Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.155.4.2.4.1
      1  1.155.4.2.4.1      matt /*	$NetBSD: kern_time.c,v 1.155.4.2.4.1 2010/04/21 00:28:17 matt Exp $	*/
      2           1.42       cgd 
      3           1.42       cgd /*-
      4      1.155.4.1       snj  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5           1.42       cgd  * All rights reserved.
      6           1.42       cgd  *
      7           1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.155.4.1       snj  * by Christopher G. Demetriou, and by Andrew Doran.
      9           1.42       cgd  *
     10           1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11           1.42       cgd  * modification, are permitted provided that the following conditions
     12           1.42       cgd  * are met:
     13           1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14           1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15           1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16           1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17           1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18           1.42       cgd  *
     19           1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20           1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21           1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22           1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23           1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24           1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25           1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26           1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27           1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28           1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29           1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30           1.42       cgd  */
     31            1.9       cgd 
     32            1.1       cgd /*
     33            1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34            1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35            1.1       cgd  *
     36            1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37            1.1       cgd  * modification, are permitted provided that the following conditions
     38            1.1       cgd  * are met:
     39            1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40            1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41            1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42            1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43            1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44           1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45            1.1       cgd  *    may be used to endorse or promote products derived from this software
     46            1.1       cgd  *    without specific prior written permission.
     47            1.1       cgd  *
     48            1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49            1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50            1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51            1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52            1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53            1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54            1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55            1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56            1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57            1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58            1.1       cgd  * SUCH DAMAGE.
     59            1.1       cgd  *
     60           1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61            1.1       cgd  */
     62           1.58     lukem 
     63           1.58     lukem #include <sys/cdefs.h>
     64  1.155.4.2.4.1      matt __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.155.4.2.4.1 2010/04/21 00:28:17 matt Exp $");
     65            1.1       cgd 
     66            1.5   mycroft #include <sys/param.h>
     67            1.5   mycroft #include <sys/resourcevar.h>
     68            1.5   mycroft #include <sys/kernel.h>
     69            1.8       cgd #include <sys/systm.h>
     70            1.5   mycroft #include <sys/proc.h>
     71            1.8       cgd #include <sys/vnode.h>
     72           1.17  christos #include <sys/signalvar.h>
     73           1.25     perry #include <sys/syslog.h>
     74          1.101    kardel #include <sys/timetc.h>
     75          1.143        ad #include <sys/timex.h>
     76           1.99      elad #include <sys/kauth.h>
     77           1.11       cgd #include <sys/mount.h>
     78          1.154  wrstuden #include <sys/sa.h>
     79          1.154  wrstuden #include <sys/savar.h>
     80           1.11       cgd #include <sys/syscallargs.h>
     81          1.143        ad #include <sys/cpu.h>
     82           1.19  christos 
     83           1.37   thorpej #include <uvm/uvm_extern.h>
     84           1.37   thorpej 
     85          1.154  wrstuden #include "opt_sa.h"
     86          1.154  wrstuden 
     87          1.142        ad static void	timer_intr(void *);
     88          1.142        ad static void	itimerfire(struct ptimer *);
     89          1.142        ad static void	itimerfree(struct ptimers *, int);
     90          1.142        ad 
     91          1.142        ad kmutex_t	timer_lock;
     92          1.142        ad 
     93          1.142        ad static void	*timer_sih;
     94          1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95          1.131        ad 
     96           1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97          1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98           1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99          1.118        ad     &pool_allocator_nointr, IPL_NONE);
    100           1.97    simonb 
    101          1.131        ad /*
    102          1.131        ad  * Initialize timekeeping.
    103          1.131        ad  */
    104          1.131        ad void
    105          1.131        ad time_init(void)
    106          1.131        ad {
    107          1.131        ad 
    108          1.147        ad 	/* nothing yet */
    109          1.131        ad }
    110          1.131        ad 
    111          1.142        ad void
    112          1.142        ad time_init2(void)
    113          1.142        ad {
    114          1.142        ad 
    115          1.142        ad 	TAILQ_INIT(&timer_queue);
    116          1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117          1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118          1.142        ad 	    timer_intr, NULL);
    119          1.142        ad }
    120          1.142        ad 
    121           1.63   thorpej /* Time of day and interval timer support.
    122            1.1       cgd  *
    123            1.1       cgd  * These routines provide the kernel entry points to get and set
    124            1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125            1.1       cgd  * here provide support for adding and subtracting timeval structures
    126            1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127            1.1       cgd  * timers when they expire.
    128            1.1       cgd  */
    129            1.1       cgd 
    130           1.22       jtc /* This function is used by clock_settime and settimeofday */
    131          1.132      elad static int
    132          1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    133           1.22       jtc {
    134           1.98  christos 	struct timeval delta, tv;
    135          1.101    kardel 	struct timeval now;
    136          1.101    kardel 	struct timespec ts1;
    137          1.129        ad 	int s;
    138           1.22       jtc 
    139           1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    140           1.98  christos 
    141           1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142          1.129        ad 	s = splclock();
    143          1.101    kardel 	microtime(&now);
    144          1.101    kardel 	timersub(&tv, &now, &delta);
    145          1.132      elad 
    146          1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147          1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    148          1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149          1.129        ad 		splx(s);
    150           1.29       tls 		return (EPERM);
    151           1.55      tron 	}
    152          1.132      elad 
    153           1.29       tls #ifdef notyet
    154          1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155          1.129        ad 		splx(s);
    156           1.29       tls 		return (EPERM);
    157           1.55      tron 	}
    158           1.29       tls #endif
    159          1.103    kardel 
    160          1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    161          1.101    kardel 	tc_setclock(&ts1);
    162          1.103    kardel 
    163           1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    164          1.103    kardel 
    165           1.22       jtc 	resettodr();
    166          1.129        ad 	splx(s);
    167          1.129        ad 
    168           1.29       tls 	return (0);
    169           1.22       jtc }
    170           1.22       jtc 
    171          1.132      elad int
    172          1.132      elad settime(struct proc *p, struct timespec *ts)
    173          1.132      elad {
    174          1.132      elad 	return (settime1(p, ts, true));
    175          1.132      elad }
    176          1.132      elad 
    177           1.22       jtc /* ARGSUSED */
    178           1.22       jtc int
    179          1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    180          1.140      yamt     register_t *retval)
    181           1.22       jtc {
    182          1.135       dsl 	/* {
    183           1.22       jtc 		syscallarg(clockid_t) clock_id;
    184           1.23       cgd 		syscallarg(struct timespec *) tp;
    185          1.135       dsl 	} */
    186           1.22       jtc 	clockid_t clock_id;
    187           1.22       jtc 	struct timespec ats;
    188           1.22       jtc 
    189           1.22       jtc 	clock_id = SCARG(uap, clock_id);
    190           1.61    simonb 	switch (clock_id) {
    191           1.61    simonb 	case CLOCK_REALTIME:
    192           1.96    simonb 		nanotime(&ats);
    193           1.61    simonb 		break;
    194           1.61    simonb 	case CLOCK_MONOTONIC:
    195          1.101    kardel 		nanouptime(&ats);
    196           1.61    simonb 		break;
    197           1.61    simonb 	default:
    198           1.22       jtc 		return (EINVAL);
    199           1.61    simonb 	}
    200           1.22       jtc 
    201           1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    202           1.22       jtc }
    203           1.22       jtc 
    204           1.22       jtc /* ARGSUSED */
    205           1.22       jtc int
    206          1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    207          1.140      yamt     register_t *retval)
    208           1.22       jtc {
    209          1.135       dsl 	/* {
    210           1.22       jtc 		syscallarg(clockid_t) clock_id;
    211           1.23       cgd 		syscallarg(const struct timespec *) tp;
    212          1.135       dsl 	} */
    213           1.22       jtc 
    214          1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    215          1.132      elad 	    true);
    216           1.56      manu }
    217           1.56      manu 
    218           1.56      manu 
    219           1.56      manu int
    220          1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    221          1.132      elad     bool check_kauth)
    222           1.56      manu {
    223           1.60      manu 	struct timespec ats;
    224           1.56      manu 	int error;
    225           1.56      manu 
    226           1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    227           1.60      manu 		return (error);
    228           1.60      manu 
    229           1.61    simonb 	switch (clock_id) {
    230           1.61    simonb 	case CLOCK_REALTIME:
    231          1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    232           1.61    simonb 			return (error);
    233           1.61    simonb 		break;
    234           1.61    simonb 	case CLOCK_MONOTONIC:
    235           1.61    simonb 		return (EINVAL);	/* read-only clock */
    236           1.61    simonb 	default:
    237           1.56      manu 		return (EINVAL);
    238           1.61    simonb 	}
    239           1.22       jtc 
    240           1.22       jtc 	return 0;
    241           1.22       jtc }
    242           1.22       jtc 
    243           1.22       jtc int
    244          1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    245          1.140      yamt     register_t *retval)
    246           1.22       jtc {
    247          1.135       dsl 	/* {
    248           1.22       jtc 		syscallarg(clockid_t) clock_id;
    249           1.23       cgd 		syscallarg(struct timespec *) tp;
    250          1.135       dsl 	} */
    251           1.22       jtc 	clockid_t clock_id;
    252           1.22       jtc 	struct timespec ts;
    253           1.22       jtc 	int error = 0;
    254           1.22       jtc 
    255           1.22       jtc 	clock_id = SCARG(uap, clock_id);
    256           1.61    simonb 	switch (clock_id) {
    257           1.61    simonb 	case CLOCK_REALTIME:
    258           1.61    simonb 	case CLOCK_MONOTONIC:
    259           1.22       jtc 		ts.tv_sec = 0;
    260          1.102    kardel 		if (tc_getfrequency() > 1000000000)
    261          1.102    kardel 			ts.tv_nsec = 1;
    262          1.102    kardel 		else
    263          1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    264           1.61    simonb 		break;
    265           1.61    simonb 	default:
    266           1.61    simonb 		return (EINVAL);
    267           1.61    simonb 	}
    268           1.22       jtc 
    269           1.61    simonb 	if (SCARG(uap, tp))
    270           1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    271           1.22       jtc 
    272           1.22       jtc 	return error;
    273           1.22       jtc }
    274           1.22       jtc 
    275           1.27       jtc /* ARGSUSED */
    276           1.27       jtc int
    277          1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    278          1.140      yamt     register_t *retval)
    279           1.27       jtc {
    280          1.135       dsl 	/* {
    281          1.101    kardel 		syscallarg(struct timespec *) rqtp;
    282          1.101    kardel 		syscallarg(struct timespec *) rmtp;
    283          1.135       dsl 	} */
    284          1.101    kardel 	struct timespec rmt, rqt;
    285          1.120       dsl 	int error, error1;
    286          1.101    kardel 
    287          1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    288          1.101    kardel 	if (error)
    289          1.101    kardel 		return (error);
    290          1.101    kardel 
    291          1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    292          1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    293          1.120       dsl 		return error;
    294          1.120       dsl 
    295          1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    296          1.120       dsl 	return error1 ? error1 : error;
    297          1.120       dsl }
    298          1.120       dsl 
    299          1.120       dsl int
    300          1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    301          1.120       dsl {
    302          1.141      yamt 	struct timespec rmtstart;
    303          1.120       dsl 	int error, timo;
    304          1.120       dsl 
    305          1.120       dsl 	if (itimespecfix(rqt))
    306          1.101    kardel 		return (EINVAL);
    307          1.101    kardel 
    308          1.120       dsl 	timo = tstohz(rqt);
    309          1.101    kardel 	/*
    310          1.101    kardel 	 * Avoid inadvertantly sleeping forever
    311          1.101    kardel 	 */
    312          1.101    kardel 	if (timo == 0)
    313          1.101    kardel 		timo = 1;
    314          1.141      yamt 	getnanouptime(&rmtstart);
    315          1.141      yamt again:
    316          1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    317          1.141      yamt 	if (rmt != NULL || error == 0) {
    318          1.141      yamt 		struct timespec rmtend;
    319          1.141      yamt 		struct timespec t0;
    320          1.141      yamt 		struct timespec *t;
    321          1.101    kardel 
    322          1.141      yamt 		getnanouptime(&rmtend);
    323          1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    324          1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    325          1.141      yamt 		timespecsub(rqt, t, t);
    326          1.141      yamt 		if (t->tv_sec < 0)
    327          1.141      yamt 			timespecclear(t);
    328          1.141      yamt 		if (error == 0) {
    329          1.141      yamt 			timo = tstohz(t);
    330          1.141      yamt 			if (timo > 0)
    331          1.141      yamt 				goto again;
    332          1.141      yamt 		}
    333          1.141      yamt 	}
    334          1.104    kardel 
    335          1.101    kardel 	if (error == ERESTART)
    336          1.101    kardel 		error = EINTR;
    337          1.101    kardel 	if (error == EWOULDBLOCK)
    338          1.101    kardel 		error = 0;
    339          1.101    kardel 
    340          1.101    kardel 	return error;
    341           1.27       jtc }
    342           1.22       jtc 
    343            1.1       cgd /* ARGSUSED */
    344            1.3    andrew int
    345          1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    346          1.140      yamt     register_t *retval)
    347           1.15   thorpej {
    348          1.135       dsl 	/* {
    349           1.11       cgd 		syscallarg(struct timeval *) tp;
    350          1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    351          1.135       dsl 	} */
    352            1.1       cgd 	struct timeval atv;
    353            1.1       cgd 	int error = 0;
    354           1.25     perry 	struct timezone tzfake;
    355            1.1       cgd 
    356           1.11       cgd 	if (SCARG(uap, tp)) {
    357            1.1       cgd 		microtime(&atv);
    358           1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    359           1.17  christos 		if (error)
    360            1.1       cgd 			return (error);
    361            1.1       cgd 	}
    362           1.25     perry 	if (SCARG(uap, tzp)) {
    363           1.25     perry 		/*
    364           1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    365           1.25     perry 		 * fake up a timezone struct and return it if demanded.
    366           1.25     perry 		 */
    367           1.25     perry 		tzfake.tz_minuteswest = 0;
    368           1.25     perry 		tzfake.tz_dsttime = 0;
    369           1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    370           1.25     perry 	}
    371            1.1       cgd 	return (error);
    372            1.1       cgd }
    373            1.1       cgd 
    374            1.1       cgd /* ARGSUSED */
    375            1.3    andrew int
    376          1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    377          1.140      yamt     register_t *retval)
    378           1.15   thorpej {
    379          1.135       dsl 	/* {
    380           1.24       cgd 		syscallarg(const struct timeval *) tv;
    381          1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    382          1.135       dsl 	} */
    383           1.60      manu 
    384          1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    385           1.60      manu }
    386           1.60      manu 
    387           1.60      manu int
    388          1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    389          1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    390           1.60      manu {
    391           1.22       jtc 	struct timeval atv;
    392           1.98  christos 	struct timespec ts;
    393           1.22       jtc 	int error;
    394            1.1       cgd 
    395            1.8       cgd 	/* Verify all parameters before changing time. */
    396          1.119       dsl 
    397           1.25     perry 	/*
    398           1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    399           1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    400           1.25     perry 	 */
    401           1.98  christos 	if (utzp)
    402           1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    403          1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    404           1.98  christos 
    405           1.98  christos 	if (utv == NULL)
    406           1.98  christos 		return 0;
    407           1.98  christos 
    408          1.119       dsl 	if (userspace) {
    409          1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    410          1.119       dsl 			return error;
    411          1.119       dsl 		utv = &atv;
    412          1.119       dsl 	}
    413          1.119       dsl 
    414          1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    415          1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    416            1.1       cgd }
    417            1.1       cgd 
    418           1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    419            1.1       cgd 
    420            1.1       cgd /* ARGSUSED */
    421            1.3    andrew int
    422          1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    423          1.140      yamt     register_t *retval)
    424           1.15   thorpej {
    425          1.135       dsl 	/* {
    426           1.24       cgd 		syscallarg(const struct timeval *) delta;
    427           1.11       cgd 		syscallarg(struct timeval *) olddelta;
    428          1.135       dsl 	} */
    429           1.56      manu 	int error;
    430            1.1       cgd 
    431          1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    432          1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    433            1.1       cgd 		return (error);
    434           1.17  christos 
    435          1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    436           1.56      manu }
    437           1.56      manu 
    438           1.56      manu int
    439          1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    440           1.56      manu {
    441           1.60      manu 	struct timeval atv;
    442          1.101    kardel 	int error = 0;
    443          1.101    kardel 
    444          1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    445          1.101    kardel 
    446          1.101    kardel 	if (olddelta) {
    447          1.143        ad 		mutex_spin_enter(&timecounter_lock);
    448          1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    449          1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    450          1.143        ad 		mutex_spin_exit(&timecounter_lock);
    451          1.101    kardel 		if (atv.tv_usec < 0) {
    452          1.101    kardel 			atv.tv_usec += 1000000;
    453          1.101    kardel 			atv.tv_sec--;
    454          1.101    kardel 		}
    455          1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    456          1.101    kardel 		if (error)
    457          1.101    kardel 			return (error);
    458          1.101    kardel 	}
    459          1.101    kardel 
    460          1.101    kardel 	if (delta) {
    461          1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    462          1.101    kardel 		if (error)
    463          1.101    kardel 			return (error);
    464          1.101    kardel 
    465          1.143        ad 		mutex_spin_enter(&timecounter_lock);
    466          1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    467          1.101    kardel 			atv.tv_usec;
    468          1.143        ad 		if (time_adjtime) {
    469          1.101    kardel 			/* We need to save the system time during shutdown */
    470          1.101    kardel 			time_adjusted |= 1;
    471          1.143        ad 		}
    472          1.143        ad 		mutex_spin_exit(&timecounter_lock);
    473          1.101    kardel 	}
    474          1.101    kardel 
    475           1.79       chs 	return error;
    476            1.1       cgd }
    477            1.1       cgd 
    478            1.1       cgd /*
    479           1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    480           1.63   thorpej  * timer_*() family of routines are supported.
    481            1.1       cgd  *
    482           1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    483           1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    484           1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    485           1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    486           1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    487           1.63   thorpej  * syscall.
    488            1.1       cgd  *
    489           1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    490           1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    491            1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    492           1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    493           1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    494           1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    495           1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    496           1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    497           1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    498           1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    499           1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    500           1.63   thorpej 
    501           1.63   thorpej /* Allocate a POSIX realtime timer. */
    502           1.63   thorpej int
    503          1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    504          1.140      yamt     register_t *retval)
    505           1.63   thorpej {
    506          1.135       dsl 	/* {
    507           1.63   thorpej 		syscallarg(clockid_t) clock_id;
    508           1.63   thorpej 		syscallarg(struct sigevent *) evp;
    509           1.63   thorpej 		syscallarg(timer_t *) timerid;
    510          1.135       dsl 	} */
    511           1.92      cube 
    512           1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    513          1.105        ad 	    SCARG(uap, evp), copyin, l);
    514           1.92      cube }
    515           1.92      cube 
    516           1.92      cube int
    517           1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    518          1.105        ad     copyin_t fetch_event, struct lwp *l)
    519           1.92      cube {
    520           1.92      cube 	int error;
    521           1.92      cube 	timer_t timerid;
    522          1.142        ad 	struct ptimers *pts;
    523           1.63   thorpej 	struct ptimer *pt;
    524          1.105        ad 	struct proc *p;
    525          1.105        ad 
    526          1.105        ad 	p = l->l_proc;
    527           1.63   thorpej 
    528          1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    529           1.63   thorpej 		return (EINVAL);
    530           1.63   thorpej 
    531          1.142        ad 	if ((pts = p->p_timers) == NULL)
    532          1.142        ad 		pts = timers_alloc(p);
    533           1.63   thorpej 
    534           1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    535          1.142        ad 	if (evp != NULL) {
    536           1.63   thorpej 		if (((error =
    537           1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    538           1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    539  1.155.4.2.4.1      matt 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    540  1.155.4.2.4.1      matt 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    541  1.155.4.2.4.1      matt 			 (pt->pt_ev.sigev_signo <= 0 ||
    542  1.155.4.2.4.1      matt 			  pt->pt_ev.sigev_signo >= NSIG))) {
    543           1.63   thorpej 			pool_put(&ptimer_pool, pt);
    544           1.63   thorpej 			return (error ? error : EINVAL);
    545           1.63   thorpej 		}
    546          1.142        ad 	}
    547          1.142        ad 
    548          1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    549          1.142        ad 	mutex_spin_enter(&timer_lock);
    550          1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    551          1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    552          1.142        ad 			break;
    553          1.142        ad 	if (timerid == TIMER_MAX) {
    554          1.142        ad 		mutex_spin_exit(&timer_lock);
    555          1.142        ad 		pool_put(&ptimer_pool, pt);
    556          1.142        ad 		return EAGAIN;
    557          1.142        ad 	}
    558          1.142        ad 	if (evp == NULL) {
    559           1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    560           1.63   thorpej 		switch (id) {
    561           1.63   thorpej 		case CLOCK_REALTIME:
    562           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    563           1.63   thorpej 			break;
    564           1.63   thorpej 		case CLOCK_VIRTUAL:
    565           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    566           1.63   thorpej 			break;
    567           1.63   thorpej 		case CLOCK_PROF:
    568           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    569           1.63   thorpej 			break;
    570           1.63   thorpej 		}
    571           1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    572           1.63   thorpej 	}
    573           1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    574           1.73  christos 	pt->pt_info.ksi_errno = 0;
    575           1.73  christos 	pt->pt_info.ksi_code = 0;
    576           1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    577          1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    578          1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    579           1.63   thorpej 	pt->pt_type = id;
    580           1.63   thorpej 	pt->pt_proc = p;
    581           1.63   thorpej 	pt->pt_overruns = 0;
    582           1.63   thorpej 	pt->pt_poverruns = 0;
    583           1.64   nathanw 	pt->pt_entry = timerid;
    584          1.142        ad 	pt->pt_queued = false;
    585          1.150  christos 	timespecclear(&pt->pt_time.it_value);
    586          1.149  christos 	if (id == CLOCK_REALTIME)
    587          1.149  christos 		callout_init(&pt->pt_ch, 0);
    588          1.149  christos 	else
    589          1.149  christos 		pt->pt_active = 0;
    590          1.149  christos 
    591          1.142        ad 	pts->pts_timers[timerid] = pt;
    592          1.142        ad 	mutex_spin_exit(&timer_lock);
    593           1.63   thorpej 
    594           1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    595           1.63   thorpej }
    596           1.63   thorpej 
    597           1.63   thorpej /* Delete a POSIX realtime timer */
    598            1.3    andrew int
    599          1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    600          1.140      yamt     register_t *retval)
    601           1.15   thorpej {
    602          1.135       dsl 	/* {
    603           1.63   thorpej 		syscallarg(timer_t) timerid;
    604          1.135       dsl 	} */
    605           1.63   thorpej 	struct proc *p = l->l_proc;
    606           1.65  jdolecek 	timer_t timerid;
    607          1.142        ad 	struct ptimers *pts;
    608           1.63   thorpej 	struct ptimer *pt, *ptn;
    609            1.1       cgd 
    610           1.63   thorpej 	timerid = SCARG(uap, timerid);
    611          1.142        ad 	pts = p->p_timers;
    612          1.142        ad 
    613          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    614          1.142        ad 		return (EINVAL);
    615           1.63   thorpej 
    616          1.142        ad 	mutex_spin_enter(&timer_lock);
    617          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    618          1.142        ad 		mutex_spin_exit(&timer_lock);
    619            1.1       cgd 		return (EINVAL);
    620          1.142        ad 	}
    621          1.149  christos 	if (pt->pt_type != CLOCK_REALTIME) {
    622          1.149  christos 		if (pt->pt_active) {
    623          1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    624          1.149  christos 			LIST_REMOVE(pt, pt_list);
    625          1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    626          1.150  christos 				timespecadd(&pt->pt_time.it_value,
    627          1.149  christos 				    &ptn->pt_time.it_value,
    628          1.149  christos 				    &ptn->pt_time.it_value);
    629          1.149  christos 			pt->pt_active = 0;
    630          1.149  christos 		}
    631           1.63   thorpej 	}
    632          1.142        ad 	itimerfree(pts, timerid);
    633           1.63   thorpej 
    634           1.63   thorpej 	return (0);
    635           1.63   thorpej }
    636           1.63   thorpej 
    637           1.63   thorpej /*
    638           1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    639           1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    640           1.67   nathanw  * time for virtual timers.
    641           1.63   thorpej  * Must be called at splclock().
    642           1.63   thorpej  */
    643           1.63   thorpej void
    644           1.63   thorpej timer_settime(struct ptimer *pt)
    645           1.63   thorpej {
    646           1.63   thorpej 	struct ptimer *ptn, *pptn;
    647           1.63   thorpej 	struct ptlist *ptl;
    648           1.63   thorpej 
    649          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    650          1.142        ad 
    651           1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    652           1.63   thorpej 		callout_stop(&pt->pt_ch);
    653          1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    654           1.63   thorpej 			/*
    655          1.150  christos 			 * Don't need to check tshzto() return value, here.
    656           1.63   thorpej 			 * callout_reset() does it for us.
    657           1.63   thorpej 			 */
    658          1.150  christos 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    659           1.63   thorpej 			    realtimerexpire, pt);
    660           1.63   thorpej 		}
    661           1.63   thorpej 	} else {
    662           1.63   thorpej 		if (pt->pt_active) {
    663           1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    664           1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    665           1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    666          1.150  christos 				timespecadd(&pt->pt_time.it_value,
    667           1.63   thorpej 				    &ptn->pt_time.it_value,
    668           1.63   thorpej 				    &ptn->pt_time.it_value);
    669           1.63   thorpej 		}
    670          1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    671           1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    672           1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    673           1.63   thorpej 			else
    674           1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    675           1.63   thorpej 
    676           1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    677          1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    678           1.63   thorpej 				 &ptn->pt_time.it_value, >);
    679           1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    680          1.150  christos 				timespecsub(&pt->pt_time.it_value,
    681           1.63   thorpej 				    &ptn->pt_time.it_value,
    682           1.63   thorpej 				    &pt->pt_time.it_value);
    683           1.63   thorpej 
    684           1.63   thorpej 			if (pptn)
    685           1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    686           1.63   thorpej 			else
    687           1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    688           1.63   thorpej 
    689           1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    690          1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    691           1.63   thorpej 				    &pt->pt_time.it_value,
    692           1.63   thorpej 				    &ptn->pt_time.it_value);
    693           1.63   thorpej 
    694           1.63   thorpej 			pt->pt_active = 1;
    695           1.63   thorpej 		} else
    696           1.63   thorpej 			pt->pt_active = 0;
    697           1.63   thorpej 	}
    698           1.63   thorpej }
    699           1.63   thorpej 
    700           1.63   thorpej void
    701          1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    702           1.63   thorpej {
    703          1.150  christos 	struct timespec now;
    704           1.63   thorpej 	struct ptimer *ptn;
    705           1.63   thorpej 
    706          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    707          1.142        ad 
    708          1.150  christos 	*aits = pt->pt_time;
    709           1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    710            1.1       cgd 		/*
    711           1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    712           1.63   thorpej 		 * part of real time timer.  If time for real time
    713           1.63   thorpej 		 * timer has passed return 0, else return difference
    714           1.63   thorpej 		 * between current time and time for the timer to go
    715           1.63   thorpej 		 * off.
    716            1.1       cgd 		 */
    717          1.150  christos 		if (timespecisset(&aits->it_value)) {
    718          1.150  christos 			getnanotime(&now);
    719          1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    720          1.150  christos 				timespecclear(&aits->it_value);
    721          1.101    kardel 			else
    722          1.150  christos 				timespecsub(&aits->it_value, &now,
    723          1.150  christos 				    &aits->it_value);
    724           1.36   thorpej 		}
    725           1.63   thorpej 	} else if (pt->pt_active) {
    726           1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    727           1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    728           1.63   thorpej 		else
    729           1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    730           1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    731          1.150  christos 			timespecadd(&aits->it_value,
    732          1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    733           1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    734            1.1       cgd 	} else
    735          1.150  christos 		timespecclear(&aits->it_value);
    736           1.63   thorpej }
    737           1.63   thorpej 
    738           1.63   thorpej 
    739           1.63   thorpej 
    740           1.63   thorpej /* Set and arm a POSIX realtime timer */
    741           1.63   thorpej int
    742          1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    743          1.140      yamt     register_t *retval)
    744           1.63   thorpej {
    745          1.135       dsl 	/* {
    746           1.63   thorpej 		syscallarg(timer_t) timerid;
    747           1.63   thorpej 		syscallarg(int) flags;
    748           1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    749           1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    750          1.135       dsl 	} */
    751           1.92      cube 	int error;
    752           1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    753           1.92      cube 
    754           1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    755           1.92      cube 	    sizeof(struct itimerspec))) != 0)
    756           1.92      cube 		return (error);
    757           1.92      cube 
    758           1.92      cube 	if (SCARG(uap, ovalue))
    759           1.92      cube 		ovp = &ovalue;
    760           1.92      cube 
    761           1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    762           1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    763           1.92      cube 		return error;
    764           1.92      cube 
    765           1.92      cube 	if (ovp)
    766           1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    767           1.92      cube 		    sizeof(struct itimerspec));
    768           1.92      cube 	return 0;
    769           1.92      cube }
    770           1.92      cube 
    771           1.92      cube int
    772           1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    773           1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    774           1.92      cube {
    775          1.150  christos 	struct timespec now;
    776          1.150  christos 	struct itimerspec val, oval;
    777          1.142        ad 	struct ptimers *pts;
    778           1.63   thorpej 	struct ptimer *pt;
    779           1.63   thorpej 
    780          1.142        ad 	pts = p->p_timers;
    781           1.63   thorpej 
    782          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    783          1.142        ad 		return EINVAL;
    784          1.150  christos 	val = *value;
    785          1.150  christos 	if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
    786          1.150  christos 		return EINVAL;
    787           1.63   thorpej 
    788          1.142        ad 	mutex_spin_enter(&timer_lock);
    789          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    790          1.142        ad 		mutex_spin_exit(&timer_lock);
    791          1.150  christos 		return EINVAL;
    792          1.142        ad 	}
    793          1.142        ad 
    794           1.63   thorpej 	oval = pt->pt_time;
    795           1.63   thorpej 	pt->pt_time = val;
    796           1.63   thorpej 
    797           1.67   nathanw 	/*
    798           1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    799           1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    800           1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    801           1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    802           1.67   nathanw 	 * negative, which would confuse the comparison tests.
    803           1.67   nathanw 	 */
    804          1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    805           1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    806          1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    807          1.150  christos 				getnanotime(&now);
    808          1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    809          1.101    kardel 				    &pt->pt_time.it_value);
    810          1.101    kardel 			}
    811           1.67   nathanw 		} else {
    812           1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    813          1.150  christos 				getnanotime(&now);
    814          1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    815          1.101    kardel 				    &pt->pt_time.it_value);
    816          1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    817           1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    818           1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    819          1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    820           1.67   nathanw 				}
    821           1.67   nathanw 			}
    822           1.67   nathanw 		}
    823           1.67   nathanw 	}
    824           1.67   nathanw 
    825           1.63   thorpej 	timer_settime(pt);
    826          1.142        ad 	mutex_spin_exit(&timer_lock);
    827           1.63   thorpej 
    828          1.150  christos 	if (ovalue)
    829          1.150  christos 		*ovalue = oval;
    830           1.63   thorpej 
    831           1.63   thorpej 	return (0);
    832           1.63   thorpej }
    833           1.63   thorpej 
    834           1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    835           1.63   thorpej int
    836          1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    837          1.140      yamt     register_t *retval)
    838           1.63   thorpej {
    839          1.135       dsl 	/* {
    840           1.63   thorpej 		syscallarg(timer_t) timerid;
    841           1.63   thorpej 		syscallarg(struct itimerspec *) value;
    842          1.135       dsl 	} */
    843           1.63   thorpej 	struct itimerspec its;
    844           1.92      cube 	int error;
    845           1.92      cube 
    846           1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    847           1.92      cube 	    &its)) != 0)
    848           1.92      cube 		return error;
    849           1.92      cube 
    850           1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    851           1.92      cube }
    852           1.92      cube 
    853           1.92      cube int
    854           1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    855           1.92      cube {
    856           1.63   thorpej 	struct ptimer *pt;
    857          1.142        ad 	struct ptimers *pts;
    858           1.63   thorpej 
    859          1.142        ad 	pts = p->p_timers;
    860          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    861           1.63   thorpej 		return (EINVAL);
    862          1.142        ad 	mutex_spin_enter(&timer_lock);
    863          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    864          1.142        ad 		mutex_spin_exit(&timer_lock);
    865          1.142        ad 		return (EINVAL);
    866          1.142        ad 	}
    867          1.150  christos 	timer_gettime(pt, its);
    868          1.142        ad 	mutex_spin_exit(&timer_lock);
    869           1.63   thorpej 
    870           1.92      cube 	return 0;
    871           1.63   thorpej }
    872           1.63   thorpej 
    873           1.63   thorpej /*
    874           1.63   thorpej  * Return the count of the number of times a periodic timer expired
    875           1.63   thorpej  * while a notification was already pending. The counter is reset when
    876           1.63   thorpej  * a timer expires and a notification can be posted.
    877           1.63   thorpej  */
    878           1.63   thorpej int
    879          1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    880          1.140      yamt     register_t *retval)
    881           1.63   thorpej {
    882          1.135       dsl 	/* {
    883           1.63   thorpej 		syscallarg(timer_t) timerid;
    884          1.135       dsl 	} */
    885           1.63   thorpej 	struct proc *p = l->l_proc;
    886          1.142        ad 	struct ptimers *pts;
    887           1.63   thorpej 	int timerid;
    888           1.63   thorpej 	struct ptimer *pt;
    889           1.63   thorpej 
    890           1.63   thorpej 	timerid = SCARG(uap, timerid);
    891           1.63   thorpej 
    892          1.142        ad 	pts = p->p_timers;
    893          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    894          1.142        ad 		return (EINVAL);
    895          1.142        ad 	mutex_spin_enter(&timer_lock);
    896          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    897          1.142        ad 		mutex_spin_exit(&timer_lock);
    898           1.63   thorpej 		return (EINVAL);
    899          1.142        ad 	}
    900           1.63   thorpej 	*retval = pt->pt_poverruns;
    901          1.142        ad 	mutex_spin_exit(&timer_lock);
    902           1.63   thorpej 
    903           1.63   thorpej 	return (0);
    904           1.63   thorpej }
    905           1.63   thorpej 
    906          1.154  wrstuden #ifdef KERN_SA
    907          1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    908          1.154  wrstuden void
    909          1.154  wrstuden timerupcall(struct lwp *l)
    910          1.154  wrstuden {
    911          1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    912          1.154  wrstuden 	struct proc *p = l->l_proc;
    913          1.154  wrstuden 	unsigned int i, fired, done;
    914          1.154  wrstuden 
    915          1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    916          1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    917          1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    918          1.154  wrstuden 		return ;
    919          1.154  wrstuden 
    920          1.154  wrstuden 	mutex_enter(p->p_lock);
    921          1.154  wrstuden 
    922          1.154  wrstuden 	fired = pt->pts_fired;
    923          1.154  wrstuden 	done = 0;
    924          1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    925          1.154  wrstuden 		siginfo_t *si;
    926          1.154  wrstuden 		int mask = 1 << --i;
    927          1.154  wrstuden 		int f;
    928          1.154  wrstuden 
    929          1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    930          1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    931          1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    932          1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    933          1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    934          1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    935          1.154  wrstuden 			siginfo_free(si);
    936          1.154  wrstuden 			/* XXX What do we do here?? */
    937          1.154  wrstuden 		} else
    938          1.154  wrstuden 			done |= mask;
    939          1.154  wrstuden 		fired &= ~mask;
    940          1.154  wrstuden 		l->l_pflag ^= f;
    941          1.154  wrstuden 	}
    942          1.154  wrstuden 	pt->pts_fired &= ~done;
    943          1.154  wrstuden 	if (pt->pts_fired == 0)
    944          1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    945          1.154  wrstuden 
    946          1.154  wrstuden 	mutex_exit(p->p_lock);
    947          1.154  wrstuden }
    948          1.154  wrstuden #endif /* KERN_SA */
    949          1.154  wrstuden 
    950           1.63   thorpej /*
    951           1.63   thorpej  * Real interval timer expired:
    952           1.63   thorpej  * send process whose timer expired an alarm signal.
    953           1.63   thorpej  * If time is not set up to reload, then just return.
    954           1.63   thorpej  * Else compute next time timer should go off which is > current time.
    955           1.63   thorpej  * This is where delay in processing this timeout causes multiple
    956           1.63   thorpej  * SIGALRM calls to be compressed into one.
    957           1.63   thorpej  */
    958           1.63   thorpej void
    959           1.63   thorpej realtimerexpire(void *arg)
    960           1.63   thorpej {
    961          1.148     joerg 	uint64_t last_val, next_val, interval, now_ms;
    962          1.150  christos 	struct timespec now, next;
    963           1.63   thorpej 	struct ptimer *pt;
    964          1.148     joerg 	int backwards;
    965           1.63   thorpej 
    966          1.142        ad 	pt = arg;
    967           1.63   thorpej 
    968          1.142        ad 	mutex_spin_enter(&timer_lock);
    969           1.63   thorpej 	itimerfire(pt);
    970           1.63   thorpej 
    971          1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    972          1.150  christos 		timespecclear(&pt->pt_time.it_value);
    973          1.142        ad 		mutex_spin_exit(&timer_lock);
    974           1.63   thorpej 		return;
    975           1.63   thorpej 	}
    976          1.148     joerg 
    977          1.150  christos 	getnanotime(&now);
    978          1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    979          1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    980          1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    981          1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    982          1.148     joerg 		pt->pt_time.it_value = next;
    983          1.148     joerg 	} else {
    984          1.150  christos 		now_ms = timespec2ns(&now);
    985          1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    986          1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    987          1.148     joerg 
    988          1.148     joerg 		next_val = now_ms +
    989          1.148     joerg 		    (now_ms - last_val + interval - 1) % interval;
    990          1.148     joerg 
    991          1.148     joerg 		if (backwards)
    992          1.148     joerg 			next_val += interval;
    993          1.148     joerg 		else
    994          1.148     joerg 			pt->pt_overruns += (now_ms - last_val) / interval;
    995          1.148     joerg 
    996          1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    997          1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
    998          1.101    kardel 	}
    999          1.148     joerg 
   1000          1.148     joerg 	/*
   1001          1.150  christos 	 * Don't need to check tshzto() return value, here.
   1002          1.148     joerg 	 * callout_reset() does it for us.
   1003          1.148     joerg 	 */
   1004          1.150  christos 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1005          1.148     joerg 	    realtimerexpire, pt);
   1006          1.148     joerg 	mutex_spin_exit(&timer_lock);
   1007           1.63   thorpej }
   1008           1.63   thorpej 
   1009           1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1010           1.63   thorpej /* ARGSUSED */
   1011           1.63   thorpej int
   1012          1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
   1013          1.140      yamt     register_t *retval)
   1014           1.63   thorpej {
   1015          1.135       dsl 	/* {
   1016           1.63   thorpej 		syscallarg(int) which;
   1017           1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1018          1.135       dsl 	} */
   1019           1.63   thorpej 	struct proc *p = l->l_proc;
   1020           1.63   thorpej 	struct itimerval aitv;
   1021           1.91      cube 	int error;
   1022           1.91      cube 
   1023           1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1024           1.91      cube 	if (error)
   1025           1.91      cube 		return error;
   1026           1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1027           1.91      cube }
   1028           1.63   thorpej 
   1029           1.91      cube int
   1030           1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1031           1.91      cube {
   1032          1.142        ad 	struct ptimers *pts;
   1033          1.142        ad 	struct ptimer *pt;
   1034          1.150  christos 	struct itimerspec its;
   1035           1.63   thorpej 
   1036           1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1037           1.63   thorpej 		return (EINVAL);
   1038           1.63   thorpej 
   1039          1.142        ad 	mutex_spin_enter(&timer_lock);
   1040          1.142        ad 	pts = p->p_timers;
   1041          1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1042           1.91      cube 		timerclear(&itvp->it_value);
   1043           1.91      cube 		timerclear(&itvp->it_interval);
   1044          1.150  christos 	} else {
   1045          1.150  christos 		timer_gettime(pt, &its);
   1046          1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1047          1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1048          1.150  christos 	}
   1049          1.142        ad 	mutex_spin_exit(&timer_lock);
   1050           1.63   thorpej 
   1051           1.91      cube 	return 0;
   1052            1.1       cgd }
   1053            1.1       cgd 
   1054           1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1055            1.1       cgd /* ARGSUSED */
   1056            1.3    andrew int
   1057          1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1058          1.140      yamt     register_t *retval)
   1059           1.15   thorpej {
   1060          1.135       dsl 	/* {
   1061           1.30   mycroft 		syscallarg(int) which;
   1062           1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1063           1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1064          1.135       dsl 	} */
   1065           1.63   thorpej 	struct proc *p = l->l_proc;
   1066           1.30   mycroft 	int which = SCARG(uap, which);
   1067           1.21       cgd 	struct sys_getitimer_args getargs;
   1068           1.91      cube 	const struct itimerval *itvp;
   1069            1.1       cgd 	struct itimerval aitv;
   1070           1.91      cube 	int error;
   1071            1.1       cgd 
   1072           1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1073            1.1       cgd 		return (EINVAL);
   1074           1.11       cgd 	itvp = SCARG(uap, itv);
   1075           1.63   thorpej 	if (itvp &&
   1076           1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1077            1.1       cgd 		return (error);
   1078           1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1079           1.30   mycroft 		SCARG(&getargs, which) = which;
   1080           1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1081           1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1082           1.21       cgd 			return (error);
   1083           1.21       cgd 	}
   1084            1.1       cgd 	if (itvp == 0)
   1085            1.1       cgd 		return (0);
   1086           1.91      cube 
   1087           1.91      cube 	return dosetitimer(p, which, &aitv);
   1088           1.91      cube }
   1089           1.91      cube 
   1090           1.91      cube int
   1091           1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1092           1.91      cube {
   1093          1.150  christos 	struct timespec now;
   1094          1.142        ad 	struct ptimers *pts;
   1095          1.142        ad 	struct ptimer *pt, *spare;
   1096           1.91      cube 
   1097           1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1098            1.1       cgd 		return (EINVAL);
   1099           1.63   thorpej 
   1100           1.63   thorpej 	/*
   1101           1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1102           1.63   thorpej 	 * wants to clear the timer.
   1103           1.63   thorpej 	 */
   1104          1.142        ad 	spare = NULL;
   1105          1.142        ad 	pts = p->p_timers;
   1106          1.142        ad  retry:
   1107          1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1108          1.142        ad 	    pts->pts_timers[which] == NULL))
   1109           1.63   thorpej 		return (0);
   1110          1.142        ad 	if (pts == NULL)
   1111          1.142        ad 		pts = timers_alloc(p);
   1112          1.142        ad 	mutex_spin_enter(&timer_lock);
   1113          1.142        ad 	pt = pts->pts_timers[which];
   1114          1.142        ad 	if (pt == NULL) {
   1115          1.142        ad 		if (spare == NULL) {
   1116          1.142        ad 			mutex_spin_exit(&timer_lock);
   1117          1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1118          1.142        ad 			goto retry;
   1119          1.142        ad 		}
   1120          1.142        ad 		pt = spare;
   1121          1.142        ad 		spare = NULL;
   1122           1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1123           1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1124           1.63   thorpej 		pt->pt_overruns = 0;
   1125           1.63   thorpej 		pt->pt_proc = p;
   1126           1.63   thorpej 		pt->pt_type = which;
   1127           1.64   nathanw 		pt->pt_entry = which;
   1128          1.142        ad 		pt->pt_queued = false;
   1129          1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1130          1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1131          1.149  christos 		else
   1132          1.149  christos 			pt->pt_active = 0;
   1133          1.149  christos 
   1134           1.63   thorpej 		switch (which) {
   1135           1.63   thorpej 		case ITIMER_REAL:
   1136           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1137           1.63   thorpej 			break;
   1138           1.63   thorpej 		case ITIMER_VIRTUAL:
   1139           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1140           1.63   thorpej 			break;
   1141           1.63   thorpej 		case ITIMER_PROF:
   1142           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1143           1.63   thorpej 			break;
   1144            1.1       cgd 		}
   1145          1.142        ad 		pts->pts_timers[which] = pt;
   1146          1.142        ad 	}
   1147           1.63   thorpej 
   1148          1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1149          1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1150          1.150  christos 
   1151          1.150  christos 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1152           1.67   nathanw 		/* Convert to absolute time */
   1153          1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1154          1.150  christos 		getnanotime(&now);
   1155          1.150  christos 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1156           1.67   nathanw 	}
   1157           1.63   thorpej 	timer_settime(pt);
   1158          1.142        ad 	mutex_spin_exit(&timer_lock);
   1159          1.142        ad 	if (spare != NULL)
   1160          1.142        ad 		pool_put(&ptimer_pool, spare);
   1161           1.63   thorpej 
   1162            1.1       cgd 	return (0);
   1163            1.1       cgd }
   1164            1.1       cgd 
   1165           1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1166          1.142        ad struct ptimers *
   1167           1.63   thorpej timers_alloc(struct proc *p)
   1168           1.63   thorpej {
   1169          1.142        ad 	struct ptimers *pts;
   1170           1.63   thorpej 	int i;
   1171           1.63   thorpej 
   1172          1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1173           1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1174           1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1175           1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1176           1.63   thorpej 		pts->pts_timers[i] = NULL;
   1177           1.64   nathanw 	pts->pts_fired = 0;
   1178          1.142        ad 	mutex_spin_enter(&timer_lock);
   1179          1.142        ad 	if (p->p_timers == NULL) {
   1180          1.142        ad 		p->p_timers = pts;
   1181          1.142        ad 		mutex_spin_exit(&timer_lock);
   1182          1.142        ad 		return pts;
   1183          1.142        ad 	}
   1184          1.142        ad 	mutex_spin_exit(&timer_lock);
   1185          1.142        ad 	pool_put(&ptimers_pool, pts);
   1186          1.142        ad 	return p->p_timers;
   1187           1.63   thorpej }
   1188           1.63   thorpej 
   1189            1.1       cgd /*
   1190           1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1191           1.63   thorpej  * then clean up all timers and free all the data structures. If
   1192           1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1193           1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1194           1.63   thorpej  * structure if none of those remain.
   1195            1.1       cgd  */
   1196            1.3    andrew void
   1197           1.63   thorpej timers_free(struct proc *p, int which)
   1198            1.6       cgd {
   1199           1.63   thorpej 	struct ptimers *pts;
   1200          1.142        ad 	struct ptimer *ptn;
   1201          1.150  christos 	struct timespec ts;
   1202          1.142        ad 	int i;
   1203           1.63   thorpej 
   1204          1.142        ad 	if (p->p_timers == NULL)
   1205          1.142        ad 		return;
   1206           1.63   thorpej 
   1207          1.142        ad 	pts = p->p_timers;
   1208          1.142        ad 	mutex_spin_enter(&timer_lock);
   1209          1.142        ad 	if (which == TIMERS_ALL) {
   1210          1.142        ad 		p->p_timers = NULL;
   1211          1.142        ad 		i = 0;
   1212          1.142        ad 	} else {
   1213          1.150  christos 		timespecclear(&ts);
   1214          1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1215          1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1216          1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1217          1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1218          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1219          1.149  christos 		}
   1220          1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1221          1.142        ad 		if (ptn) {
   1222          1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1223          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1224          1.142        ad 			    &ptn->pt_time.it_value);
   1225          1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1226          1.142        ad 		}
   1227          1.150  christos 		timespecclear(&ts);
   1228          1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1229          1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1230          1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1231          1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1232          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1233          1.149  christos 		}
   1234          1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1235          1.142        ad 		if (ptn) {
   1236          1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1237          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1238          1.142        ad 			    &ptn->pt_time.it_value);
   1239          1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1240           1.63   thorpej 		}
   1241          1.142        ad 		i = 3;
   1242          1.142        ad 	}
   1243          1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1244          1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1245          1.142        ad 			itimerfree(pts, i);
   1246          1.142        ad 			mutex_spin_enter(&timer_lock);
   1247            1.1       cgd 		}
   1248            1.1       cgd 	}
   1249          1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1250          1.142        ad 	    pts->pts_timers[2] == NULL) {
   1251          1.142        ad 		p->p_timers = NULL;
   1252          1.142        ad 		mutex_spin_exit(&timer_lock);
   1253          1.142        ad 		pool_put(&ptimers_pool, pts);
   1254          1.142        ad 	} else
   1255          1.142        ad 		mutex_spin_exit(&timer_lock);
   1256          1.142        ad }
   1257          1.142        ad 
   1258          1.142        ad static void
   1259          1.142        ad itimerfree(struct ptimers *pts, int index)
   1260          1.142        ad {
   1261          1.142        ad 	struct ptimer *pt;
   1262          1.142        ad 
   1263          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1264          1.142        ad 
   1265          1.142        ad 	pt = pts->pts_timers[index];
   1266          1.142        ad 	pts->pts_timers[index] = NULL;
   1267          1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1268          1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1269          1.144        ad 	else if (pt->pt_queued)
   1270          1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1271          1.144        ad 	mutex_spin_exit(&timer_lock);
   1272          1.149  christos 	if (pt->pt_type == CLOCK_REALTIME)
   1273          1.149  christos 		callout_destroy(&pt->pt_ch);
   1274          1.142        ad 	pool_put(&ptimer_pool, pt);
   1275            1.1       cgd }
   1276            1.1       cgd 
   1277            1.1       cgd /*
   1278            1.1       cgd  * Decrement an interval timer by a specified number
   1279          1.152  christos  * of nanoseconds, which must be less than a second,
   1280          1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1281          1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1282            1.8       cgd  * reduce the value reloaded into the timer so that
   1283            1.1       cgd  * the timer does not drift.  This routine assumes
   1284            1.1       cgd  * that it is called in a context where the timers
   1285            1.1       cgd  * on which it is operating cannot change in value.
   1286            1.1       cgd  */
   1287          1.142        ad static int
   1288          1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1289           1.63   thorpej {
   1290          1.150  christos 	struct itimerspec *itp;
   1291            1.1       cgd 
   1292          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1293          1.142        ad 
   1294           1.63   thorpej 	itp = &pt->pt_time;
   1295          1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1296            1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1297            1.1       cgd 			/* expired, and already in next interval */
   1298          1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1299            1.1       cgd 			goto expire;
   1300            1.1       cgd 		}
   1301          1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1302            1.1       cgd 		itp->it_value.tv_sec--;
   1303            1.1       cgd 	}
   1304          1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1305          1.152  christos 	nsec = 0;
   1306          1.150  christos 	if (timespecisset(&itp->it_value))
   1307            1.1       cgd 		return (1);
   1308            1.1       cgd 	/* expired, exactly at end of interval */
   1309            1.1       cgd expire:
   1310          1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1311            1.1       cgd 		itp->it_value = itp->it_interval;
   1312          1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1313          1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1314          1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1315            1.1       cgd 			itp->it_value.tv_sec--;
   1316            1.1       cgd 		}
   1317           1.63   thorpej 		timer_settime(pt);
   1318            1.1       cgd 	} else
   1319          1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1320            1.1       cgd 	return (0);
   1321           1.42       cgd }
   1322           1.42       cgd 
   1323          1.142        ad static void
   1324           1.63   thorpej itimerfire(struct ptimer *pt)
   1325           1.63   thorpej {
   1326           1.78        cl 
   1327          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1328          1.142        ad 
   1329          1.142        ad 	/*
   1330          1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1331          1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1332          1.142        ad 	 */
   1333          1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1334          1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1335          1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1336          1.142        ad 		return;
   1337          1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1338          1.142        ad 	pt->pt_queued = true;
   1339          1.142        ad 	softint_schedule(timer_sih);
   1340          1.142        ad }
   1341          1.142        ad 
   1342          1.142        ad void
   1343          1.142        ad timer_tick(lwp_t *l, bool user)
   1344          1.142        ad {
   1345          1.142        ad 	struct ptimers *pts;
   1346          1.142        ad 	struct ptimer *pt;
   1347          1.142        ad 	proc_t *p;
   1348          1.142        ad 
   1349          1.142        ad 	p = l->l_proc;
   1350          1.142        ad 	if (p->p_timers == NULL)
   1351          1.142        ad 		return;
   1352          1.142        ad 
   1353          1.142        ad 	mutex_spin_enter(&timer_lock);
   1354          1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1355           1.63   thorpej 		/*
   1356          1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1357           1.63   thorpej 		 */
   1358          1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1359          1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1360          1.142        ad 				itimerfire(pt);
   1361          1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1362          1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1363          1.142        ad 				itimerfire(pt);
   1364          1.142        ad 	}
   1365          1.142        ad 	mutex_spin_exit(&timer_lock);
   1366          1.142        ad }
   1367          1.142        ad 
   1368          1.154  wrstuden #ifdef KERN_SA
   1369          1.154  wrstuden /*
   1370          1.154  wrstuden  * timer_sa_intr:
   1371          1.154  wrstuden  *
   1372          1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1373          1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1374          1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1375          1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1376          1.154  wrstuden  */
   1377          1.154  wrstuden static void
   1378          1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1379          1.154  wrstuden {
   1380          1.155  wrstuden 	unsigned int		i;
   1381          1.155  wrstuden 	struct sadata		*sa;
   1382          1.155  wrstuden 	struct sadata_vp	*vp;
   1383          1.154  wrstuden 
   1384          1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1385          1.154  wrstuden 	if (!p->p_timerpend) {
   1386          1.154  wrstuden 		/*
   1387          1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1388          1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1389          1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1390          1.154  wrstuden 		 * determine if we really should call setrunnable.
   1391          1.154  wrstuden 		 */
   1392          1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1393          1.154  wrstuden 		pt->pt_overruns = 0;
   1394          1.154  wrstuden 		i = 1 << pt->pt_entry;
   1395          1.154  wrstuden 		p->p_timers->pts_fired = i;
   1396          1.154  wrstuden 		p->p_timerpend = 1;
   1397          1.154  wrstuden 
   1398          1.155  wrstuden 		sa = p->p_sa;
   1399          1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1400          1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1401          1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1402          1.155  wrstuden 			lwp_lock(vp_lwp);
   1403          1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1404          1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1405          1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1406          1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1407          1.154  wrstuden 				break;
   1408          1.154  wrstuden 			}
   1409          1.155  wrstuden 			lwp_unlock(vp_lwp);
   1410          1.154  wrstuden 		}
   1411          1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1412          1.154  wrstuden 	} else {
   1413          1.154  wrstuden 		i = 1 << pt->pt_entry;
   1414          1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1415          1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1416          1.154  wrstuden 			pt->pt_overruns = 0;
   1417          1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1418          1.154  wrstuden 		} else
   1419          1.154  wrstuden 			pt->pt_overruns++;
   1420          1.154  wrstuden 	}
   1421          1.154  wrstuden }
   1422          1.154  wrstuden #endif /* KERN_SA */
   1423          1.154  wrstuden 
   1424          1.142        ad static void
   1425          1.142        ad timer_intr(void *cookie)
   1426          1.142        ad {
   1427          1.142        ad 	ksiginfo_t ksi;
   1428          1.142        ad 	struct ptimer *pt;
   1429          1.142        ad 	proc_t *p;
   1430          1.142        ad 
   1431      1.155.4.1       snj 	mutex_enter(proc_lock);
   1432          1.142        ad 	mutex_spin_enter(&timer_lock);
   1433          1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1434          1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1435          1.142        ad 		KASSERT(pt->pt_queued);
   1436          1.142        ad 		pt->pt_queued = false;
   1437          1.142        ad 
   1438          1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1439          1.154  wrstuden 			/* Process is dying. */
   1440          1.142        ad 			continue;
   1441          1.154  wrstuden 		}
   1442          1.142        ad 		p = pt->pt_proc;
   1443          1.154  wrstuden #ifdef KERN_SA
   1444          1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1445          1.154  wrstuden 			timer_sa_intr(pt, p);
   1446          1.142        ad 			continue;
   1447          1.142        ad 		}
   1448          1.154  wrstuden #endif /* KERN_SA */
   1449          1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1450          1.154  wrstuden 			continue;
   1451          1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1452           1.63   thorpej 			pt->pt_overruns++;
   1453          1.142        ad 			continue;
   1454           1.64   nathanw 		}
   1455          1.142        ad 
   1456          1.142        ad 		KSI_INIT(&ksi);
   1457          1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1458          1.142        ad 		ksi.ksi_code = SI_TIMER;
   1459          1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1460          1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1461          1.142        ad 		pt->pt_overruns = 0;
   1462          1.142        ad 		mutex_spin_exit(&timer_lock);
   1463          1.142        ad 		kpsignal(p, &ksi, NULL);
   1464          1.142        ad 		mutex_spin_enter(&timer_lock);
   1465           1.63   thorpej 	}
   1466          1.142        ad 	mutex_spin_exit(&timer_lock);
   1467      1.155.4.1       snj 	mutex_exit(proc_lock);
   1468           1.63   thorpej }
   1469