (ptn) {
   1189  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1190  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1191  1.142        ad 			    &ptn->pt_time.it_value);
   1192  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1193  1.142        ad 		}
   1194  1.142        ad 		timerclear(&tv);
   1195  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1196  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1197  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1198  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1199  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1200  1.149  christos 		}
   1201  1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1202  1.142        ad 		if (ptn) {
   1203  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1204  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1205  1.142        ad 			    &ptn->pt_time.it_value);
   1206  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1207   1.63   thorpej 		}
   1208  1.142        ad 		i = 3;
   1209  1.142        ad 	}
   1210  1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1211  1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1212  1.142        ad 			itimerfree(pts, i);
   1213  1.142        ad 			mutex_spin_enter(&timer_lock);
   1214    1.1       cgd 		}
   1215    1.1       cgd 	}
   1216  1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1217  1.142        ad 	    pts->pts_timers[2] == NULL) {
   1218  1.142        ad 		p->p_timers = NULL;
   1219  1.142        ad 		mutex_spin_exit(&timer_lock);
   1220  1.142        ad 		pool_put(&ptimers_pool, pts);
   1221  1.142        ad 	} else
   1222  1.142        ad 		mutex_spin_exit(&timer_lock);
   1223  1.142        ad }
   1224  1.142        ad 
   1225  1.142        ad static void
   1226  1.142        ad itimerfree(struct ptimers *pts, int index)
   1227  1.142        ad {
   1228  1.142        ad 	struct ptimer *pt;
   1229  1.142        ad 
   1230  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1231  1.142        ad 
   1232  1.142        ad 	pt = pts->pts_timers[index];
   1233  1.142        ad 	pts->pts_timers[index] = NULL;
   1234  1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1235  1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1236  1.144        ad 	else if (pt->pt_queued)
   1237  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1238  1.144        ad 	mutex_spin_exit(&timer_lock);
   1239  1.149  christos 	if (pt->pt_type == CLOCK_REALTIME)
   1240  1.149  christos 		callout_destroy(&pt->pt_ch);
   1241  1.142        ad 	pool_put(&ptimer_pool, pt);
   1242    1.1       cgd }
   1243    1.1       cgd 
   1244    1.1       cgd /*
   1245    1.1       cgd  * Decrement an interval timer by a specified number
   1246    1.1       cgd  * of microseconds, which must be less than a second,
   1247    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1248    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1249    1.8       cgd  * reduce the value reloaded into the timer so that
   1250    1.1       cgd  * the timer does not drift.  This routine assumes
   1251    1.1       cgd  * that it is called in a context where the timers
   1252    1.1       cgd  * on which it is operating cannot change in value.
   1253    1.1       cgd  */
   1254  1.142        ad static int
   1255   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1256   1.63   thorpej {
   1257   1.45  augustss 	struct itimerval *itp;
   1258    1.1       cgd 
   1259  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1260  1.142        ad 
   1261   1.63   thorpej 	itp = &pt->pt_time;
   1262    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1263    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1264    1.1       cgd 			/* expired, and already in next interval */
   1265    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1266    1.1       cgd 			goto expire;
   1267    1.1       cgd 		}
   1268    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1269    1.1       cgd 		itp->it_value.tv_sec--;
   1270    1.1       cgd 	}
   1271    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1272    1.1       cgd 	usec = 0;
   1273    1.1       cgd 	if (timerisset(&itp->it_value))
   1274    1.1       cgd 		return (1);
   1275    1.1       cgd 	/* expired, exactly at end of interval */
   1276    1.1       cgd expire:
   1277    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1278    1.1       cgd 		itp->it_value = itp->it_interval;
   1279    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1280    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1281    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1282    1.1       cgd 			itp->it_value.tv_sec--;
   1283    1.1       cgd 		}
   1284   1.63   thorpej 		timer_settime(pt);
   1285    1.1       cgd 	} else
   1286    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1287    1.1       cgd 	return (0);
   1288   1.42       cgd }
   1289   1.42       cgd 
   1290  1.142        ad static void
   1291   1.63   thorpej itimerfire(struct ptimer *pt)
   1292   1.63   thorpej {
   1293   1.78        cl 
   1294  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1295  1.142        ad 
   1296  1.142        ad 	/*
   1297  1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1298  1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1299  1.142        ad 	 */
   1300  1.142        ad 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
   1301  1.142        ad 		return;
   1302  1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1303  1.142        ad 	pt->pt_queued = true;
   1304  1.142        ad 	softint_schedule(timer_sih);
   1305  1.142        ad }
   1306  1.142        ad 
   1307  1.142        ad void
   1308  1.142        ad timer_tick(lwp_t *l, bool user)
   1309  1.142        ad {
   1310  1.142        ad 	struct ptimers *pts;
   1311  1.142        ad 	struct ptimer *pt;
   1312  1.142        ad 	proc_t *p;
   1313  1.142        ad 
   1314  1.142        ad 	p = l->l_proc;
   1315  1.142        ad 	if (p->p_timers == NULL)
   1316  1.142        ad 		return;
   1317  1.142        ad 
   1318  1.142        ad 	mutex_spin_enter(&timer_lock);
   1319  1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1320   1.63   thorpej 		/*
   1321  1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1322   1.63   thorpej 		 */
   1323  1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1324  1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1325  1.142        ad 				itimerfire(pt);
   1326  1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1327  1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1328  1.142        ad 				itimerfire(pt);
   1329  1.142        ad 	}
   1330  1.142        ad 	mutex_spin_exit(&timer_lock);
   1331  1.142        ad }
   1332  1.142        ad 
   1333  1.142        ad static void
   1334  1.142        ad timer_intr(void *cookie)
   1335  1.142        ad {
   1336  1.142        ad 	ksiginfo_t ksi;
   1337  1.142        ad 	struct ptimer *pt;
   1338  1.142        ad 	proc_t *p;
   1339  1.142        ad 
   1340  1.142        ad 	mutex_spin_enter(&timer_lock);
   1341  1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1342  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1343  1.142        ad 		KASSERT(pt->pt_queued);
   1344  1.142        ad 		pt->pt_queued = false;
   1345  1.142        ad 
   1346  1.142        ad 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1347  1.142        ad 			continue;
   1348  1.142        ad 		p = pt->pt_proc;
   1349  1.142        ad 		if (pt->pt_proc->p_timers == NULL) {
   1350  1.142        ad 			/* Process is dying. */
   1351  1.142        ad 			continue;
   1352  1.142        ad 		}
   1353  1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1354   1.63   thorpej 			pt->pt_overruns++;
   1355  1.142        ad 			continue;
   1356   1.64   nathanw 		}
   1357  1.142        ad 
   1358  1.142        ad 		KSI_INIT(&ksi);
   1359  1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1360  1.142        ad 		ksi.ksi_code = SI_TIMER;
   1361  1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1362  1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1363  1.142        ad 		pt->pt_overruns = 0;
   1364  1.142        ad 		mutex_spin_exit(&timer_lock);
   1365  1.142        ad 
   1366  1.145        ad 		mutex_enter(proc_lock);
   1367  1.142        ad 		kpsignal(p, &ksi, NULL);
   1368  1.145        ad 		mutex_exit(proc_lock);
   1369  1.142        ad 
   1370  1.142        ad 		mutex_spin_enter(&timer_lock);
   1371   1.63   thorpej 	}
   1372  1.142        ad 	mutex_spin_exit(&timer_lock);
   1373   1.63   thorpej }
   1374   1.63   thorpej 
   1375   1.42       cgd /*
   1376   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1377   1.42       cgd  * for usage and rationale.
   1378   1.42       cgd  */
   1379   1.42       cgd int
   1380   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1381   1.42       cgd {
   1382   1.49    itojun 	struct timeval tv, delta;
   1383  1.101    kardel 	int rv = 0;
   1384   1.42       cgd 
   1385  1.101    kardel 	getmicrouptime(&tv);
   1386   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1387   1.42       cgd 
   1388   1.42       cgd 	/*
   1389   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1390   1.42       cgd 	 * even if interval is huge.
   1391   1.42       cgd 	 */
   1392   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1393   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1394   1.49    itojun 		*lasttime = tv;
   1395   1.42       cgd 		rv = 1;
   1396   1.42       cgd 	}
   1397   1.50    itojun 
   1398   1.50    itojun 	return (rv);
   1399   1.50    itojun }
   1400   1.50    itojun 
   1401   1.50    itojun /*
   1402   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1403   1.50    itojun  */
   1404   1.50    itojun int
   1405   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1406   1.50    itojun {
   1407   1.50    itojun 	struct timeval tv, delta;
   1408  1.101    kardel 	int rv;
   1409   1.50    itojun 
   1410  1.101    kardel 	getmicrouptime(&tv);
   1411   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1412   1.50    itojun 
   1413   1.50    itojun 	/*
   1414   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1415   1.50    itojun 	 * if more than one second have passed since the last update of
   1416   1.50    itojun 	 * lasttime, reset the counter.
   1417   1.50    itojun 	 *
   1418   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1419   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1420   1.50    itojun 	 */
   1421   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1422   1.50    itojun 	    delta.tv_sec >= 1) {
   1423   1.50    itojun 		*lasttime = tv;
   1424   1.50    itojun 		*curpps = 0;
   1425   1.69    dyoung 	}
   1426   1.69    dyoung 	if (maxpps < 0)
   1427   1.53    itojun 		rv = 1;
   1428   1.53    itojun 	else if (*curpps < maxpps)
   1429   1.50    itojun 		rv = 1;
   1430   1.50    itojun 	else
   1431   1.50    itojun 		rv = 0;
   1432   1.50    itojun 
   1433   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1434   1.50    itojun 	/* be careful about wrap-around */
   1435   1.50    itojun 	if (*curpps + 1 > *curpps)
   1436   1.50    itojun 		*curpps = *curpps + 1;
   1437   1.50    itojun #else
   1438   1.50    itojun 	/*
   1439   1.50    itojun 	 * assume that there's not too many calls to this function.
   1440   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1441   1.50    itojun 	 * behavior, not the behavior of this function.
   1442   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1443   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1444   1.50    itojun 	 */
   1445   1.50    itojun 	*curpps = *curpps + 1;
   1446   1.50    itojun #endif
   1447   1.42       cgd 
   1448   1.42       cgd 	return (rv);
   1449    1.1       cgd }
   1450