Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.155.4.3
      1  1.155.4.3       snj /*	$NetBSD: kern_time.c,v 1.155.4.3 2009/12/10 23:10:38 snj Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4  1.155.4.1       snj  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8  1.155.4.1       snj  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.155.4.3       snj __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.155.4.3 2009/12/10 23:10:38 snj Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78      1.154  wrstuden #include <sys/sa.h>
     79      1.154  wrstuden #include <sys/savar.h>
     80       1.11       cgd #include <sys/syscallargs.h>
     81      1.143        ad #include <sys/cpu.h>
     82       1.19  christos 
     83       1.37   thorpej #include <uvm/uvm_extern.h>
     84       1.37   thorpej 
     85      1.154  wrstuden #include "opt_sa.h"
     86      1.154  wrstuden 
     87      1.142        ad static void	timer_intr(void *);
     88      1.142        ad static void	itimerfire(struct ptimer *);
     89      1.142        ad static void	itimerfree(struct ptimers *, int);
     90      1.142        ad 
     91      1.142        ad kmutex_t	timer_lock;
     92      1.142        ad 
     93      1.142        ad static void	*timer_sih;
     94      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95      1.131        ad 
     96       1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98       1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99      1.118        ad     &pool_allocator_nointr, IPL_NONE);
    100       1.97    simonb 
    101      1.131        ad /*
    102      1.131        ad  * Initialize timekeeping.
    103      1.131        ad  */
    104      1.131        ad void
    105      1.131        ad time_init(void)
    106      1.131        ad {
    107      1.131        ad 
    108      1.147        ad 	/* nothing yet */
    109      1.131        ad }
    110      1.131        ad 
    111      1.142        ad void
    112      1.142        ad time_init2(void)
    113      1.142        ad {
    114      1.142        ad 
    115      1.142        ad 	TAILQ_INIT(&timer_queue);
    116      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118      1.142        ad 	    timer_intr, NULL);
    119      1.142        ad }
    120      1.142        ad 
    121       1.63   thorpej /* Time of day and interval timer support.
    122        1.1       cgd  *
    123        1.1       cgd  * These routines provide the kernel entry points to get and set
    124        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125        1.1       cgd  * here provide support for adding and subtracting timeval structures
    126        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127        1.1       cgd  * timers when they expire.
    128        1.1       cgd  */
    129        1.1       cgd 
    130       1.22       jtc /* This function is used by clock_settime and settimeofday */
    131      1.132      elad static int
    132      1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    133       1.22       jtc {
    134       1.98  christos 	struct timeval delta, tv;
    135      1.101    kardel 	struct timeval now;
    136      1.101    kardel 	struct timespec ts1;
    137      1.129        ad 	int s;
    138       1.22       jtc 
    139       1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    140       1.98  christos 
    141       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142      1.129        ad 	s = splclock();
    143      1.101    kardel 	microtime(&now);
    144      1.101    kardel 	timersub(&tv, &now, &delta);
    145      1.132      elad 
    146      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147      1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    148      1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149      1.129        ad 		splx(s);
    150       1.29       tls 		return (EPERM);
    151       1.55      tron 	}
    152      1.132      elad 
    153       1.29       tls #ifdef notyet
    154      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155      1.129        ad 		splx(s);
    156       1.29       tls 		return (EPERM);
    157       1.55      tron 	}
    158       1.29       tls #endif
    159      1.103    kardel 
    160      1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    161      1.101    kardel 	tc_setclock(&ts1);
    162      1.103    kardel 
    163       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    164      1.103    kardel 
    165       1.22       jtc 	resettodr();
    166      1.129        ad 	splx(s);
    167      1.129        ad 
    168       1.29       tls 	return (0);
    169       1.22       jtc }
    170       1.22       jtc 
    171      1.132      elad int
    172      1.132      elad settime(struct proc *p, struct timespec *ts)
    173      1.132      elad {
    174      1.132      elad 	return (settime1(p, ts, true));
    175      1.132      elad }
    176      1.132      elad 
    177       1.22       jtc /* ARGSUSED */
    178       1.22       jtc int
    179      1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    180      1.140      yamt     register_t *retval)
    181       1.22       jtc {
    182      1.135       dsl 	/* {
    183       1.22       jtc 		syscallarg(clockid_t) clock_id;
    184       1.23       cgd 		syscallarg(struct timespec *) tp;
    185      1.135       dsl 	} */
    186       1.22       jtc 	clockid_t clock_id;
    187       1.22       jtc 	struct timespec ats;
    188       1.22       jtc 
    189       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    190       1.61    simonb 	switch (clock_id) {
    191       1.61    simonb 	case CLOCK_REALTIME:
    192       1.96    simonb 		nanotime(&ats);
    193       1.61    simonb 		break;
    194       1.61    simonb 	case CLOCK_MONOTONIC:
    195      1.101    kardel 		nanouptime(&ats);
    196       1.61    simonb 		break;
    197       1.61    simonb 	default:
    198       1.22       jtc 		return (EINVAL);
    199       1.61    simonb 	}
    200       1.22       jtc 
    201       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    202       1.22       jtc }
    203       1.22       jtc 
    204       1.22       jtc /* ARGSUSED */
    205       1.22       jtc int
    206      1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    207      1.140      yamt     register_t *retval)
    208       1.22       jtc {
    209      1.135       dsl 	/* {
    210       1.22       jtc 		syscallarg(clockid_t) clock_id;
    211       1.23       cgd 		syscallarg(const struct timespec *) tp;
    212      1.135       dsl 	} */
    213       1.22       jtc 
    214      1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    215      1.132      elad 	    true);
    216       1.56      manu }
    217       1.56      manu 
    218       1.56      manu 
    219       1.56      manu int
    220      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    221      1.132      elad     bool check_kauth)
    222       1.56      manu {
    223       1.60      manu 	struct timespec ats;
    224       1.56      manu 	int error;
    225       1.56      manu 
    226       1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    227       1.60      manu 		return (error);
    228       1.60      manu 
    229       1.61    simonb 	switch (clock_id) {
    230       1.61    simonb 	case CLOCK_REALTIME:
    231      1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    232       1.61    simonb 			return (error);
    233       1.61    simonb 		break;
    234       1.61    simonb 	case CLOCK_MONOTONIC:
    235       1.61    simonb 		return (EINVAL);	/* read-only clock */
    236       1.61    simonb 	default:
    237       1.56      manu 		return (EINVAL);
    238       1.61    simonb 	}
    239       1.22       jtc 
    240       1.22       jtc 	return 0;
    241       1.22       jtc }
    242       1.22       jtc 
    243       1.22       jtc int
    244      1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    245      1.140      yamt     register_t *retval)
    246       1.22       jtc {
    247      1.135       dsl 	/* {
    248       1.22       jtc 		syscallarg(clockid_t) clock_id;
    249       1.23       cgd 		syscallarg(struct timespec *) tp;
    250      1.135       dsl 	} */
    251       1.22       jtc 	clockid_t clock_id;
    252       1.22       jtc 	struct timespec ts;
    253       1.22       jtc 	int error = 0;
    254       1.22       jtc 
    255       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    256       1.61    simonb 	switch (clock_id) {
    257       1.61    simonb 	case CLOCK_REALTIME:
    258       1.61    simonb 	case CLOCK_MONOTONIC:
    259       1.22       jtc 		ts.tv_sec = 0;
    260      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    261      1.102    kardel 			ts.tv_nsec = 1;
    262      1.102    kardel 		else
    263      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    264       1.61    simonb 		break;
    265       1.61    simonb 	default:
    266       1.61    simonb 		return (EINVAL);
    267       1.61    simonb 	}
    268       1.22       jtc 
    269       1.61    simonb 	if (SCARG(uap, tp))
    270       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    271       1.22       jtc 
    272       1.22       jtc 	return error;
    273       1.22       jtc }
    274       1.22       jtc 
    275       1.27       jtc /* ARGSUSED */
    276       1.27       jtc int
    277      1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    278      1.140      yamt     register_t *retval)
    279       1.27       jtc {
    280      1.135       dsl 	/* {
    281      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    282      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    283      1.135       dsl 	} */
    284      1.101    kardel 	struct timespec rmt, rqt;
    285      1.120       dsl 	int error, error1;
    286      1.101    kardel 
    287      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    288      1.101    kardel 	if (error)
    289      1.101    kardel 		return (error);
    290      1.101    kardel 
    291      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    292      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    293      1.120       dsl 		return error;
    294      1.120       dsl 
    295      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    296      1.120       dsl 	return error1 ? error1 : error;
    297      1.120       dsl }
    298      1.120       dsl 
    299      1.120       dsl int
    300      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    301      1.120       dsl {
    302      1.141      yamt 	struct timespec rmtstart;
    303      1.120       dsl 	int error, timo;
    304      1.120       dsl 
    305      1.120       dsl 	if (itimespecfix(rqt))
    306      1.101    kardel 		return (EINVAL);
    307      1.101    kardel 
    308      1.120       dsl 	timo = tstohz(rqt);
    309      1.101    kardel 	/*
    310      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    311      1.101    kardel 	 */
    312      1.101    kardel 	if (timo == 0)
    313      1.101    kardel 		timo = 1;
    314      1.141      yamt 	getnanouptime(&rmtstart);
    315      1.141      yamt again:
    316      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    317      1.141      yamt 	if (rmt != NULL || error == 0) {
    318      1.141      yamt 		struct timespec rmtend;
    319      1.141      yamt 		struct timespec t0;
    320      1.141      yamt 		struct timespec *t;
    321      1.101    kardel 
    322      1.141      yamt 		getnanouptime(&rmtend);
    323      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    324      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    325      1.141      yamt 		timespecsub(rqt, t, t);
    326      1.141      yamt 		if (t->tv_sec < 0)
    327      1.141      yamt 			timespecclear(t);
    328      1.141      yamt 		if (error == 0) {
    329      1.141      yamt 			timo = tstohz(t);
    330      1.141      yamt 			if (timo > 0)
    331      1.141      yamt 				goto again;
    332      1.141      yamt 		}
    333      1.141      yamt 	}
    334      1.104    kardel 
    335      1.101    kardel 	if (error == ERESTART)
    336      1.101    kardel 		error = EINTR;
    337      1.101    kardel 	if (error == EWOULDBLOCK)
    338      1.101    kardel 		error = 0;
    339      1.101    kardel 
    340      1.101    kardel 	return error;
    341       1.27       jtc }
    342       1.22       jtc 
    343        1.1       cgd /* ARGSUSED */
    344        1.3    andrew int
    345      1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    346      1.140      yamt     register_t *retval)
    347       1.15   thorpej {
    348      1.135       dsl 	/* {
    349       1.11       cgd 		syscallarg(struct timeval *) tp;
    350      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    351      1.135       dsl 	} */
    352        1.1       cgd 	struct timeval atv;
    353        1.1       cgd 	int error = 0;
    354       1.25     perry 	struct timezone tzfake;
    355        1.1       cgd 
    356       1.11       cgd 	if (SCARG(uap, tp)) {
    357        1.1       cgd 		microtime(&atv);
    358       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    359       1.17  christos 		if (error)
    360        1.1       cgd 			return (error);
    361        1.1       cgd 	}
    362       1.25     perry 	if (SCARG(uap, tzp)) {
    363       1.25     perry 		/*
    364       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    365       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    366       1.25     perry 		 */
    367       1.25     perry 		tzfake.tz_minuteswest = 0;
    368       1.25     perry 		tzfake.tz_dsttime = 0;
    369       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    370       1.25     perry 	}
    371        1.1       cgd 	return (error);
    372        1.1       cgd }
    373        1.1       cgd 
    374        1.1       cgd /* ARGSUSED */
    375        1.3    andrew int
    376      1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    377      1.140      yamt     register_t *retval)
    378       1.15   thorpej {
    379      1.135       dsl 	/* {
    380       1.24       cgd 		syscallarg(const struct timeval *) tv;
    381      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    382      1.135       dsl 	} */
    383       1.60      manu 
    384      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    385       1.60      manu }
    386       1.60      manu 
    387       1.60      manu int
    388      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    389      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    390       1.60      manu {
    391       1.22       jtc 	struct timeval atv;
    392       1.98  christos 	struct timespec ts;
    393       1.22       jtc 	int error;
    394        1.1       cgd 
    395        1.8       cgd 	/* Verify all parameters before changing time. */
    396      1.119       dsl 
    397       1.25     perry 	/*
    398       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    399       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    400       1.25     perry 	 */
    401       1.98  christos 	if (utzp)
    402       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    403      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    404       1.98  christos 
    405       1.98  christos 	if (utv == NULL)
    406       1.98  christos 		return 0;
    407       1.98  christos 
    408      1.119       dsl 	if (userspace) {
    409      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    410      1.119       dsl 			return error;
    411      1.119       dsl 		utv = &atv;
    412      1.119       dsl 	}
    413      1.119       dsl 
    414      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    415      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    416        1.1       cgd }
    417        1.1       cgd 
    418       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    419        1.1       cgd 
    420        1.1       cgd /* ARGSUSED */
    421        1.3    andrew int
    422      1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    423      1.140      yamt     register_t *retval)
    424       1.15   thorpej {
    425      1.135       dsl 	/* {
    426       1.24       cgd 		syscallarg(const struct timeval *) delta;
    427       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    428      1.135       dsl 	} */
    429       1.56      manu 	int error;
    430        1.1       cgd 
    431      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    432      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    433        1.1       cgd 		return (error);
    434       1.17  christos 
    435      1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    436       1.56      manu }
    437       1.56      manu 
    438       1.56      manu int
    439      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    440       1.56      manu {
    441       1.60      manu 	struct timeval atv;
    442      1.101    kardel 	int error = 0;
    443      1.101    kardel 
    444      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    445      1.101    kardel 
    446      1.101    kardel 	if (olddelta) {
    447      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    448      1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    449      1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    450      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    451      1.101    kardel 		if (atv.tv_usec < 0) {
    452      1.101    kardel 			atv.tv_usec += 1000000;
    453      1.101    kardel 			atv.tv_sec--;
    454      1.101    kardel 		}
    455      1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    456      1.101    kardel 		if (error)
    457      1.101    kardel 			return (error);
    458      1.101    kardel 	}
    459      1.101    kardel 
    460      1.101    kardel 	if (delta) {
    461      1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    462      1.101    kardel 		if (error)
    463      1.101    kardel 			return (error);
    464      1.101    kardel 
    465      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    466      1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    467      1.101    kardel 			atv.tv_usec;
    468      1.143        ad 		if (time_adjtime) {
    469      1.101    kardel 			/* We need to save the system time during shutdown */
    470      1.101    kardel 			time_adjusted |= 1;
    471      1.143        ad 		}
    472      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    473      1.101    kardel 	}
    474      1.101    kardel 
    475       1.79       chs 	return error;
    476        1.1       cgd }
    477        1.1       cgd 
    478        1.1       cgd /*
    479       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    480       1.63   thorpej  * timer_*() family of routines are supported.
    481        1.1       cgd  *
    482       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    483       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    484       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    485       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    486       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    487       1.63   thorpej  * syscall.
    488        1.1       cgd  *
    489       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    490       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    491        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    492       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    493       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    494       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    495       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    496       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    497       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    498       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    499       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    500       1.63   thorpej 
    501       1.63   thorpej /* Allocate a POSIX realtime timer. */
    502       1.63   thorpej int
    503      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    504      1.140      yamt     register_t *retval)
    505       1.63   thorpej {
    506      1.135       dsl 	/* {
    507       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    508       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    509       1.63   thorpej 		syscallarg(timer_t *) timerid;
    510      1.135       dsl 	} */
    511       1.92      cube 
    512       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    513      1.105        ad 	    SCARG(uap, evp), copyin, l);
    514       1.92      cube }
    515       1.92      cube 
    516       1.92      cube int
    517       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    518      1.105        ad     copyin_t fetch_event, struct lwp *l)
    519       1.92      cube {
    520       1.92      cube 	int error;
    521       1.92      cube 	timer_t timerid;
    522      1.142        ad 	struct ptimers *pts;
    523       1.63   thorpej 	struct ptimer *pt;
    524      1.105        ad 	struct proc *p;
    525      1.105        ad 
    526      1.105        ad 	p = l->l_proc;
    527       1.63   thorpej 
    528      1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    529       1.63   thorpej 		return (EINVAL);
    530       1.63   thorpej 
    531      1.142        ad 	if ((pts = p->p_timers) == NULL)
    532      1.142        ad 		pts = timers_alloc(p);
    533       1.63   thorpej 
    534       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    535      1.142        ad 	if (evp != NULL) {
    536       1.63   thorpej 		if (((error =
    537       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    538       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    539  1.155.4.3       snj 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    540  1.155.4.3       snj 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    541  1.155.4.3       snj 			 (pt->pt_ev.sigev_signo <= 0 ||
    542  1.155.4.3       snj 			  pt->pt_ev.sigev_signo >= NSIG))) {
    543       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    544       1.63   thorpej 			return (error ? error : EINVAL);
    545       1.63   thorpej 		}
    546      1.142        ad 	}
    547      1.142        ad 
    548      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    549      1.142        ad 	mutex_spin_enter(&timer_lock);
    550      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    551      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    552      1.142        ad 			break;
    553      1.142        ad 	if (timerid == TIMER_MAX) {
    554      1.142        ad 		mutex_spin_exit(&timer_lock);
    555      1.142        ad 		pool_put(&ptimer_pool, pt);
    556      1.142        ad 		return EAGAIN;
    557      1.142        ad 	}
    558      1.142        ad 	if (evp == NULL) {
    559       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    560       1.63   thorpej 		switch (id) {
    561       1.63   thorpej 		case CLOCK_REALTIME:
    562       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    563       1.63   thorpej 			break;
    564       1.63   thorpej 		case CLOCK_VIRTUAL:
    565       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    566       1.63   thorpej 			break;
    567       1.63   thorpej 		case CLOCK_PROF:
    568       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    569       1.63   thorpej 			break;
    570       1.63   thorpej 		}
    571       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    572       1.63   thorpej 	}
    573       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    574       1.73  christos 	pt->pt_info.ksi_errno = 0;
    575       1.73  christos 	pt->pt_info.ksi_code = 0;
    576       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    577      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    578      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    579       1.63   thorpej 	pt->pt_type = id;
    580       1.63   thorpej 	pt->pt_proc = p;
    581       1.63   thorpej 	pt->pt_overruns = 0;
    582       1.63   thorpej 	pt->pt_poverruns = 0;
    583       1.64   nathanw 	pt->pt_entry = timerid;
    584      1.142        ad 	pt->pt_queued = false;
    585      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    586      1.149  christos 	if (id == CLOCK_REALTIME)
    587      1.149  christos 		callout_init(&pt->pt_ch, 0);
    588      1.149  christos 	else
    589      1.149  christos 		pt->pt_active = 0;
    590      1.149  christos 
    591      1.142        ad 	pts->pts_timers[timerid] = pt;
    592      1.142        ad 	mutex_spin_exit(&timer_lock);
    593       1.63   thorpej 
    594       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    595       1.63   thorpej }
    596       1.63   thorpej 
    597       1.63   thorpej /* Delete a POSIX realtime timer */
    598        1.3    andrew int
    599      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    600      1.140      yamt     register_t *retval)
    601       1.15   thorpej {
    602      1.135       dsl 	/* {
    603       1.63   thorpej 		syscallarg(timer_t) timerid;
    604      1.135       dsl 	} */
    605       1.63   thorpej 	struct proc *p = l->l_proc;
    606       1.65  jdolecek 	timer_t timerid;
    607      1.142        ad 	struct ptimers *pts;
    608       1.63   thorpej 	struct ptimer *pt, *ptn;
    609        1.1       cgd 
    610       1.63   thorpej 	timerid = SCARG(uap, timerid);
    611      1.142        ad 	pts = p->p_timers;
    612      1.142        ad 
    613      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    614      1.142        ad 		return (EINVAL);
    615       1.63   thorpej 
    616      1.142        ad 	mutex_spin_enter(&timer_lock);
    617      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    618      1.142        ad 		mutex_spin_exit(&timer_lock);
    619        1.1       cgd 		return (EINVAL);
    620      1.142        ad 	}
    621      1.149  christos 	if (pt->pt_type != CLOCK_REALTIME) {
    622      1.149  christos 		if (pt->pt_active) {
    623      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    624      1.149  christos 			LIST_REMOVE(pt, pt_list);
    625      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    626      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    627      1.149  christos 				    &ptn->pt_time.it_value,
    628      1.149  christos 				    &ptn->pt_time.it_value);
    629      1.149  christos 			pt->pt_active = 0;
    630      1.149  christos 		}
    631       1.63   thorpej 	}
    632      1.142        ad 	itimerfree(pts, timerid);
    633       1.63   thorpej 
    634       1.63   thorpej 	return (0);
    635       1.63   thorpej }
    636       1.63   thorpej 
    637       1.63   thorpej /*
    638       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    639       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    640       1.67   nathanw  * time for virtual timers.
    641       1.63   thorpej  * Must be called at splclock().
    642       1.63   thorpej  */
    643       1.63   thorpej void
    644       1.63   thorpej timer_settime(struct ptimer *pt)
    645       1.63   thorpej {
    646       1.63   thorpej 	struct ptimer *ptn, *pptn;
    647       1.63   thorpej 	struct ptlist *ptl;
    648       1.63   thorpej 
    649      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    650      1.142        ad 
    651       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    652       1.63   thorpej 		callout_stop(&pt->pt_ch);
    653      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    654       1.63   thorpej 			/*
    655      1.150  christos 			 * Don't need to check tshzto() return value, here.
    656       1.63   thorpej 			 * callout_reset() does it for us.
    657       1.63   thorpej 			 */
    658      1.150  christos 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    659       1.63   thorpej 			    realtimerexpire, pt);
    660       1.63   thorpej 		}
    661       1.63   thorpej 	} else {
    662       1.63   thorpej 		if (pt->pt_active) {
    663       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    664       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    665       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    666      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    667       1.63   thorpej 				    &ptn->pt_time.it_value,
    668       1.63   thorpej 				    &ptn->pt_time.it_value);
    669       1.63   thorpej 		}
    670      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    671       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    672       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    673       1.63   thorpej 			else
    674       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    675       1.63   thorpej 
    676       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    677      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    678       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    679       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    680      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    681       1.63   thorpej 				    &ptn->pt_time.it_value,
    682       1.63   thorpej 				    &pt->pt_time.it_value);
    683       1.63   thorpej 
    684       1.63   thorpej 			if (pptn)
    685       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    686       1.63   thorpej 			else
    687       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    688       1.63   thorpej 
    689       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    690      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    691       1.63   thorpej 				    &pt->pt_time.it_value,
    692       1.63   thorpej 				    &ptn->pt_time.it_value);
    693       1.63   thorpej 
    694       1.63   thorpej 			pt->pt_active = 1;
    695       1.63   thorpej 		} else
    696       1.63   thorpej 			pt->pt_active = 0;
    697       1.63   thorpej 	}
    698       1.63   thorpej }
    699       1.63   thorpej 
    700       1.63   thorpej void
    701      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    702       1.63   thorpej {
    703      1.150  christos 	struct timespec now;
    704       1.63   thorpej 	struct ptimer *ptn;
    705       1.63   thorpej 
    706      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    707      1.142        ad 
    708      1.150  christos 	*aits = pt->pt_time;
    709       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    710        1.1       cgd 		/*
    711       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    712       1.63   thorpej 		 * part of real time timer.  If time for real time
    713       1.63   thorpej 		 * timer has passed return 0, else return difference
    714       1.63   thorpej 		 * between current time and time for the timer to go
    715       1.63   thorpej 		 * off.
    716        1.1       cgd 		 */
    717      1.150  christos 		if (timespecisset(&aits->it_value)) {
    718      1.150  christos 			getnanotime(&now);
    719      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    720      1.150  christos 				timespecclear(&aits->it_value);
    721      1.101    kardel 			else
    722      1.150  christos 				timespecsub(&aits->it_value, &now,
    723      1.150  christos 				    &aits->it_value);
    724       1.36   thorpej 		}
    725       1.63   thorpej 	} else if (pt->pt_active) {
    726       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    727       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    728       1.63   thorpej 		else
    729       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    730       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    731      1.150  christos 			timespecadd(&aits->it_value,
    732      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    733       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    734        1.1       cgd 	} else
    735      1.150  christos 		timespecclear(&aits->it_value);
    736       1.63   thorpej }
    737       1.63   thorpej 
    738       1.63   thorpej 
    739       1.63   thorpej 
    740       1.63   thorpej /* Set and arm a POSIX realtime timer */
    741       1.63   thorpej int
    742      1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    743      1.140      yamt     register_t *retval)
    744       1.63   thorpej {
    745      1.135       dsl 	/* {
    746       1.63   thorpej 		syscallarg(timer_t) timerid;
    747       1.63   thorpej 		syscallarg(int) flags;
    748       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    749       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    750      1.135       dsl 	} */
    751       1.92      cube 	int error;
    752       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    753       1.92      cube 
    754       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    755       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    756       1.92      cube 		return (error);
    757       1.92      cube 
    758       1.92      cube 	if (SCARG(uap, ovalue))
    759       1.92      cube 		ovp = &ovalue;
    760       1.92      cube 
    761       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    762       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    763       1.92      cube 		return error;
    764       1.92      cube 
    765       1.92      cube 	if (ovp)
    766       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    767       1.92      cube 		    sizeof(struct itimerspec));
    768       1.92      cube 	return 0;
    769       1.92      cube }
    770       1.92      cube 
    771       1.92      cube int
    772       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    773       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    774       1.92      cube {
    775      1.150  christos 	struct timespec now;
    776      1.150  christos 	struct itimerspec val, oval;
    777      1.142        ad 	struct ptimers *pts;
    778       1.63   thorpej 	struct ptimer *pt;
    779       1.63   thorpej 
    780      1.142        ad 	pts = p->p_timers;
    781       1.63   thorpej 
    782      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    783      1.142        ad 		return EINVAL;
    784      1.150  christos 	val = *value;
    785      1.150  christos 	if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
    786      1.150  christos 		return EINVAL;
    787       1.63   thorpej 
    788      1.142        ad 	mutex_spin_enter(&timer_lock);
    789      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    790      1.142        ad 		mutex_spin_exit(&timer_lock);
    791      1.150  christos 		return EINVAL;
    792      1.142        ad 	}
    793      1.142        ad 
    794       1.63   thorpej 	oval = pt->pt_time;
    795       1.63   thorpej 	pt->pt_time = val;
    796       1.63   thorpej 
    797       1.67   nathanw 	/*
    798       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    799       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    800       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    801       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    802       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    803       1.67   nathanw 	 */
    804      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    805       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    806      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    807      1.150  christos 				getnanotime(&now);
    808      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    809      1.101    kardel 				    &pt->pt_time.it_value);
    810      1.101    kardel 			}
    811       1.67   nathanw 		} else {
    812       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    813      1.150  christos 				getnanotime(&now);
    814      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    815      1.101    kardel 				    &pt->pt_time.it_value);
    816      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    817       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    818       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    819      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    820       1.67   nathanw 				}
    821       1.67   nathanw 			}
    822       1.67   nathanw 		}
    823       1.67   nathanw 	}
    824       1.67   nathanw 
    825       1.63   thorpej 	timer_settime(pt);
    826      1.142        ad 	mutex_spin_exit(&timer_lock);
    827       1.63   thorpej 
    828      1.150  christos 	if (ovalue)
    829      1.150  christos 		*ovalue = oval;
    830       1.63   thorpej 
    831       1.63   thorpej 	return (0);
    832       1.63   thorpej }
    833       1.63   thorpej 
    834       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    835       1.63   thorpej int
    836      1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    837      1.140      yamt     register_t *retval)
    838       1.63   thorpej {
    839      1.135       dsl 	/* {
    840       1.63   thorpej 		syscallarg(timer_t) timerid;
    841       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    842      1.135       dsl 	} */
    843       1.63   thorpej 	struct itimerspec its;
    844       1.92      cube 	int error;
    845       1.92      cube 
    846       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    847       1.92      cube 	    &its)) != 0)
    848       1.92      cube 		return error;
    849       1.92      cube 
    850       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    851       1.92      cube }
    852       1.92      cube 
    853       1.92      cube int
    854       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    855       1.92      cube {
    856       1.63   thorpej 	struct ptimer *pt;
    857      1.142        ad 	struct ptimers *pts;
    858       1.63   thorpej 
    859      1.142        ad 	pts = p->p_timers;
    860      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    861       1.63   thorpej 		return (EINVAL);
    862      1.142        ad 	mutex_spin_enter(&timer_lock);
    863      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    864      1.142        ad 		mutex_spin_exit(&timer_lock);
    865      1.142        ad 		return (EINVAL);
    866      1.142        ad 	}
    867      1.150  christos 	timer_gettime(pt, its);
    868      1.142        ad 	mutex_spin_exit(&timer_lock);
    869       1.63   thorpej 
    870       1.92      cube 	return 0;
    871       1.63   thorpej }
    872       1.63   thorpej 
    873       1.63   thorpej /*
    874       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    875       1.63   thorpej  * while a notification was already pending. The counter is reset when
    876       1.63   thorpej  * a timer expires and a notification can be posted.
    877       1.63   thorpej  */
    878       1.63   thorpej int
    879      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    880      1.140      yamt     register_t *retval)
    881       1.63   thorpej {
    882      1.135       dsl 	/* {
    883       1.63   thorpej 		syscallarg(timer_t) timerid;
    884      1.135       dsl 	} */
    885       1.63   thorpej 	struct proc *p = l->l_proc;
    886      1.142        ad 	struct ptimers *pts;
    887       1.63   thorpej 	int timerid;
    888       1.63   thorpej 	struct ptimer *pt;
    889       1.63   thorpej 
    890       1.63   thorpej 	timerid = SCARG(uap, timerid);
    891       1.63   thorpej 
    892      1.142        ad 	pts = p->p_timers;
    893      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    894      1.142        ad 		return (EINVAL);
    895      1.142        ad 	mutex_spin_enter(&timer_lock);
    896      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    897      1.142        ad 		mutex_spin_exit(&timer_lock);
    898       1.63   thorpej 		return (EINVAL);
    899      1.142        ad 	}
    900       1.63   thorpej 	*retval = pt->pt_poverruns;
    901      1.142        ad 	mutex_spin_exit(&timer_lock);
    902       1.63   thorpej 
    903       1.63   thorpej 	return (0);
    904       1.63   thorpej }
    905       1.63   thorpej 
    906      1.154  wrstuden #ifdef KERN_SA
    907      1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    908      1.154  wrstuden void
    909      1.154  wrstuden timerupcall(struct lwp *l)
    910      1.154  wrstuden {
    911      1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    912      1.154  wrstuden 	struct proc *p = l->l_proc;
    913      1.154  wrstuden 	unsigned int i, fired, done;
    914      1.154  wrstuden 
    915      1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    916      1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    917      1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    918      1.154  wrstuden 		return ;
    919      1.154  wrstuden 
    920      1.154  wrstuden 	mutex_enter(p->p_lock);
    921      1.154  wrstuden 
    922      1.154  wrstuden 	fired = pt->pts_fired;
    923      1.154  wrstuden 	done = 0;
    924      1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    925      1.154  wrstuden 		siginfo_t *si;
    926      1.154  wrstuden 		int mask = 1 << --i;
    927      1.154  wrstuden 		int f;
    928      1.154  wrstuden 
    929      1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    930      1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    931      1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    932      1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    933      1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    934      1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    935      1.154  wrstuden 			siginfo_free(si);
    936      1.154  wrstuden 			/* XXX What do we do here?? */
    937      1.154  wrstuden 		} else
    938      1.154  wrstuden 			done |= mask;
    939      1.154  wrstuden 		fired &= ~mask;
    940      1.154  wrstuden 		l->l_pflag ^= f;
    941      1.154  wrstuden 	}
    942      1.154  wrstuden 	pt->pts_fired &= ~done;
    943      1.154  wrstuden 	if (pt->pts_fired == 0)
    944      1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    945      1.154  wrstuden 
    946      1.154  wrstuden 	mutex_exit(p->p_lock);
    947      1.154  wrstuden }
    948      1.154  wrstuden #endif /* KERN_SA */
    949      1.154  wrstuden 
    950       1.63   thorpej /*
    951       1.63   thorpej  * Real interval timer expired:
    952       1.63   thorpej  * send process whose timer expired an alarm signal.
    953       1.63   thorpej  * If time is not set up to reload, then just return.
    954       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    955       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    956       1.63   thorpej  * SIGALRM calls to be compressed into one.
    957       1.63   thorpej  */
    958       1.63   thorpej void
    959       1.63   thorpej realtimerexpire(void *arg)
    960       1.63   thorpej {
    961      1.148     joerg 	uint64_t last_val, next_val, interval, now_ms;
    962      1.150  christos 	struct timespec now, next;
    963       1.63   thorpej 	struct ptimer *pt;
    964      1.148     joerg 	int backwards;
    965       1.63   thorpej 
    966      1.142        ad 	pt = arg;
    967       1.63   thorpej 
    968      1.142        ad 	mutex_spin_enter(&timer_lock);
    969       1.63   thorpej 	itimerfire(pt);
    970       1.63   thorpej 
    971      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    972      1.150  christos 		timespecclear(&pt->pt_time.it_value);
    973      1.142        ad 		mutex_spin_exit(&timer_lock);
    974       1.63   thorpej 		return;
    975       1.63   thorpej 	}
    976      1.148     joerg 
    977      1.150  christos 	getnanotime(&now);
    978      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    979      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    980      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    981      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    982      1.148     joerg 		pt->pt_time.it_value = next;
    983      1.148     joerg 	} else {
    984      1.150  christos 		now_ms = timespec2ns(&now);
    985      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    986      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    987      1.148     joerg 
    988      1.148     joerg 		next_val = now_ms +
    989      1.148     joerg 		    (now_ms - last_val + interval - 1) % interval;
    990      1.148     joerg 
    991      1.148     joerg 		if (backwards)
    992      1.148     joerg 			next_val += interval;
    993      1.148     joerg 		else
    994      1.148     joerg 			pt->pt_overruns += (now_ms - last_val) / interval;
    995      1.148     joerg 
    996      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    997      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
    998      1.101    kardel 	}
    999      1.148     joerg 
   1000      1.148     joerg 	/*
   1001      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1002      1.148     joerg 	 * callout_reset() does it for us.
   1003      1.148     joerg 	 */
   1004      1.150  christos 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1005      1.148     joerg 	    realtimerexpire, pt);
   1006      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1007       1.63   thorpej }
   1008       1.63   thorpej 
   1009       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1010       1.63   thorpej /* ARGSUSED */
   1011       1.63   thorpej int
   1012      1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
   1013      1.140      yamt     register_t *retval)
   1014       1.63   thorpej {
   1015      1.135       dsl 	/* {
   1016       1.63   thorpej 		syscallarg(int) which;
   1017       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1018      1.135       dsl 	} */
   1019       1.63   thorpej 	struct proc *p = l->l_proc;
   1020       1.63   thorpej 	struct itimerval aitv;
   1021       1.91      cube 	int error;
   1022       1.91      cube 
   1023       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1024       1.91      cube 	if (error)
   1025       1.91      cube 		return error;
   1026       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1027       1.91      cube }
   1028       1.63   thorpej 
   1029       1.91      cube int
   1030       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1031       1.91      cube {
   1032      1.142        ad 	struct ptimers *pts;
   1033      1.142        ad 	struct ptimer *pt;
   1034      1.150  christos 	struct itimerspec its;
   1035       1.63   thorpej 
   1036       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1037       1.63   thorpej 		return (EINVAL);
   1038       1.63   thorpej 
   1039      1.142        ad 	mutex_spin_enter(&timer_lock);
   1040      1.142        ad 	pts = p->p_timers;
   1041      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1042       1.91      cube 		timerclear(&itvp->it_value);
   1043       1.91      cube 		timerclear(&itvp->it_interval);
   1044      1.150  christos 	} else {
   1045      1.150  christos 		timer_gettime(pt, &its);
   1046      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1047      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1048      1.150  christos 	}
   1049      1.142        ad 	mutex_spin_exit(&timer_lock);
   1050       1.63   thorpej 
   1051       1.91      cube 	return 0;
   1052        1.1       cgd }
   1053        1.1       cgd 
   1054       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1055        1.1       cgd /* ARGSUSED */
   1056        1.3    andrew int
   1057      1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1058      1.140      yamt     register_t *retval)
   1059       1.15   thorpej {
   1060      1.135       dsl 	/* {
   1061       1.30   mycroft 		syscallarg(int) which;
   1062       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1063       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1064      1.135       dsl 	} */
   1065       1.63   thorpej 	struct proc *p = l->l_proc;
   1066       1.30   mycroft 	int which = SCARG(uap, which);
   1067       1.21       cgd 	struct sys_getitimer_args getargs;
   1068       1.91      cube 	const struct itimerval *itvp;
   1069        1.1       cgd 	struct itimerval aitv;
   1070       1.91      cube 	int error;
   1071        1.1       cgd 
   1072       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1073        1.1       cgd 		return (EINVAL);
   1074       1.11       cgd 	itvp = SCARG(uap, itv);
   1075       1.63   thorpej 	if (itvp &&
   1076       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1077        1.1       cgd 		return (error);
   1078       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1079       1.30   mycroft 		SCARG(&getargs, which) = which;
   1080       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1081       1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1082       1.21       cgd 			return (error);
   1083       1.21       cgd 	}
   1084        1.1       cgd 	if (itvp == 0)
   1085        1.1       cgd 		return (0);
   1086       1.91      cube 
   1087       1.91      cube 	return dosetitimer(p, which, &aitv);
   1088       1.91      cube }
   1089       1.91      cube 
   1090       1.91      cube int
   1091       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1092       1.91      cube {
   1093      1.150  christos 	struct timespec now;
   1094      1.142        ad 	struct ptimers *pts;
   1095      1.142        ad 	struct ptimer *pt, *spare;
   1096       1.91      cube 
   1097       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1098        1.1       cgd 		return (EINVAL);
   1099       1.63   thorpej 
   1100       1.63   thorpej 	/*
   1101       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1102       1.63   thorpej 	 * wants to clear the timer.
   1103       1.63   thorpej 	 */
   1104      1.142        ad 	spare = NULL;
   1105      1.142        ad 	pts = p->p_timers;
   1106      1.142        ad  retry:
   1107      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1108      1.142        ad 	    pts->pts_timers[which] == NULL))
   1109       1.63   thorpej 		return (0);
   1110      1.142        ad 	if (pts == NULL)
   1111      1.142        ad 		pts = timers_alloc(p);
   1112      1.142        ad 	mutex_spin_enter(&timer_lock);
   1113      1.142        ad 	pt = pts->pts_timers[which];
   1114      1.142        ad 	if (pt == NULL) {
   1115      1.142        ad 		if (spare == NULL) {
   1116      1.142        ad 			mutex_spin_exit(&timer_lock);
   1117      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1118      1.142        ad 			goto retry;
   1119      1.142        ad 		}
   1120      1.142        ad 		pt = spare;
   1121      1.142        ad 		spare = NULL;
   1122       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1123       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1124       1.63   thorpej 		pt->pt_overruns = 0;
   1125       1.63   thorpej 		pt->pt_proc = p;
   1126       1.63   thorpej 		pt->pt_type = which;
   1127       1.64   nathanw 		pt->pt_entry = which;
   1128      1.142        ad 		pt->pt_queued = false;
   1129      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1130      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1131      1.149  christos 		else
   1132      1.149  christos 			pt->pt_active = 0;
   1133      1.149  christos 
   1134       1.63   thorpej 		switch (which) {
   1135       1.63   thorpej 		case ITIMER_REAL:
   1136       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1137       1.63   thorpej 			break;
   1138       1.63   thorpej 		case ITIMER_VIRTUAL:
   1139       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1140       1.63   thorpej 			break;
   1141       1.63   thorpej 		case ITIMER_PROF:
   1142       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1143       1.63   thorpej 			break;
   1144        1.1       cgd 		}
   1145      1.142        ad 		pts->pts_timers[which] = pt;
   1146      1.142        ad 	}
   1147       1.63   thorpej 
   1148      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1149      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1150      1.150  christos 
   1151      1.150  christos 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1152       1.67   nathanw 		/* Convert to absolute time */
   1153      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1154      1.150  christos 		getnanotime(&now);
   1155      1.150  christos 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1156       1.67   nathanw 	}
   1157       1.63   thorpej 	timer_settime(pt);
   1158      1.142        ad 	mutex_spin_exit(&timer_lock);
   1159      1.142        ad 	if (spare != NULL)
   1160      1.142        ad 		pool_put(&ptimer_pool, spare);
   1161       1.63   thorpej 
   1162        1.1       cgd 	return (0);
   1163        1.1       cgd }
   1164        1.1       cgd 
   1165       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1166      1.142        ad struct ptimers *
   1167       1.63   thorpej timers_alloc(struct proc *p)
   1168       1.63   thorpej {
   1169      1.142        ad 	struct ptimers *pts;
   1170       1.63   thorpej 	int i;
   1171       1.63   thorpej 
   1172      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1173       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1174       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1175       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1176       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1177       1.64   nathanw 	pts->pts_fired = 0;
   1178      1.142        ad 	mutex_spin_enter(&timer_lock);
   1179      1.142        ad 	if (p->p_timers == NULL) {
   1180      1.142        ad 		p->p_timers = pts;
   1181      1.142        ad 		mutex_spin_exit(&timer_lock);
   1182      1.142        ad 		return pts;
   1183      1.142        ad 	}
   1184      1.142        ad 	mutex_spin_exit(&timer_lock);
   1185      1.142        ad 	pool_put(&ptimers_pool, pts);
   1186      1.142        ad 	return p->p_timers;
   1187       1.63   thorpej }
   1188       1.63   thorpej 
   1189        1.1       cgd /*
   1190       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1191       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1192       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1193       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1194       1.63   thorpej  * structure if none of those remain.
   1195        1.1       cgd  */
   1196        1.3    andrew void
   1197       1.63   thorpej timers_free(struct proc *p, int which)
   1198        1.6       cgd {
   1199       1.63   thorpej 	struct ptimers *pts;
   1200      1.142        ad 	struct ptimer *ptn;
   1201      1.150  christos 	struct timespec ts;
   1202      1.142        ad 	int i;
   1203       1.63   thorpej 
   1204      1.142        ad 	if (p->p_timers == NULL)
   1205      1.142        ad 		return;
   1206       1.63   thorpej 
   1207      1.142        ad 	pts = p->p_timers;
   1208      1.142        ad 	mutex_spin_enter(&timer_lock);
   1209      1.142        ad 	if (which == TIMERS_ALL) {
   1210      1.142        ad 		p->p_timers = NULL;
   1211      1.142        ad 		i = 0;
   1212      1.142        ad 	} else {
   1213      1.150  christos 		timespecclear(&ts);
   1214      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1215      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1216      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1217      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1218      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1219      1.149  christos 		}
   1220      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1221      1.142        ad 		if (ptn) {
   1222      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1223      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1224      1.142        ad 			    &ptn->pt_time.it_value);
   1225      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1226      1.142        ad 		}
   1227      1.150  christos 		timespecclear(&ts);
   1228      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1229      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1230      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1231      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1232      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1233      1.149  christos 		}
   1234      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1235      1.142        ad 		if (ptn) {
   1236      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1237      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1238      1.142        ad 			    &ptn->pt_time.it_value);
   1239      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1240       1.63   thorpej 		}
   1241      1.142        ad 		i = 3;
   1242      1.142        ad 	}
   1243      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1244      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1245      1.142        ad 			itimerfree(pts, i);
   1246      1.142        ad 			mutex_spin_enter(&timer_lock);
   1247        1.1       cgd 		}
   1248        1.1       cgd 	}
   1249      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1250      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1251      1.142        ad 		p->p_timers = NULL;
   1252      1.142        ad 		mutex_spin_exit(&timer_lock);
   1253      1.142        ad 		pool_put(&ptimers_pool, pts);
   1254      1.142        ad 	} else
   1255      1.142        ad 		mutex_spin_exit(&timer_lock);
   1256      1.142        ad }
   1257      1.142        ad 
   1258      1.142        ad static void
   1259      1.142        ad itimerfree(struct ptimers *pts, int index)
   1260      1.142        ad {
   1261      1.142        ad 	struct ptimer *pt;
   1262      1.142        ad 
   1263      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1264      1.142        ad 
   1265      1.142        ad 	pt = pts->pts_timers[index];
   1266      1.142        ad 	pts->pts_timers[index] = NULL;
   1267      1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1268      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1269      1.144        ad 	else if (pt->pt_queued)
   1270      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1271      1.144        ad 	mutex_spin_exit(&timer_lock);
   1272      1.149  christos 	if (pt->pt_type == CLOCK_REALTIME)
   1273      1.149  christos 		callout_destroy(&pt->pt_ch);
   1274      1.142        ad 	pool_put(&ptimer_pool, pt);
   1275        1.1       cgd }
   1276        1.1       cgd 
   1277        1.1       cgd /*
   1278        1.1       cgd  * Decrement an interval timer by a specified number
   1279      1.152  christos  * of nanoseconds, which must be less than a second,
   1280      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1281      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1282        1.8       cgd  * reduce the value reloaded into the timer so that
   1283        1.1       cgd  * the timer does not drift.  This routine assumes
   1284        1.1       cgd  * that it is called in a context where the timers
   1285        1.1       cgd  * on which it is operating cannot change in value.
   1286        1.1       cgd  */
   1287      1.142        ad static int
   1288      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1289       1.63   thorpej {
   1290      1.150  christos 	struct itimerspec *itp;
   1291        1.1       cgd 
   1292      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1293      1.142        ad 
   1294       1.63   thorpej 	itp = &pt->pt_time;
   1295      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1296        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1297        1.1       cgd 			/* expired, and already in next interval */
   1298      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1299        1.1       cgd 			goto expire;
   1300        1.1       cgd 		}
   1301      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1302        1.1       cgd 		itp->it_value.tv_sec--;
   1303        1.1       cgd 	}
   1304      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1305      1.152  christos 	nsec = 0;
   1306      1.150  christos 	if (timespecisset(&itp->it_value))
   1307        1.1       cgd 		return (1);
   1308        1.1       cgd 	/* expired, exactly at end of interval */
   1309        1.1       cgd expire:
   1310      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1311        1.1       cgd 		itp->it_value = itp->it_interval;
   1312      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1313      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1314      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1315        1.1       cgd 			itp->it_value.tv_sec--;
   1316        1.1       cgd 		}
   1317       1.63   thorpej 		timer_settime(pt);
   1318        1.1       cgd 	} else
   1319      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1320        1.1       cgd 	return (0);
   1321       1.42       cgd }
   1322       1.42       cgd 
   1323      1.142        ad static void
   1324       1.63   thorpej itimerfire(struct ptimer *pt)
   1325       1.63   thorpej {
   1326       1.78        cl 
   1327      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1328      1.142        ad 
   1329      1.142        ad 	/*
   1330      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1331      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1332      1.142        ad 	 */
   1333      1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1334      1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1335      1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1336      1.142        ad 		return;
   1337      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1338      1.142        ad 	pt->pt_queued = true;
   1339      1.142        ad 	softint_schedule(timer_sih);
   1340      1.142        ad }
   1341      1.142        ad 
   1342      1.142        ad void
   1343      1.142        ad timer_tick(lwp_t *l, bool user)
   1344      1.142        ad {
   1345      1.142        ad 	struct ptimers *pts;
   1346      1.142        ad 	struct ptimer *pt;
   1347      1.142        ad 	proc_t *p;
   1348      1.142        ad 
   1349      1.142        ad 	p = l->l_proc;
   1350      1.142        ad 	if (p->p_timers == NULL)
   1351      1.142        ad 		return;
   1352      1.142        ad 
   1353      1.142        ad 	mutex_spin_enter(&timer_lock);
   1354      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1355       1.63   thorpej 		/*
   1356      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1357       1.63   thorpej 		 */
   1358      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1359      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1360      1.142        ad 				itimerfire(pt);
   1361      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1362      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1363      1.142        ad 				itimerfire(pt);
   1364      1.142        ad 	}
   1365      1.142        ad 	mutex_spin_exit(&timer_lock);
   1366      1.142        ad }
   1367      1.142        ad 
   1368      1.154  wrstuden #ifdef KERN_SA
   1369      1.154  wrstuden /*
   1370      1.154  wrstuden  * timer_sa_intr:
   1371      1.154  wrstuden  *
   1372      1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1373      1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1374      1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1375      1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1376      1.154  wrstuden  */
   1377      1.154  wrstuden static void
   1378      1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1379      1.154  wrstuden {
   1380      1.155  wrstuden 	unsigned int		i;
   1381      1.155  wrstuden 	struct sadata		*sa;
   1382      1.155  wrstuden 	struct sadata_vp	*vp;
   1383      1.154  wrstuden 
   1384      1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1385      1.154  wrstuden 	if (!p->p_timerpend) {
   1386      1.154  wrstuden 		/*
   1387      1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1388      1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1389      1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1390      1.154  wrstuden 		 * determine if we really should call setrunnable.
   1391      1.154  wrstuden 		 */
   1392      1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1393      1.154  wrstuden 		pt->pt_overruns = 0;
   1394      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1395      1.154  wrstuden 		p->p_timers->pts_fired = i;
   1396      1.154  wrstuden 		p->p_timerpend = 1;
   1397      1.154  wrstuden 
   1398      1.155  wrstuden 		sa = p->p_sa;
   1399      1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1400      1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1401      1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1402      1.155  wrstuden 			lwp_lock(vp_lwp);
   1403      1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1404      1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1405      1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1406      1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1407      1.154  wrstuden 				break;
   1408      1.154  wrstuden 			}
   1409      1.155  wrstuden 			lwp_unlock(vp_lwp);
   1410      1.154  wrstuden 		}
   1411      1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1412      1.154  wrstuden 	} else {
   1413      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1414      1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1415      1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1416      1.154  wrstuden 			pt->pt_overruns = 0;
   1417      1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1418      1.154  wrstuden 		} else
   1419      1.154  wrstuden 			pt->pt_overruns++;
   1420      1.154  wrstuden 	}
   1421      1.154  wrstuden }
   1422      1.154  wrstuden #endif /* KERN_SA */
   1423      1.154  wrstuden 
   1424      1.142        ad static void
   1425      1.142        ad timer_intr(void *cookie)
   1426      1.142        ad {
   1427      1.142        ad 	ksiginfo_t ksi;
   1428      1.142        ad 	struct ptimer *pt;
   1429      1.142        ad 	proc_t *p;
   1430      1.142        ad 
   1431  1.155.4.1       snj 	mutex_enter(proc_lock);
   1432      1.142        ad 	mutex_spin_enter(&timer_lock);
   1433      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1434      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1435      1.142        ad 		KASSERT(pt->pt_queued);
   1436      1.142        ad 		pt->pt_queued = false;
   1437      1.142        ad 
   1438      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1439      1.154  wrstuden 			/* Process is dying. */
   1440      1.142        ad 			continue;
   1441      1.154  wrstuden 		}
   1442      1.142        ad 		p = pt->pt_proc;
   1443      1.154  wrstuden #ifdef KERN_SA
   1444      1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1445      1.154  wrstuden 			timer_sa_intr(pt, p);
   1446      1.142        ad 			continue;
   1447      1.142        ad 		}
   1448      1.154  wrstuden #endif /* KERN_SA */
   1449      1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1450      1.154  wrstuden 			continue;
   1451      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1452       1.63   thorpej 			pt->pt_overruns++;
   1453      1.142        ad 			continue;
   1454       1.64   nathanw 		}
   1455      1.142        ad 
   1456      1.142        ad 		KSI_INIT(&ksi);
   1457      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1458      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1459      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1460      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1461      1.142        ad 		pt->pt_overruns = 0;
   1462      1.142        ad 		mutex_spin_exit(&timer_lock);
   1463      1.142        ad 		kpsignal(p, &ksi, NULL);
   1464      1.142        ad 		mutex_spin_enter(&timer_lock);
   1465       1.63   thorpej 	}
   1466      1.142        ad 	mutex_spin_exit(&timer_lock);
   1467  1.155.4.1       snj 	mutex_exit(proc_lock);
   1468       1.63   thorpej }
   1469