Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.156
      1  1.156  christos /*	$NetBSD: kern_time.c,v 1.156 2009/01/11 02:45:52 christos Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.142        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  *
     19   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30   1.42       cgd  */
     31    1.9       cgd 
     32    1.1       cgd /*
     33    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37    1.1       cgd  * modification, are permitted provided that the following conditions
     38    1.1       cgd  * are met:
     39    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45    1.1       cgd  *    may be used to endorse or promote products derived from this software
     46    1.1       cgd  *    without specific prior written permission.
     47    1.1       cgd  *
     48    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58    1.1       cgd  * SUCH DAMAGE.
     59    1.1       cgd  *
     60   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61    1.1       cgd  */
     62   1.58     lukem 
     63   1.58     lukem #include <sys/cdefs.h>
     64  1.156  christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.156 2009/01/11 02:45:52 christos Exp $");
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/resourcevar.h>
     68    1.5   mycroft #include <sys/kernel.h>
     69    1.8       cgd #include <sys/systm.h>
     70    1.5   mycroft #include <sys/proc.h>
     71    1.8       cgd #include <sys/vnode.h>
     72   1.17  christos #include <sys/signalvar.h>
     73   1.25     perry #include <sys/syslog.h>
     74  1.101    kardel #include <sys/timetc.h>
     75  1.143        ad #include <sys/timex.h>
     76   1.99      elad #include <sys/kauth.h>
     77   1.11       cgd #include <sys/mount.h>
     78  1.154  wrstuden #include <sys/sa.h>
     79  1.154  wrstuden #include <sys/savar.h>
     80   1.11       cgd #include <sys/syscallargs.h>
     81  1.143        ad #include <sys/cpu.h>
     82   1.19  christos 
     83   1.37   thorpej #include <uvm/uvm_extern.h>
     84   1.37   thorpej 
     85  1.154  wrstuden #include "opt_sa.h"
     86  1.154  wrstuden 
     87  1.142        ad static void	timer_intr(void *);
     88  1.142        ad static void	itimerfire(struct ptimer *);
     89  1.142        ad static void	itimerfree(struct ptimers *, int);
     90  1.142        ad 
     91  1.142        ad kmutex_t	timer_lock;
     92  1.142        ad 
     93  1.142        ad static void	*timer_sih;
     94  1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95  1.131        ad 
     96   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99  1.118        ad     &pool_allocator_nointr, IPL_NONE);
    100   1.97    simonb 
    101  1.131        ad /*
    102  1.131        ad  * Initialize timekeeping.
    103  1.131        ad  */
    104  1.131        ad void
    105  1.131        ad time_init(void)
    106  1.131        ad {
    107  1.131        ad 
    108  1.147        ad 	/* nothing yet */
    109  1.131        ad }
    110  1.131        ad 
    111  1.142        ad void
    112  1.142        ad time_init2(void)
    113  1.142        ad {
    114  1.142        ad 
    115  1.142        ad 	TAILQ_INIT(&timer_queue);
    116  1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117  1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118  1.142        ad 	    timer_intr, NULL);
    119  1.142        ad }
    120  1.142        ad 
    121   1.63   thorpej /* Time of day and interval timer support.
    122    1.1       cgd  *
    123    1.1       cgd  * These routines provide the kernel entry points to get and set
    124    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125    1.1       cgd  * here provide support for adding and subtracting timeval structures
    126    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127    1.1       cgd  * timers when they expire.
    128    1.1       cgd  */
    129    1.1       cgd 
    130   1.22       jtc /* This function is used by clock_settime and settimeofday */
    131  1.132      elad static int
    132  1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    133   1.22       jtc {
    134  1.156  christos 	struct timespec delta, now;
    135  1.137      yamt 	struct bintime btdelta;
    136  1.129        ad 	lwp_t *l;
    137  1.129        ad 	int s;
    138   1.22       jtc 
    139   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140  1.129        ad 	s = splclock();
    141  1.156  christos 	nanotime(&now);
    142  1.156  christos 	timespecsub(ts, &now, &delta);
    143  1.132      elad 
    144  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145  1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146  1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147  1.129        ad 		splx(s);
    148   1.29       tls 		return (EPERM);
    149   1.55      tron 	}
    150  1.132      elad 
    151   1.29       tls #ifdef notyet
    152  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153  1.129        ad 		splx(s);
    154   1.29       tls 		return (EPERM);
    155   1.55      tron 	}
    156   1.29       tls #endif
    157  1.103    kardel 
    158  1.156  christos 	tc_setclock(ts);
    159  1.103    kardel 
    160  1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161  1.103    kardel 
    162   1.47   thorpej 	/*
    163  1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    164  1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    165  1.129        ad 	 * pausing all CPUs while we adjust the clock.
    166   1.47   thorpej 	 */
    167  1.156  christos 	timespec2bintime(&delta, &btdelta);
    168  1.145        ad 	mutex_enter(proc_lock);
    169  1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    170  1.129        ad 		lwp_lock(l);
    171  1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    172  1.129        ad 		lwp_unlock(l);
    173  1.129        ad 	}
    174  1.145        ad 	mutex_exit(proc_lock);
    175   1.22       jtc 	resettodr();
    176  1.129        ad 	splx(s);
    177  1.129        ad 
    178   1.29       tls 	return (0);
    179   1.22       jtc }
    180   1.22       jtc 
    181  1.132      elad int
    182  1.132      elad settime(struct proc *p, struct timespec *ts)
    183  1.132      elad {
    184  1.132      elad 	return (settime1(p, ts, true));
    185  1.132      elad }
    186  1.132      elad 
    187   1.22       jtc /* ARGSUSED */
    188   1.22       jtc int
    189  1.156  christos sys___clock_gettime50(struct lwp *l,
    190  1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    191   1.22       jtc {
    192  1.135       dsl 	/* {
    193   1.22       jtc 		syscallarg(clockid_t) clock_id;
    194   1.23       cgd 		syscallarg(struct timespec *) tp;
    195  1.135       dsl 	} */
    196   1.22       jtc 	clockid_t clock_id;
    197   1.22       jtc 	struct timespec ats;
    198   1.22       jtc 
    199   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    200   1.61    simonb 	switch (clock_id) {
    201   1.61    simonb 	case CLOCK_REALTIME:
    202   1.96    simonb 		nanotime(&ats);
    203   1.61    simonb 		break;
    204   1.61    simonb 	case CLOCK_MONOTONIC:
    205  1.101    kardel 		nanouptime(&ats);
    206   1.61    simonb 		break;
    207   1.61    simonb 	default:
    208   1.22       jtc 		return (EINVAL);
    209   1.61    simonb 	}
    210   1.22       jtc 
    211   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    212   1.22       jtc }
    213   1.22       jtc 
    214   1.22       jtc /* ARGSUSED */
    215   1.22       jtc int
    216  1.156  christos sys___clock_settime50(struct lwp *l,
    217  1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    218   1.22       jtc {
    219  1.135       dsl 	/* {
    220   1.22       jtc 		syscallarg(clockid_t) clock_id;
    221   1.23       cgd 		syscallarg(const struct timespec *) tp;
    222  1.135       dsl 	} */
    223  1.156  christos 	int error;
    224  1.156  christos 	struct timespec ats;
    225   1.22       jtc 
    226  1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    227  1.156  christos 		return error;
    228  1.156  christos 
    229  1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    230   1.56      manu }
    231   1.56      manu 
    232   1.56      manu 
    233   1.56      manu int
    234  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    235  1.132      elad     bool check_kauth)
    236   1.56      manu {
    237   1.56      manu 	int error;
    238   1.56      manu 
    239   1.61    simonb 	switch (clock_id) {
    240   1.61    simonb 	case CLOCK_REALTIME:
    241  1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    242   1.61    simonb 			return (error);
    243   1.61    simonb 		break;
    244   1.61    simonb 	case CLOCK_MONOTONIC:
    245   1.61    simonb 		return (EINVAL);	/* read-only clock */
    246   1.61    simonb 	default:
    247   1.56      manu 		return (EINVAL);
    248   1.61    simonb 	}
    249   1.22       jtc 
    250   1.22       jtc 	return 0;
    251   1.22       jtc }
    252   1.22       jtc 
    253   1.22       jtc int
    254  1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    255  1.140      yamt     register_t *retval)
    256   1.22       jtc {
    257  1.135       dsl 	/* {
    258   1.22       jtc 		syscallarg(clockid_t) clock_id;
    259   1.23       cgd 		syscallarg(struct timespec *) tp;
    260  1.135       dsl 	} */
    261   1.22       jtc 	clockid_t clock_id;
    262   1.22       jtc 	struct timespec ts;
    263   1.22       jtc 	int error = 0;
    264   1.22       jtc 
    265   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    266   1.61    simonb 	switch (clock_id) {
    267   1.61    simonb 	case CLOCK_REALTIME:
    268   1.61    simonb 	case CLOCK_MONOTONIC:
    269   1.22       jtc 		ts.tv_sec = 0;
    270  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    271  1.102    kardel 			ts.tv_nsec = 1;
    272  1.102    kardel 		else
    273  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    274   1.61    simonb 		break;
    275   1.61    simonb 	default:
    276   1.61    simonb 		return (EINVAL);
    277   1.61    simonb 	}
    278   1.22       jtc 
    279   1.61    simonb 	if (SCARG(uap, tp))
    280   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    281   1.22       jtc 
    282   1.22       jtc 	return error;
    283   1.22       jtc }
    284   1.22       jtc 
    285   1.27       jtc /* ARGSUSED */
    286   1.27       jtc int
    287  1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    288  1.140      yamt     register_t *retval)
    289   1.27       jtc {
    290  1.135       dsl 	/* {
    291  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    292  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    293  1.135       dsl 	} */
    294  1.101    kardel 	struct timespec rmt, rqt;
    295  1.120       dsl 	int error, error1;
    296  1.101    kardel 
    297  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    298  1.101    kardel 	if (error)
    299  1.101    kardel 		return (error);
    300  1.101    kardel 
    301  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    302  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    303  1.120       dsl 		return error;
    304  1.120       dsl 
    305  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    306  1.120       dsl 	return error1 ? error1 : error;
    307  1.120       dsl }
    308  1.120       dsl 
    309  1.120       dsl int
    310  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    311  1.120       dsl {
    312  1.141      yamt 	struct timespec rmtstart;
    313  1.120       dsl 	int error, timo;
    314  1.120       dsl 
    315  1.120       dsl 	if (itimespecfix(rqt))
    316  1.101    kardel 		return (EINVAL);
    317  1.101    kardel 
    318  1.120       dsl 	timo = tstohz(rqt);
    319  1.101    kardel 	/*
    320  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    321  1.101    kardel 	 */
    322  1.101    kardel 	if (timo == 0)
    323  1.101    kardel 		timo = 1;
    324  1.141      yamt 	getnanouptime(&rmtstart);
    325  1.141      yamt again:
    326  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    327  1.141      yamt 	if (rmt != NULL || error == 0) {
    328  1.141      yamt 		struct timespec rmtend;
    329  1.141      yamt 		struct timespec t0;
    330  1.141      yamt 		struct timespec *t;
    331  1.101    kardel 
    332  1.141      yamt 		getnanouptime(&rmtend);
    333  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    334  1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    335  1.141      yamt 		timespecsub(rqt, t, t);
    336  1.141      yamt 		if (t->tv_sec < 0)
    337  1.141      yamt 			timespecclear(t);
    338  1.141      yamt 		if (error == 0) {
    339  1.141      yamt 			timo = tstohz(t);
    340  1.141      yamt 			if (timo > 0)
    341  1.141      yamt 				goto again;
    342  1.141      yamt 		}
    343  1.141      yamt 	}
    344  1.104    kardel 
    345  1.101    kardel 	if (error == ERESTART)
    346  1.101    kardel 		error = EINTR;
    347  1.101    kardel 	if (error == EWOULDBLOCK)
    348  1.101    kardel 		error = 0;
    349  1.101    kardel 
    350  1.101    kardel 	return error;
    351   1.27       jtc }
    352   1.22       jtc 
    353    1.1       cgd /* ARGSUSED */
    354    1.3    andrew int
    355  1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    356  1.140      yamt     register_t *retval)
    357   1.15   thorpej {
    358  1.135       dsl 	/* {
    359   1.11       cgd 		syscallarg(struct timeval *) tp;
    360  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    361  1.135       dsl 	} */
    362    1.1       cgd 	struct timeval atv;
    363    1.1       cgd 	int error = 0;
    364   1.25     perry 	struct timezone tzfake;
    365    1.1       cgd 
    366   1.11       cgd 	if (SCARG(uap, tp)) {
    367    1.1       cgd 		microtime(&atv);
    368   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    369   1.17  christos 		if (error)
    370    1.1       cgd 			return (error);
    371    1.1       cgd 	}
    372   1.25     perry 	if (SCARG(uap, tzp)) {
    373   1.25     perry 		/*
    374   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    375   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    376   1.25     perry 		 */
    377   1.25     perry 		tzfake.tz_minuteswest = 0;
    378   1.25     perry 		tzfake.tz_dsttime = 0;
    379   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    380   1.25     perry 	}
    381    1.1       cgd 	return (error);
    382    1.1       cgd }
    383    1.1       cgd 
    384    1.1       cgd /* ARGSUSED */
    385    1.3    andrew int
    386  1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    387  1.140      yamt     register_t *retval)
    388   1.15   thorpej {
    389  1.135       dsl 	/* {
    390   1.24       cgd 		syscallarg(const struct timeval *) tv;
    391  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    392  1.135       dsl 	} */
    393   1.60      manu 
    394  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    395   1.60      manu }
    396   1.60      manu 
    397   1.60      manu int
    398  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    399  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    400   1.60      manu {
    401   1.22       jtc 	struct timeval atv;
    402   1.98  christos 	struct timespec ts;
    403   1.22       jtc 	int error;
    404    1.1       cgd 
    405    1.8       cgd 	/* Verify all parameters before changing time. */
    406  1.119       dsl 
    407   1.25     perry 	/*
    408   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    409   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    410   1.25     perry 	 */
    411   1.98  christos 	if (utzp)
    412   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    413  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    414   1.98  christos 
    415   1.98  christos 	if (utv == NULL)
    416   1.98  christos 		return 0;
    417   1.98  christos 
    418  1.119       dsl 	if (userspace) {
    419  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    420  1.119       dsl 			return error;
    421  1.119       dsl 		utv = &atv;
    422  1.119       dsl 	}
    423  1.119       dsl 
    424  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    425  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    426    1.1       cgd }
    427    1.1       cgd 
    428   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    429    1.1       cgd 
    430    1.1       cgd /* ARGSUSED */
    431    1.3    andrew int
    432  1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    433  1.140      yamt     register_t *retval)
    434   1.15   thorpej {
    435  1.135       dsl 	/* {
    436   1.24       cgd 		syscallarg(const struct timeval *) delta;
    437   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    438  1.135       dsl 	} */
    439  1.156  christos 	int error = 0;
    440  1.156  christos 	struct timeval atv, oldatv;
    441    1.1       cgd 
    442  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    443  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    444  1.156  christos 		return error;
    445   1.17  christos 
    446  1.156  christos 	if (SCARG(uap, delta)) {
    447  1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    448  1.156  christos 		    sizeof(*SCARG(uap, delta)));
    449  1.156  christos 		if (error)
    450  1.156  christos 			return (error);
    451  1.156  christos 	}
    452  1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    453  1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    454  1.156  christos 	if (SCARG(uap, olddelta))
    455  1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    456  1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    457  1.156  christos 	return error;
    458   1.56      manu }
    459   1.56      manu 
    460  1.156  christos void
    461  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    462   1.56      manu {
    463  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    464  1.101    kardel 
    465  1.101    kardel 	if (olddelta) {
    466  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    467  1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    468  1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    469  1.156  christos 		if (olddelta->tv_usec < 0) {
    470  1.156  christos 			olddelta->tv_usec += 1000000;
    471  1.156  christos 			olddelta->tv_sec--;
    472  1.101    kardel 		}
    473  1.101    kardel 	}
    474  1.101    kardel 
    475  1.101    kardel 	if (delta) {
    476  1.156  christos 		mutex_spin_enter(&timecounter_lock);
    477  1.156  christos 		time_adjtime = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
    478  1.101    kardel 
    479  1.143        ad 		if (time_adjtime) {
    480  1.101    kardel 			/* We need to save the system time during shutdown */
    481  1.101    kardel 			time_adjusted |= 1;
    482  1.143        ad 		}
    483  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    484  1.101    kardel 	}
    485    1.1       cgd }
    486    1.1       cgd 
    487    1.1       cgd /*
    488   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    489   1.63   thorpej  * timer_*() family of routines are supported.
    490    1.1       cgd  *
    491   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    492   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    493   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    494   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    495   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    496   1.63   thorpej  * syscall.
    497    1.1       cgd  *
    498   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    499   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    500    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    501   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    502   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    503   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    504   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    505   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    506   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    507   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    508   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    509   1.63   thorpej 
    510   1.63   thorpej /* Allocate a POSIX realtime timer. */
    511   1.63   thorpej int
    512  1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    513  1.140      yamt     register_t *retval)
    514   1.63   thorpej {
    515  1.135       dsl 	/* {
    516   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    517   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    518   1.63   thorpej 		syscallarg(timer_t *) timerid;
    519  1.135       dsl 	} */
    520   1.92      cube 
    521   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    522  1.105        ad 	    SCARG(uap, evp), copyin, l);
    523   1.92      cube }
    524   1.92      cube 
    525   1.92      cube int
    526   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    527  1.105        ad     copyin_t fetch_event, struct lwp *l)
    528   1.92      cube {
    529   1.92      cube 	int error;
    530   1.92      cube 	timer_t timerid;
    531  1.142        ad 	struct ptimers *pts;
    532   1.63   thorpej 	struct ptimer *pt;
    533  1.105        ad 	struct proc *p;
    534  1.105        ad 
    535  1.105        ad 	p = l->l_proc;
    536   1.63   thorpej 
    537  1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    538   1.63   thorpej 		return (EINVAL);
    539   1.63   thorpej 
    540  1.142        ad 	if ((pts = p->p_timers) == NULL)
    541  1.142        ad 		pts = timers_alloc(p);
    542   1.63   thorpej 
    543   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    544  1.142        ad 	if (evp != NULL) {
    545   1.63   thorpej 		if (((error =
    546   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    547   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    548   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    549   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    550   1.63   thorpej 			return (error ? error : EINVAL);
    551   1.63   thorpej 		}
    552  1.142        ad 	}
    553  1.142        ad 
    554  1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    555  1.142        ad 	mutex_spin_enter(&timer_lock);
    556  1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    557  1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    558  1.142        ad 			break;
    559  1.142        ad 	if (timerid == TIMER_MAX) {
    560  1.142        ad 		mutex_spin_exit(&timer_lock);
    561  1.142        ad 		pool_put(&ptimer_pool, pt);
    562  1.142        ad 		return EAGAIN;
    563  1.142        ad 	}
    564  1.142        ad 	if (evp == NULL) {
    565   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    566   1.63   thorpej 		switch (id) {
    567   1.63   thorpej 		case CLOCK_REALTIME:
    568   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    569   1.63   thorpej 			break;
    570   1.63   thorpej 		case CLOCK_VIRTUAL:
    571   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    572   1.63   thorpej 			break;
    573   1.63   thorpej 		case CLOCK_PROF:
    574   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    575   1.63   thorpej 			break;
    576   1.63   thorpej 		}
    577   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    578   1.63   thorpej 	}
    579   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    580   1.73  christos 	pt->pt_info.ksi_errno = 0;
    581   1.73  christos 	pt->pt_info.ksi_code = 0;
    582   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    583  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    584  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    585   1.63   thorpej 	pt->pt_type = id;
    586   1.63   thorpej 	pt->pt_proc = p;
    587   1.63   thorpej 	pt->pt_overruns = 0;
    588   1.63   thorpej 	pt->pt_poverruns = 0;
    589   1.64   nathanw 	pt->pt_entry = timerid;
    590  1.142        ad 	pt->pt_queued = false;
    591  1.150  christos 	timespecclear(&pt->pt_time.it_value);
    592  1.149  christos 	if (id == CLOCK_REALTIME)
    593  1.149  christos 		callout_init(&pt->pt_ch, 0);
    594  1.149  christos 	else
    595  1.149  christos 		pt->pt_active = 0;
    596  1.149  christos 
    597  1.142        ad 	pts->pts_timers[timerid] = pt;
    598  1.142        ad 	mutex_spin_exit(&timer_lock);
    599   1.63   thorpej 
    600   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    601   1.63   thorpej }
    602   1.63   thorpej 
    603   1.63   thorpej /* Delete a POSIX realtime timer */
    604    1.3    andrew int
    605  1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    606  1.140      yamt     register_t *retval)
    607   1.15   thorpej {
    608  1.135       dsl 	/* {
    609   1.63   thorpej 		syscallarg(timer_t) timerid;
    610  1.135       dsl 	} */
    611   1.63   thorpej 	struct proc *p = l->l_proc;
    612   1.65  jdolecek 	timer_t timerid;
    613  1.142        ad 	struct ptimers *pts;
    614   1.63   thorpej 	struct ptimer *pt, *ptn;
    615    1.1       cgd 
    616   1.63   thorpej 	timerid = SCARG(uap, timerid);
    617  1.142        ad 	pts = p->p_timers;
    618  1.142        ad 
    619  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    620  1.142        ad 		return (EINVAL);
    621   1.63   thorpej 
    622  1.142        ad 	mutex_spin_enter(&timer_lock);
    623  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    624  1.142        ad 		mutex_spin_exit(&timer_lock);
    625    1.1       cgd 		return (EINVAL);
    626  1.142        ad 	}
    627  1.149  christos 	if (pt->pt_type != CLOCK_REALTIME) {
    628  1.149  christos 		if (pt->pt_active) {
    629  1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    630  1.149  christos 			LIST_REMOVE(pt, pt_list);
    631  1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    632  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    633  1.149  christos 				    &ptn->pt_time.it_value,
    634  1.149  christos 				    &ptn->pt_time.it_value);
    635  1.149  christos 			pt->pt_active = 0;
    636  1.149  christos 		}
    637   1.63   thorpej 	}
    638  1.142        ad 	itimerfree(pts, timerid);
    639   1.63   thorpej 
    640   1.63   thorpej 	return (0);
    641   1.63   thorpej }
    642   1.63   thorpej 
    643   1.63   thorpej /*
    644   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    645   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    646   1.67   nathanw  * time for virtual timers.
    647   1.63   thorpej  * Must be called at splclock().
    648   1.63   thorpej  */
    649   1.63   thorpej void
    650   1.63   thorpej timer_settime(struct ptimer *pt)
    651   1.63   thorpej {
    652   1.63   thorpej 	struct ptimer *ptn, *pptn;
    653   1.63   thorpej 	struct ptlist *ptl;
    654   1.63   thorpej 
    655  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    656  1.142        ad 
    657   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    658   1.63   thorpej 		callout_stop(&pt->pt_ch);
    659  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    660   1.63   thorpej 			/*
    661  1.150  christos 			 * Don't need to check tshzto() return value, here.
    662   1.63   thorpej 			 * callout_reset() does it for us.
    663   1.63   thorpej 			 */
    664  1.150  christos 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    665   1.63   thorpej 			    realtimerexpire, pt);
    666   1.63   thorpej 		}
    667   1.63   thorpej 	} else {
    668   1.63   thorpej 		if (pt->pt_active) {
    669   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    670   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    671   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    672  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    673   1.63   thorpej 				    &ptn->pt_time.it_value,
    674   1.63   thorpej 				    &ptn->pt_time.it_value);
    675   1.63   thorpej 		}
    676  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    677   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    678   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    679   1.63   thorpej 			else
    680   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    681   1.63   thorpej 
    682   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    683  1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    684   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    685   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    686  1.150  christos 				timespecsub(&pt->pt_time.it_value,
    687   1.63   thorpej 				    &ptn->pt_time.it_value,
    688   1.63   thorpej 				    &pt->pt_time.it_value);
    689   1.63   thorpej 
    690   1.63   thorpej 			if (pptn)
    691   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    692   1.63   thorpej 			else
    693   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    694   1.63   thorpej 
    695   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    696  1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    697   1.63   thorpej 				    &pt->pt_time.it_value,
    698   1.63   thorpej 				    &ptn->pt_time.it_value);
    699   1.63   thorpej 
    700   1.63   thorpej 			pt->pt_active = 1;
    701   1.63   thorpej 		} else
    702   1.63   thorpej 			pt->pt_active = 0;
    703   1.63   thorpej 	}
    704   1.63   thorpej }
    705   1.63   thorpej 
    706   1.63   thorpej void
    707  1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    708   1.63   thorpej {
    709  1.150  christos 	struct timespec now;
    710   1.63   thorpej 	struct ptimer *ptn;
    711   1.63   thorpej 
    712  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    713  1.142        ad 
    714  1.150  christos 	*aits = pt->pt_time;
    715   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    716    1.1       cgd 		/*
    717   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    718   1.63   thorpej 		 * part of real time timer.  If time for real time
    719   1.63   thorpej 		 * timer has passed return 0, else return difference
    720   1.63   thorpej 		 * between current time and time for the timer to go
    721   1.63   thorpej 		 * off.
    722    1.1       cgd 		 */
    723  1.150  christos 		if (timespecisset(&aits->it_value)) {
    724  1.150  christos 			getnanotime(&now);
    725  1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    726  1.150  christos 				timespecclear(&aits->it_value);
    727  1.101    kardel 			else
    728  1.150  christos 				timespecsub(&aits->it_value, &now,
    729  1.150  christos 				    &aits->it_value);
    730   1.36   thorpej 		}
    731   1.63   thorpej 	} else if (pt->pt_active) {
    732   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    733   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    734   1.63   thorpej 		else
    735   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    736   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    737  1.150  christos 			timespecadd(&aits->it_value,
    738  1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    739   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    740    1.1       cgd 	} else
    741  1.150  christos 		timespecclear(&aits->it_value);
    742   1.63   thorpej }
    743   1.63   thorpej 
    744   1.63   thorpej 
    745   1.63   thorpej 
    746   1.63   thorpej /* Set and arm a POSIX realtime timer */
    747   1.63   thorpej int
    748  1.156  christos sys___timer_settime50(struct lwp *l,
    749  1.156  christos     const struct sys___timer_settime50_args *uap,
    750  1.140      yamt     register_t *retval)
    751   1.63   thorpej {
    752  1.135       dsl 	/* {
    753   1.63   thorpej 		syscallarg(timer_t) timerid;
    754   1.63   thorpej 		syscallarg(int) flags;
    755   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    756   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    757  1.135       dsl 	} */
    758   1.92      cube 	int error;
    759   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    760   1.92      cube 
    761   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    762   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    763   1.92      cube 		return (error);
    764   1.92      cube 
    765   1.92      cube 	if (SCARG(uap, ovalue))
    766   1.92      cube 		ovp = &ovalue;
    767   1.92      cube 
    768   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    769   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    770   1.92      cube 		return error;
    771   1.92      cube 
    772   1.92      cube 	if (ovp)
    773   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    774   1.92      cube 		    sizeof(struct itimerspec));
    775   1.92      cube 	return 0;
    776   1.92      cube }
    777   1.92      cube 
    778   1.92      cube int
    779   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    780   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    781   1.92      cube {
    782  1.150  christos 	struct timespec now;
    783  1.150  christos 	struct itimerspec val, oval;
    784  1.142        ad 	struct ptimers *pts;
    785   1.63   thorpej 	struct ptimer *pt;
    786   1.63   thorpej 
    787  1.142        ad 	pts = p->p_timers;
    788   1.63   thorpej 
    789  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    790  1.142        ad 		return EINVAL;
    791  1.150  christos 	val = *value;
    792  1.150  christos 	if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
    793  1.150  christos 		return EINVAL;
    794   1.63   thorpej 
    795  1.142        ad 	mutex_spin_enter(&timer_lock);
    796  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    797  1.142        ad 		mutex_spin_exit(&timer_lock);
    798  1.150  christos 		return EINVAL;
    799  1.142        ad 	}
    800  1.142        ad 
    801   1.63   thorpej 	oval = pt->pt_time;
    802   1.63   thorpej 	pt->pt_time = val;
    803   1.63   thorpej 
    804   1.67   nathanw 	/*
    805   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    806   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    807   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    808   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    809   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    810   1.67   nathanw 	 */
    811  1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    812   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    813  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    814  1.150  christos 				getnanotime(&now);
    815  1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    816  1.101    kardel 				    &pt->pt_time.it_value);
    817  1.101    kardel 			}
    818   1.67   nathanw 		} else {
    819   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    820  1.150  christos 				getnanotime(&now);
    821  1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    822  1.101    kardel 				    &pt->pt_time.it_value);
    823  1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    824   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    825   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    826  1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    827   1.67   nathanw 				}
    828   1.67   nathanw 			}
    829   1.67   nathanw 		}
    830   1.67   nathanw 	}
    831   1.67   nathanw 
    832   1.63   thorpej 	timer_settime(pt);
    833  1.142        ad 	mutex_spin_exit(&timer_lock);
    834   1.63   thorpej 
    835  1.150  christos 	if (ovalue)
    836  1.150  christos 		*ovalue = oval;
    837   1.63   thorpej 
    838   1.63   thorpej 	return (0);
    839   1.63   thorpej }
    840   1.63   thorpej 
    841   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    842   1.63   thorpej int
    843  1.156  christos sys___timer_gettime50(struct lwp *l,
    844  1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    845   1.63   thorpej {
    846  1.135       dsl 	/* {
    847   1.63   thorpej 		syscallarg(timer_t) timerid;
    848   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    849  1.135       dsl 	} */
    850   1.63   thorpej 	struct itimerspec its;
    851   1.92      cube 	int error;
    852   1.92      cube 
    853   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    854   1.92      cube 	    &its)) != 0)
    855   1.92      cube 		return error;
    856   1.92      cube 
    857   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    858   1.92      cube }
    859   1.92      cube 
    860   1.92      cube int
    861   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    862   1.92      cube {
    863   1.63   thorpej 	struct ptimer *pt;
    864  1.142        ad 	struct ptimers *pts;
    865   1.63   thorpej 
    866  1.142        ad 	pts = p->p_timers;
    867  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    868   1.63   thorpej 		return (EINVAL);
    869  1.142        ad 	mutex_spin_enter(&timer_lock);
    870  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    871  1.142        ad 		mutex_spin_exit(&timer_lock);
    872  1.142        ad 		return (EINVAL);
    873  1.142        ad 	}
    874  1.150  christos 	timer_gettime(pt, its);
    875  1.142        ad 	mutex_spin_exit(&timer_lock);
    876   1.63   thorpej 
    877   1.92      cube 	return 0;
    878   1.63   thorpej }
    879   1.63   thorpej 
    880   1.63   thorpej /*
    881   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    882   1.63   thorpej  * while a notification was already pending. The counter is reset when
    883   1.63   thorpej  * a timer expires and a notification can be posted.
    884   1.63   thorpej  */
    885   1.63   thorpej int
    886  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    887  1.140      yamt     register_t *retval)
    888   1.63   thorpej {
    889  1.135       dsl 	/* {
    890   1.63   thorpej 		syscallarg(timer_t) timerid;
    891  1.135       dsl 	} */
    892   1.63   thorpej 	struct proc *p = l->l_proc;
    893  1.142        ad 	struct ptimers *pts;
    894   1.63   thorpej 	int timerid;
    895   1.63   thorpej 	struct ptimer *pt;
    896   1.63   thorpej 
    897   1.63   thorpej 	timerid = SCARG(uap, timerid);
    898   1.63   thorpej 
    899  1.142        ad 	pts = p->p_timers;
    900  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    901  1.142        ad 		return (EINVAL);
    902  1.142        ad 	mutex_spin_enter(&timer_lock);
    903  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    904  1.142        ad 		mutex_spin_exit(&timer_lock);
    905   1.63   thorpej 		return (EINVAL);
    906  1.142        ad 	}
    907   1.63   thorpej 	*retval = pt->pt_poverruns;
    908  1.142        ad 	mutex_spin_exit(&timer_lock);
    909   1.63   thorpej 
    910   1.63   thorpej 	return (0);
    911   1.63   thorpej }
    912   1.63   thorpej 
    913  1.154  wrstuden #ifdef KERN_SA
    914  1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    915  1.154  wrstuden void
    916  1.154  wrstuden timerupcall(struct lwp *l)
    917  1.154  wrstuden {
    918  1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    919  1.154  wrstuden 	struct proc *p = l->l_proc;
    920  1.154  wrstuden 	unsigned int i, fired, done;
    921  1.154  wrstuden 
    922  1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    923  1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    924  1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    925  1.154  wrstuden 		return ;
    926  1.154  wrstuden 
    927  1.154  wrstuden 	mutex_enter(p->p_lock);
    928  1.154  wrstuden 
    929  1.154  wrstuden 	fired = pt->pts_fired;
    930  1.154  wrstuden 	done = 0;
    931  1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    932  1.154  wrstuden 		siginfo_t *si;
    933  1.154  wrstuden 		int mask = 1 << --i;
    934  1.154  wrstuden 		int f;
    935  1.154  wrstuden 
    936  1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    937  1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    938  1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    939  1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    940  1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    941  1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    942  1.154  wrstuden 			siginfo_free(si);
    943  1.154  wrstuden 			/* XXX What do we do here?? */
    944  1.154  wrstuden 		} else
    945  1.154  wrstuden 			done |= mask;
    946  1.154  wrstuden 		fired &= ~mask;
    947  1.154  wrstuden 		l->l_pflag ^= f;
    948  1.154  wrstuden 	}
    949  1.154  wrstuden 	pt->pts_fired &= ~done;
    950  1.154  wrstuden 	if (pt->pts_fired == 0)
    951  1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    952  1.154  wrstuden 
    953  1.154  wrstuden 	mutex_exit(p->p_lock);
    954  1.154  wrstuden }
    955  1.154  wrstuden #endif /* KERN_SA */
    956  1.154  wrstuden 
    957   1.63   thorpej /*
    958   1.63   thorpej  * Real interval timer expired:
    959   1.63   thorpej  * send process whose timer expired an alarm signal.
    960   1.63   thorpej  * If time is not set up to reload, then just return.
    961   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    962   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    963   1.63   thorpej  * SIGALRM calls to be compressed into one.
    964   1.63   thorpej  */
    965   1.63   thorpej void
    966   1.63   thorpej realtimerexpire(void *arg)
    967   1.63   thorpej {
    968  1.148     joerg 	uint64_t last_val, next_val, interval, now_ms;
    969  1.150  christos 	struct timespec now, next;
    970   1.63   thorpej 	struct ptimer *pt;
    971  1.148     joerg 	int backwards;
    972   1.63   thorpej 
    973  1.142        ad 	pt = arg;
    974   1.63   thorpej 
    975  1.142        ad 	mutex_spin_enter(&timer_lock);
    976   1.63   thorpej 	itimerfire(pt);
    977   1.63   thorpej 
    978  1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    979  1.150  christos 		timespecclear(&pt->pt_time.it_value);
    980  1.142        ad 		mutex_spin_exit(&timer_lock);
    981   1.63   thorpej 		return;
    982   1.63   thorpej 	}
    983  1.148     joerg 
    984  1.150  christos 	getnanotime(&now);
    985  1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    986  1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    987  1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    988  1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    989  1.148     joerg 		pt->pt_time.it_value = next;
    990  1.148     joerg 	} else {
    991  1.150  christos 		now_ms = timespec2ns(&now);
    992  1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    993  1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    994  1.148     joerg 
    995  1.148     joerg 		next_val = now_ms +
    996  1.148     joerg 		    (now_ms - last_val + interval - 1) % interval;
    997  1.148     joerg 
    998  1.148     joerg 		if (backwards)
    999  1.148     joerg 			next_val += interval;
   1000  1.148     joerg 		else
   1001  1.148     joerg 			pt->pt_overruns += (now_ms - last_val) / interval;
   1002  1.148     joerg 
   1003  1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1004  1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1005  1.101    kardel 	}
   1006  1.148     joerg 
   1007  1.148     joerg 	/*
   1008  1.150  christos 	 * Don't need to check tshzto() return value, here.
   1009  1.148     joerg 	 * callout_reset() does it for us.
   1010  1.148     joerg 	 */
   1011  1.150  christos 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1012  1.148     joerg 	    realtimerexpire, pt);
   1013  1.148     joerg 	mutex_spin_exit(&timer_lock);
   1014   1.63   thorpej }
   1015   1.63   thorpej 
   1016   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1017   1.63   thorpej /* ARGSUSED */
   1018   1.63   thorpej int
   1019  1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1020  1.140      yamt     register_t *retval)
   1021   1.63   thorpej {
   1022  1.135       dsl 	/* {
   1023   1.63   thorpej 		syscallarg(int) which;
   1024   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1025  1.135       dsl 	} */
   1026   1.63   thorpej 	struct proc *p = l->l_proc;
   1027   1.63   thorpej 	struct itimerval aitv;
   1028   1.91      cube 	int error;
   1029   1.91      cube 
   1030   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1031   1.91      cube 	if (error)
   1032   1.91      cube 		return error;
   1033   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1034   1.91      cube }
   1035   1.63   thorpej 
   1036   1.91      cube int
   1037   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1038   1.91      cube {
   1039  1.142        ad 	struct ptimers *pts;
   1040  1.142        ad 	struct ptimer *pt;
   1041  1.150  christos 	struct itimerspec its;
   1042   1.63   thorpej 
   1043   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1044   1.63   thorpej 		return (EINVAL);
   1045   1.63   thorpej 
   1046  1.142        ad 	mutex_spin_enter(&timer_lock);
   1047  1.142        ad 	pts = p->p_timers;
   1048  1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1049   1.91      cube 		timerclear(&itvp->it_value);
   1050   1.91      cube 		timerclear(&itvp->it_interval);
   1051  1.150  christos 	} else {
   1052  1.150  christos 		timer_gettime(pt, &its);
   1053  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1054  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1055  1.150  christos 	}
   1056  1.142        ad 	mutex_spin_exit(&timer_lock);
   1057   1.63   thorpej 
   1058   1.91      cube 	return 0;
   1059    1.1       cgd }
   1060    1.1       cgd 
   1061   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1062    1.1       cgd /* ARGSUSED */
   1063    1.3    andrew int
   1064  1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1065  1.140      yamt     register_t *retval)
   1066   1.15   thorpej {
   1067  1.135       dsl 	/* {
   1068   1.30   mycroft 		syscallarg(int) which;
   1069   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1070   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1071  1.135       dsl 	} */
   1072   1.63   thorpej 	struct proc *p = l->l_proc;
   1073   1.30   mycroft 	int which = SCARG(uap, which);
   1074  1.156  christos 	struct sys___getitimer50_args getargs;
   1075   1.91      cube 	const struct itimerval *itvp;
   1076    1.1       cgd 	struct itimerval aitv;
   1077   1.91      cube 	int error;
   1078    1.1       cgd 
   1079   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1080    1.1       cgd 		return (EINVAL);
   1081   1.11       cgd 	itvp = SCARG(uap, itv);
   1082   1.63   thorpej 	if (itvp &&
   1083   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1084    1.1       cgd 		return (error);
   1085   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1086   1.30   mycroft 		SCARG(&getargs, which) = which;
   1087   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1088  1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1089   1.21       cgd 			return (error);
   1090   1.21       cgd 	}
   1091    1.1       cgd 	if (itvp == 0)
   1092    1.1       cgd 		return (0);
   1093   1.91      cube 
   1094   1.91      cube 	return dosetitimer(p, which, &aitv);
   1095   1.91      cube }
   1096   1.91      cube 
   1097   1.91      cube int
   1098   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1099   1.91      cube {
   1100  1.150  christos 	struct timespec now;
   1101  1.142        ad 	struct ptimers *pts;
   1102  1.142        ad 	struct ptimer *pt, *spare;
   1103   1.91      cube 
   1104   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1105    1.1       cgd 		return (EINVAL);
   1106   1.63   thorpej 
   1107   1.63   thorpej 	/*
   1108   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1109   1.63   thorpej 	 * wants to clear the timer.
   1110   1.63   thorpej 	 */
   1111  1.142        ad 	spare = NULL;
   1112  1.142        ad 	pts = p->p_timers;
   1113  1.142        ad  retry:
   1114  1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1115  1.142        ad 	    pts->pts_timers[which] == NULL))
   1116   1.63   thorpej 		return (0);
   1117  1.142        ad 	if (pts == NULL)
   1118  1.142        ad 		pts = timers_alloc(p);
   1119  1.142        ad 	mutex_spin_enter(&timer_lock);
   1120  1.142        ad 	pt = pts->pts_timers[which];
   1121  1.142        ad 	if (pt == NULL) {
   1122  1.142        ad 		if (spare == NULL) {
   1123  1.142        ad 			mutex_spin_exit(&timer_lock);
   1124  1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1125  1.142        ad 			goto retry;
   1126  1.142        ad 		}
   1127  1.142        ad 		pt = spare;
   1128  1.142        ad 		spare = NULL;
   1129   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1130   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1131   1.63   thorpej 		pt->pt_overruns = 0;
   1132   1.63   thorpej 		pt->pt_proc = p;
   1133   1.63   thorpej 		pt->pt_type = which;
   1134   1.64   nathanw 		pt->pt_entry = which;
   1135  1.142        ad 		pt->pt_queued = false;
   1136  1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1137  1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1138  1.149  christos 		else
   1139  1.149  christos 			pt->pt_active = 0;
   1140  1.149  christos 
   1141   1.63   thorpej 		switch (which) {
   1142   1.63   thorpej 		case ITIMER_REAL:
   1143   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1144   1.63   thorpej 			break;
   1145   1.63   thorpej 		case ITIMER_VIRTUAL:
   1146   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1147   1.63   thorpej 			break;
   1148   1.63   thorpej 		case ITIMER_PROF:
   1149   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1150   1.63   thorpej 			break;
   1151    1.1       cgd 		}
   1152  1.142        ad 		pts->pts_timers[which] = pt;
   1153  1.142        ad 	}
   1154   1.63   thorpej 
   1155  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1156  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1157  1.150  christos 
   1158  1.150  christos 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1159   1.67   nathanw 		/* Convert to absolute time */
   1160  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1161  1.150  christos 		getnanotime(&now);
   1162  1.150  christos 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1163   1.67   nathanw 	}
   1164   1.63   thorpej 	timer_settime(pt);
   1165  1.142        ad 	mutex_spin_exit(&timer_lock);
   1166  1.142        ad 	if (spare != NULL)
   1167  1.142        ad 		pool_put(&ptimer_pool, spare);
   1168   1.63   thorpej 
   1169    1.1       cgd 	return (0);
   1170    1.1       cgd }
   1171    1.1       cgd 
   1172   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1173  1.142        ad struct ptimers *
   1174   1.63   thorpej timers_alloc(struct proc *p)
   1175   1.63   thorpej {
   1176  1.142        ad 	struct ptimers *pts;
   1177   1.63   thorpej 	int i;
   1178   1.63   thorpej 
   1179  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1180   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1181   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1182   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1183   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1184   1.64   nathanw 	pts->pts_fired = 0;
   1185  1.142        ad 	mutex_spin_enter(&timer_lock);
   1186  1.142        ad 	if (p->p_timers == NULL) {
   1187  1.142        ad 		p->p_timers = pts;
   1188  1.142        ad 		mutex_spin_exit(&timer_lock);
   1189  1.142        ad 		return pts;
   1190  1.142        ad 	}
   1191  1.142        ad 	mutex_spin_exit(&timer_lock);
   1192  1.142        ad 	pool_put(&ptimers_pool, pts);
   1193  1.142        ad 	return p->p_timers;
   1194   1.63   thorpej }
   1195   1.63   thorpej 
   1196    1.1       cgd /*
   1197   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1198   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1199   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1200   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1201   1.63   thorpej  * structure if none of those remain.
   1202    1.1       cgd  */
   1203    1.3    andrew void
   1204   1.63   thorpej timers_free(struct proc *p, int which)
   1205    1.6       cgd {
   1206   1.63   thorpej 	struct ptimers *pts;
   1207  1.142        ad 	struct ptimer *ptn;
   1208  1.150  christos 	struct timespec ts;
   1209  1.142        ad 	int i;
   1210   1.63   thorpej 
   1211  1.142        ad 	if (p->p_timers == NULL)
   1212  1.142        ad 		return;
   1213   1.63   thorpej 
   1214  1.142        ad 	pts = p->p_timers;
   1215  1.142        ad 	mutex_spin_enter(&timer_lock);
   1216  1.142        ad 	if (which == TIMERS_ALL) {
   1217  1.142        ad 		p->p_timers = NULL;
   1218  1.142        ad 		i = 0;
   1219  1.142        ad 	} else {
   1220  1.150  christos 		timespecclear(&ts);
   1221  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1222  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1223  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1224  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1225  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1226  1.149  christos 		}
   1227  1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1228  1.142        ad 		if (ptn) {
   1229  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1230  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1231  1.142        ad 			    &ptn->pt_time.it_value);
   1232  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1233  1.142        ad 		}
   1234  1.150  christos 		timespecclear(&ts);
   1235  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1236  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1237  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1238  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1239  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1240  1.149  christos 		}
   1241  1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1242  1.142        ad 		if (ptn) {
   1243  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1244  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1245  1.142        ad 			    &ptn->pt_time.it_value);
   1246  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1247   1.63   thorpej 		}
   1248  1.142        ad 		i = 3;
   1249  1.142        ad 	}
   1250  1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1251  1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1252  1.142        ad 			itimerfree(pts, i);
   1253  1.142        ad 			mutex_spin_enter(&timer_lock);
   1254    1.1       cgd 		}
   1255    1.1       cgd 	}
   1256  1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1257  1.142        ad 	    pts->pts_timers[2] == NULL) {
   1258  1.142        ad 		p->p_timers = NULL;
   1259  1.142        ad 		mutex_spin_exit(&timer_lock);
   1260  1.142        ad 		pool_put(&ptimers_pool, pts);
   1261  1.142        ad 	} else
   1262  1.142        ad 		mutex_spin_exit(&timer_lock);
   1263  1.142        ad }
   1264  1.142        ad 
   1265  1.142        ad static void
   1266  1.142        ad itimerfree(struct ptimers *pts, int index)
   1267  1.142        ad {
   1268  1.142        ad 	struct ptimer *pt;
   1269  1.142        ad 
   1270  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1271  1.142        ad 
   1272  1.142        ad 	pt = pts->pts_timers[index];
   1273  1.142        ad 	pts->pts_timers[index] = NULL;
   1274  1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1275  1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1276  1.144        ad 	else if (pt->pt_queued)
   1277  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1278  1.144        ad 	mutex_spin_exit(&timer_lock);
   1279  1.149  christos 	if (pt->pt_type == CLOCK_REALTIME)
   1280  1.149  christos 		callout_destroy(&pt->pt_ch);
   1281  1.142        ad 	pool_put(&ptimer_pool, pt);
   1282    1.1       cgd }
   1283    1.1       cgd 
   1284    1.1       cgd /*
   1285    1.1       cgd  * Decrement an interval timer by a specified number
   1286  1.152  christos  * of nanoseconds, which must be less than a second,
   1287  1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1288  1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1289    1.8       cgd  * reduce the value reloaded into the timer so that
   1290    1.1       cgd  * the timer does not drift.  This routine assumes
   1291    1.1       cgd  * that it is called in a context where the timers
   1292    1.1       cgd  * on which it is operating cannot change in value.
   1293    1.1       cgd  */
   1294  1.142        ad static int
   1295  1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1296   1.63   thorpej {
   1297  1.150  christos 	struct itimerspec *itp;
   1298    1.1       cgd 
   1299  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1300  1.142        ad 
   1301   1.63   thorpej 	itp = &pt->pt_time;
   1302  1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1303    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1304    1.1       cgd 			/* expired, and already in next interval */
   1305  1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1306    1.1       cgd 			goto expire;
   1307    1.1       cgd 		}
   1308  1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1309    1.1       cgd 		itp->it_value.tv_sec--;
   1310    1.1       cgd 	}
   1311  1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1312  1.152  christos 	nsec = 0;
   1313  1.150  christos 	if (timespecisset(&itp->it_value))
   1314    1.1       cgd 		return (1);
   1315    1.1       cgd 	/* expired, exactly at end of interval */
   1316    1.1       cgd expire:
   1317  1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1318    1.1       cgd 		itp->it_value = itp->it_interval;
   1319  1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1320  1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1321  1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1322    1.1       cgd 			itp->it_value.tv_sec--;
   1323    1.1       cgd 		}
   1324   1.63   thorpej 		timer_settime(pt);
   1325    1.1       cgd 	} else
   1326  1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1327    1.1       cgd 	return (0);
   1328   1.42       cgd }
   1329   1.42       cgd 
   1330  1.142        ad static void
   1331   1.63   thorpej itimerfire(struct ptimer *pt)
   1332   1.63   thorpej {
   1333   1.78        cl 
   1334  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1335  1.142        ad 
   1336  1.142        ad 	/*
   1337  1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1338  1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1339  1.142        ad 	 */
   1340  1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1341  1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1342  1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1343  1.142        ad 		return;
   1344  1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1345  1.142        ad 	pt->pt_queued = true;
   1346  1.142        ad 	softint_schedule(timer_sih);
   1347  1.142        ad }
   1348  1.142        ad 
   1349  1.142        ad void
   1350  1.142        ad timer_tick(lwp_t *l, bool user)
   1351  1.142        ad {
   1352  1.142        ad 	struct ptimers *pts;
   1353  1.142        ad 	struct ptimer *pt;
   1354  1.142        ad 	proc_t *p;
   1355  1.142        ad 
   1356  1.142        ad 	p = l->l_proc;
   1357  1.142        ad 	if (p->p_timers == NULL)
   1358  1.142        ad 		return;
   1359  1.142        ad 
   1360  1.142        ad 	mutex_spin_enter(&timer_lock);
   1361  1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1362   1.63   thorpej 		/*
   1363  1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1364   1.63   thorpej 		 */
   1365  1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1366  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1367  1.142        ad 				itimerfire(pt);
   1368  1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1369  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1370  1.142        ad 				itimerfire(pt);
   1371  1.142        ad 	}
   1372  1.142        ad 	mutex_spin_exit(&timer_lock);
   1373  1.142        ad }
   1374  1.142        ad 
   1375  1.154  wrstuden #ifdef KERN_SA
   1376  1.154  wrstuden /*
   1377  1.154  wrstuden  * timer_sa_intr:
   1378  1.154  wrstuden  *
   1379  1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1380  1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1381  1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1382  1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1383  1.154  wrstuden  */
   1384  1.154  wrstuden static void
   1385  1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1386  1.154  wrstuden {
   1387  1.155  wrstuden 	unsigned int		i;
   1388  1.155  wrstuden 	struct sadata		*sa;
   1389  1.155  wrstuden 	struct sadata_vp	*vp;
   1390  1.154  wrstuden 
   1391  1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1392  1.154  wrstuden 	if (!p->p_timerpend) {
   1393  1.154  wrstuden 		/*
   1394  1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1395  1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1396  1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1397  1.154  wrstuden 		 * determine if we really should call setrunnable.
   1398  1.154  wrstuden 		 */
   1399  1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1400  1.154  wrstuden 		pt->pt_overruns = 0;
   1401  1.154  wrstuden 		i = 1 << pt->pt_entry;
   1402  1.154  wrstuden 		p->p_timers->pts_fired = i;
   1403  1.154  wrstuden 		p->p_timerpend = 1;
   1404  1.154  wrstuden 
   1405  1.155  wrstuden 		sa = p->p_sa;
   1406  1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1407  1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1408  1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1409  1.155  wrstuden 			lwp_lock(vp_lwp);
   1410  1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1411  1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1412  1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1413  1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1414  1.154  wrstuden 				break;
   1415  1.154  wrstuden 			}
   1416  1.155  wrstuden 			lwp_unlock(vp_lwp);
   1417  1.154  wrstuden 		}
   1418  1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1419  1.154  wrstuden 	} else {
   1420  1.154  wrstuden 		i = 1 << pt->pt_entry;
   1421  1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1422  1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1423  1.154  wrstuden 			pt->pt_overruns = 0;
   1424  1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1425  1.154  wrstuden 		} else
   1426  1.154  wrstuden 			pt->pt_overruns++;
   1427  1.154  wrstuden 	}
   1428  1.154  wrstuden }
   1429  1.154  wrstuden #endif /* KERN_SA */
   1430  1.154  wrstuden 
   1431  1.142        ad static void
   1432  1.142        ad timer_intr(void *cookie)
   1433  1.142        ad {
   1434  1.142        ad 	ksiginfo_t ksi;
   1435  1.142        ad 	struct ptimer *pt;
   1436  1.142        ad 	proc_t *p;
   1437  1.142        ad 
   1438  1.142        ad 	mutex_spin_enter(&timer_lock);
   1439  1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1440  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1441  1.142        ad 		KASSERT(pt->pt_queued);
   1442  1.142        ad 		pt->pt_queued = false;
   1443  1.142        ad 
   1444  1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1445  1.154  wrstuden 			/* Process is dying. */
   1446  1.142        ad 			continue;
   1447  1.154  wrstuden 		}
   1448  1.142        ad 		p = pt->pt_proc;
   1449  1.154  wrstuden #ifdef KERN_SA
   1450  1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1451  1.154  wrstuden 			timer_sa_intr(pt, p);
   1452  1.142        ad 			continue;
   1453  1.142        ad 		}
   1454  1.154  wrstuden #endif /* KERN_SA */
   1455  1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1456  1.154  wrstuden 			continue;
   1457  1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1458   1.63   thorpej 			pt->pt_overruns++;
   1459  1.142        ad 			continue;
   1460   1.64   nathanw 		}
   1461  1.142        ad 
   1462  1.142        ad 		KSI_INIT(&ksi);
   1463  1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1464  1.142        ad 		ksi.ksi_code = SI_TIMER;
   1465  1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1466  1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1467  1.142        ad 		pt->pt_overruns = 0;
   1468  1.142        ad 		mutex_spin_exit(&timer_lock);
   1469  1.142        ad 
   1470  1.145        ad 		mutex_enter(proc_lock);
   1471  1.142        ad 		kpsignal(p, &ksi, NULL);
   1472  1.145        ad 		mutex_exit(proc_lock);
   1473  1.142        ad 
   1474  1.142        ad 		mutex_spin_enter(&timer_lock);
   1475   1.63   thorpej 	}
   1476  1.142        ad 	mutex_spin_exit(&timer_lock);
   1477   1.63   thorpej }
   1478