Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.165
      1  1.165     njoly /*	$NetBSD: kern_time.c,v 1.165 2010/04/08 11:51:13 njoly Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8  1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  *
     19   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30   1.42       cgd  */
     31    1.9       cgd 
     32    1.1       cgd /*
     33    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37    1.1       cgd  * modification, are permitted provided that the following conditions
     38    1.1       cgd  * are met:
     39    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45    1.1       cgd  *    may be used to endorse or promote products derived from this software
     46    1.1       cgd  *    without specific prior written permission.
     47    1.1       cgd  *
     48    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58    1.1       cgd  * SUCH DAMAGE.
     59    1.1       cgd  *
     60   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61    1.1       cgd  */
     62   1.58     lukem 
     63   1.58     lukem #include <sys/cdefs.h>
     64  1.165     njoly __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.165 2010/04/08 11:51:13 njoly Exp $");
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/resourcevar.h>
     68    1.5   mycroft #include <sys/kernel.h>
     69    1.8       cgd #include <sys/systm.h>
     70    1.5   mycroft #include <sys/proc.h>
     71    1.8       cgd #include <sys/vnode.h>
     72   1.17  christos #include <sys/signalvar.h>
     73   1.25     perry #include <sys/syslog.h>
     74  1.101    kardel #include <sys/timetc.h>
     75  1.143        ad #include <sys/timex.h>
     76   1.99      elad #include <sys/kauth.h>
     77   1.11       cgd #include <sys/mount.h>
     78  1.154  wrstuden #include <sys/sa.h>
     79  1.154  wrstuden #include <sys/savar.h>
     80   1.11       cgd #include <sys/syscallargs.h>
     81  1.143        ad #include <sys/cpu.h>
     82   1.19  christos 
     83   1.37   thorpej #include <uvm/uvm_extern.h>
     84   1.37   thorpej 
     85  1.154  wrstuden #include "opt_sa.h"
     86  1.154  wrstuden 
     87  1.142        ad static void	timer_intr(void *);
     88  1.142        ad static void	itimerfire(struct ptimer *);
     89  1.142        ad static void	itimerfree(struct ptimers *, int);
     90  1.142        ad 
     91  1.142        ad kmutex_t	timer_lock;
     92  1.142        ad 
     93  1.142        ad static void	*timer_sih;
     94  1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95  1.131        ad 
     96  1.161     pooka struct pool ptimer_pool, ptimers_pool;
     97   1.97    simonb 
     98  1.131        ad /*
     99  1.131        ad  * Initialize timekeeping.
    100  1.131        ad  */
    101  1.131        ad void
    102  1.131        ad time_init(void)
    103  1.131        ad {
    104  1.131        ad 
    105  1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    106  1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    107  1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    108  1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109  1.131        ad }
    110  1.131        ad 
    111  1.142        ad void
    112  1.142        ad time_init2(void)
    113  1.142        ad {
    114  1.142        ad 
    115  1.142        ad 	TAILQ_INIT(&timer_queue);
    116  1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117  1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118  1.142        ad 	    timer_intr, NULL);
    119  1.142        ad }
    120  1.142        ad 
    121   1.63   thorpej /* Time of day and interval timer support.
    122    1.1       cgd  *
    123    1.1       cgd  * These routines provide the kernel entry points to get and set
    124    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125    1.1       cgd  * here provide support for adding and subtracting timeval structures
    126    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127    1.1       cgd  * timers when they expire.
    128    1.1       cgd  */
    129    1.1       cgd 
    130   1.22       jtc /* This function is used by clock_settime and settimeofday */
    131  1.132      elad static int
    132  1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    133   1.22       jtc {
    134  1.156  christos 	struct timespec delta, now;
    135  1.129        ad 	int s;
    136   1.22       jtc 
    137   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    138  1.129        ad 	s = splclock();
    139  1.156  christos 	nanotime(&now);
    140  1.156  christos 	timespecsub(ts, &now, &delta);
    141  1.132      elad 
    142  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    143  1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    144  1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    145  1.129        ad 		splx(s);
    146   1.29       tls 		return (EPERM);
    147   1.55      tron 	}
    148  1.132      elad 
    149   1.29       tls #ifdef notyet
    150  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    151  1.129        ad 		splx(s);
    152   1.29       tls 		return (EPERM);
    153   1.55      tron 	}
    154   1.29       tls #endif
    155  1.103    kardel 
    156  1.156  christos 	tc_setclock(ts);
    157  1.103    kardel 
    158  1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    159  1.103    kardel 
    160   1.22       jtc 	resettodr();
    161  1.129        ad 	splx(s);
    162  1.129        ad 
    163   1.29       tls 	return (0);
    164   1.22       jtc }
    165   1.22       jtc 
    166  1.132      elad int
    167  1.132      elad settime(struct proc *p, struct timespec *ts)
    168  1.132      elad {
    169  1.132      elad 	return (settime1(p, ts, true));
    170  1.132      elad }
    171  1.132      elad 
    172   1.22       jtc /* ARGSUSED */
    173   1.22       jtc int
    174  1.156  christos sys___clock_gettime50(struct lwp *l,
    175  1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    176   1.22       jtc {
    177  1.135       dsl 	/* {
    178   1.22       jtc 		syscallarg(clockid_t) clock_id;
    179   1.23       cgd 		syscallarg(struct timespec *) tp;
    180  1.135       dsl 	} */
    181  1.165     njoly 	int error;
    182   1.22       jtc 	struct timespec ats;
    183   1.22       jtc 
    184  1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    185  1.165     njoly 	if (error != 0)
    186  1.165     njoly 		return error;
    187  1.165     njoly 
    188  1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    189  1.165     njoly }
    190  1.165     njoly 
    191  1.165     njoly int
    192  1.165     njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
    193  1.165     njoly {
    194  1.165     njoly 
    195   1.61    simonb 	switch (clock_id) {
    196   1.61    simonb 	case CLOCK_REALTIME:
    197  1.165     njoly 		nanotime(ts);
    198   1.61    simonb 		break;
    199   1.61    simonb 	case CLOCK_MONOTONIC:
    200  1.165     njoly 		nanouptime(ts);
    201   1.61    simonb 		break;
    202   1.61    simonb 	default:
    203  1.165     njoly 		return EINVAL;
    204   1.61    simonb 	}
    205   1.22       jtc 
    206  1.165     njoly 	return 0;
    207   1.22       jtc }
    208   1.22       jtc 
    209   1.22       jtc /* ARGSUSED */
    210   1.22       jtc int
    211  1.156  christos sys___clock_settime50(struct lwp *l,
    212  1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    213   1.22       jtc {
    214  1.135       dsl 	/* {
    215   1.22       jtc 		syscallarg(clockid_t) clock_id;
    216   1.23       cgd 		syscallarg(const struct timespec *) tp;
    217  1.135       dsl 	} */
    218  1.156  christos 	int error;
    219  1.156  christos 	struct timespec ats;
    220   1.22       jtc 
    221  1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    222  1.156  christos 		return error;
    223  1.156  christos 
    224  1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    225   1.56      manu }
    226   1.56      manu 
    227   1.56      manu 
    228   1.56      manu int
    229  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    230  1.132      elad     bool check_kauth)
    231   1.56      manu {
    232   1.56      manu 	int error;
    233   1.56      manu 
    234   1.61    simonb 	switch (clock_id) {
    235   1.61    simonb 	case CLOCK_REALTIME:
    236  1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    237   1.61    simonb 			return (error);
    238   1.61    simonb 		break;
    239   1.61    simonb 	case CLOCK_MONOTONIC:
    240   1.61    simonb 		return (EINVAL);	/* read-only clock */
    241   1.61    simonb 	default:
    242   1.56      manu 		return (EINVAL);
    243   1.61    simonb 	}
    244   1.22       jtc 
    245   1.22       jtc 	return 0;
    246   1.22       jtc }
    247   1.22       jtc 
    248   1.22       jtc int
    249  1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    250  1.140      yamt     register_t *retval)
    251   1.22       jtc {
    252  1.135       dsl 	/* {
    253   1.22       jtc 		syscallarg(clockid_t) clock_id;
    254   1.23       cgd 		syscallarg(struct timespec *) tp;
    255  1.135       dsl 	} */
    256   1.22       jtc 	struct timespec ts;
    257   1.22       jtc 	int error = 0;
    258   1.22       jtc 
    259  1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    260  1.164     njoly 		return error;
    261  1.164     njoly 
    262  1.164     njoly 	if (SCARG(uap, tp))
    263  1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264  1.164     njoly 
    265  1.164     njoly 	return error;
    266  1.164     njoly }
    267  1.164     njoly 
    268  1.164     njoly int
    269  1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    270  1.164     njoly {
    271  1.164     njoly 
    272   1.61    simonb 	switch (clock_id) {
    273   1.61    simonb 	case CLOCK_REALTIME:
    274   1.61    simonb 	case CLOCK_MONOTONIC:
    275  1.164     njoly 		ts->tv_sec = 0;
    276  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    277  1.164     njoly 			ts->tv_nsec = 1;
    278  1.102    kardel 		else
    279  1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    280   1.61    simonb 		break;
    281   1.61    simonb 	default:
    282  1.164     njoly 		return EINVAL;
    283   1.61    simonb 	}
    284   1.22       jtc 
    285  1.164     njoly 	return 0;
    286   1.22       jtc }
    287   1.22       jtc 
    288   1.27       jtc /* ARGSUSED */
    289   1.27       jtc int
    290  1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    291  1.140      yamt     register_t *retval)
    292   1.27       jtc {
    293  1.135       dsl 	/* {
    294  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    295  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    296  1.135       dsl 	} */
    297  1.101    kardel 	struct timespec rmt, rqt;
    298  1.120       dsl 	int error, error1;
    299  1.101    kardel 
    300  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    301  1.101    kardel 	if (error)
    302  1.101    kardel 		return (error);
    303  1.101    kardel 
    304  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    305  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    306  1.120       dsl 		return error;
    307  1.120       dsl 
    308  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    309  1.120       dsl 	return error1 ? error1 : error;
    310  1.120       dsl }
    311  1.120       dsl 
    312  1.120       dsl int
    313  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    314  1.120       dsl {
    315  1.141      yamt 	struct timespec rmtstart;
    316  1.120       dsl 	int error, timo;
    317  1.120       dsl 
    318  1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    319  1.160  christos 		return error;
    320  1.101    kardel 
    321  1.120       dsl 	timo = tstohz(rqt);
    322  1.101    kardel 	/*
    323  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    324  1.101    kardel 	 */
    325  1.101    kardel 	if (timo == 0)
    326  1.101    kardel 		timo = 1;
    327  1.141      yamt 	getnanouptime(&rmtstart);
    328  1.141      yamt again:
    329  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    330  1.141      yamt 	if (rmt != NULL || error == 0) {
    331  1.141      yamt 		struct timespec rmtend;
    332  1.141      yamt 		struct timespec t0;
    333  1.141      yamt 		struct timespec *t;
    334  1.101    kardel 
    335  1.141      yamt 		getnanouptime(&rmtend);
    336  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    337  1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    338  1.141      yamt 		timespecsub(rqt, t, t);
    339  1.141      yamt 		if (t->tv_sec < 0)
    340  1.141      yamt 			timespecclear(t);
    341  1.141      yamt 		if (error == 0) {
    342  1.141      yamt 			timo = tstohz(t);
    343  1.141      yamt 			if (timo > 0)
    344  1.141      yamt 				goto again;
    345  1.141      yamt 		}
    346  1.141      yamt 	}
    347  1.104    kardel 
    348  1.101    kardel 	if (error == ERESTART)
    349  1.101    kardel 		error = EINTR;
    350  1.101    kardel 	if (error == EWOULDBLOCK)
    351  1.101    kardel 		error = 0;
    352  1.101    kardel 
    353  1.101    kardel 	return error;
    354   1.27       jtc }
    355   1.22       jtc 
    356    1.1       cgd /* ARGSUSED */
    357    1.3    andrew int
    358  1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    359  1.140      yamt     register_t *retval)
    360   1.15   thorpej {
    361  1.135       dsl 	/* {
    362   1.11       cgd 		syscallarg(struct timeval *) tp;
    363  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    364  1.135       dsl 	} */
    365    1.1       cgd 	struct timeval atv;
    366    1.1       cgd 	int error = 0;
    367   1.25     perry 	struct timezone tzfake;
    368    1.1       cgd 
    369   1.11       cgd 	if (SCARG(uap, tp)) {
    370    1.1       cgd 		microtime(&atv);
    371   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    372   1.17  christos 		if (error)
    373    1.1       cgd 			return (error);
    374    1.1       cgd 	}
    375   1.25     perry 	if (SCARG(uap, tzp)) {
    376   1.25     perry 		/*
    377   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    378   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    379   1.25     perry 		 */
    380   1.25     perry 		tzfake.tz_minuteswest = 0;
    381   1.25     perry 		tzfake.tz_dsttime = 0;
    382   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    383   1.25     perry 	}
    384    1.1       cgd 	return (error);
    385    1.1       cgd }
    386    1.1       cgd 
    387    1.1       cgd /* ARGSUSED */
    388    1.3    andrew int
    389  1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    390  1.140      yamt     register_t *retval)
    391   1.15   thorpej {
    392  1.135       dsl 	/* {
    393   1.24       cgd 		syscallarg(const struct timeval *) tv;
    394  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    395  1.135       dsl 	} */
    396   1.60      manu 
    397  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    398   1.60      manu }
    399   1.60      manu 
    400   1.60      manu int
    401  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    402  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    403   1.60      manu {
    404   1.22       jtc 	struct timeval atv;
    405   1.98  christos 	struct timespec ts;
    406   1.22       jtc 	int error;
    407    1.1       cgd 
    408    1.8       cgd 	/* Verify all parameters before changing time. */
    409  1.119       dsl 
    410   1.25     perry 	/*
    411   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    412   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    413   1.25     perry 	 */
    414   1.98  christos 	if (utzp)
    415   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    416  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    417   1.98  christos 
    418   1.98  christos 	if (utv == NULL)
    419   1.98  christos 		return 0;
    420   1.98  christos 
    421  1.119       dsl 	if (userspace) {
    422  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    423  1.119       dsl 			return error;
    424  1.119       dsl 		utv = &atv;
    425  1.119       dsl 	}
    426  1.119       dsl 
    427  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    428  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    429    1.1       cgd }
    430    1.1       cgd 
    431   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    432    1.1       cgd 
    433    1.1       cgd /* ARGSUSED */
    434    1.3    andrew int
    435  1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    436  1.140      yamt     register_t *retval)
    437   1.15   thorpej {
    438  1.135       dsl 	/* {
    439   1.24       cgd 		syscallarg(const struct timeval *) delta;
    440   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    441  1.135       dsl 	} */
    442  1.156  christos 	int error = 0;
    443  1.156  christos 	struct timeval atv, oldatv;
    444    1.1       cgd 
    445  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    446  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    447  1.156  christos 		return error;
    448   1.17  christos 
    449  1.156  christos 	if (SCARG(uap, delta)) {
    450  1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    451  1.156  christos 		    sizeof(*SCARG(uap, delta)));
    452  1.156  christos 		if (error)
    453  1.156  christos 			return (error);
    454  1.156  christos 	}
    455  1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    456  1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    457  1.156  christos 	if (SCARG(uap, olddelta))
    458  1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    459  1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    460  1.156  christos 	return error;
    461   1.56      manu }
    462   1.56      manu 
    463  1.156  christos void
    464  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    465   1.56      manu {
    466  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    467  1.101    kardel 
    468  1.101    kardel 	if (olddelta) {
    469  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    470  1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    471  1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    472  1.156  christos 		if (olddelta->tv_usec < 0) {
    473  1.156  christos 			olddelta->tv_usec += 1000000;
    474  1.156  christos 			olddelta->tv_sec--;
    475  1.101    kardel 		}
    476  1.157  christos 		mutex_spin_exit(&timecounter_lock);
    477  1.101    kardel 	}
    478  1.101    kardel 
    479  1.101    kardel 	if (delta) {
    480  1.156  christos 		mutex_spin_enter(&timecounter_lock);
    481  1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    482  1.101    kardel 
    483  1.143        ad 		if (time_adjtime) {
    484  1.101    kardel 			/* We need to save the system time during shutdown */
    485  1.101    kardel 			time_adjusted |= 1;
    486  1.143        ad 		}
    487  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    488  1.101    kardel 	}
    489    1.1       cgd }
    490    1.1       cgd 
    491    1.1       cgd /*
    492   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    493   1.63   thorpej  * timer_*() family of routines are supported.
    494    1.1       cgd  *
    495   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    496   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    497   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    498   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    499   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    500   1.63   thorpej  * syscall.
    501    1.1       cgd  *
    502   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    503   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    504    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    505   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    506   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    507   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    508   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    509   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    510   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    511   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    512   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    513   1.63   thorpej 
    514   1.63   thorpej /* Allocate a POSIX realtime timer. */
    515   1.63   thorpej int
    516  1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    517  1.140      yamt     register_t *retval)
    518   1.63   thorpej {
    519  1.135       dsl 	/* {
    520   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    521   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    522   1.63   thorpej 		syscallarg(timer_t *) timerid;
    523  1.135       dsl 	} */
    524   1.92      cube 
    525   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    526  1.105        ad 	    SCARG(uap, evp), copyin, l);
    527   1.92      cube }
    528   1.92      cube 
    529   1.92      cube int
    530   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    531  1.105        ad     copyin_t fetch_event, struct lwp *l)
    532   1.92      cube {
    533   1.92      cube 	int error;
    534   1.92      cube 	timer_t timerid;
    535  1.142        ad 	struct ptimers *pts;
    536   1.63   thorpej 	struct ptimer *pt;
    537  1.105        ad 	struct proc *p;
    538  1.105        ad 
    539  1.105        ad 	p = l->l_proc;
    540   1.63   thorpej 
    541  1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    542   1.63   thorpej 		return (EINVAL);
    543   1.63   thorpej 
    544  1.142        ad 	if ((pts = p->p_timers) == NULL)
    545  1.142        ad 		pts = timers_alloc(p);
    546   1.63   thorpej 
    547   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    548  1.142        ad 	if (evp != NULL) {
    549   1.63   thorpej 		if (((error =
    550   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    551   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552  1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    553  1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    554  1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    555  1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    556   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    557   1.63   thorpej 			return (error ? error : EINVAL);
    558   1.63   thorpej 		}
    559  1.142        ad 	}
    560  1.142        ad 
    561  1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    562  1.142        ad 	mutex_spin_enter(&timer_lock);
    563  1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    564  1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    565  1.142        ad 			break;
    566  1.142        ad 	if (timerid == TIMER_MAX) {
    567  1.142        ad 		mutex_spin_exit(&timer_lock);
    568  1.142        ad 		pool_put(&ptimer_pool, pt);
    569  1.142        ad 		return EAGAIN;
    570  1.142        ad 	}
    571  1.142        ad 	if (evp == NULL) {
    572   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    573   1.63   thorpej 		switch (id) {
    574   1.63   thorpej 		case CLOCK_REALTIME:
    575   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    576   1.63   thorpej 			break;
    577   1.63   thorpej 		case CLOCK_VIRTUAL:
    578   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    579   1.63   thorpej 			break;
    580   1.63   thorpej 		case CLOCK_PROF:
    581   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    582   1.63   thorpej 			break;
    583   1.63   thorpej 		}
    584   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    585   1.63   thorpej 	}
    586   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    587   1.73  christos 	pt->pt_info.ksi_errno = 0;
    588   1.73  christos 	pt->pt_info.ksi_code = 0;
    589   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    590  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    591  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    592   1.63   thorpej 	pt->pt_type = id;
    593   1.63   thorpej 	pt->pt_proc = p;
    594   1.63   thorpej 	pt->pt_overruns = 0;
    595   1.63   thorpej 	pt->pt_poverruns = 0;
    596   1.64   nathanw 	pt->pt_entry = timerid;
    597  1.142        ad 	pt->pt_queued = false;
    598  1.150  christos 	timespecclear(&pt->pt_time.it_value);
    599  1.149  christos 	if (id == CLOCK_REALTIME)
    600  1.149  christos 		callout_init(&pt->pt_ch, 0);
    601  1.149  christos 	else
    602  1.149  christos 		pt->pt_active = 0;
    603  1.149  christos 
    604  1.142        ad 	pts->pts_timers[timerid] = pt;
    605  1.142        ad 	mutex_spin_exit(&timer_lock);
    606   1.63   thorpej 
    607   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    608   1.63   thorpej }
    609   1.63   thorpej 
    610   1.63   thorpej /* Delete a POSIX realtime timer */
    611    1.3    andrew int
    612  1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    613  1.140      yamt     register_t *retval)
    614   1.15   thorpej {
    615  1.135       dsl 	/* {
    616   1.63   thorpej 		syscallarg(timer_t) timerid;
    617  1.135       dsl 	} */
    618   1.63   thorpej 	struct proc *p = l->l_proc;
    619   1.65  jdolecek 	timer_t timerid;
    620  1.142        ad 	struct ptimers *pts;
    621   1.63   thorpej 	struct ptimer *pt, *ptn;
    622    1.1       cgd 
    623   1.63   thorpej 	timerid = SCARG(uap, timerid);
    624  1.142        ad 	pts = p->p_timers;
    625  1.142        ad 
    626  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    627  1.142        ad 		return (EINVAL);
    628   1.63   thorpej 
    629  1.142        ad 	mutex_spin_enter(&timer_lock);
    630  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    631  1.142        ad 		mutex_spin_exit(&timer_lock);
    632    1.1       cgd 		return (EINVAL);
    633  1.142        ad 	}
    634  1.149  christos 	if (pt->pt_type != CLOCK_REALTIME) {
    635  1.149  christos 		if (pt->pt_active) {
    636  1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    637  1.149  christos 			LIST_REMOVE(pt, pt_list);
    638  1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    639  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    640  1.149  christos 				    &ptn->pt_time.it_value,
    641  1.149  christos 				    &ptn->pt_time.it_value);
    642  1.149  christos 			pt->pt_active = 0;
    643  1.149  christos 		}
    644   1.63   thorpej 	}
    645  1.142        ad 	itimerfree(pts, timerid);
    646   1.63   thorpej 
    647   1.63   thorpej 	return (0);
    648   1.63   thorpej }
    649   1.63   thorpej 
    650   1.63   thorpej /*
    651   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    652   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    653   1.67   nathanw  * time for virtual timers.
    654   1.63   thorpej  * Must be called at splclock().
    655   1.63   thorpej  */
    656   1.63   thorpej void
    657   1.63   thorpej timer_settime(struct ptimer *pt)
    658   1.63   thorpej {
    659   1.63   thorpej 	struct ptimer *ptn, *pptn;
    660   1.63   thorpej 	struct ptlist *ptl;
    661   1.63   thorpej 
    662  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    663  1.142        ad 
    664   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    665   1.63   thorpej 		callout_stop(&pt->pt_ch);
    666  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    667   1.63   thorpej 			/*
    668  1.150  christos 			 * Don't need to check tshzto() return value, here.
    669   1.63   thorpej 			 * callout_reset() does it for us.
    670   1.63   thorpej 			 */
    671  1.150  christos 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    672   1.63   thorpej 			    realtimerexpire, pt);
    673   1.63   thorpej 		}
    674   1.63   thorpej 	} else {
    675   1.63   thorpej 		if (pt->pt_active) {
    676   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    677   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    678   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    679  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    680   1.63   thorpej 				    &ptn->pt_time.it_value,
    681   1.63   thorpej 				    &ptn->pt_time.it_value);
    682   1.63   thorpej 		}
    683  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    684   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    685   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    686   1.63   thorpej 			else
    687   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    688   1.63   thorpej 
    689   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    690  1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    691   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    692   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    693  1.150  christos 				timespecsub(&pt->pt_time.it_value,
    694   1.63   thorpej 				    &ptn->pt_time.it_value,
    695   1.63   thorpej 				    &pt->pt_time.it_value);
    696   1.63   thorpej 
    697   1.63   thorpej 			if (pptn)
    698   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    699   1.63   thorpej 			else
    700   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    701   1.63   thorpej 
    702   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    703  1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    704   1.63   thorpej 				    &pt->pt_time.it_value,
    705   1.63   thorpej 				    &ptn->pt_time.it_value);
    706   1.63   thorpej 
    707   1.63   thorpej 			pt->pt_active = 1;
    708   1.63   thorpej 		} else
    709   1.63   thorpej 			pt->pt_active = 0;
    710   1.63   thorpej 	}
    711   1.63   thorpej }
    712   1.63   thorpej 
    713   1.63   thorpej void
    714  1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    715   1.63   thorpej {
    716  1.150  christos 	struct timespec now;
    717   1.63   thorpej 	struct ptimer *ptn;
    718   1.63   thorpej 
    719  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    720  1.142        ad 
    721  1.150  christos 	*aits = pt->pt_time;
    722   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    723    1.1       cgd 		/*
    724   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    725   1.63   thorpej 		 * part of real time timer.  If time for real time
    726   1.63   thorpej 		 * timer has passed return 0, else return difference
    727   1.63   thorpej 		 * between current time and time for the timer to go
    728   1.63   thorpej 		 * off.
    729    1.1       cgd 		 */
    730  1.150  christos 		if (timespecisset(&aits->it_value)) {
    731  1.150  christos 			getnanotime(&now);
    732  1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    733  1.150  christos 				timespecclear(&aits->it_value);
    734  1.101    kardel 			else
    735  1.150  christos 				timespecsub(&aits->it_value, &now,
    736  1.150  christos 				    &aits->it_value);
    737   1.36   thorpej 		}
    738   1.63   thorpej 	} else if (pt->pt_active) {
    739   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    740   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    741   1.63   thorpej 		else
    742   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    743   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    744  1.150  christos 			timespecadd(&aits->it_value,
    745  1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    746   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    747    1.1       cgd 	} else
    748  1.150  christos 		timespecclear(&aits->it_value);
    749   1.63   thorpej }
    750   1.63   thorpej 
    751   1.63   thorpej 
    752   1.63   thorpej 
    753   1.63   thorpej /* Set and arm a POSIX realtime timer */
    754   1.63   thorpej int
    755  1.156  christos sys___timer_settime50(struct lwp *l,
    756  1.156  christos     const struct sys___timer_settime50_args *uap,
    757  1.140      yamt     register_t *retval)
    758   1.63   thorpej {
    759  1.135       dsl 	/* {
    760   1.63   thorpej 		syscallarg(timer_t) timerid;
    761   1.63   thorpej 		syscallarg(int) flags;
    762   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    763   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    764  1.135       dsl 	} */
    765   1.92      cube 	int error;
    766   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    767   1.92      cube 
    768   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    769   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    770   1.92      cube 		return (error);
    771   1.92      cube 
    772   1.92      cube 	if (SCARG(uap, ovalue))
    773   1.92      cube 		ovp = &ovalue;
    774   1.92      cube 
    775   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    776   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    777   1.92      cube 		return error;
    778   1.92      cube 
    779   1.92      cube 	if (ovp)
    780   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    781   1.92      cube 		    sizeof(struct itimerspec));
    782   1.92      cube 	return 0;
    783   1.92      cube }
    784   1.92      cube 
    785   1.92      cube int
    786   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    787   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    788   1.92      cube {
    789  1.150  christos 	struct timespec now;
    790  1.150  christos 	struct itimerspec val, oval;
    791  1.142        ad 	struct ptimers *pts;
    792   1.63   thorpej 	struct ptimer *pt;
    793  1.160  christos 	int error;
    794   1.63   thorpej 
    795  1.142        ad 	pts = p->p_timers;
    796   1.63   thorpej 
    797  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    798  1.142        ad 		return EINVAL;
    799  1.150  christos 	val = *value;
    800  1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    801  1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    802  1.160  christos 		return error;
    803   1.63   thorpej 
    804  1.142        ad 	mutex_spin_enter(&timer_lock);
    805  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    806  1.142        ad 		mutex_spin_exit(&timer_lock);
    807  1.150  christos 		return EINVAL;
    808  1.142        ad 	}
    809  1.142        ad 
    810   1.63   thorpej 	oval = pt->pt_time;
    811   1.63   thorpej 	pt->pt_time = val;
    812   1.63   thorpej 
    813   1.67   nathanw 	/*
    814   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    815   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    816   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    817   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    818   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    819   1.67   nathanw 	 */
    820  1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    821   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    822  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    823  1.150  christos 				getnanotime(&now);
    824  1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    825  1.101    kardel 				    &pt->pt_time.it_value);
    826  1.101    kardel 			}
    827   1.67   nathanw 		} else {
    828   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    829  1.150  christos 				getnanotime(&now);
    830  1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    831  1.101    kardel 				    &pt->pt_time.it_value);
    832  1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    833   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    834   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    835  1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    836   1.67   nathanw 				}
    837   1.67   nathanw 			}
    838   1.67   nathanw 		}
    839   1.67   nathanw 	}
    840   1.67   nathanw 
    841   1.63   thorpej 	timer_settime(pt);
    842  1.142        ad 	mutex_spin_exit(&timer_lock);
    843   1.63   thorpej 
    844  1.150  christos 	if (ovalue)
    845  1.150  christos 		*ovalue = oval;
    846   1.63   thorpej 
    847   1.63   thorpej 	return (0);
    848   1.63   thorpej }
    849   1.63   thorpej 
    850   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    851   1.63   thorpej int
    852  1.156  christos sys___timer_gettime50(struct lwp *l,
    853  1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    854   1.63   thorpej {
    855  1.135       dsl 	/* {
    856   1.63   thorpej 		syscallarg(timer_t) timerid;
    857   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    858  1.135       dsl 	} */
    859   1.63   thorpej 	struct itimerspec its;
    860   1.92      cube 	int error;
    861   1.92      cube 
    862   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    863   1.92      cube 	    &its)) != 0)
    864   1.92      cube 		return error;
    865   1.92      cube 
    866   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    867   1.92      cube }
    868   1.92      cube 
    869   1.92      cube int
    870   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    871   1.92      cube {
    872   1.63   thorpej 	struct ptimer *pt;
    873  1.142        ad 	struct ptimers *pts;
    874   1.63   thorpej 
    875  1.142        ad 	pts = p->p_timers;
    876  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    877   1.63   thorpej 		return (EINVAL);
    878  1.142        ad 	mutex_spin_enter(&timer_lock);
    879  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    880  1.142        ad 		mutex_spin_exit(&timer_lock);
    881  1.142        ad 		return (EINVAL);
    882  1.142        ad 	}
    883  1.150  christos 	timer_gettime(pt, its);
    884  1.142        ad 	mutex_spin_exit(&timer_lock);
    885   1.63   thorpej 
    886   1.92      cube 	return 0;
    887   1.63   thorpej }
    888   1.63   thorpej 
    889   1.63   thorpej /*
    890   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    891   1.63   thorpej  * while a notification was already pending. The counter is reset when
    892   1.63   thorpej  * a timer expires and a notification can be posted.
    893   1.63   thorpej  */
    894   1.63   thorpej int
    895  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    896  1.140      yamt     register_t *retval)
    897   1.63   thorpej {
    898  1.135       dsl 	/* {
    899   1.63   thorpej 		syscallarg(timer_t) timerid;
    900  1.135       dsl 	} */
    901   1.63   thorpej 	struct proc *p = l->l_proc;
    902  1.142        ad 	struct ptimers *pts;
    903   1.63   thorpej 	int timerid;
    904   1.63   thorpej 	struct ptimer *pt;
    905   1.63   thorpej 
    906   1.63   thorpej 	timerid = SCARG(uap, timerid);
    907   1.63   thorpej 
    908  1.142        ad 	pts = p->p_timers;
    909  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    910  1.142        ad 		return (EINVAL);
    911  1.142        ad 	mutex_spin_enter(&timer_lock);
    912  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    913  1.142        ad 		mutex_spin_exit(&timer_lock);
    914   1.63   thorpej 		return (EINVAL);
    915  1.142        ad 	}
    916   1.63   thorpej 	*retval = pt->pt_poverruns;
    917  1.142        ad 	mutex_spin_exit(&timer_lock);
    918   1.63   thorpej 
    919   1.63   thorpej 	return (0);
    920   1.63   thorpej }
    921   1.63   thorpej 
    922  1.154  wrstuden #ifdef KERN_SA
    923  1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    924  1.154  wrstuden void
    925  1.154  wrstuden timerupcall(struct lwp *l)
    926  1.154  wrstuden {
    927  1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    928  1.154  wrstuden 	struct proc *p = l->l_proc;
    929  1.154  wrstuden 	unsigned int i, fired, done;
    930  1.154  wrstuden 
    931  1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    932  1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    933  1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    934  1.154  wrstuden 		return ;
    935  1.154  wrstuden 
    936  1.154  wrstuden 	mutex_enter(p->p_lock);
    937  1.154  wrstuden 
    938  1.154  wrstuden 	fired = pt->pts_fired;
    939  1.154  wrstuden 	done = 0;
    940  1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    941  1.154  wrstuden 		siginfo_t *si;
    942  1.154  wrstuden 		int mask = 1 << --i;
    943  1.154  wrstuden 		int f;
    944  1.154  wrstuden 
    945  1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    946  1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    947  1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    948  1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    949  1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    950  1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    951  1.154  wrstuden 			siginfo_free(si);
    952  1.154  wrstuden 			/* XXX What do we do here?? */
    953  1.154  wrstuden 		} else
    954  1.154  wrstuden 			done |= mask;
    955  1.154  wrstuden 		fired &= ~mask;
    956  1.154  wrstuden 		l->l_pflag ^= f;
    957  1.154  wrstuden 	}
    958  1.154  wrstuden 	pt->pts_fired &= ~done;
    959  1.154  wrstuden 	if (pt->pts_fired == 0)
    960  1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    961  1.154  wrstuden 
    962  1.154  wrstuden 	mutex_exit(p->p_lock);
    963  1.154  wrstuden }
    964  1.154  wrstuden #endif /* KERN_SA */
    965  1.154  wrstuden 
    966   1.63   thorpej /*
    967   1.63   thorpej  * Real interval timer expired:
    968   1.63   thorpej  * send process whose timer expired an alarm signal.
    969   1.63   thorpej  * If time is not set up to reload, then just return.
    970   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    971   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    972   1.63   thorpej  * SIGALRM calls to be compressed into one.
    973   1.63   thorpej  */
    974   1.63   thorpej void
    975   1.63   thorpej realtimerexpire(void *arg)
    976   1.63   thorpej {
    977  1.148     joerg 	uint64_t last_val, next_val, interval, now_ms;
    978  1.150  christos 	struct timespec now, next;
    979   1.63   thorpej 	struct ptimer *pt;
    980  1.148     joerg 	int backwards;
    981   1.63   thorpej 
    982  1.142        ad 	pt = arg;
    983   1.63   thorpej 
    984  1.142        ad 	mutex_spin_enter(&timer_lock);
    985   1.63   thorpej 	itimerfire(pt);
    986   1.63   thorpej 
    987  1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    988  1.150  christos 		timespecclear(&pt->pt_time.it_value);
    989  1.142        ad 		mutex_spin_exit(&timer_lock);
    990   1.63   thorpej 		return;
    991   1.63   thorpej 	}
    992  1.148     joerg 
    993  1.150  christos 	getnanotime(&now);
    994  1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    995  1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    996  1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    997  1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    998  1.148     joerg 		pt->pt_time.it_value = next;
    999  1.148     joerg 	} else {
   1000  1.150  christos 		now_ms = timespec2ns(&now);
   1001  1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1002  1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1003  1.148     joerg 
   1004  1.148     joerg 		next_val = now_ms +
   1005  1.148     joerg 		    (now_ms - last_val + interval - 1) % interval;
   1006  1.148     joerg 
   1007  1.148     joerg 		if (backwards)
   1008  1.148     joerg 			next_val += interval;
   1009  1.148     joerg 		else
   1010  1.148     joerg 			pt->pt_overruns += (now_ms - last_val) / interval;
   1011  1.148     joerg 
   1012  1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1013  1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1014  1.101    kardel 	}
   1015  1.148     joerg 
   1016  1.148     joerg 	/*
   1017  1.150  christos 	 * Don't need to check tshzto() return value, here.
   1018  1.148     joerg 	 * callout_reset() does it for us.
   1019  1.148     joerg 	 */
   1020  1.150  christos 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1021  1.148     joerg 	    realtimerexpire, pt);
   1022  1.148     joerg 	mutex_spin_exit(&timer_lock);
   1023   1.63   thorpej }
   1024   1.63   thorpej 
   1025   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1026   1.63   thorpej /* ARGSUSED */
   1027   1.63   thorpej int
   1028  1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1029  1.140      yamt     register_t *retval)
   1030   1.63   thorpej {
   1031  1.135       dsl 	/* {
   1032   1.63   thorpej 		syscallarg(int) which;
   1033   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1034  1.135       dsl 	} */
   1035   1.63   thorpej 	struct proc *p = l->l_proc;
   1036   1.63   thorpej 	struct itimerval aitv;
   1037   1.91      cube 	int error;
   1038   1.91      cube 
   1039   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1040   1.91      cube 	if (error)
   1041   1.91      cube 		return error;
   1042   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1043   1.91      cube }
   1044   1.63   thorpej 
   1045   1.91      cube int
   1046   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1047   1.91      cube {
   1048  1.142        ad 	struct ptimers *pts;
   1049  1.142        ad 	struct ptimer *pt;
   1050  1.150  christos 	struct itimerspec its;
   1051   1.63   thorpej 
   1052   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1053   1.63   thorpej 		return (EINVAL);
   1054   1.63   thorpej 
   1055  1.142        ad 	mutex_spin_enter(&timer_lock);
   1056  1.142        ad 	pts = p->p_timers;
   1057  1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1058   1.91      cube 		timerclear(&itvp->it_value);
   1059   1.91      cube 		timerclear(&itvp->it_interval);
   1060  1.150  christos 	} else {
   1061  1.150  christos 		timer_gettime(pt, &its);
   1062  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1063  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1064  1.150  christos 	}
   1065  1.142        ad 	mutex_spin_exit(&timer_lock);
   1066   1.63   thorpej 
   1067   1.91      cube 	return 0;
   1068    1.1       cgd }
   1069    1.1       cgd 
   1070   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1071    1.1       cgd /* ARGSUSED */
   1072    1.3    andrew int
   1073  1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1074  1.140      yamt     register_t *retval)
   1075   1.15   thorpej {
   1076  1.135       dsl 	/* {
   1077   1.30   mycroft 		syscallarg(int) which;
   1078   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1079   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1080  1.135       dsl 	} */
   1081   1.63   thorpej 	struct proc *p = l->l_proc;
   1082   1.30   mycroft 	int which = SCARG(uap, which);
   1083  1.156  christos 	struct sys___getitimer50_args getargs;
   1084   1.91      cube 	const struct itimerval *itvp;
   1085    1.1       cgd 	struct itimerval aitv;
   1086   1.91      cube 	int error;
   1087    1.1       cgd 
   1088   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1089    1.1       cgd 		return (EINVAL);
   1090   1.11       cgd 	itvp = SCARG(uap, itv);
   1091   1.63   thorpej 	if (itvp &&
   1092   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1093    1.1       cgd 		return (error);
   1094   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1095   1.30   mycroft 		SCARG(&getargs, which) = which;
   1096   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1097  1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1098   1.21       cgd 			return (error);
   1099   1.21       cgd 	}
   1100    1.1       cgd 	if (itvp == 0)
   1101    1.1       cgd 		return (0);
   1102   1.91      cube 
   1103   1.91      cube 	return dosetitimer(p, which, &aitv);
   1104   1.91      cube }
   1105   1.91      cube 
   1106   1.91      cube int
   1107   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1108   1.91      cube {
   1109  1.150  christos 	struct timespec now;
   1110  1.142        ad 	struct ptimers *pts;
   1111  1.142        ad 	struct ptimer *pt, *spare;
   1112   1.91      cube 
   1113   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1114    1.1       cgd 		return (EINVAL);
   1115   1.63   thorpej 
   1116   1.63   thorpej 	/*
   1117   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1118   1.63   thorpej 	 * wants to clear the timer.
   1119   1.63   thorpej 	 */
   1120  1.142        ad 	spare = NULL;
   1121  1.142        ad 	pts = p->p_timers;
   1122  1.142        ad  retry:
   1123  1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1124  1.142        ad 	    pts->pts_timers[which] == NULL))
   1125   1.63   thorpej 		return (0);
   1126  1.142        ad 	if (pts == NULL)
   1127  1.142        ad 		pts = timers_alloc(p);
   1128  1.142        ad 	mutex_spin_enter(&timer_lock);
   1129  1.142        ad 	pt = pts->pts_timers[which];
   1130  1.142        ad 	if (pt == NULL) {
   1131  1.142        ad 		if (spare == NULL) {
   1132  1.142        ad 			mutex_spin_exit(&timer_lock);
   1133  1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1134  1.142        ad 			goto retry;
   1135  1.142        ad 		}
   1136  1.142        ad 		pt = spare;
   1137  1.142        ad 		spare = NULL;
   1138   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1139   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1140   1.63   thorpej 		pt->pt_overruns = 0;
   1141   1.63   thorpej 		pt->pt_proc = p;
   1142   1.63   thorpej 		pt->pt_type = which;
   1143   1.64   nathanw 		pt->pt_entry = which;
   1144  1.142        ad 		pt->pt_queued = false;
   1145  1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1146  1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1147  1.149  christos 		else
   1148  1.149  christos 			pt->pt_active = 0;
   1149  1.149  christos 
   1150   1.63   thorpej 		switch (which) {
   1151   1.63   thorpej 		case ITIMER_REAL:
   1152   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1153   1.63   thorpej 			break;
   1154   1.63   thorpej 		case ITIMER_VIRTUAL:
   1155   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1156   1.63   thorpej 			break;
   1157   1.63   thorpej 		case ITIMER_PROF:
   1158   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1159   1.63   thorpej 			break;
   1160    1.1       cgd 		}
   1161  1.142        ad 		pts->pts_timers[which] = pt;
   1162  1.142        ad 	}
   1163   1.63   thorpej 
   1164  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1165  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1166  1.150  christos 
   1167  1.150  christos 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1168   1.67   nathanw 		/* Convert to absolute time */
   1169  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1170  1.150  christos 		getnanotime(&now);
   1171  1.150  christos 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1172   1.67   nathanw 	}
   1173   1.63   thorpej 	timer_settime(pt);
   1174  1.142        ad 	mutex_spin_exit(&timer_lock);
   1175  1.142        ad 	if (spare != NULL)
   1176  1.142        ad 		pool_put(&ptimer_pool, spare);
   1177   1.63   thorpej 
   1178    1.1       cgd 	return (0);
   1179    1.1       cgd }
   1180    1.1       cgd 
   1181   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1182  1.142        ad struct ptimers *
   1183   1.63   thorpej timers_alloc(struct proc *p)
   1184   1.63   thorpej {
   1185  1.142        ad 	struct ptimers *pts;
   1186   1.63   thorpej 	int i;
   1187   1.63   thorpej 
   1188  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1189   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1190   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1191   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1192   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1193   1.64   nathanw 	pts->pts_fired = 0;
   1194  1.142        ad 	mutex_spin_enter(&timer_lock);
   1195  1.142        ad 	if (p->p_timers == NULL) {
   1196  1.142        ad 		p->p_timers = pts;
   1197  1.142        ad 		mutex_spin_exit(&timer_lock);
   1198  1.142        ad 		return pts;
   1199  1.142        ad 	}
   1200  1.142        ad 	mutex_spin_exit(&timer_lock);
   1201  1.142        ad 	pool_put(&ptimers_pool, pts);
   1202  1.142        ad 	return p->p_timers;
   1203   1.63   thorpej }
   1204   1.63   thorpej 
   1205    1.1       cgd /*
   1206   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1207   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1208   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1209   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1210   1.63   thorpej  * structure if none of those remain.
   1211    1.1       cgd  */
   1212    1.3    andrew void
   1213   1.63   thorpej timers_free(struct proc *p, int which)
   1214    1.6       cgd {
   1215   1.63   thorpej 	struct ptimers *pts;
   1216  1.142        ad 	struct ptimer *ptn;
   1217  1.150  christos 	struct timespec ts;
   1218  1.142        ad 	int i;
   1219   1.63   thorpej 
   1220  1.142        ad 	if (p->p_timers == NULL)
   1221  1.142        ad 		return;
   1222   1.63   thorpej 
   1223  1.142        ad 	pts = p->p_timers;
   1224  1.142        ad 	mutex_spin_enter(&timer_lock);
   1225  1.142        ad 	if (which == TIMERS_ALL) {
   1226  1.142        ad 		p->p_timers = NULL;
   1227  1.142        ad 		i = 0;
   1228  1.142        ad 	} else {
   1229  1.150  christos 		timespecclear(&ts);
   1230  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1231  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1232  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1233  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1234  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1235  1.149  christos 		}
   1236  1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1237  1.142        ad 		if (ptn) {
   1238  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1239  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1240  1.142        ad 			    &ptn->pt_time.it_value);
   1241  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1242  1.142        ad 		}
   1243  1.150  christos 		timespecclear(&ts);
   1244  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1245  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1246  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1247  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1248  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1249  1.149  christos 		}
   1250  1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1251  1.142        ad 		if (ptn) {
   1252  1.149  christos 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1253  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1254  1.142        ad 			    &ptn->pt_time.it_value);
   1255  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1256   1.63   thorpej 		}
   1257  1.142        ad 		i = 3;
   1258  1.142        ad 	}
   1259  1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1260  1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1261  1.142        ad 			itimerfree(pts, i);
   1262  1.142        ad 			mutex_spin_enter(&timer_lock);
   1263    1.1       cgd 		}
   1264    1.1       cgd 	}
   1265  1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1266  1.142        ad 	    pts->pts_timers[2] == NULL) {
   1267  1.142        ad 		p->p_timers = NULL;
   1268  1.142        ad 		mutex_spin_exit(&timer_lock);
   1269  1.142        ad 		pool_put(&ptimers_pool, pts);
   1270  1.142        ad 	} else
   1271  1.142        ad 		mutex_spin_exit(&timer_lock);
   1272  1.142        ad }
   1273  1.142        ad 
   1274  1.142        ad static void
   1275  1.142        ad itimerfree(struct ptimers *pts, int index)
   1276  1.142        ad {
   1277  1.142        ad 	struct ptimer *pt;
   1278  1.142        ad 
   1279  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1280  1.142        ad 
   1281  1.142        ad 	pt = pts->pts_timers[index];
   1282  1.142        ad 	pts->pts_timers[index] = NULL;
   1283  1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1284  1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1285  1.144        ad 	else if (pt->pt_queued)
   1286  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1287  1.144        ad 	mutex_spin_exit(&timer_lock);
   1288  1.149  christos 	if (pt->pt_type == CLOCK_REALTIME)
   1289  1.149  christos 		callout_destroy(&pt->pt_ch);
   1290  1.142        ad 	pool_put(&ptimer_pool, pt);
   1291    1.1       cgd }
   1292    1.1       cgd 
   1293    1.1       cgd /*
   1294    1.1       cgd  * Decrement an interval timer by a specified number
   1295  1.152  christos  * of nanoseconds, which must be less than a second,
   1296  1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1297  1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1298    1.8       cgd  * reduce the value reloaded into the timer so that
   1299    1.1       cgd  * the timer does not drift.  This routine assumes
   1300    1.1       cgd  * that it is called in a context where the timers
   1301    1.1       cgd  * on which it is operating cannot change in value.
   1302    1.1       cgd  */
   1303  1.142        ad static int
   1304  1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1305   1.63   thorpej {
   1306  1.150  christos 	struct itimerspec *itp;
   1307    1.1       cgd 
   1308  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1309  1.142        ad 
   1310   1.63   thorpej 	itp = &pt->pt_time;
   1311  1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1312    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1313    1.1       cgd 			/* expired, and already in next interval */
   1314  1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1315    1.1       cgd 			goto expire;
   1316    1.1       cgd 		}
   1317  1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1318    1.1       cgd 		itp->it_value.tv_sec--;
   1319    1.1       cgd 	}
   1320  1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1321  1.152  christos 	nsec = 0;
   1322  1.150  christos 	if (timespecisset(&itp->it_value))
   1323    1.1       cgd 		return (1);
   1324    1.1       cgd 	/* expired, exactly at end of interval */
   1325    1.1       cgd expire:
   1326  1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1327    1.1       cgd 		itp->it_value = itp->it_interval;
   1328  1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1329  1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1330  1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1331    1.1       cgd 			itp->it_value.tv_sec--;
   1332    1.1       cgd 		}
   1333   1.63   thorpej 		timer_settime(pt);
   1334    1.1       cgd 	} else
   1335  1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1336    1.1       cgd 	return (0);
   1337   1.42       cgd }
   1338   1.42       cgd 
   1339  1.142        ad static void
   1340   1.63   thorpej itimerfire(struct ptimer *pt)
   1341   1.63   thorpej {
   1342   1.78        cl 
   1343  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1344  1.142        ad 
   1345  1.142        ad 	/*
   1346  1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1347  1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1348  1.142        ad 	 */
   1349  1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1350  1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1351  1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1352  1.142        ad 		return;
   1353  1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1354  1.142        ad 	pt->pt_queued = true;
   1355  1.142        ad 	softint_schedule(timer_sih);
   1356  1.142        ad }
   1357  1.142        ad 
   1358  1.142        ad void
   1359  1.142        ad timer_tick(lwp_t *l, bool user)
   1360  1.142        ad {
   1361  1.142        ad 	struct ptimers *pts;
   1362  1.142        ad 	struct ptimer *pt;
   1363  1.142        ad 	proc_t *p;
   1364  1.142        ad 
   1365  1.142        ad 	p = l->l_proc;
   1366  1.142        ad 	if (p->p_timers == NULL)
   1367  1.142        ad 		return;
   1368  1.142        ad 
   1369  1.142        ad 	mutex_spin_enter(&timer_lock);
   1370  1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1371   1.63   thorpej 		/*
   1372  1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1373   1.63   thorpej 		 */
   1374  1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1375  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1376  1.142        ad 				itimerfire(pt);
   1377  1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1378  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1379  1.142        ad 				itimerfire(pt);
   1380  1.142        ad 	}
   1381  1.142        ad 	mutex_spin_exit(&timer_lock);
   1382  1.142        ad }
   1383  1.142        ad 
   1384  1.154  wrstuden #ifdef KERN_SA
   1385  1.154  wrstuden /*
   1386  1.154  wrstuden  * timer_sa_intr:
   1387  1.154  wrstuden  *
   1388  1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1389  1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1390  1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1391  1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1392  1.154  wrstuden  */
   1393  1.154  wrstuden static void
   1394  1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1395  1.154  wrstuden {
   1396  1.155  wrstuden 	unsigned int		i;
   1397  1.155  wrstuden 	struct sadata		*sa;
   1398  1.155  wrstuden 	struct sadata_vp	*vp;
   1399  1.154  wrstuden 
   1400  1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1401  1.154  wrstuden 	if (!p->p_timerpend) {
   1402  1.154  wrstuden 		/*
   1403  1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1404  1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1405  1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1406  1.154  wrstuden 		 * determine if we really should call setrunnable.
   1407  1.154  wrstuden 		 */
   1408  1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1409  1.154  wrstuden 		pt->pt_overruns = 0;
   1410  1.154  wrstuden 		i = 1 << pt->pt_entry;
   1411  1.154  wrstuden 		p->p_timers->pts_fired = i;
   1412  1.154  wrstuden 		p->p_timerpend = 1;
   1413  1.154  wrstuden 
   1414  1.155  wrstuden 		sa = p->p_sa;
   1415  1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1416  1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1417  1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1418  1.155  wrstuden 			lwp_lock(vp_lwp);
   1419  1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1420  1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1421  1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1422  1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1423  1.154  wrstuden 				break;
   1424  1.154  wrstuden 			}
   1425  1.155  wrstuden 			lwp_unlock(vp_lwp);
   1426  1.154  wrstuden 		}
   1427  1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1428  1.154  wrstuden 	} else {
   1429  1.154  wrstuden 		i = 1 << pt->pt_entry;
   1430  1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1431  1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1432  1.154  wrstuden 			pt->pt_overruns = 0;
   1433  1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1434  1.154  wrstuden 		} else
   1435  1.154  wrstuden 			pt->pt_overruns++;
   1436  1.154  wrstuden 	}
   1437  1.154  wrstuden }
   1438  1.154  wrstuden #endif /* KERN_SA */
   1439  1.154  wrstuden 
   1440  1.142        ad static void
   1441  1.142        ad timer_intr(void *cookie)
   1442  1.142        ad {
   1443  1.142        ad 	ksiginfo_t ksi;
   1444  1.142        ad 	struct ptimer *pt;
   1445  1.142        ad 	proc_t *p;
   1446  1.142        ad 
   1447  1.158        ad 	mutex_enter(proc_lock);
   1448  1.142        ad 	mutex_spin_enter(&timer_lock);
   1449  1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1450  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1451  1.142        ad 		KASSERT(pt->pt_queued);
   1452  1.142        ad 		pt->pt_queued = false;
   1453  1.142        ad 
   1454  1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1455  1.154  wrstuden 			/* Process is dying. */
   1456  1.142        ad 			continue;
   1457  1.154  wrstuden 		}
   1458  1.142        ad 		p = pt->pt_proc;
   1459  1.154  wrstuden #ifdef KERN_SA
   1460  1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1461  1.154  wrstuden 			timer_sa_intr(pt, p);
   1462  1.142        ad 			continue;
   1463  1.142        ad 		}
   1464  1.154  wrstuden #endif /* KERN_SA */
   1465  1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1466  1.154  wrstuden 			continue;
   1467  1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1468   1.63   thorpej 			pt->pt_overruns++;
   1469  1.142        ad 			continue;
   1470   1.64   nathanw 		}
   1471  1.142        ad 
   1472  1.142        ad 		KSI_INIT(&ksi);
   1473  1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1474  1.142        ad 		ksi.ksi_code = SI_TIMER;
   1475  1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1476  1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1477  1.142        ad 		pt->pt_overruns = 0;
   1478  1.142        ad 		mutex_spin_exit(&timer_lock);
   1479  1.142        ad 		kpsignal(p, &ksi, NULL);
   1480  1.142        ad 		mutex_spin_enter(&timer_lock);
   1481   1.63   thorpej 	}
   1482  1.142        ad 	mutex_spin_exit(&timer_lock);
   1483  1.158        ad 	mutex_exit(proc_lock);
   1484   1.63   thorpej }
   1485  1.162      elad 
   1486  1.162      elad /*
   1487  1.162      elad  * Check if the time will wrap if set to ts.
   1488  1.162      elad  *
   1489  1.162      elad  * ts - timespec describing the new time
   1490  1.162      elad  * delta - the delta between the current time and ts
   1491  1.162      elad  */
   1492  1.162      elad bool
   1493  1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1494  1.162      elad {
   1495  1.162      elad 
   1496  1.162      elad 	/*
   1497  1.162      elad 	 * Don't allow the time to be set forward so far it
   1498  1.162      elad 	 * will wrap and become negative, thus allowing an
   1499  1.162      elad 	 * attacker to bypass the next check below.  The
   1500  1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1501  1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1502  1.162      elad 	 * past the cutoff, it will take a very long time
   1503  1.162      elad 	 * to get to the wrap point.
   1504  1.162      elad 	 */
   1505  1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1506  1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1507  1.162      elad 		return true;
   1508  1.162      elad 
   1509  1.162      elad 	return false;
   1510  1.162      elad }
   1511