Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.163.2.1
      1  1.163.2.1  uebayasi /*	$NetBSD: kern_time.c,v 1.163.2.1 2010/04/30 14:44:11 uebayasi Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.163.2.1  uebayasi __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.163.2.1 2010/04/30 14:44:11 uebayasi Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78      1.154  wrstuden #include <sys/sa.h>
     79      1.154  wrstuden #include <sys/savar.h>
     80       1.11       cgd #include <sys/syscallargs.h>
     81      1.143        ad #include <sys/cpu.h>
     82       1.19  christos 
     83       1.37   thorpej #include <uvm/uvm_extern.h>
     84       1.37   thorpej 
     85      1.154  wrstuden #include "opt_sa.h"
     86      1.154  wrstuden 
     87      1.142        ad static void	timer_intr(void *);
     88      1.142        ad static void	itimerfire(struct ptimer *);
     89      1.142        ad static void	itimerfree(struct ptimers *, int);
     90      1.142        ad 
     91      1.142        ad kmutex_t	timer_lock;
     92      1.142        ad 
     93      1.142        ad static void	*timer_sih;
     94      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95      1.131        ad 
     96      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     97       1.97    simonb 
     98      1.131        ad /*
     99      1.131        ad  * Initialize timekeeping.
    100      1.131        ad  */
    101      1.131        ad void
    102      1.131        ad time_init(void)
    103      1.131        ad {
    104      1.131        ad 
    105      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    106      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    107      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    108      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109      1.131        ad }
    110      1.131        ad 
    111      1.142        ad void
    112      1.142        ad time_init2(void)
    113      1.142        ad {
    114      1.142        ad 
    115      1.142        ad 	TAILQ_INIT(&timer_queue);
    116      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118      1.142        ad 	    timer_intr, NULL);
    119      1.142        ad }
    120      1.142        ad 
    121       1.63   thorpej /* Time of day and interval timer support.
    122        1.1       cgd  *
    123        1.1       cgd  * These routines provide the kernel entry points to get and set
    124        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125        1.1       cgd  * here provide support for adding and subtracting timeval structures
    126        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127        1.1       cgd  * timers when they expire.
    128        1.1       cgd  */
    129        1.1       cgd 
    130       1.22       jtc /* This function is used by clock_settime and settimeofday */
    131      1.132      elad static int
    132      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    133       1.22       jtc {
    134      1.156  christos 	struct timespec delta, now;
    135      1.129        ad 	int s;
    136       1.22       jtc 
    137       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    138      1.129        ad 	s = splclock();
    139      1.156  christos 	nanotime(&now);
    140      1.156  christos 	timespecsub(ts, &now, &delta);
    141      1.132      elad 
    142      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    143      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    144      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    145      1.129        ad 		splx(s);
    146       1.29       tls 		return (EPERM);
    147       1.55      tron 	}
    148      1.132      elad 
    149       1.29       tls #ifdef notyet
    150      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    151      1.129        ad 		splx(s);
    152       1.29       tls 		return (EPERM);
    153       1.55      tron 	}
    154       1.29       tls #endif
    155      1.103    kardel 
    156      1.156  christos 	tc_setclock(ts);
    157      1.103    kardel 
    158      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    159      1.103    kardel 
    160       1.22       jtc 	resettodr();
    161      1.129        ad 	splx(s);
    162      1.129        ad 
    163       1.29       tls 	return (0);
    164       1.22       jtc }
    165       1.22       jtc 
    166      1.132      elad int
    167      1.132      elad settime(struct proc *p, struct timespec *ts)
    168      1.132      elad {
    169      1.132      elad 	return (settime1(p, ts, true));
    170      1.132      elad }
    171      1.132      elad 
    172       1.22       jtc /* ARGSUSED */
    173       1.22       jtc int
    174      1.156  christos sys___clock_gettime50(struct lwp *l,
    175      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    176       1.22       jtc {
    177      1.135       dsl 	/* {
    178       1.22       jtc 		syscallarg(clockid_t) clock_id;
    179       1.23       cgd 		syscallarg(struct timespec *) tp;
    180      1.135       dsl 	} */
    181  1.163.2.1  uebayasi 	int error;
    182       1.22       jtc 	struct timespec ats;
    183       1.22       jtc 
    184  1.163.2.1  uebayasi 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    185  1.163.2.1  uebayasi 	if (error != 0)
    186  1.163.2.1  uebayasi 		return error;
    187  1.163.2.1  uebayasi 
    188  1.163.2.1  uebayasi 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    189  1.163.2.1  uebayasi }
    190  1.163.2.1  uebayasi 
    191  1.163.2.1  uebayasi int
    192  1.163.2.1  uebayasi clock_gettime1(clockid_t clock_id, struct timespec *ts)
    193  1.163.2.1  uebayasi {
    194  1.163.2.1  uebayasi 
    195       1.61    simonb 	switch (clock_id) {
    196       1.61    simonb 	case CLOCK_REALTIME:
    197  1.163.2.1  uebayasi 		nanotime(ts);
    198       1.61    simonb 		break;
    199       1.61    simonb 	case CLOCK_MONOTONIC:
    200  1.163.2.1  uebayasi 		nanouptime(ts);
    201       1.61    simonb 		break;
    202       1.61    simonb 	default:
    203  1.163.2.1  uebayasi 		return EINVAL;
    204       1.61    simonb 	}
    205       1.22       jtc 
    206  1.163.2.1  uebayasi 	return 0;
    207       1.22       jtc }
    208       1.22       jtc 
    209       1.22       jtc /* ARGSUSED */
    210       1.22       jtc int
    211      1.156  christos sys___clock_settime50(struct lwp *l,
    212      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    213       1.22       jtc {
    214      1.135       dsl 	/* {
    215       1.22       jtc 		syscallarg(clockid_t) clock_id;
    216       1.23       cgd 		syscallarg(const struct timespec *) tp;
    217      1.135       dsl 	} */
    218      1.156  christos 	int error;
    219      1.156  christos 	struct timespec ats;
    220       1.22       jtc 
    221      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    222      1.156  christos 		return error;
    223      1.156  christos 
    224      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    225       1.56      manu }
    226       1.56      manu 
    227       1.56      manu 
    228       1.56      manu int
    229      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    230      1.132      elad     bool check_kauth)
    231       1.56      manu {
    232       1.56      manu 	int error;
    233       1.56      manu 
    234       1.61    simonb 	switch (clock_id) {
    235       1.61    simonb 	case CLOCK_REALTIME:
    236      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    237       1.61    simonb 			return (error);
    238       1.61    simonb 		break;
    239       1.61    simonb 	case CLOCK_MONOTONIC:
    240       1.61    simonb 		return (EINVAL);	/* read-only clock */
    241       1.61    simonb 	default:
    242       1.56      manu 		return (EINVAL);
    243       1.61    simonb 	}
    244       1.22       jtc 
    245       1.22       jtc 	return 0;
    246       1.22       jtc }
    247       1.22       jtc 
    248       1.22       jtc int
    249      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    250      1.140      yamt     register_t *retval)
    251       1.22       jtc {
    252      1.135       dsl 	/* {
    253       1.22       jtc 		syscallarg(clockid_t) clock_id;
    254       1.23       cgd 		syscallarg(struct timespec *) tp;
    255      1.135       dsl 	} */
    256       1.22       jtc 	struct timespec ts;
    257       1.22       jtc 	int error = 0;
    258       1.22       jtc 
    259  1.163.2.1  uebayasi 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    260  1.163.2.1  uebayasi 		return error;
    261  1.163.2.1  uebayasi 
    262  1.163.2.1  uebayasi 	if (SCARG(uap, tp))
    263  1.163.2.1  uebayasi 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264  1.163.2.1  uebayasi 
    265  1.163.2.1  uebayasi 	return error;
    266  1.163.2.1  uebayasi }
    267  1.163.2.1  uebayasi 
    268  1.163.2.1  uebayasi int
    269  1.163.2.1  uebayasi clock_getres1(clockid_t clock_id, struct timespec *ts)
    270  1.163.2.1  uebayasi {
    271  1.163.2.1  uebayasi 
    272       1.61    simonb 	switch (clock_id) {
    273       1.61    simonb 	case CLOCK_REALTIME:
    274       1.61    simonb 	case CLOCK_MONOTONIC:
    275  1.163.2.1  uebayasi 		ts->tv_sec = 0;
    276      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    277  1.163.2.1  uebayasi 			ts->tv_nsec = 1;
    278      1.102    kardel 		else
    279  1.163.2.1  uebayasi 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    280       1.61    simonb 		break;
    281       1.61    simonb 	default:
    282  1.163.2.1  uebayasi 		return EINVAL;
    283       1.61    simonb 	}
    284       1.22       jtc 
    285  1.163.2.1  uebayasi 	return 0;
    286       1.22       jtc }
    287       1.22       jtc 
    288       1.27       jtc /* ARGSUSED */
    289       1.27       jtc int
    290      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    291      1.140      yamt     register_t *retval)
    292       1.27       jtc {
    293      1.135       dsl 	/* {
    294      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    295      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    296      1.135       dsl 	} */
    297      1.101    kardel 	struct timespec rmt, rqt;
    298      1.120       dsl 	int error, error1;
    299      1.101    kardel 
    300      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    301      1.101    kardel 	if (error)
    302      1.101    kardel 		return (error);
    303      1.101    kardel 
    304      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    305      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    306      1.120       dsl 		return error;
    307      1.120       dsl 
    308      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    309      1.120       dsl 	return error1 ? error1 : error;
    310      1.120       dsl }
    311      1.120       dsl 
    312      1.120       dsl int
    313      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    314      1.120       dsl {
    315      1.141      yamt 	struct timespec rmtstart;
    316      1.120       dsl 	int error, timo;
    317      1.120       dsl 
    318      1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    319      1.160  christos 		return error;
    320      1.101    kardel 
    321      1.120       dsl 	timo = tstohz(rqt);
    322      1.101    kardel 	/*
    323      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    324      1.101    kardel 	 */
    325      1.101    kardel 	if (timo == 0)
    326      1.101    kardel 		timo = 1;
    327      1.141      yamt 	getnanouptime(&rmtstart);
    328      1.141      yamt again:
    329      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    330      1.141      yamt 	if (rmt != NULL || error == 0) {
    331      1.141      yamt 		struct timespec rmtend;
    332      1.141      yamt 		struct timespec t0;
    333      1.141      yamt 		struct timespec *t;
    334      1.101    kardel 
    335      1.141      yamt 		getnanouptime(&rmtend);
    336      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    337      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    338      1.141      yamt 		timespecsub(rqt, t, t);
    339      1.141      yamt 		if (t->tv_sec < 0)
    340      1.141      yamt 			timespecclear(t);
    341      1.141      yamt 		if (error == 0) {
    342      1.141      yamt 			timo = tstohz(t);
    343      1.141      yamt 			if (timo > 0)
    344      1.141      yamt 				goto again;
    345      1.141      yamt 		}
    346      1.141      yamt 	}
    347      1.104    kardel 
    348      1.101    kardel 	if (error == ERESTART)
    349      1.101    kardel 		error = EINTR;
    350      1.101    kardel 	if (error == EWOULDBLOCK)
    351      1.101    kardel 		error = 0;
    352      1.101    kardel 
    353      1.101    kardel 	return error;
    354       1.27       jtc }
    355       1.22       jtc 
    356        1.1       cgd /* ARGSUSED */
    357        1.3    andrew int
    358      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    359      1.140      yamt     register_t *retval)
    360       1.15   thorpej {
    361      1.135       dsl 	/* {
    362       1.11       cgd 		syscallarg(struct timeval *) tp;
    363      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    364      1.135       dsl 	} */
    365        1.1       cgd 	struct timeval atv;
    366        1.1       cgd 	int error = 0;
    367       1.25     perry 	struct timezone tzfake;
    368        1.1       cgd 
    369       1.11       cgd 	if (SCARG(uap, tp)) {
    370        1.1       cgd 		microtime(&atv);
    371       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    372       1.17  christos 		if (error)
    373        1.1       cgd 			return (error);
    374        1.1       cgd 	}
    375       1.25     perry 	if (SCARG(uap, tzp)) {
    376       1.25     perry 		/*
    377       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    378       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    379       1.25     perry 		 */
    380       1.25     perry 		tzfake.tz_minuteswest = 0;
    381       1.25     perry 		tzfake.tz_dsttime = 0;
    382       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    383       1.25     perry 	}
    384        1.1       cgd 	return (error);
    385        1.1       cgd }
    386        1.1       cgd 
    387        1.1       cgd /* ARGSUSED */
    388        1.3    andrew int
    389      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    390      1.140      yamt     register_t *retval)
    391       1.15   thorpej {
    392      1.135       dsl 	/* {
    393       1.24       cgd 		syscallarg(const struct timeval *) tv;
    394      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    395      1.135       dsl 	} */
    396       1.60      manu 
    397      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    398       1.60      manu }
    399       1.60      manu 
    400       1.60      manu int
    401      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    402      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    403       1.60      manu {
    404       1.22       jtc 	struct timeval atv;
    405       1.98  christos 	struct timespec ts;
    406       1.22       jtc 	int error;
    407        1.1       cgd 
    408        1.8       cgd 	/* Verify all parameters before changing time. */
    409      1.119       dsl 
    410       1.25     perry 	/*
    411       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    412       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    413       1.25     perry 	 */
    414       1.98  christos 	if (utzp)
    415       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    416      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    417       1.98  christos 
    418       1.98  christos 	if (utv == NULL)
    419       1.98  christos 		return 0;
    420       1.98  christos 
    421      1.119       dsl 	if (userspace) {
    422      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    423      1.119       dsl 			return error;
    424      1.119       dsl 		utv = &atv;
    425      1.119       dsl 	}
    426      1.119       dsl 
    427      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    428      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    429        1.1       cgd }
    430        1.1       cgd 
    431       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    432        1.1       cgd 
    433        1.1       cgd /* ARGSUSED */
    434        1.3    andrew int
    435      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    436      1.140      yamt     register_t *retval)
    437       1.15   thorpej {
    438      1.135       dsl 	/* {
    439       1.24       cgd 		syscallarg(const struct timeval *) delta;
    440       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    441      1.135       dsl 	} */
    442      1.156  christos 	int error = 0;
    443      1.156  christos 	struct timeval atv, oldatv;
    444        1.1       cgd 
    445      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    446      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    447      1.156  christos 		return error;
    448       1.17  christos 
    449      1.156  christos 	if (SCARG(uap, delta)) {
    450      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    451      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    452      1.156  christos 		if (error)
    453      1.156  christos 			return (error);
    454      1.156  christos 	}
    455      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    456      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    457      1.156  christos 	if (SCARG(uap, olddelta))
    458      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    459      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    460      1.156  christos 	return error;
    461       1.56      manu }
    462       1.56      manu 
    463      1.156  christos void
    464      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    465       1.56      manu {
    466      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    467      1.101    kardel 
    468      1.101    kardel 	if (olddelta) {
    469      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    470      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    471      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    472      1.156  christos 		if (olddelta->tv_usec < 0) {
    473      1.156  christos 			olddelta->tv_usec += 1000000;
    474      1.156  christos 			olddelta->tv_sec--;
    475      1.101    kardel 		}
    476      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    477      1.101    kardel 	}
    478      1.101    kardel 
    479      1.101    kardel 	if (delta) {
    480      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    481      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    482      1.101    kardel 
    483      1.143        ad 		if (time_adjtime) {
    484      1.101    kardel 			/* We need to save the system time during shutdown */
    485      1.101    kardel 			time_adjusted |= 1;
    486      1.143        ad 		}
    487      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    488      1.101    kardel 	}
    489        1.1       cgd }
    490        1.1       cgd 
    491        1.1       cgd /*
    492       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    493       1.63   thorpej  * timer_*() family of routines are supported.
    494        1.1       cgd  *
    495       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    496       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    497       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    498       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    499       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    500       1.63   thorpej  * syscall.
    501        1.1       cgd  *
    502       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    503       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    504        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    505       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    506       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    507       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    508       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    509       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    510       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    511       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    512       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    513       1.63   thorpej 
    514       1.63   thorpej /* Allocate a POSIX realtime timer. */
    515       1.63   thorpej int
    516      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    517      1.140      yamt     register_t *retval)
    518       1.63   thorpej {
    519      1.135       dsl 	/* {
    520       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    521       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    522       1.63   thorpej 		syscallarg(timer_t *) timerid;
    523      1.135       dsl 	} */
    524       1.92      cube 
    525       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    526      1.105        ad 	    SCARG(uap, evp), copyin, l);
    527       1.92      cube }
    528       1.92      cube 
    529       1.92      cube int
    530       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    531      1.105        ad     copyin_t fetch_event, struct lwp *l)
    532       1.92      cube {
    533       1.92      cube 	int error;
    534       1.92      cube 	timer_t timerid;
    535      1.142        ad 	struct ptimers *pts;
    536       1.63   thorpej 	struct ptimer *pt;
    537      1.105        ad 	struct proc *p;
    538      1.105        ad 
    539      1.105        ad 	p = l->l_proc;
    540       1.63   thorpej 
    541      1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    542       1.63   thorpej 		return (EINVAL);
    543       1.63   thorpej 
    544      1.142        ad 	if ((pts = p->p_timers) == NULL)
    545      1.142        ad 		pts = timers_alloc(p);
    546       1.63   thorpej 
    547       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    548      1.142        ad 	if (evp != NULL) {
    549       1.63   thorpej 		if (((error =
    550       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    551       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    553      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    554      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    555      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    556       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    557       1.63   thorpej 			return (error ? error : EINVAL);
    558       1.63   thorpej 		}
    559      1.142        ad 	}
    560      1.142        ad 
    561      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    562      1.142        ad 	mutex_spin_enter(&timer_lock);
    563      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    564      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    565      1.142        ad 			break;
    566      1.142        ad 	if (timerid == TIMER_MAX) {
    567      1.142        ad 		mutex_spin_exit(&timer_lock);
    568      1.142        ad 		pool_put(&ptimer_pool, pt);
    569      1.142        ad 		return EAGAIN;
    570      1.142        ad 	}
    571      1.142        ad 	if (evp == NULL) {
    572       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    573       1.63   thorpej 		switch (id) {
    574       1.63   thorpej 		case CLOCK_REALTIME:
    575       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    576       1.63   thorpej 			break;
    577       1.63   thorpej 		case CLOCK_VIRTUAL:
    578       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    579       1.63   thorpej 			break;
    580       1.63   thorpej 		case CLOCK_PROF:
    581       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    582       1.63   thorpej 			break;
    583       1.63   thorpej 		}
    584       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    585       1.63   thorpej 	}
    586       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    587       1.73  christos 	pt->pt_info.ksi_errno = 0;
    588       1.73  christos 	pt->pt_info.ksi_code = 0;
    589       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    590      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    591      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    592       1.63   thorpej 	pt->pt_type = id;
    593       1.63   thorpej 	pt->pt_proc = p;
    594       1.63   thorpej 	pt->pt_overruns = 0;
    595       1.63   thorpej 	pt->pt_poverruns = 0;
    596       1.64   nathanw 	pt->pt_entry = timerid;
    597      1.142        ad 	pt->pt_queued = false;
    598      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    599      1.149  christos 	if (id == CLOCK_REALTIME)
    600      1.149  christos 		callout_init(&pt->pt_ch, 0);
    601      1.149  christos 	else
    602      1.149  christos 		pt->pt_active = 0;
    603      1.149  christos 
    604      1.142        ad 	pts->pts_timers[timerid] = pt;
    605      1.142        ad 	mutex_spin_exit(&timer_lock);
    606       1.63   thorpej 
    607       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    608       1.63   thorpej }
    609       1.63   thorpej 
    610       1.63   thorpej /* Delete a POSIX realtime timer */
    611        1.3    andrew int
    612      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    613      1.140      yamt     register_t *retval)
    614       1.15   thorpej {
    615      1.135       dsl 	/* {
    616       1.63   thorpej 		syscallarg(timer_t) timerid;
    617      1.135       dsl 	} */
    618       1.63   thorpej 	struct proc *p = l->l_proc;
    619       1.65  jdolecek 	timer_t timerid;
    620      1.142        ad 	struct ptimers *pts;
    621       1.63   thorpej 	struct ptimer *pt, *ptn;
    622        1.1       cgd 
    623       1.63   thorpej 	timerid = SCARG(uap, timerid);
    624      1.142        ad 	pts = p->p_timers;
    625      1.142        ad 
    626      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    627      1.142        ad 		return (EINVAL);
    628       1.63   thorpej 
    629      1.142        ad 	mutex_spin_enter(&timer_lock);
    630      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    631      1.142        ad 		mutex_spin_exit(&timer_lock);
    632        1.1       cgd 		return (EINVAL);
    633      1.142        ad 	}
    634      1.149  christos 	if (pt->pt_type != CLOCK_REALTIME) {
    635      1.149  christos 		if (pt->pt_active) {
    636      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    637      1.149  christos 			LIST_REMOVE(pt, pt_list);
    638      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    639      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    640      1.149  christos 				    &ptn->pt_time.it_value,
    641      1.149  christos 				    &ptn->pt_time.it_value);
    642      1.149  christos 			pt->pt_active = 0;
    643      1.149  christos 		}
    644       1.63   thorpej 	}
    645      1.142        ad 	itimerfree(pts, timerid);
    646       1.63   thorpej 
    647       1.63   thorpej 	return (0);
    648       1.63   thorpej }
    649       1.63   thorpej 
    650       1.63   thorpej /*
    651       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    652       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    653       1.67   nathanw  * time for virtual timers.
    654       1.63   thorpej  * Must be called at splclock().
    655       1.63   thorpej  */
    656       1.63   thorpej void
    657       1.63   thorpej timer_settime(struct ptimer *pt)
    658       1.63   thorpej {
    659       1.63   thorpej 	struct ptimer *ptn, *pptn;
    660       1.63   thorpej 	struct ptlist *ptl;
    661       1.63   thorpej 
    662      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    663      1.142        ad 
    664       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    665       1.63   thorpej 		callout_stop(&pt->pt_ch);
    666      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    667       1.63   thorpej 			/*
    668      1.150  christos 			 * Don't need to check tshzto() return value, here.
    669       1.63   thorpej 			 * callout_reset() does it for us.
    670       1.63   thorpej 			 */
    671      1.150  christos 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    672       1.63   thorpej 			    realtimerexpire, pt);
    673       1.63   thorpej 		}
    674       1.63   thorpej 	} else {
    675       1.63   thorpej 		if (pt->pt_active) {
    676       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    677       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    678       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    679      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    680       1.63   thorpej 				    &ptn->pt_time.it_value,
    681       1.63   thorpej 				    &ptn->pt_time.it_value);
    682       1.63   thorpej 		}
    683      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    684       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    685       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    686       1.63   thorpej 			else
    687       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    688       1.63   thorpej 
    689       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    690      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    691       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    692       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    693      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    694       1.63   thorpej 				    &ptn->pt_time.it_value,
    695       1.63   thorpej 				    &pt->pt_time.it_value);
    696       1.63   thorpej 
    697       1.63   thorpej 			if (pptn)
    698       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    699       1.63   thorpej 			else
    700       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    701       1.63   thorpej 
    702       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    703      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    704       1.63   thorpej 				    &pt->pt_time.it_value,
    705       1.63   thorpej 				    &ptn->pt_time.it_value);
    706       1.63   thorpej 
    707       1.63   thorpej 			pt->pt_active = 1;
    708       1.63   thorpej 		} else
    709       1.63   thorpej 			pt->pt_active = 0;
    710       1.63   thorpej 	}
    711       1.63   thorpej }
    712       1.63   thorpej 
    713       1.63   thorpej void
    714      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    715       1.63   thorpej {
    716      1.150  christos 	struct timespec now;
    717       1.63   thorpej 	struct ptimer *ptn;
    718       1.63   thorpej 
    719      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    720      1.142        ad 
    721      1.150  christos 	*aits = pt->pt_time;
    722       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    723        1.1       cgd 		/*
    724       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    725       1.63   thorpej 		 * part of real time timer.  If time for real time
    726       1.63   thorpej 		 * timer has passed return 0, else return difference
    727       1.63   thorpej 		 * between current time and time for the timer to go
    728       1.63   thorpej 		 * off.
    729        1.1       cgd 		 */
    730      1.150  christos 		if (timespecisset(&aits->it_value)) {
    731      1.150  christos 			getnanotime(&now);
    732      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    733      1.150  christos 				timespecclear(&aits->it_value);
    734      1.101    kardel 			else
    735      1.150  christos 				timespecsub(&aits->it_value, &now,
    736      1.150  christos 				    &aits->it_value);
    737       1.36   thorpej 		}
    738       1.63   thorpej 	} else if (pt->pt_active) {
    739       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    740       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    741       1.63   thorpej 		else
    742       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    743       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    744      1.150  christos 			timespecadd(&aits->it_value,
    745      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    746       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    747        1.1       cgd 	} else
    748      1.150  christos 		timespecclear(&aits->it_value);
    749       1.63   thorpej }
    750       1.63   thorpej 
    751       1.63   thorpej 
    752       1.63   thorpej 
    753       1.63   thorpej /* Set and arm a POSIX realtime timer */
    754       1.63   thorpej int
    755      1.156  christos sys___timer_settime50(struct lwp *l,
    756      1.156  christos     const struct sys___timer_settime50_args *uap,
    757      1.140      yamt     register_t *retval)
    758       1.63   thorpej {
    759      1.135       dsl 	/* {
    760       1.63   thorpej 		syscallarg(timer_t) timerid;
    761       1.63   thorpej 		syscallarg(int) flags;
    762       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    763       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    764      1.135       dsl 	} */
    765       1.92      cube 	int error;
    766       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    767       1.92      cube 
    768       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    769       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    770       1.92      cube 		return (error);
    771       1.92      cube 
    772       1.92      cube 	if (SCARG(uap, ovalue))
    773       1.92      cube 		ovp = &ovalue;
    774       1.92      cube 
    775       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    776       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    777       1.92      cube 		return error;
    778       1.92      cube 
    779       1.92      cube 	if (ovp)
    780       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    781       1.92      cube 		    sizeof(struct itimerspec));
    782       1.92      cube 	return 0;
    783       1.92      cube }
    784       1.92      cube 
    785       1.92      cube int
    786       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    787       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    788       1.92      cube {
    789      1.150  christos 	struct timespec now;
    790      1.150  christos 	struct itimerspec val, oval;
    791      1.142        ad 	struct ptimers *pts;
    792       1.63   thorpej 	struct ptimer *pt;
    793      1.160  christos 	int error;
    794       1.63   thorpej 
    795      1.142        ad 	pts = p->p_timers;
    796       1.63   thorpej 
    797      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    798      1.142        ad 		return EINVAL;
    799      1.150  christos 	val = *value;
    800      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    801      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    802      1.160  christos 		return error;
    803       1.63   thorpej 
    804      1.142        ad 	mutex_spin_enter(&timer_lock);
    805      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    806      1.142        ad 		mutex_spin_exit(&timer_lock);
    807      1.150  christos 		return EINVAL;
    808      1.142        ad 	}
    809      1.142        ad 
    810       1.63   thorpej 	oval = pt->pt_time;
    811       1.63   thorpej 	pt->pt_time = val;
    812       1.63   thorpej 
    813       1.67   nathanw 	/*
    814       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    815       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    816       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    817       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    818       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    819       1.67   nathanw 	 */
    820      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    821       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    822      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    823      1.150  christos 				getnanotime(&now);
    824      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    825      1.101    kardel 				    &pt->pt_time.it_value);
    826      1.101    kardel 			}
    827       1.67   nathanw 		} else {
    828       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    829      1.150  christos 				getnanotime(&now);
    830      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    831      1.101    kardel 				    &pt->pt_time.it_value);
    832      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    833       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    834       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    835      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    836       1.67   nathanw 				}
    837       1.67   nathanw 			}
    838       1.67   nathanw 		}
    839       1.67   nathanw 	}
    840       1.67   nathanw 
    841       1.63   thorpej 	timer_settime(pt);
    842      1.142        ad 	mutex_spin_exit(&timer_lock);
    843       1.63   thorpej 
    844      1.150  christos 	if (ovalue)
    845      1.150  christos 		*ovalue = oval;
    846       1.63   thorpej 
    847       1.63   thorpej 	return (0);
    848       1.63   thorpej }
    849       1.63   thorpej 
    850       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    851       1.63   thorpej int
    852      1.156  christos sys___timer_gettime50(struct lwp *l,
    853      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    854       1.63   thorpej {
    855      1.135       dsl 	/* {
    856       1.63   thorpej 		syscallarg(timer_t) timerid;
    857       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    858      1.135       dsl 	} */
    859       1.63   thorpej 	struct itimerspec its;
    860       1.92      cube 	int error;
    861       1.92      cube 
    862       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    863       1.92      cube 	    &its)) != 0)
    864       1.92      cube 		return error;
    865       1.92      cube 
    866       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    867       1.92      cube }
    868       1.92      cube 
    869       1.92      cube int
    870       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    871       1.92      cube {
    872       1.63   thorpej 	struct ptimer *pt;
    873      1.142        ad 	struct ptimers *pts;
    874       1.63   thorpej 
    875      1.142        ad 	pts = p->p_timers;
    876      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    877       1.63   thorpej 		return (EINVAL);
    878      1.142        ad 	mutex_spin_enter(&timer_lock);
    879      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    880      1.142        ad 		mutex_spin_exit(&timer_lock);
    881      1.142        ad 		return (EINVAL);
    882      1.142        ad 	}
    883      1.150  christos 	timer_gettime(pt, its);
    884      1.142        ad 	mutex_spin_exit(&timer_lock);
    885       1.63   thorpej 
    886       1.92      cube 	return 0;
    887       1.63   thorpej }
    888       1.63   thorpej 
    889       1.63   thorpej /*
    890       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    891       1.63   thorpej  * while a notification was already pending. The counter is reset when
    892       1.63   thorpej  * a timer expires and a notification can be posted.
    893       1.63   thorpej  */
    894       1.63   thorpej int
    895      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    896      1.140      yamt     register_t *retval)
    897       1.63   thorpej {
    898      1.135       dsl 	/* {
    899       1.63   thorpej 		syscallarg(timer_t) timerid;
    900      1.135       dsl 	} */
    901       1.63   thorpej 	struct proc *p = l->l_proc;
    902      1.142        ad 	struct ptimers *pts;
    903       1.63   thorpej 	int timerid;
    904       1.63   thorpej 	struct ptimer *pt;
    905       1.63   thorpej 
    906       1.63   thorpej 	timerid = SCARG(uap, timerid);
    907       1.63   thorpej 
    908      1.142        ad 	pts = p->p_timers;
    909      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    910      1.142        ad 		return (EINVAL);
    911      1.142        ad 	mutex_spin_enter(&timer_lock);
    912      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    913      1.142        ad 		mutex_spin_exit(&timer_lock);
    914       1.63   thorpej 		return (EINVAL);
    915      1.142        ad 	}
    916       1.63   thorpej 	*retval = pt->pt_poverruns;
    917      1.142        ad 	mutex_spin_exit(&timer_lock);
    918       1.63   thorpej 
    919       1.63   thorpej 	return (0);
    920       1.63   thorpej }
    921       1.63   thorpej 
    922      1.154  wrstuden #ifdef KERN_SA
    923      1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    924      1.154  wrstuden void
    925      1.154  wrstuden timerupcall(struct lwp *l)
    926      1.154  wrstuden {
    927      1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    928      1.154  wrstuden 	struct proc *p = l->l_proc;
    929      1.154  wrstuden 	unsigned int i, fired, done;
    930      1.154  wrstuden 
    931      1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    932      1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    933      1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    934      1.154  wrstuden 		return ;
    935      1.154  wrstuden 
    936      1.154  wrstuden 	mutex_enter(p->p_lock);
    937      1.154  wrstuden 
    938      1.154  wrstuden 	fired = pt->pts_fired;
    939      1.154  wrstuden 	done = 0;
    940      1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    941      1.154  wrstuden 		siginfo_t *si;
    942      1.154  wrstuden 		int mask = 1 << --i;
    943      1.154  wrstuden 		int f;
    944      1.154  wrstuden 
    945      1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    946      1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    947      1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    948      1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    949      1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    950      1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    951      1.154  wrstuden 			siginfo_free(si);
    952      1.154  wrstuden 			/* XXX What do we do here?? */
    953      1.154  wrstuden 		} else
    954      1.154  wrstuden 			done |= mask;
    955      1.154  wrstuden 		fired &= ~mask;
    956      1.154  wrstuden 		l->l_pflag ^= f;
    957      1.154  wrstuden 	}
    958      1.154  wrstuden 	pt->pts_fired &= ~done;
    959      1.154  wrstuden 	if (pt->pts_fired == 0)
    960      1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    961      1.154  wrstuden 
    962      1.154  wrstuden 	mutex_exit(p->p_lock);
    963      1.154  wrstuden }
    964      1.154  wrstuden #endif /* KERN_SA */
    965      1.154  wrstuden 
    966       1.63   thorpej /*
    967       1.63   thorpej  * Real interval timer expired:
    968       1.63   thorpej  * send process whose timer expired an alarm signal.
    969       1.63   thorpej  * If time is not set up to reload, then just return.
    970       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    971       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    972       1.63   thorpej  * SIGALRM calls to be compressed into one.
    973       1.63   thorpej  */
    974       1.63   thorpej void
    975       1.63   thorpej realtimerexpire(void *arg)
    976       1.63   thorpej {
    977      1.148     joerg 	uint64_t last_val, next_val, interval, now_ms;
    978      1.150  christos 	struct timespec now, next;
    979       1.63   thorpej 	struct ptimer *pt;
    980      1.148     joerg 	int backwards;
    981       1.63   thorpej 
    982      1.142        ad 	pt = arg;
    983       1.63   thorpej 
    984      1.142        ad 	mutex_spin_enter(&timer_lock);
    985       1.63   thorpej 	itimerfire(pt);
    986       1.63   thorpej 
    987      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    988      1.150  christos 		timespecclear(&pt->pt_time.it_value);
    989      1.142        ad 		mutex_spin_exit(&timer_lock);
    990       1.63   thorpej 		return;
    991       1.63   thorpej 	}
    992      1.148     joerg 
    993      1.150  christos 	getnanotime(&now);
    994      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    995      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    996      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    997      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    998      1.148     joerg 		pt->pt_time.it_value = next;
    999      1.148     joerg 	} else {
   1000      1.150  christos 		now_ms = timespec2ns(&now);
   1001      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1002      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1003      1.148     joerg 
   1004      1.148     joerg 		next_val = now_ms +
   1005      1.148     joerg 		    (now_ms - last_val + interval - 1) % interval;
   1006      1.148     joerg 
   1007      1.148     joerg 		if (backwards)
   1008      1.148     joerg 			next_val += interval;
   1009      1.148     joerg 		else
   1010      1.148     joerg 			pt->pt_overruns += (now_ms - last_val) / interval;
   1011      1.148     joerg 
   1012      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1013      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1014      1.101    kardel 	}
   1015      1.148     joerg 
   1016      1.148     joerg 	/*
   1017      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1018      1.148     joerg 	 * callout_reset() does it for us.
   1019      1.148     joerg 	 */
   1020      1.150  christos 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1021      1.148     joerg 	    realtimerexpire, pt);
   1022      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1023       1.63   thorpej }
   1024       1.63   thorpej 
   1025       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1026       1.63   thorpej /* ARGSUSED */
   1027       1.63   thorpej int
   1028      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1029      1.140      yamt     register_t *retval)
   1030       1.63   thorpej {
   1031      1.135       dsl 	/* {
   1032       1.63   thorpej 		syscallarg(int) which;
   1033       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1034      1.135       dsl 	} */
   1035       1.63   thorpej 	struct proc *p = l->l_proc;
   1036       1.63   thorpej 	struct itimerval aitv;
   1037       1.91      cube 	int error;
   1038       1.91      cube 
   1039       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1040       1.91      cube 	if (error)
   1041       1.91      cube 		return error;
   1042       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1043       1.91      cube }
   1044       1.63   thorpej 
   1045       1.91      cube int
   1046       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1047       1.91      cube {
   1048      1.142        ad 	struct ptimers *pts;
   1049      1.142        ad 	struct ptimer *pt;
   1050      1.150  christos 	struct itimerspec its;
   1051       1.63   thorpej 
   1052       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1053       1.63   thorpej 		return (EINVAL);
   1054       1.63   thorpej 
   1055      1.142        ad 	mutex_spin_enter(&timer_lock);
   1056      1.142        ad 	pts = p->p_timers;
   1057      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1058       1.91      cube 		timerclear(&itvp->it_value);
   1059       1.91      cube 		timerclear(&itvp->it_interval);
   1060      1.150  christos 	} else {
   1061      1.150  christos 		timer_gettime(pt, &its);
   1062      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1063      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1064      1.150  christos 	}
   1065      1.142        ad 	mutex_spin_exit(&timer_lock);
   1066       1.63   thorpej 
   1067       1.91      cube 	return 0;
   1068        1.1       cgd }
   1069        1.1       cgd 
   1070       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1071        1.1       cgd /* ARGSUSED */
   1072        1.3    andrew int
   1073      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1074      1.140      yamt     register_t *retval)
   1075       1.15   thorpej {
   1076      1.135       dsl 	/* {
   1077       1.30   mycroft 		syscallarg(int) which;
   1078       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1079       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1080      1.135       dsl 	} */
   1081       1.63   thorpej 	struct proc *p = l->l_proc;
   1082       1.30   mycroft 	int which = SCARG(uap, which);
   1083      1.156  christos 	struct sys___getitimer50_args getargs;
   1084       1.91      cube 	const struct itimerval *itvp;
   1085        1.1       cgd 	struct itimerval aitv;
   1086       1.91      cube 	int error;
   1087        1.1       cgd 
   1088       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1089        1.1       cgd 		return (EINVAL);
   1090       1.11       cgd 	itvp = SCARG(uap, itv);
   1091       1.63   thorpej 	if (itvp &&
   1092       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1093        1.1       cgd 		return (error);
   1094       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1095       1.30   mycroft 		SCARG(&getargs, which) = which;
   1096       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1097      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1098       1.21       cgd 			return (error);
   1099       1.21       cgd 	}
   1100        1.1       cgd 	if (itvp == 0)
   1101        1.1       cgd 		return (0);
   1102       1.91      cube 
   1103       1.91      cube 	return dosetitimer(p, which, &aitv);
   1104       1.91      cube }
   1105       1.91      cube 
   1106       1.91      cube int
   1107       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1108       1.91      cube {
   1109      1.150  christos 	struct timespec now;
   1110      1.142        ad 	struct ptimers *pts;
   1111      1.142        ad 	struct ptimer *pt, *spare;
   1112       1.91      cube 
   1113       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1114        1.1       cgd 		return (EINVAL);
   1115       1.63   thorpej 
   1116       1.63   thorpej 	/*
   1117       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1118       1.63   thorpej 	 * wants to clear the timer.
   1119       1.63   thorpej 	 */
   1120      1.142        ad 	spare = NULL;
   1121      1.142        ad 	pts = p->p_timers;
   1122      1.142        ad  retry:
   1123      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1124      1.142        ad 	    pts->pts_timers[which] == NULL))
   1125       1.63   thorpej 		return (0);
   1126      1.142        ad 	if (pts == NULL)
   1127      1.142        ad 		pts = timers_alloc(p);
   1128      1.142        ad 	mutex_spin_enter(&timer_lock);
   1129      1.142        ad 	pt = pts->pts_timers[which];
   1130      1.142        ad 	if (pt == NULL) {
   1131      1.142        ad 		if (spare == NULL) {
   1132      1.142        ad 			mutex_spin_exit(&timer_lock);
   1133      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1134      1.142        ad 			goto retry;
   1135      1.142        ad 		}
   1136      1.142        ad 		pt = spare;
   1137      1.142        ad 		spare = NULL;
   1138       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1139       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1140       1.63   thorpej 		pt->pt_overruns = 0;
   1141       1.63   thorpej 		pt->pt_proc = p;
   1142       1.63   thorpej 		pt->pt_type = which;
   1143       1.64   nathanw 		pt->pt_entry = which;
   1144      1.142        ad 		pt->pt_queued = false;
   1145      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1146      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1147      1.149  christos 		else
   1148      1.149  christos 			pt->pt_active = 0;
   1149      1.149  christos 
   1150       1.63   thorpej 		switch (which) {
   1151       1.63   thorpej 		case ITIMER_REAL:
   1152       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1153       1.63   thorpej 			break;
   1154       1.63   thorpej 		case ITIMER_VIRTUAL:
   1155       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1156       1.63   thorpej 			break;
   1157       1.63   thorpej 		case ITIMER_PROF:
   1158       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1159       1.63   thorpej 			break;
   1160        1.1       cgd 		}
   1161      1.142        ad 		pts->pts_timers[which] = pt;
   1162      1.142        ad 	}
   1163       1.63   thorpej 
   1164      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1165      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1166      1.150  christos 
   1167      1.150  christos 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1168       1.67   nathanw 		/* Convert to absolute time */
   1169      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1170      1.150  christos 		getnanotime(&now);
   1171      1.150  christos 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1172       1.67   nathanw 	}
   1173       1.63   thorpej 	timer_settime(pt);
   1174      1.142        ad 	mutex_spin_exit(&timer_lock);
   1175      1.142        ad 	if (spare != NULL)
   1176      1.142        ad 		pool_put(&ptimer_pool, spare);
   1177       1.63   thorpej 
   1178        1.1       cgd 	return (0);
   1179        1.1       cgd }
   1180        1.1       cgd 
   1181       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1182      1.142        ad struct ptimers *
   1183       1.63   thorpej timers_alloc(struct proc *p)
   1184       1.63   thorpej {
   1185      1.142        ad 	struct ptimers *pts;
   1186       1.63   thorpej 	int i;
   1187       1.63   thorpej 
   1188      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1189       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1190       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1191       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1192       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1193       1.64   nathanw 	pts->pts_fired = 0;
   1194      1.142        ad 	mutex_spin_enter(&timer_lock);
   1195      1.142        ad 	if (p->p_timers == NULL) {
   1196      1.142        ad 		p->p_timers = pts;
   1197      1.142        ad 		mutex_spin_exit(&timer_lock);
   1198      1.142        ad 		return pts;
   1199      1.142        ad 	}
   1200      1.142        ad 	mutex_spin_exit(&timer_lock);
   1201      1.142        ad 	pool_put(&ptimers_pool, pts);
   1202      1.142        ad 	return p->p_timers;
   1203       1.63   thorpej }
   1204       1.63   thorpej 
   1205        1.1       cgd /*
   1206       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1207       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1208       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1209       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1210       1.63   thorpej  * structure if none of those remain.
   1211        1.1       cgd  */
   1212        1.3    andrew void
   1213       1.63   thorpej timers_free(struct proc *p, int which)
   1214        1.6       cgd {
   1215       1.63   thorpej 	struct ptimers *pts;
   1216      1.142        ad 	struct ptimer *ptn;
   1217      1.150  christos 	struct timespec ts;
   1218      1.142        ad 	int i;
   1219       1.63   thorpej 
   1220      1.142        ad 	if (p->p_timers == NULL)
   1221      1.142        ad 		return;
   1222       1.63   thorpej 
   1223      1.142        ad 	pts = p->p_timers;
   1224      1.142        ad 	mutex_spin_enter(&timer_lock);
   1225      1.142        ad 	if (which == TIMERS_ALL) {
   1226      1.142        ad 		p->p_timers = NULL;
   1227      1.142        ad 		i = 0;
   1228      1.142        ad 	} else {
   1229      1.150  christos 		timespecclear(&ts);
   1230      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1231      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1232      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1233      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1234      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1235      1.149  christos 		}
   1236      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1237      1.142        ad 		if (ptn) {
   1238      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1239      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1240      1.142        ad 			    &ptn->pt_time.it_value);
   1241      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1242      1.142        ad 		}
   1243      1.150  christos 		timespecclear(&ts);
   1244      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1245      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1246      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1247      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1248      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1249      1.149  christos 		}
   1250      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1251      1.142        ad 		if (ptn) {
   1252      1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1253      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1254      1.142        ad 			    &ptn->pt_time.it_value);
   1255      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1256       1.63   thorpej 		}
   1257      1.142        ad 		i = 3;
   1258      1.142        ad 	}
   1259      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1260      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1261      1.142        ad 			itimerfree(pts, i);
   1262      1.142        ad 			mutex_spin_enter(&timer_lock);
   1263        1.1       cgd 		}
   1264        1.1       cgd 	}
   1265      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1266      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1267      1.142        ad 		p->p_timers = NULL;
   1268      1.142        ad 		mutex_spin_exit(&timer_lock);
   1269      1.142        ad 		pool_put(&ptimers_pool, pts);
   1270      1.142        ad 	} else
   1271      1.142        ad 		mutex_spin_exit(&timer_lock);
   1272      1.142        ad }
   1273      1.142        ad 
   1274      1.142        ad static void
   1275      1.142        ad itimerfree(struct ptimers *pts, int index)
   1276      1.142        ad {
   1277      1.142        ad 	struct ptimer *pt;
   1278      1.142        ad 
   1279      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1280      1.142        ad 
   1281      1.142        ad 	pt = pts->pts_timers[index];
   1282      1.142        ad 	pts->pts_timers[index] = NULL;
   1283      1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1284      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1285      1.144        ad 	else if (pt->pt_queued)
   1286      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1287      1.144        ad 	mutex_spin_exit(&timer_lock);
   1288      1.149  christos 	if (pt->pt_type == CLOCK_REALTIME)
   1289      1.149  christos 		callout_destroy(&pt->pt_ch);
   1290      1.142        ad 	pool_put(&ptimer_pool, pt);
   1291        1.1       cgd }
   1292        1.1       cgd 
   1293        1.1       cgd /*
   1294        1.1       cgd  * Decrement an interval timer by a specified number
   1295      1.152  christos  * of nanoseconds, which must be less than a second,
   1296      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1297      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1298        1.8       cgd  * reduce the value reloaded into the timer so that
   1299        1.1       cgd  * the timer does not drift.  This routine assumes
   1300        1.1       cgd  * that it is called in a context where the timers
   1301        1.1       cgd  * on which it is operating cannot change in value.
   1302        1.1       cgd  */
   1303      1.142        ad static int
   1304      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1305       1.63   thorpej {
   1306      1.150  christos 	struct itimerspec *itp;
   1307        1.1       cgd 
   1308      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1309      1.142        ad 
   1310       1.63   thorpej 	itp = &pt->pt_time;
   1311      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1312        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1313        1.1       cgd 			/* expired, and already in next interval */
   1314      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1315        1.1       cgd 			goto expire;
   1316        1.1       cgd 		}
   1317      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1318        1.1       cgd 		itp->it_value.tv_sec--;
   1319        1.1       cgd 	}
   1320      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1321      1.152  christos 	nsec = 0;
   1322      1.150  christos 	if (timespecisset(&itp->it_value))
   1323        1.1       cgd 		return (1);
   1324        1.1       cgd 	/* expired, exactly at end of interval */
   1325        1.1       cgd expire:
   1326      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1327        1.1       cgd 		itp->it_value = itp->it_interval;
   1328      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1329      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1330      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1331        1.1       cgd 			itp->it_value.tv_sec--;
   1332        1.1       cgd 		}
   1333       1.63   thorpej 		timer_settime(pt);
   1334        1.1       cgd 	} else
   1335      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1336        1.1       cgd 	return (0);
   1337       1.42       cgd }
   1338       1.42       cgd 
   1339      1.142        ad static void
   1340       1.63   thorpej itimerfire(struct ptimer *pt)
   1341       1.63   thorpej {
   1342       1.78        cl 
   1343      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1344      1.142        ad 
   1345      1.142        ad 	/*
   1346      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1347      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1348      1.142        ad 	 */
   1349      1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1350      1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1351      1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1352      1.142        ad 		return;
   1353      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1354      1.142        ad 	pt->pt_queued = true;
   1355      1.142        ad 	softint_schedule(timer_sih);
   1356      1.142        ad }
   1357      1.142        ad 
   1358      1.142        ad void
   1359      1.142        ad timer_tick(lwp_t *l, bool user)
   1360      1.142        ad {
   1361      1.142        ad 	struct ptimers *pts;
   1362      1.142        ad 	struct ptimer *pt;
   1363      1.142        ad 	proc_t *p;
   1364      1.142        ad 
   1365      1.142        ad 	p = l->l_proc;
   1366      1.142        ad 	if (p->p_timers == NULL)
   1367      1.142        ad 		return;
   1368      1.142        ad 
   1369      1.142        ad 	mutex_spin_enter(&timer_lock);
   1370      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1371       1.63   thorpej 		/*
   1372      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1373       1.63   thorpej 		 */
   1374      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1375      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1376      1.142        ad 				itimerfire(pt);
   1377      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1378      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1379      1.142        ad 				itimerfire(pt);
   1380      1.142        ad 	}
   1381      1.142        ad 	mutex_spin_exit(&timer_lock);
   1382      1.142        ad }
   1383      1.142        ad 
   1384      1.154  wrstuden #ifdef KERN_SA
   1385      1.154  wrstuden /*
   1386      1.154  wrstuden  * timer_sa_intr:
   1387      1.154  wrstuden  *
   1388      1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1389      1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1390      1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1391      1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1392      1.154  wrstuden  */
   1393      1.154  wrstuden static void
   1394      1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1395      1.154  wrstuden {
   1396      1.155  wrstuden 	unsigned int		i;
   1397      1.155  wrstuden 	struct sadata		*sa;
   1398      1.155  wrstuden 	struct sadata_vp	*vp;
   1399      1.154  wrstuden 
   1400      1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1401      1.154  wrstuden 	if (!p->p_timerpend) {
   1402      1.154  wrstuden 		/*
   1403      1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1404      1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1405      1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1406      1.154  wrstuden 		 * determine if we really should call setrunnable.
   1407      1.154  wrstuden 		 */
   1408      1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1409      1.154  wrstuden 		pt->pt_overruns = 0;
   1410      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1411      1.154  wrstuden 		p->p_timers->pts_fired = i;
   1412      1.154  wrstuden 		p->p_timerpend = 1;
   1413      1.154  wrstuden 
   1414      1.155  wrstuden 		sa = p->p_sa;
   1415      1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1416      1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1417      1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1418      1.155  wrstuden 			lwp_lock(vp_lwp);
   1419      1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1420      1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1421      1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1422      1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1423      1.154  wrstuden 				break;
   1424      1.154  wrstuden 			}
   1425      1.155  wrstuden 			lwp_unlock(vp_lwp);
   1426      1.154  wrstuden 		}
   1427      1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1428      1.154  wrstuden 	} else {
   1429      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1430      1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1431      1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1432      1.154  wrstuden 			pt->pt_overruns = 0;
   1433      1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1434      1.154  wrstuden 		} else
   1435      1.154  wrstuden 			pt->pt_overruns++;
   1436      1.154  wrstuden 	}
   1437      1.154  wrstuden }
   1438      1.154  wrstuden #endif /* KERN_SA */
   1439      1.154  wrstuden 
   1440      1.142        ad static void
   1441      1.142        ad timer_intr(void *cookie)
   1442      1.142        ad {
   1443      1.142        ad 	ksiginfo_t ksi;
   1444      1.142        ad 	struct ptimer *pt;
   1445      1.142        ad 	proc_t *p;
   1446      1.142        ad 
   1447      1.158        ad 	mutex_enter(proc_lock);
   1448      1.142        ad 	mutex_spin_enter(&timer_lock);
   1449      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1450      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1451      1.142        ad 		KASSERT(pt->pt_queued);
   1452      1.142        ad 		pt->pt_queued = false;
   1453      1.142        ad 
   1454      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1455      1.154  wrstuden 			/* Process is dying. */
   1456      1.142        ad 			continue;
   1457      1.154  wrstuden 		}
   1458      1.142        ad 		p = pt->pt_proc;
   1459      1.154  wrstuden #ifdef KERN_SA
   1460      1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1461      1.154  wrstuden 			timer_sa_intr(pt, p);
   1462      1.142        ad 			continue;
   1463      1.142        ad 		}
   1464      1.154  wrstuden #endif /* KERN_SA */
   1465      1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1466      1.154  wrstuden 			continue;
   1467      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1468       1.63   thorpej 			pt->pt_overruns++;
   1469      1.142        ad 			continue;
   1470       1.64   nathanw 		}
   1471      1.142        ad 
   1472      1.142        ad 		KSI_INIT(&ksi);
   1473      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1474      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1475      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1476      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1477      1.142        ad 		pt->pt_overruns = 0;
   1478      1.142        ad 		mutex_spin_exit(&timer_lock);
   1479      1.142        ad 		kpsignal(p, &ksi, NULL);
   1480      1.142        ad 		mutex_spin_enter(&timer_lock);
   1481       1.63   thorpej 	}
   1482      1.142        ad 	mutex_spin_exit(&timer_lock);
   1483      1.158        ad 	mutex_exit(proc_lock);
   1484       1.63   thorpej }
   1485      1.162      elad 
   1486      1.162      elad /*
   1487      1.162      elad  * Check if the time will wrap if set to ts.
   1488      1.162      elad  *
   1489      1.162      elad  * ts - timespec describing the new time
   1490      1.162      elad  * delta - the delta between the current time and ts
   1491      1.162      elad  */
   1492      1.162      elad bool
   1493      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1494      1.162      elad {
   1495      1.162      elad 
   1496      1.162      elad 	/*
   1497      1.162      elad 	 * Don't allow the time to be set forward so far it
   1498      1.162      elad 	 * will wrap and become negative, thus allowing an
   1499      1.162      elad 	 * attacker to bypass the next check below.  The
   1500      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1501      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1502      1.162      elad 	 * past the cutoff, it will take a very long time
   1503      1.162      elad 	 * to get to the wrap point.
   1504      1.162      elad 	 */
   1505      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1506      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1507      1.162      elad 		return true;
   1508      1.162      elad 
   1509      1.162      elad 	return false;
   1510      1.162      elad }
   1511