kern_time.c revision 1.164 1 1.164 njoly /* $NetBSD: kern_time.c,v 1.164 2010/04/03 17:20:05 njoly Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.158 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.158 ad * by Christopher G. Demetriou, and by Andrew Doran.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd *
19 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
30 1.42 cgd */
31 1.9 cgd
32 1.1 cgd /*
33 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.8 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * Redistribution and use in source and binary forms, with or without
37 1.1 cgd * modification, are permitted provided that the following conditions
38 1.1 cgd * are met:
39 1.1 cgd * 1. Redistributions of source code must retain the above copyright
40 1.1 cgd * notice, this list of conditions and the following disclaimer.
41 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer in the
43 1.1 cgd * documentation and/or other materials provided with the distribution.
44 1.72 agc * 3. Neither the name of the University nor the names of its contributors
45 1.1 cgd * may be used to endorse or promote products derived from this software
46 1.1 cgd * without specific prior written permission.
47 1.1 cgd *
48 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 1.1 cgd * SUCH DAMAGE.
59 1.1 cgd *
60 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 1.1 cgd */
62 1.58 lukem
63 1.58 lukem #include <sys/cdefs.h>
64 1.164 njoly __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.164 2010/04/03 17:20:05 njoly Exp $");
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/resourcevar.h>
68 1.5 mycroft #include <sys/kernel.h>
69 1.8 cgd #include <sys/systm.h>
70 1.5 mycroft #include <sys/proc.h>
71 1.8 cgd #include <sys/vnode.h>
72 1.17 christos #include <sys/signalvar.h>
73 1.25 perry #include <sys/syslog.h>
74 1.101 kardel #include <sys/timetc.h>
75 1.143 ad #include <sys/timex.h>
76 1.99 elad #include <sys/kauth.h>
77 1.11 cgd #include <sys/mount.h>
78 1.154 wrstuden #include <sys/sa.h>
79 1.154 wrstuden #include <sys/savar.h>
80 1.11 cgd #include <sys/syscallargs.h>
81 1.143 ad #include <sys/cpu.h>
82 1.19 christos
83 1.37 thorpej #include <uvm/uvm_extern.h>
84 1.37 thorpej
85 1.154 wrstuden #include "opt_sa.h"
86 1.154 wrstuden
87 1.142 ad static void timer_intr(void *);
88 1.142 ad static void itimerfire(struct ptimer *);
89 1.142 ad static void itimerfree(struct ptimers *, int);
90 1.142 ad
91 1.142 ad kmutex_t timer_lock;
92 1.142 ad
93 1.142 ad static void *timer_sih;
94 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
95 1.131 ad
96 1.161 pooka struct pool ptimer_pool, ptimers_pool;
97 1.97 simonb
98 1.131 ad /*
99 1.131 ad * Initialize timekeeping.
100 1.131 ad */
101 1.131 ad void
102 1.131 ad time_init(void)
103 1.131 ad {
104 1.131 ad
105 1.161 pooka pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
106 1.161 pooka &pool_allocator_nointr, IPL_NONE);
107 1.161 pooka pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
108 1.161 pooka &pool_allocator_nointr, IPL_NONE);
109 1.131 ad }
110 1.131 ad
111 1.142 ad void
112 1.142 ad time_init2(void)
113 1.142 ad {
114 1.142 ad
115 1.142 ad TAILQ_INIT(&timer_queue);
116 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 1.142 ad timer_intr, NULL);
119 1.142 ad }
120 1.142 ad
121 1.63 thorpej /* Time of day and interval timer support.
122 1.1 cgd *
123 1.1 cgd * These routines provide the kernel entry points to get and set
124 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
125 1.1 cgd * here provide support for adding and subtracting timeval structures
126 1.1 cgd * and decrementing interval timers, optionally reloading the interval
127 1.1 cgd * timers when they expire.
128 1.1 cgd */
129 1.1 cgd
130 1.22 jtc /* This function is used by clock_settime and settimeofday */
131 1.132 elad static int
132 1.156 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
133 1.22 jtc {
134 1.156 christos struct timespec delta, now;
135 1.129 ad int s;
136 1.22 jtc
137 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
138 1.129 ad s = splclock();
139 1.156 christos nanotime(&now);
140 1.156 christos timespecsub(ts, &now, &delta);
141 1.132 elad
142 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
143 1.156 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
144 1.156 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
145 1.129 ad splx(s);
146 1.29 tls return (EPERM);
147 1.55 tron }
148 1.132 elad
149 1.29 tls #ifdef notyet
150 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
151 1.129 ad splx(s);
152 1.29 tls return (EPERM);
153 1.55 tron }
154 1.29 tls #endif
155 1.103 kardel
156 1.156 christos tc_setclock(ts);
157 1.103 kardel
158 1.156 christos timespecadd(&boottime, &delta, &boottime);
159 1.103 kardel
160 1.22 jtc resettodr();
161 1.129 ad splx(s);
162 1.129 ad
163 1.29 tls return (0);
164 1.22 jtc }
165 1.22 jtc
166 1.132 elad int
167 1.132 elad settime(struct proc *p, struct timespec *ts)
168 1.132 elad {
169 1.132 elad return (settime1(p, ts, true));
170 1.132 elad }
171 1.132 elad
172 1.22 jtc /* ARGSUSED */
173 1.22 jtc int
174 1.156 christos sys___clock_gettime50(struct lwp *l,
175 1.156 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
176 1.22 jtc {
177 1.135 dsl /* {
178 1.22 jtc syscallarg(clockid_t) clock_id;
179 1.23 cgd syscallarg(struct timespec *) tp;
180 1.135 dsl } */
181 1.22 jtc clockid_t clock_id;
182 1.22 jtc struct timespec ats;
183 1.22 jtc
184 1.22 jtc clock_id = SCARG(uap, clock_id);
185 1.61 simonb switch (clock_id) {
186 1.61 simonb case CLOCK_REALTIME:
187 1.96 simonb nanotime(&ats);
188 1.61 simonb break;
189 1.61 simonb case CLOCK_MONOTONIC:
190 1.101 kardel nanouptime(&ats);
191 1.61 simonb break;
192 1.61 simonb default:
193 1.22 jtc return (EINVAL);
194 1.61 simonb }
195 1.22 jtc
196 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
197 1.22 jtc }
198 1.22 jtc
199 1.22 jtc /* ARGSUSED */
200 1.22 jtc int
201 1.156 christos sys___clock_settime50(struct lwp *l,
202 1.156 christos const struct sys___clock_settime50_args *uap, register_t *retval)
203 1.22 jtc {
204 1.135 dsl /* {
205 1.22 jtc syscallarg(clockid_t) clock_id;
206 1.23 cgd syscallarg(const struct timespec *) tp;
207 1.135 dsl } */
208 1.156 christos int error;
209 1.156 christos struct timespec ats;
210 1.22 jtc
211 1.156 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
212 1.156 christos return error;
213 1.156 christos
214 1.156 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
215 1.56 manu }
216 1.56 manu
217 1.56 manu
218 1.56 manu int
219 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
220 1.132 elad bool check_kauth)
221 1.56 manu {
222 1.56 manu int error;
223 1.56 manu
224 1.61 simonb switch (clock_id) {
225 1.61 simonb case CLOCK_REALTIME:
226 1.156 christos if ((error = settime1(p, tp, check_kauth)) != 0)
227 1.61 simonb return (error);
228 1.61 simonb break;
229 1.61 simonb case CLOCK_MONOTONIC:
230 1.61 simonb return (EINVAL); /* read-only clock */
231 1.61 simonb default:
232 1.56 manu return (EINVAL);
233 1.61 simonb }
234 1.22 jtc
235 1.22 jtc return 0;
236 1.22 jtc }
237 1.22 jtc
238 1.22 jtc int
239 1.156 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
240 1.140 yamt register_t *retval)
241 1.22 jtc {
242 1.135 dsl /* {
243 1.22 jtc syscallarg(clockid_t) clock_id;
244 1.23 cgd syscallarg(struct timespec *) tp;
245 1.135 dsl } */
246 1.22 jtc struct timespec ts;
247 1.22 jtc int error = 0;
248 1.22 jtc
249 1.164 njoly if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
250 1.164 njoly return error;
251 1.164 njoly
252 1.164 njoly if (SCARG(uap, tp))
253 1.164 njoly error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
254 1.164 njoly
255 1.164 njoly return error;
256 1.164 njoly }
257 1.164 njoly
258 1.164 njoly int
259 1.164 njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
260 1.164 njoly {
261 1.164 njoly
262 1.61 simonb switch (clock_id) {
263 1.61 simonb case CLOCK_REALTIME:
264 1.61 simonb case CLOCK_MONOTONIC:
265 1.164 njoly ts->tv_sec = 0;
266 1.102 kardel if (tc_getfrequency() > 1000000000)
267 1.164 njoly ts->tv_nsec = 1;
268 1.102 kardel else
269 1.164 njoly ts->tv_nsec = 1000000000 / tc_getfrequency();
270 1.61 simonb break;
271 1.61 simonb default:
272 1.164 njoly return EINVAL;
273 1.61 simonb }
274 1.22 jtc
275 1.164 njoly return 0;
276 1.22 jtc }
277 1.22 jtc
278 1.27 jtc /* ARGSUSED */
279 1.27 jtc int
280 1.156 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
281 1.140 yamt register_t *retval)
282 1.27 jtc {
283 1.135 dsl /* {
284 1.101 kardel syscallarg(struct timespec *) rqtp;
285 1.101 kardel syscallarg(struct timespec *) rmtp;
286 1.135 dsl } */
287 1.101 kardel struct timespec rmt, rqt;
288 1.120 dsl int error, error1;
289 1.101 kardel
290 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
291 1.101 kardel if (error)
292 1.101 kardel return (error);
293 1.101 kardel
294 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
295 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
296 1.120 dsl return error;
297 1.120 dsl
298 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
299 1.120 dsl return error1 ? error1 : error;
300 1.120 dsl }
301 1.120 dsl
302 1.120 dsl int
303 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
304 1.120 dsl {
305 1.141 yamt struct timespec rmtstart;
306 1.120 dsl int error, timo;
307 1.120 dsl
308 1.160 christos if ((error = itimespecfix(rqt)) != 0)
309 1.160 christos return error;
310 1.101 kardel
311 1.120 dsl timo = tstohz(rqt);
312 1.101 kardel /*
313 1.101 kardel * Avoid inadvertantly sleeping forever
314 1.101 kardel */
315 1.101 kardel if (timo == 0)
316 1.101 kardel timo = 1;
317 1.141 yamt getnanouptime(&rmtstart);
318 1.141 yamt again:
319 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
320 1.141 yamt if (rmt != NULL || error == 0) {
321 1.141 yamt struct timespec rmtend;
322 1.141 yamt struct timespec t0;
323 1.141 yamt struct timespec *t;
324 1.101 kardel
325 1.141 yamt getnanouptime(&rmtend);
326 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
327 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
328 1.141 yamt timespecsub(rqt, t, t);
329 1.141 yamt if (t->tv_sec < 0)
330 1.141 yamt timespecclear(t);
331 1.141 yamt if (error == 0) {
332 1.141 yamt timo = tstohz(t);
333 1.141 yamt if (timo > 0)
334 1.141 yamt goto again;
335 1.141 yamt }
336 1.141 yamt }
337 1.104 kardel
338 1.101 kardel if (error == ERESTART)
339 1.101 kardel error = EINTR;
340 1.101 kardel if (error == EWOULDBLOCK)
341 1.101 kardel error = 0;
342 1.101 kardel
343 1.101 kardel return error;
344 1.27 jtc }
345 1.22 jtc
346 1.1 cgd /* ARGSUSED */
347 1.3 andrew int
348 1.156 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
349 1.140 yamt register_t *retval)
350 1.15 thorpej {
351 1.135 dsl /* {
352 1.11 cgd syscallarg(struct timeval *) tp;
353 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
354 1.135 dsl } */
355 1.1 cgd struct timeval atv;
356 1.1 cgd int error = 0;
357 1.25 perry struct timezone tzfake;
358 1.1 cgd
359 1.11 cgd if (SCARG(uap, tp)) {
360 1.1 cgd microtime(&atv);
361 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
362 1.17 christos if (error)
363 1.1 cgd return (error);
364 1.1 cgd }
365 1.25 perry if (SCARG(uap, tzp)) {
366 1.25 perry /*
367 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
368 1.25 perry * fake up a timezone struct and return it if demanded.
369 1.25 perry */
370 1.25 perry tzfake.tz_minuteswest = 0;
371 1.25 perry tzfake.tz_dsttime = 0;
372 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
373 1.25 perry }
374 1.1 cgd return (error);
375 1.1 cgd }
376 1.1 cgd
377 1.1 cgd /* ARGSUSED */
378 1.3 andrew int
379 1.156 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
380 1.140 yamt register_t *retval)
381 1.15 thorpej {
382 1.135 dsl /* {
383 1.24 cgd syscallarg(const struct timeval *) tv;
384 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
385 1.135 dsl } */
386 1.60 manu
387 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
388 1.60 manu }
389 1.60 manu
390 1.60 manu int
391 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
392 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
393 1.60 manu {
394 1.22 jtc struct timeval atv;
395 1.98 christos struct timespec ts;
396 1.22 jtc int error;
397 1.1 cgd
398 1.8 cgd /* Verify all parameters before changing time. */
399 1.119 dsl
400 1.25 perry /*
401 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
402 1.25 perry * obsolete program would try to set it, so we log a warning.
403 1.25 perry */
404 1.98 christos if (utzp)
405 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
406 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
407 1.98 christos
408 1.98 christos if (utv == NULL)
409 1.98 christos return 0;
410 1.98 christos
411 1.119 dsl if (userspace) {
412 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
413 1.119 dsl return error;
414 1.119 dsl utv = &atv;
415 1.119 dsl }
416 1.119 dsl
417 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
418 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
419 1.1 cgd }
420 1.1 cgd
421 1.68 dsl int time_adjusted; /* set if an adjustment is made */
422 1.1 cgd
423 1.1 cgd /* ARGSUSED */
424 1.3 andrew int
425 1.156 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
426 1.140 yamt register_t *retval)
427 1.15 thorpej {
428 1.135 dsl /* {
429 1.24 cgd syscallarg(const struct timeval *) delta;
430 1.11 cgd syscallarg(struct timeval *) olddelta;
431 1.135 dsl } */
432 1.156 christos int error = 0;
433 1.156 christos struct timeval atv, oldatv;
434 1.1 cgd
435 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
436 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
437 1.156 christos return error;
438 1.17 christos
439 1.156 christos if (SCARG(uap, delta)) {
440 1.156 christos error = copyin(SCARG(uap, delta), &atv,
441 1.156 christos sizeof(*SCARG(uap, delta)));
442 1.156 christos if (error)
443 1.156 christos return (error);
444 1.156 christos }
445 1.156 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
446 1.156 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
447 1.156 christos if (SCARG(uap, olddelta))
448 1.156 christos error = copyout(&oldatv, SCARG(uap, olddelta),
449 1.156 christos sizeof(*SCARG(uap, olddelta)));
450 1.156 christos return error;
451 1.56 manu }
452 1.56 manu
453 1.156 christos void
454 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
455 1.56 manu {
456 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
457 1.101 kardel
458 1.101 kardel if (olddelta) {
459 1.143 ad mutex_spin_enter(&timecounter_lock);
460 1.156 christos olddelta->tv_sec = time_adjtime / 1000000;
461 1.156 christos olddelta->tv_usec = time_adjtime % 1000000;
462 1.156 christos if (olddelta->tv_usec < 0) {
463 1.156 christos olddelta->tv_usec += 1000000;
464 1.156 christos olddelta->tv_sec--;
465 1.101 kardel }
466 1.157 christos mutex_spin_exit(&timecounter_lock);
467 1.101 kardel }
468 1.101 kardel
469 1.101 kardel if (delta) {
470 1.156 christos mutex_spin_enter(&timecounter_lock);
471 1.157 christos time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
472 1.101 kardel
473 1.143 ad if (time_adjtime) {
474 1.101 kardel /* We need to save the system time during shutdown */
475 1.101 kardel time_adjusted |= 1;
476 1.143 ad }
477 1.143 ad mutex_spin_exit(&timecounter_lock);
478 1.101 kardel }
479 1.1 cgd }
480 1.1 cgd
481 1.1 cgd /*
482 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
483 1.63 thorpej * timer_*() family of routines are supported.
484 1.1 cgd *
485 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
486 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
487 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
488 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
489 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
490 1.63 thorpej * syscall.
491 1.1 cgd *
492 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
493 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
494 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
495 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
496 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
497 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
498 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
499 1.63 thorpej * given below), to be delayed in real time past when it is supposed
500 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
501 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
502 1.63 thorpej * compute the next time in absolute time the timer should go off. */
503 1.63 thorpej
504 1.63 thorpej /* Allocate a POSIX realtime timer. */
505 1.63 thorpej int
506 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
507 1.140 yamt register_t *retval)
508 1.63 thorpej {
509 1.135 dsl /* {
510 1.63 thorpej syscallarg(clockid_t) clock_id;
511 1.63 thorpej syscallarg(struct sigevent *) evp;
512 1.63 thorpej syscallarg(timer_t *) timerid;
513 1.135 dsl } */
514 1.92 cube
515 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
516 1.105 ad SCARG(uap, evp), copyin, l);
517 1.92 cube }
518 1.92 cube
519 1.92 cube int
520 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
521 1.105 ad copyin_t fetch_event, struct lwp *l)
522 1.92 cube {
523 1.92 cube int error;
524 1.92 cube timer_t timerid;
525 1.142 ad struct ptimers *pts;
526 1.63 thorpej struct ptimer *pt;
527 1.105 ad struct proc *p;
528 1.105 ad
529 1.105 ad p = l->l_proc;
530 1.63 thorpej
531 1.142 ad if (id < CLOCK_REALTIME || id > CLOCK_PROF)
532 1.63 thorpej return (EINVAL);
533 1.63 thorpej
534 1.142 ad if ((pts = p->p_timers) == NULL)
535 1.142 ad pts = timers_alloc(p);
536 1.63 thorpej
537 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
538 1.142 ad if (evp != NULL) {
539 1.63 thorpej if (((error =
540 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
541 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
542 1.163 drochner (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
543 1.163 drochner (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
544 1.163 drochner (pt->pt_ev.sigev_signo <= 0 ||
545 1.163 drochner pt->pt_ev.sigev_signo >= NSIG))) {
546 1.63 thorpej pool_put(&ptimer_pool, pt);
547 1.63 thorpej return (error ? error : EINVAL);
548 1.63 thorpej }
549 1.142 ad }
550 1.142 ad
551 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
552 1.142 ad mutex_spin_enter(&timer_lock);
553 1.142 ad for (timerid = 3; timerid < TIMER_MAX; timerid++)
554 1.142 ad if (pts->pts_timers[timerid] == NULL)
555 1.142 ad break;
556 1.142 ad if (timerid == TIMER_MAX) {
557 1.142 ad mutex_spin_exit(&timer_lock);
558 1.142 ad pool_put(&ptimer_pool, pt);
559 1.142 ad return EAGAIN;
560 1.142 ad }
561 1.142 ad if (evp == NULL) {
562 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
563 1.63 thorpej switch (id) {
564 1.63 thorpej case CLOCK_REALTIME:
565 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
566 1.63 thorpej break;
567 1.63 thorpej case CLOCK_VIRTUAL:
568 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
569 1.63 thorpej break;
570 1.63 thorpej case CLOCK_PROF:
571 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
572 1.63 thorpej break;
573 1.63 thorpej }
574 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
575 1.63 thorpej }
576 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
577 1.73 christos pt->pt_info.ksi_errno = 0;
578 1.73 christos pt->pt_info.ksi_code = 0;
579 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
580 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
581 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
582 1.63 thorpej pt->pt_type = id;
583 1.63 thorpej pt->pt_proc = p;
584 1.63 thorpej pt->pt_overruns = 0;
585 1.63 thorpej pt->pt_poverruns = 0;
586 1.64 nathanw pt->pt_entry = timerid;
587 1.142 ad pt->pt_queued = false;
588 1.150 christos timespecclear(&pt->pt_time.it_value);
589 1.149 christos if (id == CLOCK_REALTIME)
590 1.149 christos callout_init(&pt->pt_ch, 0);
591 1.149 christos else
592 1.149 christos pt->pt_active = 0;
593 1.149 christos
594 1.142 ad pts->pts_timers[timerid] = pt;
595 1.142 ad mutex_spin_exit(&timer_lock);
596 1.63 thorpej
597 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
598 1.63 thorpej }
599 1.63 thorpej
600 1.63 thorpej /* Delete a POSIX realtime timer */
601 1.3 andrew int
602 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
603 1.140 yamt register_t *retval)
604 1.15 thorpej {
605 1.135 dsl /* {
606 1.63 thorpej syscallarg(timer_t) timerid;
607 1.135 dsl } */
608 1.63 thorpej struct proc *p = l->l_proc;
609 1.65 jdolecek timer_t timerid;
610 1.142 ad struct ptimers *pts;
611 1.63 thorpej struct ptimer *pt, *ptn;
612 1.1 cgd
613 1.63 thorpej timerid = SCARG(uap, timerid);
614 1.142 ad pts = p->p_timers;
615 1.142 ad
616 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
617 1.142 ad return (EINVAL);
618 1.63 thorpej
619 1.142 ad mutex_spin_enter(&timer_lock);
620 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
621 1.142 ad mutex_spin_exit(&timer_lock);
622 1.1 cgd return (EINVAL);
623 1.142 ad }
624 1.149 christos if (pt->pt_type != CLOCK_REALTIME) {
625 1.149 christos if (pt->pt_active) {
626 1.149 christos ptn = LIST_NEXT(pt, pt_list);
627 1.149 christos LIST_REMOVE(pt, pt_list);
628 1.149 christos for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
629 1.150 christos timespecadd(&pt->pt_time.it_value,
630 1.149 christos &ptn->pt_time.it_value,
631 1.149 christos &ptn->pt_time.it_value);
632 1.149 christos pt->pt_active = 0;
633 1.149 christos }
634 1.63 thorpej }
635 1.142 ad itimerfree(pts, timerid);
636 1.63 thorpej
637 1.63 thorpej return (0);
638 1.63 thorpej }
639 1.63 thorpej
640 1.63 thorpej /*
641 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
642 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
643 1.67 nathanw * time for virtual timers.
644 1.63 thorpej * Must be called at splclock().
645 1.63 thorpej */
646 1.63 thorpej void
647 1.63 thorpej timer_settime(struct ptimer *pt)
648 1.63 thorpej {
649 1.63 thorpej struct ptimer *ptn, *pptn;
650 1.63 thorpej struct ptlist *ptl;
651 1.63 thorpej
652 1.142 ad KASSERT(mutex_owned(&timer_lock));
653 1.142 ad
654 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
655 1.63 thorpej callout_stop(&pt->pt_ch);
656 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
657 1.63 thorpej /*
658 1.150 christos * Don't need to check tshzto() return value, here.
659 1.63 thorpej * callout_reset() does it for us.
660 1.63 thorpej */
661 1.150 christos callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
662 1.63 thorpej realtimerexpire, pt);
663 1.63 thorpej }
664 1.63 thorpej } else {
665 1.63 thorpej if (pt->pt_active) {
666 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
667 1.63 thorpej LIST_REMOVE(pt, pt_list);
668 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
669 1.150 christos timespecadd(&pt->pt_time.it_value,
670 1.63 thorpej &ptn->pt_time.it_value,
671 1.63 thorpej &ptn->pt_time.it_value);
672 1.63 thorpej }
673 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
674 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
675 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
676 1.63 thorpej else
677 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
678 1.63 thorpej
679 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
680 1.150 christos ptn && timespeccmp(&pt->pt_time.it_value,
681 1.63 thorpej &ptn->pt_time.it_value, >);
682 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
683 1.150 christos timespecsub(&pt->pt_time.it_value,
684 1.63 thorpej &ptn->pt_time.it_value,
685 1.63 thorpej &pt->pt_time.it_value);
686 1.63 thorpej
687 1.63 thorpej if (pptn)
688 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
689 1.63 thorpej else
690 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
691 1.63 thorpej
692 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
693 1.150 christos timespecsub(&ptn->pt_time.it_value,
694 1.63 thorpej &pt->pt_time.it_value,
695 1.63 thorpej &ptn->pt_time.it_value);
696 1.63 thorpej
697 1.63 thorpej pt->pt_active = 1;
698 1.63 thorpej } else
699 1.63 thorpej pt->pt_active = 0;
700 1.63 thorpej }
701 1.63 thorpej }
702 1.63 thorpej
703 1.63 thorpej void
704 1.150 christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
705 1.63 thorpej {
706 1.150 christos struct timespec now;
707 1.63 thorpej struct ptimer *ptn;
708 1.63 thorpej
709 1.142 ad KASSERT(mutex_owned(&timer_lock));
710 1.142 ad
711 1.150 christos *aits = pt->pt_time;
712 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
713 1.1 cgd /*
714 1.12 mycroft * Convert from absolute to relative time in .it_value
715 1.63 thorpej * part of real time timer. If time for real time
716 1.63 thorpej * timer has passed return 0, else return difference
717 1.63 thorpej * between current time and time for the timer to go
718 1.63 thorpej * off.
719 1.1 cgd */
720 1.150 christos if (timespecisset(&aits->it_value)) {
721 1.150 christos getnanotime(&now);
722 1.150 christos if (timespeccmp(&aits->it_value, &now, <))
723 1.150 christos timespecclear(&aits->it_value);
724 1.101 kardel else
725 1.150 christos timespecsub(&aits->it_value, &now,
726 1.150 christos &aits->it_value);
727 1.36 thorpej }
728 1.63 thorpej } else if (pt->pt_active) {
729 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
730 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
731 1.63 thorpej else
732 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
733 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
734 1.150 christos timespecadd(&aits->it_value,
735 1.150 christos &ptn->pt_time.it_value, &aits->it_value);
736 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
737 1.1 cgd } else
738 1.150 christos timespecclear(&aits->it_value);
739 1.63 thorpej }
740 1.63 thorpej
741 1.63 thorpej
742 1.63 thorpej
743 1.63 thorpej /* Set and arm a POSIX realtime timer */
744 1.63 thorpej int
745 1.156 christos sys___timer_settime50(struct lwp *l,
746 1.156 christos const struct sys___timer_settime50_args *uap,
747 1.140 yamt register_t *retval)
748 1.63 thorpej {
749 1.135 dsl /* {
750 1.63 thorpej syscallarg(timer_t) timerid;
751 1.63 thorpej syscallarg(int) flags;
752 1.63 thorpej syscallarg(const struct itimerspec *) value;
753 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
754 1.135 dsl } */
755 1.92 cube int error;
756 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
757 1.92 cube
758 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
759 1.92 cube sizeof(struct itimerspec))) != 0)
760 1.92 cube return (error);
761 1.92 cube
762 1.92 cube if (SCARG(uap, ovalue))
763 1.92 cube ovp = &ovalue;
764 1.92 cube
765 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
766 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
767 1.92 cube return error;
768 1.92 cube
769 1.92 cube if (ovp)
770 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
771 1.92 cube sizeof(struct itimerspec));
772 1.92 cube return 0;
773 1.92 cube }
774 1.92 cube
775 1.92 cube int
776 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
777 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
778 1.92 cube {
779 1.150 christos struct timespec now;
780 1.150 christos struct itimerspec val, oval;
781 1.142 ad struct ptimers *pts;
782 1.63 thorpej struct ptimer *pt;
783 1.160 christos int error;
784 1.63 thorpej
785 1.142 ad pts = p->p_timers;
786 1.63 thorpej
787 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
788 1.142 ad return EINVAL;
789 1.150 christos val = *value;
790 1.160 christos if ((error = itimespecfix(&val.it_value)) != 0 ||
791 1.160 christos (error = itimespecfix(&val.it_interval)) != 0)
792 1.160 christos return error;
793 1.63 thorpej
794 1.142 ad mutex_spin_enter(&timer_lock);
795 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
796 1.142 ad mutex_spin_exit(&timer_lock);
797 1.150 christos return EINVAL;
798 1.142 ad }
799 1.142 ad
800 1.63 thorpej oval = pt->pt_time;
801 1.63 thorpej pt->pt_time = val;
802 1.63 thorpej
803 1.67 nathanw /*
804 1.67 nathanw * If we've been passed a relative time for a realtime timer,
805 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
806 1.67 nathanw * timer, convert it to relative and make sure we don't set it
807 1.67 nathanw * to zero, which would cancel the timer, or let it go
808 1.67 nathanw * negative, which would confuse the comparison tests.
809 1.67 nathanw */
810 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
811 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
812 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
813 1.150 christos getnanotime(&now);
814 1.150 christos timespecadd(&pt->pt_time.it_value, &now,
815 1.101 kardel &pt->pt_time.it_value);
816 1.101 kardel }
817 1.67 nathanw } else {
818 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
819 1.150 christos getnanotime(&now);
820 1.150 christos timespecsub(&pt->pt_time.it_value, &now,
821 1.101 kardel &pt->pt_time.it_value);
822 1.150 christos if (!timespecisset(&pt->pt_time.it_value) ||
823 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
824 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
825 1.150 christos pt->pt_time.it_value.tv_nsec = 1;
826 1.67 nathanw }
827 1.67 nathanw }
828 1.67 nathanw }
829 1.67 nathanw }
830 1.67 nathanw
831 1.63 thorpej timer_settime(pt);
832 1.142 ad mutex_spin_exit(&timer_lock);
833 1.63 thorpej
834 1.150 christos if (ovalue)
835 1.150 christos *ovalue = oval;
836 1.63 thorpej
837 1.63 thorpej return (0);
838 1.63 thorpej }
839 1.63 thorpej
840 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
841 1.63 thorpej int
842 1.156 christos sys___timer_gettime50(struct lwp *l,
843 1.156 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
844 1.63 thorpej {
845 1.135 dsl /* {
846 1.63 thorpej syscallarg(timer_t) timerid;
847 1.63 thorpej syscallarg(struct itimerspec *) value;
848 1.135 dsl } */
849 1.63 thorpej struct itimerspec its;
850 1.92 cube int error;
851 1.92 cube
852 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
853 1.92 cube &its)) != 0)
854 1.92 cube return error;
855 1.92 cube
856 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
857 1.92 cube }
858 1.92 cube
859 1.92 cube int
860 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
861 1.92 cube {
862 1.63 thorpej struct ptimer *pt;
863 1.142 ad struct ptimers *pts;
864 1.63 thorpej
865 1.142 ad pts = p->p_timers;
866 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
867 1.63 thorpej return (EINVAL);
868 1.142 ad mutex_spin_enter(&timer_lock);
869 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
870 1.142 ad mutex_spin_exit(&timer_lock);
871 1.142 ad return (EINVAL);
872 1.142 ad }
873 1.150 christos timer_gettime(pt, its);
874 1.142 ad mutex_spin_exit(&timer_lock);
875 1.63 thorpej
876 1.92 cube return 0;
877 1.63 thorpej }
878 1.63 thorpej
879 1.63 thorpej /*
880 1.63 thorpej * Return the count of the number of times a periodic timer expired
881 1.63 thorpej * while a notification was already pending. The counter is reset when
882 1.63 thorpej * a timer expires and a notification can be posted.
883 1.63 thorpej */
884 1.63 thorpej int
885 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
886 1.140 yamt register_t *retval)
887 1.63 thorpej {
888 1.135 dsl /* {
889 1.63 thorpej syscallarg(timer_t) timerid;
890 1.135 dsl } */
891 1.63 thorpej struct proc *p = l->l_proc;
892 1.142 ad struct ptimers *pts;
893 1.63 thorpej int timerid;
894 1.63 thorpej struct ptimer *pt;
895 1.63 thorpej
896 1.63 thorpej timerid = SCARG(uap, timerid);
897 1.63 thorpej
898 1.142 ad pts = p->p_timers;
899 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
900 1.142 ad return (EINVAL);
901 1.142 ad mutex_spin_enter(&timer_lock);
902 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
903 1.142 ad mutex_spin_exit(&timer_lock);
904 1.63 thorpej return (EINVAL);
905 1.142 ad }
906 1.63 thorpej *retval = pt->pt_poverruns;
907 1.142 ad mutex_spin_exit(&timer_lock);
908 1.63 thorpej
909 1.63 thorpej return (0);
910 1.63 thorpej }
911 1.63 thorpej
912 1.154 wrstuden #ifdef KERN_SA
913 1.154 wrstuden /* Glue function that triggers an upcall; called from userret(). */
914 1.154 wrstuden void
915 1.154 wrstuden timerupcall(struct lwp *l)
916 1.154 wrstuden {
917 1.154 wrstuden struct ptimers *pt = l->l_proc->p_timers;
918 1.154 wrstuden struct proc *p = l->l_proc;
919 1.154 wrstuden unsigned int i, fired, done;
920 1.154 wrstuden
921 1.154 wrstuden KDASSERT(l->l_proc->p_sa);
922 1.154 wrstuden /* Bail out if we do not own the virtual processor */
923 1.154 wrstuden if (l->l_savp->savp_lwp != l)
924 1.154 wrstuden return ;
925 1.154 wrstuden
926 1.154 wrstuden mutex_enter(p->p_lock);
927 1.154 wrstuden
928 1.154 wrstuden fired = pt->pts_fired;
929 1.154 wrstuden done = 0;
930 1.154 wrstuden while ((i = ffs(fired)) != 0) {
931 1.154 wrstuden siginfo_t *si;
932 1.154 wrstuden int mask = 1 << --i;
933 1.154 wrstuden int f;
934 1.154 wrstuden
935 1.154 wrstuden f = ~l->l_pflag & LP_SA_NOBLOCK;
936 1.154 wrstuden l->l_pflag |= LP_SA_NOBLOCK;
937 1.154 wrstuden si = siginfo_alloc(PR_WAITOK);
938 1.154 wrstuden si->_info = pt->pts_timers[i]->pt_info.ksi_info;
939 1.154 wrstuden if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
940 1.154 wrstuden sizeof(*si), si, siginfo_free) != 0) {
941 1.154 wrstuden siginfo_free(si);
942 1.154 wrstuden /* XXX What do we do here?? */
943 1.154 wrstuden } else
944 1.154 wrstuden done |= mask;
945 1.154 wrstuden fired &= ~mask;
946 1.154 wrstuden l->l_pflag ^= f;
947 1.154 wrstuden }
948 1.154 wrstuden pt->pts_fired &= ~done;
949 1.154 wrstuden if (pt->pts_fired == 0)
950 1.154 wrstuden l->l_proc->p_timerpend = 0;
951 1.154 wrstuden
952 1.154 wrstuden mutex_exit(p->p_lock);
953 1.154 wrstuden }
954 1.154 wrstuden #endif /* KERN_SA */
955 1.154 wrstuden
956 1.63 thorpej /*
957 1.63 thorpej * Real interval timer expired:
958 1.63 thorpej * send process whose timer expired an alarm signal.
959 1.63 thorpej * If time is not set up to reload, then just return.
960 1.63 thorpej * Else compute next time timer should go off which is > current time.
961 1.63 thorpej * This is where delay in processing this timeout causes multiple
962 1.63 thorpej * SIGALRM calls to be compressed into one.
963 1.63 thorpej */
964 1.63 thorpej void
965 1.63 thorpej realtimerexpire(void *arg)
966 1.63 thorpej {
967 1.148 joerg uint64_t last_val, next_val, interval, now_ms;
968 1.150 christos struct timespec now, next;
969 1.63 thorpej struct ptimer *pt;
970 1.148 joerg int backwards;
971 1.63 thorpej
972 1.142 ad pt = arg;
973 1.63 thorpej
974 1.142 ad mutex_spin_enter(&timer_lock);
975 1.63 thorpej itimerfire(pt);
976 1.63 thorpej
977 1.150 christos if (!timespecisset(&pt->pt_time.it_interval)) {
978 1.150 christos timespecclear(&pt->pt_time.it_value);
979 1.142 ad mutex_spin_exit(&timer_lock);
980 1.63 thorpej return;
981 1.63 thorpej }
982 1.148 joerg
983 1.150 christos getnanotime(&now);
984 1.150 christos backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
985 1.150 christos timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
986 1.148 joerg /* Handle the easy case of non-overflown timers first. */
987 1.150 christos if (!backwards && timespeccmp(&next, &now, >)) {
988 1.148 joerg pt->pt_time.it_value = next;
989 1.148 joerg } else {
990 1.150 christos now_ms = timespec2ns(&now);
991 1.150 christos last_val = timespec2ns(&pt->pt_time.it_value);
992 1.150 christos interval = timespec2ns(&pt->pt_time.it_interval);
993 1.148 joerg
994 1.148 joerg next_val = now_ms +
995 1.148 joerg (now_ms - last_val + interval - 1) % interval;
996 1.148 joerg
997 1.148 joerg if (backwards)
998 1.148 joerg next_val += interval;
999 1.148 joerg else
1000 1.148 joerg pt->pt_overruns += (now_ms - last_val) / interval;
1001 1.148 joerg
1002 1.150 christos pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1003 1.150 christos pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1004 1.101 kardel }
1005 1.148 joerg
1006 1.148 joerg /*
1007 1.150 christos * Don't need to check tshzto() return value, here.
1008 1.148 joerg * callout_reset() does it for us.
1009 1.148 joerg */
1010 1.150 christos callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1011 1.148 joerg realtimerexpire, pt);
1012 1.148 joerg mutex_spin_exit(&timer_lock);
1013 1.63 thorpej }
1014 1.63 thorpej
1015 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1016 1.63 thorpej /* ARGSUSED */
1017 1.63 thorpej int
1018 1.156 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1019 1.140 yamt register_t *retval)
1020 1.63 thorpej {
1021 1.135 dsl /* {
1022 1.63 thorpej syscallarg(int) which;
1023 1.63 thorpej syscallarg(struct itimerval *) itv;
1024 1.135 dsl } */
1025 1.63 thorpej struct proc *p = l->l_proc;
1026 1.63 thorpej struct itimerval aitv;
1027 1.91 cube int error;
1028 1.91 cube
1029 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1030 1.91 cube if (error)
1031 1.91 cube return error;
1032 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1033 1.91 cube }
1034 1.63 thorpej
1035 1.91 cube int
1036 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1037 1.91 cube {
1038 1.142 ad struct ptimers *pts;
1039 1.142 ad struct ptimer *pt;
1040 1.150 christos struct itimerspec its;
1041 1.63 thorpej
1042 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1043 1.63 thorpej return (EINVAL);
1044 1.63 thorpej
1045 1.142 ad mutex_spin_enter(&timer_lock);
1046 1.142 ad pts = p->p_timers;
1047 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1048 1.91 cube timerclear(&itvp->it_value);
1049 1.91 cube timerclear(&itvp->it_interval);
1050 1.150 christos } else {
1051 1.150 christos timer_gettime(pt, &its);
1052 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1053 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1054 1.150 christos }
1055 1.142 ad mutex_spin_exit(&timer_lock);
1056 1.63 thorpej
1057 1.91 cube return 0;
1058 1.1 cgd }
1059 1.1 cgd
1060 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1061 1.1 cgd /* ARGSUSED */
1062 1.3 andrew int
1063 1.156 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1064 1.140 yamt register_t *retval)
1065 1.15 thorpej {
1066 1.135 dsl /* {
1067 1.30 mycroft syscallarg(int) which;
1068 1.24 cgd syscallarg(const struct itimerval *) itv;
1069 1.11 cgd syscallarg(struct itimerval *) oitv;
1070 1.135 dsl } */
1071 1.63 thorpej struct proc *p = l->l_proc;
1072 1.30 mycroft int which = SCARG(uap, which);
1073 1.156 christos struct sys___getitimer50_args getargs;
1074 1.91 cube const struct itimerval *itvp;
1075 1.1 cgd struct itimerval aitv;
1076 1.91 cube int error;
1077 1.1 cgd
1078 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1079 1.1 cgd return (EINVAL);
1080 1.11 cgd itvp = SCARG(uap, itv);
1081 1.63 thorpej if (itvp &&
1082 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1083 1.1 cgd return (error);
1084 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1085 1.30 mycroft SCARG(&getargs, which) = which;
1086 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1087 1.156 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1088 1.21 cgd return (error);
1089 1.21 cgd }
1090 1.1 cgd if (itvp == 0)
1091 1.1 cgd return (0);
1092 1.91 cube
1093 1.91 cube return dosetitimer(p, which, &aitv);
1094 1.91 cube }
1095 1.91 cube
1096 1.91 cube int
1097 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1098 1.91 cube {
1099 1.150 christos struct timespec now;
1100 1.142 ad struct ptimers *pts;
1101 1.142 ad struct ptimer *pt, *spare;
1102 1.91 cube
1103 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1104 1.1 cgd return (EINVAL);
1105 1.63 thorpej
1106 1.63 thorpej /*
1107 1.63 thorpej * Don't bother allocating data structures if the process just
1108 1.63 thorpej * wants to clear the timer.
1109 1.63 thorpej */
1110 1.142 ad spare = NULL;
1111 1.142 ad pts = p->p_timers;
1112 1.142 ad retry:
1113 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1114 1.142 ad pts->pts_timers[which] == NULL))
1115 1.63 thorpej return (0);
1116 1.142 ad if (pts == NULL)
1117 1.142 ad pts = timers_alloc(p);
1118 1.142 ad mutex_spin_enter(&timer_lock);
1119 1.142 ad pt = pts->pts_timers[which];
1120 1.142 ad if (pt == NULL) {
1121 1.142 ad if (spare == NULL) {
1122 1.142 ad mutex_spin_exit(&timer_lock);
1123 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1124 1.142 ad goto retry;
1125 1.142 ad }
1126 1.142 ad pt = spare;
1127 1.142 ad spare = NULL;
1128 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1129 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1130 1.63 thorpej pt->pt_overruns = 0;
1131 1.63 thorpej pt->pt_proc = p;
1132 1.63 thorpej pt->pt_type = which;
1133 1.64 nathanw pt->pt_entry = which;
1134 1.142 ad pt->pt_queued = false;
1135 1.149 christos if (pt->pt_type == CLOCK_REALTIME)
1136 1.149 christos callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1137 1.149 christos else
1138 1.149 christos pt->pt_active = 0;
1139 1.149 christos
1140 1.63 thorpej switch (which) {
1141 1.63 thorpej case ITIMER_REAL:
1142 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1143 1.63 thorpej break;
1144 1.63 thorpej case ITIMER_VIRTUAL:
1145 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1146 1.63 thorpej break;
1147 1.63 thorpej case ITIMER_PROF:
1148 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1149 1.63 thorpej break;
1150 1.1 cgd }
1151 1.142 ad pts->pts_timers[which] = pt;
1152 1.142 ad }
1153 1.63 thorpej
1154 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1155 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1156 1.150 christos
1157 1.150 christos if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1158 1.67 nathanw /* Convert to absolute time */
1159 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1160 1.150 christos getnanotime(&now);
1161 1.150 christos timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1162 1.67 nathanw }
1163 1.63 thorpej timer_settime(pt);
1164 1.142 ad mutex_spin_exit(&timer_lock);
1165 1.142 ad if (spare != NULL)
1166 1.142 ad pool_put(&ptimer_pool, spare);
1167 1.63 thorpej
1168 1.1 cgd return (0);
1169 1.1 cgd }
1170 1.1 cgd
1171 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1172 1.142 ad struct ptimers *
1173 1.63 thorpej timers_alloc(struct proc *p)
1174 1.63 thorpej {
1175 1.142 ad struct ptimers *pts;
1176 1.63 thorpej int i;
1177 1.63 thorpej
1178 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1179 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1180 1.63 thorpej LIST_INIT(&pts->pts_prof);
1181 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1182 1.63 thorpej pts->pts_timers[i] = NULL;
1183 1.64 nathanw pts->pts_fired = 0;
1184 1.142 ad mutex_spin_enter(&timer_lock);
1185 1.142 ad if (p->p_timers == NULL) {
1186 1.142 ad p->p_timers = pts;
1187 1.142 ad mutex_spin_exit(&timer_lock);
1188 1.142 ad return pts;
1189 1.142 ad }
1190 1.142 ad mutex_spin_exit(&timer_lock);
1191 1.142 ad pool_put(&ptimers_pool, pts);
1192 1.142 ad return p->p_timers;
1193 1.63 thorpej }
1194 1.63 thorpej
1195 1.1 cgd /*
1196 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1197 1.63 thorpej * then clean up all timers and free all the data structures. If
1198 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1199 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1200 1.63 thorpej * structure if none of those remain.
1201 1.1 cgd */
1202 1.3 andrew void
1203 1.63 thorpej timers_free(struct proc *p, int which)
1204 1.6 cgd {
1205 1.63 thorpej struct ptimers *pts;
1206 1.142 ad struct ptimer *ptn;
1207 1.150 christos struct timespec ts;
1208 1.142 ad int i;
1209 1.63 thorpej
1210 1.142 ad if (p->p_timers == NULL)
1211 1.142 ad return;
1212 1.63 thorpej
1213 1.142 ad pts = p->p_timers;
1214 1.142 ad mutex_spin_enter(&timer_lock);
1215 1.142 ad if (which == TIMERS_ALL) {
1216 1.142 ad p->p_timers = NULL;
1217 1.142 ad i = 0;
1218 1.142 ad } else {
1219 1.150 christos timespecclear(&ts);
1220 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1221 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1222 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1223 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1224 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1225 1.149 christos }
1226 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1227 1.142 ad if (ptn) {
1228 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1229 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1230 1.142 ad &ptn->pt_time.it_value);
1231 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1232 1.142 ad }
1233 1.150 christos timespecclear(&ts);
1234 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1235 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1236 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1237 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1238 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1239 1.149 christos }
1240 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1241 1.142 ad if (ptn) {
1242 1.149 christos KASSERT(ptn->pt_type != CLOCK_REALTIME);
1243 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1244 1.142 ad &ptn->pt_time.it_value);
1245 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1246 1.63 thorpej }
1247 1.142 ad i = 3;
1248 1.142 ad }
1249 1.142 ad for ( ; i < TIMER_MAX; i++) {
1250 1.142 ad if (pts->pts_timers[i] != NULL) {
1251 1.142 ad itimerfree(pts, i);
1252 1.142 ad mutex_spin_enter(&timer_lock);
1253 1.1 cgd }
1254 1.1 cgd }
1255 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1256 1.142 ad pts->pts_timers[2] == NULL) {
1257 1.142 ad p->p_timers = NULL;
1258 1.142 ad mutex_spin_exit(&timer_lock);
1259 1.142 ad pool_put(&ptimers_pool, pts);
1260 1.142 ad } else
1261 1.142 ad mutex_spin_exit(&timer_lock);
1262 1.142 ad }
1263 1.142 ad
1264 1.142 ad static void
1265 1.142 ad itimerfree(struct ptimers *pts, int index)
1266 1.142 ad {
1267 1.142 ad struct ptimer *pt;
1268 1.142 ad
1269 1.142 ad KASSERT(mutex_owned(&timer_lock));
1270 1.142 ad
1271 1.142 ad pt = pts->pts_timers[index];
1272 1.142 ad pts->pts_timers[index] = NULL;
1273 1.144 ad if (pt->pt_type == CLOCK_REALTIME)
1274 1.144 ad callout_halt(&pt->pt_ch, &timer_lock);
1275 1.144 ad else if (pt->pt_queued)
1276 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1277 1.144 ad mutex_spin_exit(&timer_lock);
1278 1.149 christos if (pt->pt_type == CLOCK_REALTIME)
1279 1.149 christos callout_destroy(&pt->pt_ch);
1280 1.142 ad pool_put(&ptimer_pool, pt);
1281 1.1 cgd }
1282 1.1 cgd
1283 1.1 cgd /*
1284 1.1 cgd * Decrement an interval timer by a specified number
1285 1.152 christos * of nanoseconds, which must be less than a second,
1286 1.152 christos * i.e. < 1000000000. If the timer expires, then reload
1287 1.152 christos * it. In this case, carry over (nsec - old value) to
1288 1.8 cgd * reduce the value reloaded into the timer so that
1289 1.1 cgd * the timer does not drift. This routine assumes
1290 1.1 cgd * that it is called in a context where the timers
1291 1.1 cgd * on which it is operating cannot change in value.
1292 1.1 cgd */
1293 1.142 ad static int
1294 1.152 christos itimerdecr(struct ptimer *pt, int nsec)
1295 1.63 thorpej {
1296 1.150 christos struct itimerspec *itp;
1297 1.1 cgd
1298 1.142 ad KASSERT(mutex_owned(&timer_lock));
1299 1.142 ad
1300 1.63 thorpej itp = &pt->pt_time;
1301 1.150 christos if (itp->it_value.tv_nsec < nsec) {
1302 1.1 cgd if (itp->it_value.tv_sec == 0) {
1303 1.1 cgd /* expired, and already in next interval */
1304 1.150 christos nsec -= itp->it_value.tv_nsec;
1305 1.1 cgd goto expire;
1306 1.1 cgd }
1307 1.150 christos itp->it_value.tv_nsec += 1000000000;
1308 1.1 cgd itp->it_value.tv_sec--;
1309 1.1 cgd }
1310 1.152 christos itp->it_value.tv_nsec -= nsec;
1311 1.152 christos nsec = 0;
1312 1.150 christos if (timespecisset(&itp->it_value))
1313 1.1 cgd return (1);
1314 1.1 cgd /* expired, exactly at end of interval */
1315 1.1 cgd expire:
1316 1.150 christos if (timespecisset(&itp->it_interval)) {
1317 1.1 cgd itp->it_value = itp->it_interval;
1318 1.150 christos itp->it_value.tv_nsec -= nsec;
1319 1.150 christos if (itp->it_value.tv_nsec < 0) {
1320 1.150 christos itp->it_value.tv_nsec += 1000000000;
1321 1.1 cgd itp->it_value.tv_sec--;
1322 1.1 cgd }
1323 1.63 thorpej timer_settime(pt);
1324 1.1 cgd } else
1325 1.150 christos itp->it_value.tv_nsec = 0; /* sec is already 0 */
1326 1.1 cgd return (0);
1327 1.42 cgd }
1328 1.42 cgd
1329 1.142 ad static void
1330 1.63 thorpej itimerfire(struct ptimer *pt)
1331 1.63 thorpej {
1332 1.78 cl
1333 1.142 ad KASSERT(mutex_owned(&timer_lock));
1334 1.142 ad
1335 1.142 ad /*
1336 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1337 1.142 ad * XXX Relying on the clock interrupt is stupid.
1338 1.142 ad */
1339 1.154 wrstuden if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1340 1.154 wrstuden (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1341 1.154 wrstuden pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1342 1.142 ad return;
1343 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1344 1.142 ad pt->pt_queued = true;
1345 1.142 ad softint_schedule(timer_sih);
1346 1.142 ad }
1347 1.142 ad
1348 1.142 ad void
1349 1.142 ad timer_tick(lwp_t *l, bool user)
1350 1.142 ad {
1351 1.142 ad struct ptimers *pts;
1352 1.142 ad struct ptimer *pt;
1353 1.142 ad proc_t *p;
1354 1.142 ad
1355 1.142 ad p = l->l_proc;
1356 1.142 ad if (p->p_timers == NULL)
1357 1.142 ad return;
1358 1.142 ad
1359 1.142 ad mutex_spin_enter(&timer_lock);
1360 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1361 1.63 thorpej /*
1362 1.142 ad * Run current process's virtual and profile time, as needed.
1363 1.63 thorpej */
1364 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1365 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1366 1.142 ad itimerfire(pt);
1367 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1368 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1369 1.142 ad itimerfire(pt);
1370 1.142 ad }
1371 1.142 ad mutex_spin_exit(&timer_lock);
1372 1.142 ad }
1373 1.142 ad
1374 1.154 wrstuden #ifdef KERN_SA
1375 1.154 wrstuden /*
1376 1.154 wrstuden * timer_sa_intr:
1377 1.154 wrstuden *
1378 1.154 wrstuden * SIGEV_SA handling for timer_intr(). We are called (and return)
1379 1.154 wrstuden * with the timer lock held. We know that the process had SA enabled
1380 1.154 wrstuden * when this timer was enqueued. As timer_intr() is a soft interrupt
1381 1.154 wrstuden * handler, SA should still be enabled by the time we get here.
1382 1.154 wrstuden */
1383 1.154 wrstuden static void
1384 1.154 wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
1385 1.154 wrstuden {
1386 1.155 wrstuden unsigned int i;
1387 1.155 wrstuden struct sadata *sa;
1388 1.155 wrstuden struct sadata_vp *vp;
1389 1.154 wrstuden
1390 1.154 wrstuden /* Cause the process to generate an upcall when it returns. */
1391 1.154 wrstuden if (!p->p_timerpend) {
1392 1.154 wrstuden /*
1393 1.154 wrstuden * XXX stop signals can be processed inside tsleep,
1394 1.154 wrstuden * which can be inside sa_yield's inner loop, which
1395 1.154 wrstuden * makes testing for sa_idle alone insuffucent to
1396 1.154 wrstuden * determine if we really should call setrunnable.
1397 1.154 wrstuden */
1398 1.154 wrstuden pt->pt_poverruns = pt->pt_overruns;
1399 1.154 wrstuden pt->pt_overruns = 0;
1400 1.154 wrstuden i = 1 << pt->pt_entry;
1401 1.154 wrstuden p->p_timers->pts_fired = i;
1402 1.154 wrstuden p->p_timerpend = 1;
1403 1.154 wrstuden
1404 1.155 wrstuden sa = p->p_sa;
1405 1.155 wrstuden mutex_enter(&sa->sa_mutex);
1406 1.155 wrstuden SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1407 1.155 wrstuden struct lwp *vp_lwp = vp->savp_lwp;
1408 1.155 wrstuden lwp_lock(vp_lwp);
1409 1.155 wrstuden lwp_need_userret(vp_lwp);
1410 1.155 wrstuden if (vp_lwp->l_flag & LW_SA_IDLE) {
1411 1.155 wrstuden vp_lwp->l_flag &= ~LW_SA_IDLE;
1412 1.155 wrstuden lwp_unsleep(vp_lwp, true);
1413 1.154 wrstuden break;
1414 1.154 wrstuden }
1415 1.155 wrstuden lwp_unlock(vp_lwp);
1416 1.154 wrstuden }
1417 1.155 wrstuden mutex_exit(&sa->sa_mutex);
1418 1.154 wrstuden } else {
1419 1.154 wrstuden i = 1 << pt->pt_entry;
1420 1.154 wrstuden if ((p->p_timers->pts_fired & i) == 0) {
1421 1.154 wrstuden pt->pt_poverruns = pt->pt_overruns;
1422 1.154 wrstuden pt->pt_overruns = 0;
1423 1.154 wrstuden p->p_timers->pts_fired |= i;
1424 1.154 wrstuden } else
1425 1.154 wrstuden pt->pt_overruns++;
1426 1.154 wrstuden }
1427 1.154 wrstuden }
1428 1.154 wrstuden #endif /* KERN_SA */
1429 1.154 wrstuden
1430 1.142 ad static void
1431 1.142 ad timer_intr(void *cookie)
1432 1.142 ad {
1433 1.142 ad ksiginfo_t ksi;
1434 1.142 ad struct ptimer *pt;
1435 1.142 ad proc_t *p;
1436 1.142 ad
1437 1.158 ad mutex_enter(proc_lock);
1438 1.142 ad mutex_spin_enter(&timer_lock);
1439 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1440 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1441 1.142 ad KASSERT(pt->pt_queued);
1442 1.142 ad pt->pt_queued = false;
1443 1.142 ad
1444 1.154 wrstuden if (pt->pt_proc->p_timers == NULL) {
1445 1.154 wrstuden /* Process is dying. */
1446 1.142 ad continue;
1447 1.154 wrstuden }
1448 1.142 ad p = pt->pt_proc;
1449 1.154 wrstuden #ifdef KERN_SA
1450 1.154 wrstuden if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1451 1.154 wrstuden timer_sa_intr(pt, p);
1452 1.142 ad continue;
1453 1.142 ad }
1454 1.154 wrstuden #endif /* KERN_SA */
1455 1.154 wrstuden if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1456 1.154 wrstuden continue;
1457 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1458 1.63 thorpej pt->pt_overruns++;
1459 1.142 ad continue;
1460 1.64 nathanw }
1461 1.142 ad
1462 1.142 ad KSI_INIT(&ksi);
1463 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1464 1.142 ad ksi.ksi_code = SI_TIMER;
1465 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1466 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1467 1.142 ad pt->pt_overruns = 0;
1468 1.142 ad mutex_spin_exit(&timer_lock);
1469 1.142 ad kpsignal(p, &ksi, NULL);
1470 1.142 ad mutex_spin_enter(&timer_lock);
1471 1.63 thorpej }
1472 1.142 ad mutex_spin_exit(&timer_lock);
1473 1.158 ad mutex_exit(proc_lock);
1474 1.63 thorpej }
1475 1.162 elad
1476 1.162 elad /*
1477 1.162 elad * Check if the time will wrap if set to ts.
1478 1.162 elad *
1479 1.162 elad * ts - timespec describing the new time
1480 1.162 elad * delta - the delta between the current time and ts
1481 1.162 elad */
1482 1.162 elad bool
1483 1.162 elad time_wraps(struct timespec *ts, struct timespec *delta)
1484 1.162 elad {
1485 1.162 elad
1486 1.162 elad /*
1487 1.162 elad * Don't allow the time to be set forward so far it
1488 1.162 elad * will wrap and become negative, thus allowing an
1489 1.162 elad * attacker to bypass the next check below. The
1490 1.162 elad * cutoff is 1 year before rollover occurs, so even
1491 1.162 elad * if the attacker uses adjtime(2) to move the time
1492 1.162 elad * past the cutoff, it will take a very long time
1493 1.162 elad * to get to the wrap point.
1494 1.162 elad */
1495 1.162 elad if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1496 1.162 elad (delta->tv_sec < 0 || delta->tv_nsec < 0))
1497 1.162 elad return true;
1498 1.162 elad
1499 1.162 elad return false;
1500 1.162 elad }
1501