kern_time.c revision 1.157 1 1.157 christos /* $NetBSD: kern_time.c,v 1.157 2009/01/11 15:57:29 christos Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.142 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd *
19 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
30 1.42 cgd */
31 1.9 cgd
32 1.1 cgd /*
33 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.8 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * Redistribution and use in source and binary forms, with or without
37 1.1 cgd * modification, are permitted provided that the following conditions
38 1.1 cgd * are met:
39 1.1 cgd * 1. Redistributions of source code must retain the above copyright
40 1.1 cgd * notice, this list of conditions and the following disclaimer.
41 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer in the
43 1.1 cgd * documentation and/or other materials provided with the distribution.
44 1.72 agc * 3. Neither the name of the University nor the names of its contributors
45 1.1 cgd * may be used to endorse or promote products derived from this software
46 1.1 cgd * without specific prior written permission.
47 1.1 cgd *
48 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 1.1 cgd * SUCH DAMAGE.
59 1.1 cgd *
60 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 1.1 cgd */
62 1.58 lukem
63 1.58 lukem #include <sys/cdefs.h>
64 1.157 christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.157 2009/01/11 15:57:29 christos Exp $");
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/resourcevar.h>
68 1.5 mycroft #include <sys/kernel.h>
69 1.8 cgd #include <sys/systm.h>
70 1.5 mycroft #include <sys/proc.h>
71 1.8 cgd #include <sys/vnode.h>
72 1.17 christos #include <sys/signalvar.h>
73 1.25 perry #include <sys/syslog.h>
74 1.101 kardel #include <sys/timetc.h>
75 1.143 ad #include <sys/timex.h>
76 1.99 elad #include <sys/kauth.h>
77 1.11 cgd #include <sys/mount.h>
78 1.154 wrstuden #include <sys/sa.h>
79 1.154 wrstuden #include <sys/savar.h>
80 1.11 cgd #include <sys/syscallargs.h>
81 1.143 ad #include <sys/cpu.h>
82 1.19 christos
83 1.37 thorpej #include <uvm/uvm_extern.h>
84 1.37 thorpej
85 1.154 wrstuden #include "opt_sa.h"
86 1.154 wrstuden
87 1.142 ad static void timer_intr(void *);
88 1.142 ad static void itimerfire(struct ptimer *);
89 1.142 ad static void itimerfree(struct ptimers *, int);
90 1.142 ad
91 1.142 ad kmutex_t timer_lock;
92 1.142 ad
93 1.142 ad static void *timer_sih;
94 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
95 1.131 ad
96 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 1.118 ad &pool_allocator_nointr, IPL_NONE);
98 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 1.118 ad &pool_allocator_nointr, IPL_NONE);
100 1.97 simonb
101 1.131 ad /*
102 1.131 ad * Initialize timekeeping.
103 1.131 ad */
104 1.131 ad void
105 1.131 ad time_init(void)
106 1.131 ad {
107 1.131 ad
108 1.147 ad /* nothing yet */
109 1.131 ad }
110 1.131 ad
111 1.142 ad void
112 1.142 ad time_init2(void)
113 1.142 ad {
114 1.142 ad
115 1.142 ad TAILQ_INIT(&timer_queue);
116 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 1.142 ad timer_intr, NULL);
119 1.142 ad }
120 1.142 ad
121 1.63 thorpej /* Time of day and interval timer support.
122 1.1 cgd *
123 1.1 cgd * These routines provide the kernel entry points to get and set
124 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
125 1.1 cgd * here provide support for adding and subtracting timeval structures
126 1.1 cgd * and decrementing interval timers, optionally reloading the interval
127 1.1 cgd * timers when they expire.
128 1.1 cgd */
129 1.1 cgd
130 1.22 jtc /* This function is used by clock_settime and settimeofday */
131 1.132 elad static int
132 1.156 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
133 1.22 jtc {
134 1.156 christos struct timespec delta, now;
135 1.137 yamt struct bintime btdelta;
136 1.129 ad lwp_t *l;
137 1.129 ad int s;
138 1.22 jtc
139 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 1.129 ad s = splclock();
141 1.156 christos nanotime(&now);
142 1.156 christos timespecsub(ts, &now, &delta);
143 1.132 elad
144 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 1.156 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 1.156 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 1.129 ad splx(s);
148 1.29 tls return (EPERM);
149 1.55 tron }
150 1.132 elad
151 1.29 tls #ifdef notyet
152 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 1.129 ad splx(s);
154 1.29 tls return (EPERM);
155 1.55 tron }
156 1.29 tls #endif
157 1.103 kardel
158 1.156 christos tc_setclock(ts);
159 1.103 kardel
160 1.156 christos timespecadd(&boottime, &delta, &boottime);
161 1.103 kardel
162 1.47 thorpej /*
163 1.129 ad * XXXSMP: There is a short race between setting the time above
164 1.129 ad * and adjusting LWP's run times. Fixing this properly means
165 1.129 ad * pausing all CPUs while we adjust the clock.
166 1.47 thorpej */
167 1.156 christos timespec2bintime(&delta, &btdelta);
168 1.145 ad mutex_enter(proc_lock);
169 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
170 1.129 ad lwp_lock(l);
171 1.137 yamt bintime_add(&l->l_stime, &btdelta);
172 1.129 ad lwp_unlock(l);
173 1.129 ad }
174 1.145 ad mutex_exit(proc_lock);
175 1.22 jtc resettodr();
176 1.129 ad splx(s);
177 1.129 ad
178 1.29 tls return (0);
179 1.22 jtc }
180 1.22 jtc
181 1.132 elad int
182 1.132 elad settime(struct proc *p, struct timespec *ts)
183 1.132 elad {
184 1.132 elad return (settime1(p, ts, true));
185 1.132 elad }
186 1.132 elad
187 1.22 jtc /* ARGSUSED */
188 1.22 jtc int
189 1.156 christos sys___clock_gettime50(struct lwp *l,
190 1.156 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
191 1.22 jtc {
192 1.135 dsl /* {
193 1.22 jtc syscallarg(clockid_t) clock_id;
194 1.23 cgd syscallarg(struct timespec *) tp;
195 1.135 dsl } */
196 1.22 jtc clockid_t clock_id;
197 1.22 jtc struct timespec ats;
198 1.22 jtc
199 1.22 jtc clock_id = SCARG(uap, clock_id);
200 1.61 simonb switch (clock_id) {
201 1.61 simonb case CLOCK_REALTIME:
202 1.96 simonb nanotime(&ats);
203 1.61 simonb break;
204 1.61 simonb case CLOCK_MONOTONIC:
205 1.101 kardel nanouptime(&ats);
206 1.61 simonb break;
207 1.61 simonb default:
208 1.22 jtc return (EINVAL);
209 1.61 simonb }
210 1.22 jtc
211 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
212 1.22 jtc }
213 1.22 jtc
214 1.22 jtc /* ARGSUSED */
215 1.22 jtc int
216 1.156 christos sys___clock_settime50(struct lwp *l,
217 1.156 christos const struct sys___clock_settime50_args *uap, register_t *retval)
218 1.22 jtc {
219 1.135 dsl /* {
220 1.22 jtc syscallarg(clockid_t) clock_id;
221 1.23 cgd syscallarg(const struct timespec *) tp;
222 1.135 dsl } */
223 1.156 christos int error;
224 1.156 christos struct timespec ats;
225 1.22 jtc
226 1.156 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
227 1.156 christos return error;
228 1.156 christos
229 1.156 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
230 1.56 manu }
231 1.56 manu
232 1.56 manu
233 1.56 manu int
234 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
235 1.132 elad bool check_kauth)
236 1.56 manu {
237 1.56 manu int error;
238 1.56 manu
239 1.61 simonb switch (clock_id) {
240 1.61 simonb case CLOCK_REALTIME:
241 1.156 christos if ((error = settime1(p, tp, check_kauth)) != 0)
242 1.61 simonb return (error);
243 1.61 simonb break;
244 1.61 simonb case CLOCK_MONOTONIC:
245 1.61 simonb return (EINVAL); /* read-only clock */
246 1.61 simonb default:
247 1.56 manu return (EINVAL);
248 1.61 simonb }
249 1.22 jtc
250 1.22 jtc return 0;
251 1.22 jtc }
252 1.22 jtc
253 1.22 jtc int
254 1.156 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
255 1.140 yamt register_t *retval)
256 1.22 jtc {
257 1.135 dsl /* {
258 1.22 jtc syscallarg(clockid_t) clock_id;
259 1.23 cgd syscallarg(struct timespec *) tp;
260 1.135 dsl } */
261 1.22 jtc clockid_t clock_id;
262 1.22 jtc struct timespec ts;
263 1.22 jtc int error = 0;
264 1.22 jtc
265 1.22 jtc clock_id = SCARG(uap, clock_id);
266 1.61 simonb switch (clock_id) {
267 1.61 simonb case CLOCK_REALTIME:
268 1.61 simonb case CLOCK_MONOTONIC:
269 1.22 jtc ts.tv_sec = 0;
270 1.102 kardel if (tc_getfrequency() > 1000000000)
271 1.102 kardel ts.tv_nsec = 1;
272 1.102 kardel else
273 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
274 1.61 simonb break;
275 1.61 simonb default:
276 1.61 simonb return (EINVAL);
277 1.61 simonb }
278 1.22 jtc
279 1.61 simonb if (SCARG(uap, tp))
280 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
281 1.22 jtc
282 1.22 jtc return error;
283 1.22 jtc }
284 1.22 jtc
285 1.27 jtc /* ARGSUSED */
286 1.27 jtc int
287 1.156 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
288 1.140 yamt register_t *retval)
289 1.27 jtc {
290 1.135 dsl /* {
291 1.101 kardel syscallarg(struct timespec *) rqtp;
292 1.101 kardel syscallarg(struct timespec *) rmtp;
293 1.135 dsl } */
294 1.101 kardel struct timespec rmt, rqt;
295 1.120 dsl int error, error1;
296 1.101 kardel
297 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
298 1.101 kardel if (error)
299 1.101 kardel return (error);
300 1.101 kardel
301 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
302 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
303 1.120 dsl return error;
304 1.120 dsl
305 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
306 1.120 dsl return error1 ? error1 : error;
307 1.120 dsl }
308 1.120 dsl
309 1.120 dsl int
310 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
311 1.120 dsl {
312 1.141 yamt struct timespec rmtstart;
313 1.120 dsl int error, timo;
314 1.120 dsl
315 1.120 dsl if (itimespecfix(rqt))
316 1.101 kardel return (EINVAL);
317 1.101 kardel
318 1.120 dsl timo = tstohz(rqt);
319 1.101 kardel /*
320 1.101 kardel * Avoid inadvertantly sleeping forever
321 1.101 kardel */
322 1.101 kardel if (timo == 0)
323 1.101 kardel timo = 1;
324 1.141 yamt getnanouptime(&rmtstart);
325 1.141 yamt again:
326 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
327 1.141 yamt if (rmt != NULL || error == 0) {
328 1.141 yamt struct timespec rmtend;
329 1.141 yamt struct timespec t0;
330 1.141 yamt struct timespec *t;
331 1.101 kardel
332 1.141 yamt getnanouptime(&rmtend);
333 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
334 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
335 1.141 yamt timespecsub(rqt, t, t);
336 1.141 yamt if (t->tv_sec < 0)
337 1.141 yamt timespecclear(t);
338 1.141 yamt if (error == 0) {
339 1.141 yamt timo = tstohz(t);
340 1.141 yamt if (timo > 0)
341 1.141 yamt goto again;
342 1.141 yamt }
343 1.141 yamt }
344 1.104 kardel
345 1.101 kardel if (error == ERESTART)
346 1.101 kardel error = EINTR;
347 1.101 kardel if (error == EWOULDBLOCK)
348 1.101 kardel error = 0;
349 1.101 kardel
350 1.101 kardel return error;
351 1.27 jtc }
352 1.22 jtc
353 1.1 cgd /* ARGSUSED */
354 1.3 andrew int
355 1.156 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
356 1.140 yamt register_t *retval)
357 1.15 thorpej {
358 1.135 dsl /* {
359 1.11 cgd syscallarg(struct timeval *) tp;
360 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
361 1.135 dsl } */
362 1.1 cgd struct timeval atv;
363 1.1 cgd int error = 0;
364 1.25 perry struct timezone tzfake;
365 1.1 cgd
366 1.11 cgd if (SCARG(uap, tp)) {
367 1.1 cgd microtime(&atv);
368 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
369 1.17 christos if (error)
370 1.1 cgd return (error);
371 1.1 cgd }
372 1.25 perry if (SCARG(uap, tzp)) {
373 1.25 perry /*
374 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
375 1.25 perry * fake up a timezone struct and return it if demanded.
376 1.25 perry */
377 1.25 perry tzfake.tz_minuteswest = 0;
378 1.25 perry tzfake.tz_dsttime = 0;
379 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
380 1.25 perry }
381 1.1 cgd return (error);
382 1.1 cgd }
383 1.1 cgd
384 1.1 cgd /* ARGSUSED */
385 1.3 andrew int
386 1.156 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
387 1.140 yamt register_t *retval)
388 1.15 thorpej {
389 1.135 dsl /* {
390 1.24 cgd syscallarg(const struct timeval *) tv;
391 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
392 1.135 dsl } */
393 1.60 manu
394 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
395 1.60 manu }
396 1.60 manu
397 1.60 manu int
398 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
399 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
400 1.60 manu {
401 1.22 jtc struct timeval atv;
402 1.98 christos struct timespec ts;
403 1.22 jtc int error;
404 1.1 cgd
405 1.8 cgd /* Verify all parameters before changing time. */
406 1.119 dsl
407 1.25 perry /*
408 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
409 1.25 perry * obsolete program would try to set it, so we log a warning.
410 1.25 perry */
411 1.98 christos if (utzp)
412 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
413 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
414 1.98 christos
415 1.98 christos if (utv == NULL)
416 1.98 christos return 0;
417 1.98 christos
418 1.119 dsl if (userspace) {
419 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
420 1.119 dsl return error;
421 1.119 dsl utv = &atv;
422 1.119 dsl }
423 1.119 dsl
424 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
425 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
426 1.1 cgd }
427 1.1 cgd
428 1.68 dsl int time_adjusted; /* set if an adjustment is made */
429 1.1 cgd
430 1.1 cgd /* ARGSUSED */
431 1.3 andrew int
432 1.156 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
433 1.140 yamt register_t *retval)
434 1.15 thorpej {
435 1.135 dsl /* {
436 1.24 cgd syscallarg(const struct timeval *) delta;
437 1.11 cgd syscallarg(struct timeval *) olddelta;
438 1.135 dsl } */
439 1.156 christos int error = 0;
440 1.156 christos struct timeval atv, oldatv;
441 1.1 cgd
442 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
443 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
444 1.156 christos return error;
445 1.17 christos
446 1.156 christos if (SCARG(uap, delta)) {
447 1.156 christos error = copyin(SCARG(uap, delta), &atv,
448 1.156 christos sizeof(*SCARG(uap, delta)));
449 1.156 christos if (error)
450 1.156 christos return (error);
451 1.156 christos }
452 1.156 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
453 1.156 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
454 1.156 christos if (SCARG(uap, olddelta))
455 1.156 christos error = copyout(&oldatv, SCARG(uap, olddelta),
456 1.156 christos sizeof(*SCARG(uap, olddelta)));
457 1.156 christos return error;
458 1.56 manu }
459 1.56 manu
460 1.156 christos void
461 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
462 1.56 manu {
463 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
464 1.101 kardel
465 1.101 kardel if (olddelta) {
466 1.143 ad mutex_spin_enter(&timecounter_lock);
467 1.156 christos olddelta->tv_sec = time_adjtime / 1000000;
468 1.156 christos olddelta->tv_usec = time_adjtime % 1000000;
469 1.156 christos if (olddelta->tv_usec < 0) {
470 1.156 christos olddelta->tv_usec += 1000000;
471 1.156 christos olddelta->tv_sec--;
472 1.101 kardel }
473 1.157 christos mutex_spin_exit(&timecounter_lock);
474 1.101 kardel }
475 1.101 kardel
476 1.101 kardel if (delta) {
477 1.156 christos mutex_spin_enter(&timecounter_lock);
478 1.157 christos time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
479 1.101 kardel
480 1.143 ad if (time_adjtime) {
481 1.101 kardel /* We need to save the system time during shutdown */
482 1.101 kardel time_adjusted |= 1;
483 1.143 ad }
484 1.143 ad mutex_spin_exit(&timecounter_lock);
485 1.101 kardel }
486 1.1 cgd }
487 1.1 cgd
488 1.1 cgd /*
489 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
490 1.63 thorpej * timer_*() family of routines are supported.
491 1.1 cgd *
492 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
493 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
494 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
495 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
496 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
497 1.63 thorpej * syscall.
498 1.1 cgd *
499 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
500 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
501 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
502 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
503 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
504 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
505 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
506 1.63 thorpej * given below), to be delayed in real time past when it is supposed
507 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
508 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
509 1.63 thorpej * compute the next time in absolute time the timer should go off. */
510 1.63 thorpej
511 1.63 thorpej /* Allocate a POSIX realtime timer. */
512 1.63 thorpej int
513 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
514 1.140 yamt register_t *retval)
515 1.63 thorpej {
516 1.135 dsl /* {
517 1.63 thorpej syscallarg(clockid_t) clock_id;
518 1.63 thorpej syscallarg(struct sigevent *) evp;
519 1.63 thorpej syscallarg(timer_t *) timerid;
520 1.135 dsl } */
521 1.92 cube
522 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
523 1.105 ad SCARG(uap, evp), copyin, l);
524 1.92 cube }
525 1.92 cube
526 1.92 cube int
527 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
528 1.105 ad copyin_t fetch_event, struct lwp *l)
529 1.92 cube {
530 1.92 cube int error;
531 1.92 cube timer_t timerid;
532 1.142 ad struct ptimers *pts;
533 1.63 thorpej struct ptimer *pt;
534 1.105 ad struct proc *p;
535 1.105 ad
536 1.105 ad p = l->l_proc;
537 1.63 thorpej
538 1.142 ad if (id < CLOCK_REALTIME || id > CLOCK_PROF)
539 1.63 thorpej return (EINVAL);
540 1.63 thorpej
541 1.142 ad if ((pts = p->p_timers) == NULL)
542 1.142 ad pts = timers_alloc(p);
543 1.63 thorpej
544 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
545 1.142 ad if (evp != NULL) {
546 1.63 thorpej if (((error =
547 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
548 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
549 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
550 1.63 thorpej pool_put(&ptimer_pool, pt);
551 1.63 thorpej return (error ? error : EINVAL);
552 1.63 thorpej }
553 1.142 ad }
554 1.142 ad
555 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
556 1.142 ad mutex_spin_enter(&timer_lock);
557 1.142 ad for (timerid = 3; timerid < TIMER_MAX; timerid++)
558 1.142 ad if (pts->pts_timers[timerid] == NULL)
559 1.142 ad break;
560 1.142 ad if (timerid == TIMER_MAX) {
561 1.142 ad mutex_spin_exit(&timer_lock);
562 1.142 ad pool_put(&ptimer_pool, pt);
563 1.142 ad return EAGAIN;
564 1.142 ad }
565 1.142 ad if (evp == NULL) {
566 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
567 1.63 thorpej switch (id) {
568 1.63 thorpej case CLOCK_REALTIME:
569 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
570 1.63 thorpej break;
571 1.63 thorpej case CLOCK_VIRTUAL:
572 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
573 1.63 thorpej break;
574 1.63 thorpej case CLOCK_PROF:
575 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
576 1.63 thorpej break;
577 1.63 thorpej }
578 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
579 1.63 thorpej }
580 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
581 1.73 christos pt->pt_info.ksi_errno = 0;
582 1.73 christos pt->pt_info.ksi_code = 0;
583 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
584 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
585 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
586 1.63 thorpej pt->pt_type = id;
587 1.63 thorpej pt->pt_proc = p;
588 1.63 thorpej pt->pt_overruns = 0;
589 1.63 thorpej pt->pt_poverruns = 0;
590 1.64 nathanw pt->pt_entry = timerid;
591 1.142 ad pt->pt_queued = false;
592 1.150 christos timespecclear(&pt->pt_time.it_value);
593 1.149 christos if (id == CLOCK_REALTIME)
594 1.149 christos callout_init(&pt->pt_ch, 0);
595 1.149 christos else
596 1.149 christos pt->pt_active = 0;
597 1.149 christos
598 1.142 ad pts->pts_timers[timerid] = pt;
599 1.142 ad mutex_spin_exit(&timer_lock);
600 1.63 thorpej
601 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
602 1.63 thorpej }
603 1.63 thorpej
604 1.63 thorpej /* Delete a POSIX realtime timer */
605 1.3 andrew int
606 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
607 1.140 yamt register_t *retval)
608 1.15 thorpej {
609 1.135 dsl /* {
610 1.63 thorpej syscallarg(timer_t) timerid;
611 1.135 dsl } */
612 1.63 thorpej struct proc *p = l->l_proc;
613 1.65 jdolecek timer_t timerid;
614 1.142 ad struct ptimers *pts;
615 1.63 thorpej struct ptimer *pt, *ptn;
616 1.1 cgd
617 1.63 thorpej timerid = SCARG(uap, timerid);
618 1.142 ad pts = p->p_timers;
619 1.142 ad
620 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
621 1.142 ad return (EINVAL);
622 1.63 thorpej
623 1.142 ad mutex_spin_enter(&timer_lock);
624 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
625 1.142 ad mutex_spin_exit(&timer_lock);
626 1.1 cgd return (EINVAL);
627 1.142 ad }
628 1.149 christos if (pt->pt_type != CLOCK_REALTIME) {
629 1.149 christos if (pt->pt_active) {
630 1.149 christos ptn = LIST_NEXT(pt, pt_list);
631 1.149 christos LIST_REMOVE(pt, pt_list);
632 1.149 christos for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
633 1.150 christos timespecadd(&pt->pt_time.it_value,
634 1.149 christos &ptn->pt_time.it_value,
635 1.149 christos &ptn->pt_time.it_value);
636 1.149 christos pt->pt_active = 0;
637 1.149 christos }
638 1.63 thorpej }
639 1.142 ad itimerfree(pts, timerid);
640 1.63 thorpej
641 1.63 thorpej return (0);
642 1.63 thorpej }
643 1.63 thorpej
644 1.63 thorpej /*
645 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
646 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
647 1.67 nathanw * time for virtual timers.
648 1.63 thorpej * Must be called at splclock().
649 1.63 thorpej */
650 1.63 thorpej void
651 1.63 thorpej timer_settime(struct ptimer *pt)
652 1.63 thorpej {
653 1.63 thorpej struct ptimer *ptn, *pptn;
654 1.63 thorpej struct ptlist *ptl;
655 1.63 thorpej
656 1.142 ad KASSERT(mutex_owned(&timer_lock));
657 1.142 ad
658 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
659 1.63 thorpej callout_stop(&pt->pt_ch);
660 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
661 1.63 thorpej /*
662 1.150 christos * Don't need to check tshzto() return value, here.
663 1.63 thorpej * callout_reset() does it for us.
664 1.63 thorpej */
665 1.150 christos callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
666 1.63 thorpej realtimerexpire, pt);
667 1.63 thorpej }
668 1.63 thorpej } else {
669 1.63 thorpej if (pt->pt_active) {
670 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
671 1.63 thorpej LIST_REMOVE(pt, pt_list);
672 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
673 1.150 christos timespecadd(&pt->pt_time.it_value,
674 1.63 thorpej &ptn->pt_time.it_value,
675 1.63 thorpej &ptn->pt_time.it_value);
676 1.63 thorpej }
677 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
678 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
679 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
680 1.63 thorpej else
681 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
682 1.63 thorpej
683 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
684 1.150 christos ptn && timespeccmp(&pt->pt_time.it_value,
685 1.63 thorpej &ptn->pt_time.it_value, >);
686 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
687 1.150 christos timespecsub(&pt->pt_time.it_value,
688 1.63 thorpej &ptn->pt_time.it_value,
689 1.63 thorpej &pt->pt_time.it_value);
690 1.63 thorpej
691 1.63 thorpej if (pptn)
692 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
693 1.63 thorpej else
694 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
695 1.63 thorpej
696 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
697 1.150 christos timespecsub(&ptn->pt_time.it_value,
698 1.63 thorpej &pt->pt_time.it_value,
699 1.63 thorpej &ptn->pt_time.it_value);
700 1.63 thorpej
701 1.63 thorpej pt->pt_active = 1;
702 1.63 thorpej } else
703 1.63 thorpej pt->pt_active = 0;
704 1.63 thorpej }
705 1.63 thorpej }
706 1.63 thorpej
707 1.63 thorpej void
708 1.150 christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
709 1.63 thorpej {
710 1.150 christos struct timespec now;
711 1.63 thorpej struct ptimer *ptn;
712 1.63 thorpej
713 1.142 ad KASSERT(mutex_owned(&timer_lock));
714 1.142 ad
715 1.150 christos *aits = pt->pt_time;
716 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
717 1.1 cgd /*
718 1.12 mycroft * Convert from absolute to relative time in .it_value
719 1.63 thorpej * part of real time timer. If time for real time
720 1.63 thorpej * timer has passed return 0, else return difference
721 1.63 thorpej * between current time and time for the timer to go
722 1.63 thorpej * off.
723 1.1 cgd */
724 1.150 christos if (timespecisset(&aits->it_value)) {
725 1.150 christos getnanotime(&now);
726 1.150 christos if (timespeccmp(&aits->it_value, &now, <))
727 1.150 christos timespecclear(&aits->it_value);
728 1.101 kardel else
729 1.150 christos timespecsub(&aits->it_value, &now,
730 1.150 christos &aits->it_value);
731 1.36 thorpej }
732 1.63 thorpej } else if (pt->pt_active) {
733 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
734 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
735 1.63 thorpej else
736 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
737 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
738 1.150 christos timespecadd(&aits->it_value,
739 1.150 christos &ptn->pt_time.it_value, &aits->it_value);
740 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
741 1.1 cgd } else
742 1.150 christos timespecclear(&aits->it_value);
743 1.63 thorpej }
744 1.63 thorpej
745 1.63 thorpej
746 1.63 thorpej
747 1.63 thorpej /* Set and arm a POSIX realtime timer */
748 1.63 thorpej int
749 1.156 christos sys___timer_settime50(struct lwp *l,
750 1.156 christos const struct sys___timer_settime50_args *uap,
751 1.140 yamt register_t *retval)
752 1.63 thorpej {
753 1.135 dsl /* {
754 1.63 thorpej syscallarg(timer_t) timerid;
755 1.63 thorpej syscallarg(int) flags;
756 1.63 thorpej syscallarg(const struct itimerspec *) value;
757 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
758 1.135 dsl } */
759 1.92 cube int error;
760 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
761 1.92 cube
762 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
763 1.92 cube sizeof(struct itimerspec))) != 0)
764 1.92 cube return (error);
765 1.92 cube
766 1.92 cube if (SCARG(uap, ovalue))
767 1.92 cube ovp = &ovalue;
768 1.92 cube
769 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
770 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
771 1.92 cube return error;
772 1.92 cube
773 1.92 cube if (ovp)
774 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
775 1.92 cube sizeof(struct itimerspec));
776 1.92 cube return 0;
777 1.92 cube }
778 1.92 cube
779 1.92 cube int
780 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
781 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
782 1.92 cube {
783 1.150 christos struct timespec now;
784 1.150 christos struct itimerspec val, oval;
785 1.142 ad struct ptimers *pts;
786 1.63 thorpej struct ptimer *pt;
787 1.63 thorpej
788 1.142 ad pts = p->p_timers;
789 1.63 thorpej
790 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
791 1.142 ad return EINVAL;
792 1.150 christos val = *value;
793 1.150 christos if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
794 1.150 christos return EINVAL;
795 1.63 thorpej
796 1.142 ad mutex_spin_enter(&timer_lock);
797 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
798 1.142 ad mutex_spin_exit(&timer_lock);
799 1.150 christos return EINVAL;
800 1.142 ad }
801 1.142 ad
802 1.63 thorpej oval = pt->pt_time;
803 1.63 thorpej pt->pt_time = val;
804 1.63 thorpej
805 1.67 nathanw /*
806 1.67 nathanw * If we've been passed a relative time for a realtime timer,
807 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
808 1.67 nathanw * timer, convert it to relative and make sure we don't set it
809 1.67 nathanw * to zero, which would cancel the timer, or let it go
810 1.67 nathanw * negative, which would confuse the comparison tests.
811 1.67 nathanw */
812 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
813 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
814 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
815 1.150 christos getnanotime(&now);
816 1.150 christos timespecadd(&pt->pt_time.it_value, &now,
817 1.101 kardel &pt->pt_time.it_value);
818 1.101 kardel }
819 1.67 nathanw } else {
820 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
821 1.150 christos getnanotime(&now);
822 1.150 christos timespecsub(&pt->pt_time.it_value, &now,
823 1.101 kardel &pt->pt_time.it_value);
824 1.150 christos if (!timespecisset(&pt->pt_time.it_value) ||
825 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
826 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
827 1.150 christos pt->pt_time.it_value.tv_nsec = 1;
828 1.67 nathanw }
829 1.67 nathanw }
830 1.67 nathanw }
831 1.67 nathanw }
832 1.67 nathanw
833 1.63 thorpej timer_settime(pt);
834 1.142 ad mutex_spin_exit(&timer_lock);
835 1.63 thorpej
836 1.150 christos if (ovalue)
837 1.150 christos *ovalue = oval;
838 1.63 thorpej
839 1.63 thorpej return (0);
840 1.63 thorpej }
841 1.63 thorpej
842 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
843 1.63 thorpej int
844 1.156 christos sys___timer_gettime50(struct lwp *l,
845 1.156 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
846 1.63 thorpej {
847 1.135 dsl /* {
848 1.63 thorpej syscallarg(timer_t) timerid;
849 1.63 thorpej syscallarg(struct itimerspec *) value;
850 1.135 dsl } */
851 1.63 thorpej struct itimerspec its;
852 1.92 cube int error;
853 1.92 cube
854 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
855 1.92 cube &its)) != 0)
856 1.92 cube return error;
857 1.92 cube
858 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
859 1.92 cube }
860 1.92 cube
861 1.92 cube int
862 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
863 1.92 cube {
864 1.63 thorpej struct ptimer *pt;
865 1.142 ad struct ptimers *pts;
866 1.63 thorpej
867 1.142 ad pts = p->p_timers;
868 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
869 1.63 thorpej return (EINVAL);
870 1.142 ad mutex_spin_enter(&timer_lock);
871 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
872 1.142 ad mutex_spin_exit(&timer_lock);
873 1.142 ad return (EINVAL);
874 1.142 ad }
875 1.150 christos timer_gettime(pt, its);
876 1.142 ad mutex_spin_exit(&timer_lock);
877 1.63 thorpej
878 1.92 cube return 0;
879 1.63 thorpej }
880 1.63 thorpej
881 1.63 thorpej /*
882 1.63 thorpej * Return the count of the number of times a periodic timer expired
883 1.63 thorpej * while a notification was already pending. The counter is reset when
884 1.63 thorpej * a timer expires and a notification can be posted.
885 1.63 thorpej */
886 1.63 thorpej int
887 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
888 1.140 yamt register_t *retval)
889 1.63 thorpej {
890 1.135 dsl /* {
891 1.63 thorpej syscallarg(timer_t) timerid;
892 1.135 dsl } */
893 1.63 thorpej struct proc *p = l->l_proc;
894 1.142 ad struct ptimers *pts;
895 1.63 thorpej int timerid;
896 1.63 thorpej struct ptimer *pt;
897 1.63 thorpej
898 1.63 thorpej timerid = SCARG(uap, timerid);
899 1.63 thorpej
900 1.142 ad pts = p->p_timers;
901 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
902 1.142 ad return (EINVAL);
903 1.142 ad mutex_spin_enter(&timer_lock);
904 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
905 1.142 ad mutex_spin_exit(&timer_lock);
906 1.63 thorpej return (EINVAL);
907 1.142 ad }
908 1.63 thorpej *retval = pt->pt_poverruns;
909 1.142 ad mutex_spin_exit(&timer_lock);
910 1.63 thorpej
911 1.63 thorpej return (0);
912 1.63 thorpej }
913 1.63 thorpej
914 1.154 wrstuden #ifdef KERN_SA
915 1.154 wrstuden /* Glue function that triggers an upcall; called from userret(). */
916 1.154 wrstuden void
917 1.154 wrstuden timerupcall(struct lwp *l)
918 1.154 wrstuden {
919 1.154 wrstuden struct ptimers *pt = l->l_proc->p_timers;
920 1.154 wrstuden struct proc *p = l->l_proc;
921 1.154 wrstuden unsigned int i, fired, done;
922 1.154 wrstuden
923 1.154 wrstuden KDASSERT(l->l_proc->p_sa);
924 1.154 wrstuden /* Bail out if we do not own the virtual processor */
925 1.154 wrstuden if (l->l_savp->savp_lwp != l)
926 1.154 wrstuden return ;
927 1.154 wrstuden
928 1.154 wrstuden mutex_enter(p->p_lock);
929 1.154 wrstuden
930 1.154 wrstuden fired = pt->pts_fired;
931 1.154 wrstuden done = 0;
932 1.154 wrstuden while ((i = ffs(fired)) != 0) {
933 1.154 wrstuden siginfo_t *si;
934 1.154 wrstuden int mask = 1 << --i;
935 1.154 wrstuden int f;
936 1.154 wrstuden
937 1.154 wrstuden f = ~l->l_pflag & LP_SA_NOBLOCK;
938 1.154 wrstuden l->l_pflag |= LP_SA_NOBLOCK;
939 1.154 wrstuden si = siginfo_alloc(PR_WAITOK);
940 1.154 wrstuden si->_info = pt->pts_timers[i]->pt_info.ksi_info;
941 1.154 wrstuden if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
942 1.154 wrstuden sizeof(*si), si, siginfo_free) != 0) {
943 1.154 wrstuden siginfo_free(si);
944 1.154 wrstuden /* XXX What do we do here?? */
945 1.154 wrstuden } else
946 1.154 wrstuden done |= mask;
947 1.154 wrstuden fired &= ~mask;
948 1.154 wrstuden l->l_pflag ^= f;
949 1.154 wrstuden }
950 1.154 wrstuden pt->pts_fired &= ~done;
951 1.154 wrstuden if (pt->pts_fired == 0)
952 1.154 wrstuden l->l_proc->p_timerpend = 0;
953 1.154 wrstuden
954 1.154 wrstuden mutex_exit(p->p_lock);
955 1.154 wrstuden }
956 1.154 wrstuden #endif /* KERN_SA */
957 1.154 wrstuden
958 1.63 thorpej /*
959 1.63 thorpej * Real interval timer expired:
960 1.63 thorpej * send process whose timer expired an alarm signal.
961 1.63 thorpej * If time is not set up to reload, then just return.
962 1.63 thorpej * Else compute next time timer should go off which is > current time.
963 1.63 thorpej * This is where delay in processing this timeout causes multiple
964 1.63 thorpej * SIGALRM calls to be compressed into one.
965 1.63 thorpej */
966 1.63 thorpej void
967 1.63 thorpej realtimerexpire(void *arg)
968 1.63 thorpej {
969 1.148 joerg uint64_t last_val, next_val, interval, now_ms;
970 1.150 christos struct timespec now, next;
971 1.63 thorpej struct ptimer *pt;
972 1.148 joerg int backwards;
973 1.63 thorpej
974 1.142 ad pt = arg;
975 1.63 thorpej
976 1.142 ad mutex_spin_enter(&timer_lock);
977 1.63 thorpej itimerfire(pt);
978 1.63 thorpej
979 1.150 christos if (!timespecisset(&pt->pt_time.it_interval)) {
980 1.150 christos timespecclear(&pt->pt_time.it_value);
981 1.142 ad mutex_spin_exit(&timer_lock);
982 1.63 thorpej return;
983 1.63 thorpej }
984 1.148 joerg
985 1.150 christos getnanotime(&now);
986 1.150 christos backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
987 1.150 christos timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
988 1.148 joerg /* Handle the easy case of non-overflown timers first. */
989 1.150 christos if (!backwards && timespeccmp(&next, &now, >)) {
990 1.148 joerg pt->pt_time.it_value = next;
991 1.148 joerg } else {
992 1.150 christos now_ms = timespec2ns(&now);
993 1.150 christos last_val = timespec2ns(&pt->pt_time.it_value);
994 1.150 christos interval = timespec2ns(&pt->pt_time.it_interval);
995 1.148 joerg
996 1.148 joerg next_val = now_ms +
997 1.148 joerg (now_ms - last_val + interval - 1) % interval;
998 1.148 joerg
999 1.148 joerg if (backwards)
1000 1.148 joerg next_val += interval;
1001 1.148 joerg else
1002 1.148 joerg pt->pt_overruns += (now_ms - last_val) / interval;
1003 1.148 joerg
1004 1.150 christos pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1005 1.150 christos pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1006 1.101 kardel }
1007 1.148 joerg
1008 1.148 joerg /*
1009 1.150 christos * Don't need to check tshzto() return value, here.
1010 1.148 joerg * callout_reset() does it for us.
1011 1.148 joerg */
1012 1.150 christos callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1013 1.148 joerg realtimerexpire, pt);
1014 1.148 joerg mutex_spin_exit(&timer_lock);
1015 1.63 thorpej }
1016 1.63 thorpej
1017 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1018 1.63 thorpej /* ARGSUSED */
1019 1.63 thorpej int
1020 1.156 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1021 1.140 yamt register_t *retval)
1022 1.63 thorpej {
1023 1.135 dsl /* {
1024 1.63 thorpej syscallarg(int) which;
1025 1.63 thorpej syscallarg(struct itimerval *) itv;
1026 1.135 dsl } */
1027 1.63 thorpej struct proc *p = l->l_proc;
1028 1.63 thorpej struct itimerval aitv;
1029 1.91 cube int error;
1030 1.91 cube
1031 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1032 1.91 cube if (error)
1033 1.91 cube return error;
1034 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1035 1.91 cube }
1036 1.63 thorpej
1037 1.91 cube int
1038 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1039 1.91 cube {
1040 1.142 ad struct ptimers *pts;
1041 1.142 ad struct ptimer *pt;
1042 1.150 christos struct itimerspec its;
1043 1.63 thorpej
1044 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1045 1.63 thorpej return (EINVAL);
1046 1.63 thorpej
1047 1.142 ad mutex_spin_enter(&timer_lock);
1048 1.142 ad pts = p->p_timers;
1049 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1050 1.91 cube timerclear(&itvp->it_value);
1051 1.91 cube timerclear(&itvp->it_interval);
1052 1.150 christos } else {
1053 1.150 christos timer_gettime(pt, &its);
1054 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1055 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1056 1.150 christos }
1057 1.142 ad mutex_spin_exit(&timer_lock);
1058 1.63 thorpej
1059 1.91 cube return 0;
1060 1.1 cgd }
1061 1.1 cgd
1062 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1063 1.1 cgd /* ARGSUSED */
1064 1.3 andrew int
1065 1.156 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1066 1.140 yamt register_t *retval)
1067 1.15 thorpej {
1068 1.135 dsl /* {
1069 1.30 mycroft syscallarg(int) which;
1070 1.24 cgd syscallarg(const struct itimerval *) itv;
1071 1.11 cgd syscallarg(struct itimerval *) oitv;
1072 1.135 dsl } */
1073 1.63 thorpej struct proc *p = l->l_proc;
1074 1.30 mycroft int which = SCARG(uap, which);
1075 1.156 christos struct sys___getitimer50_args getargs;
1076 1.91 cube const struct itimerval *itvp;
1077 1.1 cgd struct itimerval aitv;
1078 1.91 cube int error;
1079 1.1 cgd
1080 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1081 1.1 cgd return (EINVAL);
1082 1.11 cgd itvp = SCARG(uap, itv);
1083 1.63 thorpej if (itvp &&
1084 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1085 1.1 cgd return (error);
1086 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1087 1.30 mycroft SCARG(&getargs, which) = which;
1088 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1089 1.156 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1090 1.21 cgd return (error);
1091 1.21 cgd }
1092 1.1 cgd if (itvp == 0)
1093 1.1 cgd return (0);
1094 1.91 cube
1095 1.91 cube return dosetitimer(p, which, &aitv);
1096 1.91 cube }
1097 1.91 cube
1098 1.91 cube int
1099 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1100 1.91 cube {
1101 1.150 christos struct timespec now;
1102 1.142 ad struct ptimers *pts;
1103 1.142 ad struct ptimer *pt, *spare;
1104 1.91 cube
1105 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1106 1.1 cgd return (EINVAL);
1107 1.63 thorpej
1108 1.63 thorpej /*
1109 1.63 thorpej * Don't bother allocating data structures if the process just
1110 1.63 thorpej * wants to clear the timer.
1111 1.63 thorpej */
1112 1.142 ad spare = NULL;
1113 1.142 ad pts = p->p_timers;
1114 1.142 ad retry:
1115 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1116 1.142 ad pts->pts_timers[which] == NULL))
1117 1.63 thorpej return (0);
1118 1.142 ad if (pts == NULL)
1119 1.142 ad pts = timers_alloc(p);
1120 1.142 ad mutex_spin_enter(&timer_lock);
1121 1.142 ad pt = pts->pts_timers[which];
1122 1.142 ad if (pt == NULL) {
1123 1.142 ad if (spare == NULL) {
1124 1.142 ad mutex_spin_exit(&timer_lock);
1125 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1126 1.142 ad goto retry;
1127 1.142 ad }
1128 1.142 ad pt = spare;
1129 1.142 ad spare = NULL;
1130 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1131 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1132 1.63 thorpej pt->pt_overruns = 0;
1133 1.63 thorpej pt->pt_proc = p;
1134 1.63 thorpej pt->pt_type = which;
1135 1.64 nathanw pt->pt_entry = which;
1136 1.142 ad pt->pt_queued = false;
1137 1.149 christos if (pt->pt_type == CLOCK_REALTIME)
1138 1.149 christos callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1139 1.149 christos else
1140 1.149 christos pt->pt_active = 0;
1141 1.149 christos
1142 1.63 thorpej switch (which) {
1143 1.63 thorpej case ITIMER_REAL:
1144 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1145 1.63 thorpej break;
1146 1.63 thorpej case ITIMER_VIRTUAL:
1147 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1148 1.63 thorpej break;
1149 1.63 thorpej case ITIMER_PROF:
1150 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1151 1.63 thorpej break;
1152 1.1 cgd }
1153 1.142 ad pts->pts_timers[which] = pt;
1154 1.142 ad }
1155 1.63 thorpej
1156 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1157 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1158 1.150 christos
1159 1.150 christos if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1160 1.67 nathanw /* Convert to absolute time */
1161 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1162 1.150 christos getnanotime(&now);
1163 1.150 christos timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1164 1.67 nathanw }
1165 1.63 thorpej timer_settime(pt);
1166 1.142 ad mutex_spin_exit(&timer_lock);
1167 1.142 ad if (spare != NULL)
1168 1.142 ad pool_put(&ptimer_pool, spare);
1169 1.63 thorpej
1170 1.1 cgd return (0);
1171 1.1 cgd }
1172 1.1 cgd
1173 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1174 1.142 ad struct ptimers *
1175 1.63 thorpej timers_alloc(struct proc *p)
1176 1.63 thorpej {
1177 1.142 ad struct ptimers *pts;
1178 1.63 thorpej int i;
1179 1.63 thorpej
1180 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1181 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1182 1.63 thorpej LIST_INIT(&pts->pts_prof);
1183 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1184 1.63 thorpej pts->pts_timers[i] = NULL;
1185 1.64 nathanw pts->pts_fired = 0;
1186 1.142 ad mutex_spin_enter(&timer_lock);
1187 1.142 ad if (p->p_timers == NULL) {
1188 1.142 ad p->p_timers = pts;
1189 1.142 ad mutex_spin_exit(&timer_lock);
1190 1.142 ad return pts;
1191 1.142 ad }
1192 1.142 ad mutex_spin_exit(&timer_lock);
1193 1.142 ad pool_put(&ptimers_pool, pts);
1194 1.142 ad return p->p_timers;
1195 1.63 thorpej }
1196 1.63 thorpej
1197 1.1 cgd /*
1198 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1199 1.63 thorpej * then clean up all timers and free all the data structures. If
1200 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1201 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1202 1.63 thorpej * structure if none of those remain.
1203 1.1 cgd */
1204 1.3 andrew void
1205 1.63 thorpej timers_free(struct proc *p, int which)
1206 1.6 cgd {
1207 1.63 thorpej struct ptimers *pts;
1208 1.142 ad struct ptimer *ptn;
1209 1.150 christos struct timespec ts;
1210 1.142 ad int i;
1211 1.63 thorpej
1212 1.142 ad if (p->p_timers == NULL)
1213 1.142 ad return;
1214 1.63 thorpej
1215 1.142 ad pts = p->p_timers;
1216 1.142 ad mutex_spin_enter(&timer_lock);
1217 1.142 ad if (which == TIMERS_ALL) {
1218 1.142 ad p->p_timers = NULL;
1219 1.142 ad i = 0;
1220 1.142 ad } else {
1221 1.150 christos timespecclear(&ts);
1222 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1223 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1224 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1225 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1226 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1227 1.149 christos }
1228 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1229 1.142 ad if (ptn) {
1230 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1231 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1232 1.142 ad &ptn->pt_time.it_value);
1233 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1234 1.142 ad }
1235 1.150 christos timespecclear(&ts);
1236 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1237 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1238 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1239 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1240 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1241 1.149 christos }
1242 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1243 1.142 ad if (ptn) {
1244 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1245 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1246 1.142 ad &ptn->pt_time.it_value);
1247 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1248 1.63 thorpej }
1249 1.142 ad i = 3;
1250 1.142 ad }
1251 1.142 ad for ( ; i < TIMER_MAX; i++) {
1252 1.142 ad if (pts->pts_timers[i] != NULL) {
1253 1.142 ad itimerfree(pts, i);
1254 1.142 ad mutex_spin_enter(&timer_lock);
1255 1.1 cgd }
1256 1.1 cgd }
1257 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1258 1.142 ad pts->pts_timers[2] == NULL) {
1259 1.142 ad p->p_timers = NULL;
1260 1.142 ad mutex_spin_exit(&timer_lock);
1261 1.142 ad pool_put(&ptimers_pool, pts);
1262 1.142 ad } else
1263 1.142 ad mutex_spin_exit(&timer_lock);
1264 1.142 ad }
1265 1.142 ad
1266 1.142 ad static void
1267 1.142 ad itimerfree(struct ptimers *pts, int index)
1268 1.142 ad {
1269 1.142 ad struct ptimer *pt;
1270 1.142 ad
1271 1.142 ad KASSERT(mutex_owned(&timer_lock));
1272 1.142 ad
1273 1.142 ad pt = pts->pts_timers[index];
1274 1.142 ad pts->pts_timers[index] = NULL;
1275 1.144 ad if (pt->pt_type == CLOCK_REALTIME)
1276 1.144 ad callout_halt(&pt->pt_ch, &timer_lock);
1277 1.144 ad else if (pt->pt_queued)
1278 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1279 1.144 ad mutex_spin_exit(&timer_lock);
1280 1.149 christos if (pt->pt_type == CLOCK_REALTIME)
1281 1.149 christos callout_destroy(&pt->pt_ch);
1282 1.142 ad pool_put(&ptimer_pool, pt);
1283 1.1 cgd }
1284 1.1 cgd
1285 1.1 cgd /*
1286 1.1 cgd * Decrement an interval timer by a specified number
1287 1.152 christos * of nanoseconds, which must be less than a second,
1288 1.152 christos * i.e. < 1000000000. If the timer expires, then reload
1289 1.152 christos * it. In this case, carry over (nsec - old value) to
1290 1.8 cgd * reduce the value reloaded into the timer so that
1291 1.1 cgd * the timer does not drift. This routine assumes
1292 1.1 cgd * that it is called in a context where the timers
1293 1.1 cgd * on which it is operating cannot change in value.
1294 1.1 cgd */
1295 1.142 ad static int
1296 1.152 christos itimerdecr(struct ptimer *pt, int nsec)
1297 1.63 thorpej {
1298 1.150 christos struct itimerspec *itp;
1299 1.1 cgd
1300 1.142 ad KASSERT(mutex_owned(&timer_lock));
1301 1.142 ad
1302 1.63 thorpej itp = &pt->pt_time;
1303 1.150 christos if (itp->it_value.tv_nsec < nsec) {
1304 1.1 cgd if (itp->it_value.tv_sec == 0) {
1305 1.1 cgd /* expired, and already in next interval */
1306 1.150 christos nsec -= itp->it_value.tv_nsec;
1307 1.1 cgd goto expire;
1308 1.1 cgd }
1309 1.150 christos itp->it_value.tv_nsec += 1000000000;
1310 1.1 cgd itp->it_value.tv_sec--;
1311 1.1 cgd }
1312 1.152 christos itp->it_value.tv_nsec -= nsec;
1313 1.152 christos nsec = 0;
1314 1.150 christos if (timespecisset(&itp->it_value))
1315 1.1 cgd return (1);
1316 1.1 cgd /* expired, exactly at end of interval */
1317 1.1 cgd expire:
1318 1.150 christos if (timespecisset(&itp->it_interval)) {
1319 1.1 cgd itp->it_value = itp->it_interval;
1320 1.150 christos itp->it_value.tv_nsec -= nsec;
1321 1.150 christos if (itp->it_value.tv_nsec < 0) {
1322 1.150 christos itp->it_value.tv_nsec += 1000000000;
1323 1.1 cgd itp->it_value.tv_sec--;
1324 1.1 cgd }
1325 1.63 thorpej timer_settime(pt);
1326 1.1 cgd } else
1327 1.150 christos itp->it_value.tv_nsec = 0; /* sec is already 0 */
1328 1.1 cgd return (0);
1329 1.42 cgd }
1330 1.42 cgd
1331 1.142 ad static void
1332 1.63 thorpej itimerfire(struct ptimer *pt)
1333 1.63 thorpej {
1334 1.78 cl
1335 1.142 ad KASSERT(mutex_owned(&timer_lock));
1336 1.142 ad
1337 1.142 ad /*
1338 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1339 1.142 ad * XXX Relying on the clock interrupt is stupid.
1340 1.142 ad */
1341 1.154 wrstuden if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1342 1.154 wrstuden (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1343 1.154 wrstuden pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1344 1.142 ad return;
1345 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1346 1.142 ad pt->pt_queued = true;
1347 1.142 ad softint_schedule(timer_sih);
1348 1.142 ad }
1349 1.142 ad
1350 1.142 ad void
1351 1.142 ad timer_tick(lwp_t *l, bool user)
1352 1.142 ad {
1353 1.142 ad struct ptimers *pts;
1354 1.142 ad struct ptimer *pt;
1355 1.142 ad proc_t *p;
1356 1.142 ad
1357 1.142 ad p = l->l_proc;
1358 1.142 ad if (p->p_timers == NULL)
1359 1.142 ad return;
1360 1.142 ad
1361 1.142 ad mutex_spin_enter(&timer_lock);
1362 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1363 1.63 thorpej /*
1364 1.142 ad * Run current process's virtual and profile time, as needed.
1365 1.63 thorpej */
1366 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1367 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1368 1.142 ad itimerfire(pt);
1369 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1370 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1371 1.142 ad itimerfire(pt);
1372 1.142 ad }
1373 1.142 ad mutex_spin_exit(&timer_lock);
1374 1.142 ad }
1375 1.142 ad
1376 1.154 wrstuden #ifdef KERN_SA
1377 1.154 wrstuden /*
1378 1.154 wrstuden * timer_sa_intr:
1379 1.154 wrstuden *
1380 1.154 wrstuden * SIGEV_SA handling for timer_intr(). We are called (and return)
1381 1.154 wrstuden * with the timer lock held. We know that the process had SA enabled
1382 1.154 wrstuden * when this timer was enqueued. As timer_intr() is a soft interrupt
1383 1.154 wrstuden * handler, SA should still be enabled by the time we get here.
1384 1.154 wrstuden */
1385 1.154 wrstuden static void
1386 1.154 wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
1387 1.154 wrstuden {
1388 1.155 wrstuden unsigned int i;
1389 1.155 wrstuden struct sadata *sa;
1390 1.155 wrstuden struct sadata_vp *vp;
1391 1.154 wrstuden
1392 1.154 wrstuden /* Cause the process to generate an upcall when it returns. */
1393 1.154 wrstuden if (!p->p_timerpend) {
1394 1.154 wrstuden /*
1395 1.154 wrstuden * XXX stop signals can be processed inside tsleep,
1396 1.154 wrstuden * which can be inside sa_yield's inner loop, which
1397 1.154 wrstuden * makes testing for sa_idle alone insuffucent to
1398 1.154 wrstuden * determine if we really should call setrunnable.
1399 1.154 wrstuden */
1400 1.154 wrstuden pt->pt_poverruns = pt->pt_overruns;
1401 1.154 wrstuden pt->pt_overruns = 0;
1402 1.154 wrstuden i = 1 << pt->pt_entry;
1403 1.154 wrstuden p->p_timers->pts_fired = i;
1404 1.154 wrstuden p->p_timerpend = 1;
1405 1.154 wrstuden
1406 1.155 wrstuden sa = p->p_sa;
1407 1.155 wrstuden mutex_enter(&sa->sa_mutex);
1408 1.155 wrstuden SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1409 1.155 wrstuden struct lwp *vp_lwp = vp->savp_lwp;
1410 1.155 wrstuden lwp_lock(vp_lwp);
1411 1.155 wrstuden lwp_need_userret(vp_lwp);
1412 1.155 wrstuden if (vp_lwp->l_flag & LW_SA_IDLE) {
1413 1.155 wrstuden vp_lwp->l_flag &= ~LW_SA_IDLE;
1414 1.155 wrstuden lwp_unsleep(vp_lwp, true);
1415 1.154 wrstuden break;
1416 1.154 wrstuden }
1417 1.155 wrstuden lwp_unlock(vp_lwp);
1418 1.154 wrstuden }
1419 1.155 wrstuden mutex_exit(&sa->sa_mutex);
1420 1.154 wrstuden } else {
1421 1.154 wrstuden i = 1 << pt->pt_entry;
1422 1.154 wrstuden if ((p->p_timers->pts_fired & i) == 0) {
1423 1.154 wrstuden pt->pt_poverruns = pt->pt_overruns;
1424 1.154 wrstuden pt->pt_overruns = 0;
1425 1.154 wrstuden p->p_timers->pts_fired |= i;
1426 1.154 wrstuden } else
1427 1.154 wrstuden pt->pt_overruns++;
1428 1.154 wrstuden }
1429 1.154 wrstuden }
1430 1.154 wrstuden #endif /* KERN_SA */
1431 1.154 wrstuden
1432 1.142 ad static void
1433 1.142 ad timer_intr(void *cookie)
1434 1.142 ad {
1435 1.142 ad ksiginfo_t ksi;
1436 1.142 ad struct ptimer *pt;
1437 1.142 ad proc_t *p;
1438 1.142 ad
1439 1.142 ad mutex_spin_enter(&timer_lock);
1440 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1441 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1442 1.142 ad KASSERT(pt->pt_queued);
1443 1.142 ad pt->pt_queued = false;
1444 1.142 ad
1445 1.154 wrstuden if (pt->pt_proc->p_timers == NULL) {
1446 1.154 wrstuden /* Process is dying. */
1447 1.142 ad continue;
1448 1.154 wrstuden }
1449 1.142 ad p = pt->pt_proc;
1450 1.154 wrstuden #ifdef KERN_SA
1451 1.154 wrstuden if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1452 1.154 wrstuden timer_sa_intr(pt, p);
1453 1.142 ad continue;
1454 1.142 ad }
1455 1.154 wrstuden #endif /* KERN_SA */
1456 1.154 wrstuden if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1457 1.154 wrstuden continue;
1458 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1459 1.63 thorpej pt->pt_overruns++;
1460 1.142 ad continue;
1461 1.64 nathanw }
1462 1.142 ad
1463 1.142 ad KSI_INIT(&ksi);
1464 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1465 1.142 ad ksi.ksi_code = SI_TIMER;
1466 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1467 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1468 1.142 ad pt->pt_overruns = 0;
1469 1.142 ad mutex_spin_exit(&timer_lock);
1470 1.142 ad
1471 1.145 ad mutex_enter(proc_lock);
1472 1.142 ad kpsignal(p, &ksi, NULL);
1473 1.145 ad mutex_exit(proc_lock);
1474 1.142 ad
1475 1.142 ad mutex_spin_enter(&timer_lock);
1476 1.63 thorpej }
1477 1.142 ad mutex_spin_exit(&timer_lock);
1478 1.63 thorpej }
1479