Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.166.2.1
      1  1.166.2.1    jruoho /*	$NetBSD: kern_time.c,v 1.166.2.1 2011/06/06 09:09:32 jruoho Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.166.2.1    jruoho __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.166.2.1 2011/06/06 09:09:32 jruoho Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78      1.154  wrstuden #include <sys/sa.h>
     79      1.154  wrstuden #include <sys/savar.h>
     80       1.11       cgd #include <sys/syscallargs.h>
     81      1.143        ad #include <sys/cpu.h>
     82       1.19  christos 
     83       1.37   thorpej #include <uvm/uvm_extern.h>
     84       1.37   thorpej 
     85      1.154  wrstuden #include "opt_sa.h"
     86      1.154  wrstuden 
     87      1.142        ad static void	timer_intr(void *);
     88      1.142        ad static void	itimerfire(struct ptimer *);
     89      1.142        ad static void	itimerfree(struct ptimers *, int);
     90      1.142        ad 
     91      1.142        ad kmutex_t	timer_lock;
     92      1.142        ad 
     93      1.142        ad static void	*timer_sih;
     94      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95      1.131        ad 
     96      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     97       1.97    simonb 
     98  1.166.2.1    jruoho #define	CLOCK_VIRTUAL_P(clockid)	\
     99  1.166.2.1    jruoho 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
    100  1.166.2.1    jruoho 
    101  1.166.2.1    jruoho CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
    102  1.166.2.1    jruoho CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
    103  1.166.2.1    jruoho CTASSERT(ITIMER_PROF == CLOCK_PROF);
    104  1.166.2.1    jruoho 
    105      1.131        ad /*
    106      1.131        ad  * Initialize timekeeping.
    107      1.131        ad  */
    108      1.131        ad void
    109      1.131        ad time_init(void)
    110      1.131        ad {
    111      1.131        ad 
    112      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    113      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    114      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    115      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    116      1.131        ad }
    117      1.131        ad 
    118      1.142        ad void
    119      1.142        ad time_init2(void)
    120      1.142        ad {
    121      1.142        ad 
    122      1.142        ad 	TAILQ_INIT(&timer_queue);
    123      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    124      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    125      1.142        ad 	    timer_intr, NULL);
    126      1.142        ad }
    127      1.142        ad 
    128       1.63   thorpej /* Time of day and interval timer support.
    129        1.1       cgd  *
    130        1.1       cgd  * These routines provide the kernel entry points to get and set
    131        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    132        1.1       cgd  * here provide support for adding and subtracting timeval structures
    133        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    134        1.1       cgd  * timers when they expire.
    135        1.1       cgd  */
    136        1.1       cgd 
    137       1.22       jtc /* This function is used by clock_settime and settimeofday */
    138      1.132      elad static int
    139      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    140       1.22       jtc {
    141      1.156  christos 	struct timespec delta, now;
    142      1.129        ad 	int s;
    143       1.22       jtc 
    144       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    145      1.129        ad 	s = splclock();
    146      1.156  christos 	nanotime(&now);
    147      1.156  christos 	timespecsub(ts, &now, &delta);
    148      1.132      elad 
    149      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    150      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    151      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    152      1.129        ad 		splx(s);
    153       1.29       tls 		return (EPERM);
    154       1.55      tron 	}
    155      1.132      elad 
    156       1.29       tls #ifdef notyet
    157      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    158      1.129        ad 		splx(s);
    159       1.29       tls 		return (EPERM);
    160       1.55      tron 	}
    161       1.29       tls #endif
    162      1.103    kardel 
    163      1.156  christos 	tc_setclock(ts);
    164      1.103    kardel 
    165      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    166      1.103    kardel 
    167       1.22       jtc 	resettodr();
    168      1.129        ad 	splx(s);
    169      1.129        ad 
    170       1.29       tls 	return (0);
    171       1.22       jtc }
    172       1.22       jtc 
    173      1.132      elad int
    174      1.132      elad settime(struct proc *p, struct timespec *ts)
    175      1.132      elad {
    176      1.132      elad 	return (settime1(p, ts, true));
    177      1.132      elad }
    178      1.132      elad 
    179       1.22       jtc /* ARGSUSED */
    180       1.22       jtc int
    181      1.156  christos sys___clock_gettime50(struct lwp *l,
    182      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    183       1.22       jtc {
    184      1.135       dsl 	/* {
    185       1.22       jtc 		syscallarg(clockid_t) clock_id;
    186       1.23       cgd 		syscallarg(struct timespec *) tp;
    187      1.135       dsl 	} */
    188      1.165     njoly 	int error;
    189       1.22       jtc 	struct timespec ats;
    190       1.22       jtc 
    191      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    192      1.165     njoly 	if (error != 0)
    193      1.165     njoly 		return error;
    194      1.165     njoly 
    195      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    196      1.165     njoly }
    197      1.165     njoly 
    198      1.165     njoly int
    199      1.165     njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
    200      1.165     njoly {
    201      1.165     njoly 
    202       1.61    simonb 	switch (clock_id) {
    203       1.61    simonb 	case CLOCK_REALTIME:
    204      1.165     njoly 		nanotime(ts);
    205       1.61    simonb 		break;
    206       1.61    simonb 	case CLOCK_MONOTONIC:
    207      1.165     njoly 		nanouptime(ts);
    208       1.61    simonb 		break;
    209       1.61    simonb 	default:
    210      1.165     njoly 		return EINVAL;
    211       1.61    simonb 	}
    212       1.22       jtc 
    213      1.165     njoly 	return 0;
    214       1.22       jtc }
    215       1.22       jtc 
    216       1.22       jtc /* ARGSUSED */
    217       1.22       jtc int
    218      1.156  christos sys___clock_settime50(struct lwp *l,
    219      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    220       1.22       jtc {
    221      1.135       dsl 	/* {
    222       1.22       jtc 		syscallarg(clockid_t) clock_id;
    223       1.23       cgd 		syscallarg(const struct timespec *) tp;
    224      1.135       dsl 	} */
    225      1.156  christos 	int error;
    226      1.156  christos 	struct timespec ats;
    227       1.22       jtc 
    228      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    229      1.156  christos 		return error;
    230      1.156  christos 
    231      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    232       1.56      manu }
    233       1.56      manu 
    234       1.56      manu 
    235       1.56      manu int
    236      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    237      1.132      elad     bool check_kauth)
    238       1.56      manu {
    239       1.56      manu 	int error;
    240       1.56      manu 
    241       1.61    simonb 	switch (clock_id) {
    242       1.61    simonb 	case CLOCK_REALTIME:
    243      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    244       1.61    simonb 			return (error);
    245       1.61    simonb 		break;
    246       1.61    simonb 	case CLOCK_MONOTONIC:
    247       1.61    simonb 		return (EINVAL);	/* read-only clock */
    248       1.61    simonb 	default:
    249       1.56      manu 		return (EINVAL);
    250       1.61    simonb 	}
    251       1.22       jtc 
    252       1.22       jtc 	return 0;
    253       1.22       jtc }
    254       1.22       jtc 
    255       1.22       jtc int
    256      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    257      1.140      yamt     register_t *retval)
    258       1.22       jtc {
    259      1.135       dsl 	/* {
    260       1.22       jtc 		syscallarg(clockid_t) clock_id;
    261       1.23       cgd 		syscallarg(struct timespec *) tp;
    262      1.135       dsl 	} */
    263       1.22       jtc 	struct timespec ts;
    264       1.22       jtc 	int error = 0;
    265       1.22       jtc 
    266      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    267      1.164     njoly 		return error;
    268      1.164     njoly 
    269      1.164     njoly 	if (SCARG(uap, tp))
    270      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    271      1.164     njoly 
    272      1.164     njoly 	return error;
    273      1.164     njoly }
    274      1.164     njoly 
    275      1.164     njoly int
    276      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    277      1.164     njoly {
    278      1.164     njoly 
    279       1.61    simonb 	switch (clock_id) {
    280       1.61    simonb 	case CLOCK_REALTIME:
    281       1.61    simonb 	case CLOCK_MONOTONIC:
    282      1.164     njoly 		ts->tv_sec = 0;
    283      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    284      1.164     njoly 			ts->tv_nsec = 1;
    285      1.102    kardel 		else
    286      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    287       1.61    simonb 		break;
    288       1.61    simonb 	default:
    289      1.164     njoly 		return EINVAL;
    290       1.61    simonb 	}
    291       1.22       jtc 
    292      1.164     njoly 	return 0;
    293       1.22       jtc }
    294       1.22       jtc 
    295       1.27       jtc /* ARGSUSED */
    296       1.27       jtc int
    297      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    298      1.140      yamt     register_t *retval)
    299       1.27       jtc {
    300      1.135       dsl 	/* {
    301      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    302      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    303      1.135       dsl 	} */
    304      1.101    kardel 	struct timespec rmt, rqt;
    305      1.120       dsl 	int error, error1;
    306      1.101    kardel 
    307      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    308      1.101    kardel 	if (error)
    309      1.101    kardel 		return (error);
    310      1.101    kardel 
    311      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    312      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    313      1.120       dsl 		return error;
    314      1.120       dsl 
    315      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    316      1.120       dsl 	return error1 ? error1 : error;
    317      1.120       dsl }
    318      1.120       dsl 
    319      1.120       dsl int
    320      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    321      1.120       dsl {
    322      1.141      yamt 	struct timespec rmtstart;
    323      1.120       dsl 	int error, timo;
    324      1.120       dsl 
    325      1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    326      1.160  christos 		return error;
    327      1.101    kardel 
    328      1.120       dsl 	timo = tstohz(rqt);
    329      1.101    kardel 	/*
    330      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    331      1.101    kardel 	 */
    332      1.101    kardel 	if (timo == 0)
    333      1.101    kardel 		timo = 1;
    334      1.141      yamt 	getnanouptime(&rmtstart);
    335      1.141      yamt again:
    336      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    337      1.141      yamt 	if (rmt != NULL || error == 0) {
    338      1.141      yamt 		struct timespec rmtend;
    339      1.141      yamt 		struct timespec t0;
    340      1.141      yamt 		struct timespec *t;
    341      1.101    kardel 
    342      1.141      yamt 		getnanouptime(&rmtend);
    343      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    344      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    345      1.141      yamt 		timespecsub(rqt, t, t);
    346      1.141      yamt 		if (t->tv_sec < 0)
    347      1.141      yamt 			timespecclear(t);
    348      1.141      yamt 		if (error == 0) {
    349      1.141      yamt 			timo = tstohz(t);
    350      1.141      yamt 			if (timo > 0)
    351      1.141      yamt 				goto again;
    352      1.141      yamt 		}
    353      1.141      yamt 	}
    354      1.104    kardel 
    355      1.101    kardel 	if (error == ERESTART)
    356      1.101    kardel 		error = EINTR;
    357      1.101    kardel 	if (error == EWOULDBLOCK)
    358      1.101    kardel 		error = 0;
    359      1.101    kardel 
    360      1.101    kardel 	return error;
    361       1.27       jtc }
    362       1.22       jtc 
    363        1.1       cgd /* ARGSUSED */
    364        1.3    andrew int
    365      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    366      1.140      yamt     register_t *retval)
    367       1.15   thorpej {
    368      1.135       dsl 	/* {
    369       1.11       cgd 		syscallarg(struct timeval *) tp;
    370      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    371      1.135       dsl 	} */
    372        1.1       cgd 	struct timeval atv;
    373        1.1       cgd 	int error = 0;
    374       1.25     perry 	struct timezone tzfake;
    375        1.1       cgd 
    376       1.11       cgd 	if (SCARG(uap, tp)) {
    377        1.1       cgd 		microtime(&atv);
    378       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    379       1.17  christos 		if (error)
    380        1.1       cgd 			return (error);
    381        1.1       cgd 	}
    382       1.25     perry 	if (SCARG(uap, tzp)) {
    383       1.25     perry 		/*
    384       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    385       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    386       1.25     perry 		 */
    387       1.25     perry 		tzfake.tz_minuteswest = 0;
    388       1.25     perry 		tzfake.tz_dsttime = 0;
    389       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    390       1.25     perry 	}
    391        1.1       cgd 	return (error);
    392        1.1       cgd }
    393        1.1       cgd 
    394        1.1       cgd /* ARGSUSED */
    395        1.3    andrew int
    396      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    397      1.140      yamt     register_t *retval)
    398       1.15   thorpej {
    399      1.135       dsl 	/* {
    400       1.24       cgd 		syscallarg(const struct timeval *) tv;
    401      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    402      1.135       dsl 	} */
    403       1.60      manu 
    404      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    405       1.60      manu }
    406       1.60      manu 
    407       1.60      manu int
    408      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    409      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    410       1.60      manu {
    411       1.22       jtc 	struct timeval atv;
    412       1.98  christos 	struct timespec ts;
    413       1.22       jtc 	int error;
    414        1.1       cgd 
    415        1.8       cgd 	/* Verify all parameters before changing time. */
    416      1.119       dsl 
    417       1.25     perry 	/*
    418       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    419       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    420       1.25     perry 	 */
    421       1.98  christos 	if (utzp)
    422       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    423      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    424       1.98  christos 
    425       1.98  christos 	if (utv == NULL)
    426       1.98  christos 		return 0;
    427       1.98  christos 
    428      1.119       dsl 	if (userspace) {
    429      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    430      1.119       dsl 			return error;
    431      1.119       dsl 		utv = &atv;
    432      1.119       dsl 	}
    433      1.119       dsl 
    434      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    435      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    436        1.1       cgd }
    437        1.1       cgd 
    438       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    439        1.1       cgd 
    440        1.1       cgd /* ARGSUSED */
    441        1.3    andrew int
    442      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    443      1.140      yamt     register_t *retval)
    444       1.15   thorpej {
    445      1.135       dsl 	/* {
    446       1.24       cgd 		syscallarg(const struct timeval *) delta;
    447       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    448      1.135       dsl 	} */
    449      1.156  christos 	int error = 0;
    450      1.156  christos 	struct timeval atv, oldatv;
    451        1.1       cgd 
    452      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    453      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    454      1.156  christos 		return error;
    455       1.17  christos 
    456      1.156  christos 	if (SCARG(uap, delta)) {
    457      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    458      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    459      1.156  christos 		if (error)
    460      1.156  christos 			return (error);
    461      1.156  christos 	}
    462      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    463      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    464      1.156  christos 	if (SCARG(uap, olddelta))
    465      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    466      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    467      1.156  christos 	return error;
    468       1.56      manu }
    469       1.56      manu 
    470      1.156  christos void
    471      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    472       1.56      manu {
    473      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    474      1.101    kardel 
    475      1.101    kardel 	if (olddelta) {
    476      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    477      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    478      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    479      1.156  christos 		if (olddelta->tv_usec < 0) {
    480      1.156  christos 			olddelta->tv_usec += 1000000;
    481      1.156  christos 			olddelta->tv_sec--;
    482      1.101    kardel 		}
    483      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    484      1.101    kardel 	}
    485      1.101    kardel 
    486      1.101    kardel 	if (delta) {
    487      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    488      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    489      1.101    kardel 
    490      1.143        ad 		if (time_adjtime) {
    491      1.101    kardel 			/* We need to save the system time during shutdown */
    492      1.101    kardel 			time_adjusted |= 1;
    493      1.143        ad 		}
    494      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    495      1.101    kardel 	}
    496        1.1       cgd }
    497        1.1       cgd 
    498        1.1       cgd /*
    499       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    500       1.63   thorpej  * timer_*() family of routines are supported.
    501        1.1       cgd  *
    502       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    503       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    504       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    505       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    506       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    507       1.63   thorpej  * syscall.
    508        1.1       cgd  *
    509       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    510       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    511        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    512       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    513       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    514       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    515       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    516       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    517       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    518       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    519       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    520       1.63   thorpej 
    521       1.63   thorpej /* Allocate a POSIX realtime timer. */
    522       1.63   thorpej int
    523      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    524      1.140      yamt     register_t *retval)
    525       1.63   thorpej {
    526      1.135       dsl 	/* {
    527       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    528       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    529       1.63   thorpej 		syscallarg(timer_t *) timerid;
    530      1.135       dsl 	} */
    531       1.92      cube 
    532       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    533      1.105        ad 	    SCARG(uap, evp), copyin, l);
    534       1.92      cube }
    535       1.92      cube 
    536       1.92      cube int
    537       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    538      1.105        ad     copyin_t fetch_event, struct lwp *l)
    539       1.92      cube {
    540       1.92      cube 	int error;
    541       1.92      cube 	timer_t timerid;
    542      1.142        ad 	struct ptimers *pts;
    543       1.63   thorpej 	struct ptimer *pt;
    544      1.105        ad 	struct proc *p;
    545      1.105        ad 
    546      1.105        ad 	p = l->l_proc;
    547       1.63   thorpej 
    548  1.166.2.1    jruoho 	if (id != CLOCK_REALTIME && id != CLOCK_VIRTUAL &&
    549  1.166.2.1    jruoho 	    id != CLOCK_PROF && id != CLOCK_MONOTONIC)
    550       1.63   thorpej 		return (EINVAL);
    551       1.63   thorpej 
    552      1.142        ad 	if ((pts = p->p_timers) == NULL)
    553      1.142        ad 		pts = timers_alloc(p);
    554       1.63   thorpej 
    555       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    556      1.142        ad 	if (evp != NULL) {
    557       1.63   thorpej 		if (((error =
    558       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    559       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    560      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    561      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    562      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    563      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    564       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    565       1.63   thorpej 			return (error ? error : EINVAL);
    566       1.63   thorpej 		}
    567      1.142        ad 	}
    568      1.142        ad 
    569      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    570      1.142        ad 	mutex_spin_enter(&timer_lock);
    571      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    572      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    573      1.142        ad 			break;
    574      1.142        ad 	if (timerid == TIMER_MAX) {
    575      1.142        ad 		mutex_spin_exit(&timer_lock);
    576      1.142        ad 		pool_put(&ptimer_pool, pt);
    577      1.142        ad 		return EAGAIN;
    578      1.142        ad 	}
    579      1.142        ad 	if (evp == NULL) {
    580       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    581       1.63   thorpej 		switch (id) {
    582       1.63   thorpej 		case CLOCK_REALTIME:
    583  1.166.2.1    jruoho 		case CLOCK_MONOTONIC:
    584       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    585       1.63   thorpej 			break;
    586       1.63   thorpej 		case CLOCK_VIRTUAL:
    587       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    588       1.63   thorpej 			break;
    589       1.63   thorpej 		case CLOCK_PROF:
    590       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    591       1.63   thorpej 			break;
    592       1.63   thorpej 		}
    593       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    594       1.63   thorpej 	}
    595       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    596       1.73  christos 	pt->pt_info.ksi_errno = 0;
    597       1.73  christos 	pt->pt_info.ksi_code = 0;
    598       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    599      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    600      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    601       1.63   thorpej 	pt->pt_type = id;
    602       1.63   thorpej 	pt->pt_proc = p;
    603       1.63   thorpej 	pt->pt_overruns = 0;
    604       1.63   thorpej 	pt->pt_poverruns = 0;
    605       1.64   nathanw 	pt->pt_entry = timerid;
    606      1.142        ad 	pt->pt_queued = false;
    607      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    608  1.166.2.1    jruoho 	if (!CLOCK_VIRTUAL_P(id))
    609  1.166.2.1    jruoho 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    610      1.149  christos 	else
    611      1.149  christos 		pt->pt_active = 0;
    612      1.149  christos 
    613      1.142        ad 	pts->pts_timers[timerid] = pt;
    614      1.142        ad 	mutex_spin_exit(&timer_lock);
    615       1.63   thorpej 
    616       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    617       1.63   thorpej }
    618       1.63   thorpej 
    619       1.63   thorpej /* Delete a POSIX realtime timer */
    620        1.3    andrew int
    621      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    622      1.140      yamt     register_t *retval)
    623       1.15   thorpej {
    624      1.135       dsl 	/* {
    625       1.63   thorpej 		syscallarg(timer_t) timerid;
    626      1.135       dsl 	} */
    627       1.63   thorpej 	struct proc *p = l->l_proc;
    628       1.65  jdolecek 	timer_t timerid;
    629      1.142        ad 	struct ptimers *pts;
    630       1.63   thorpej 	struct ptimer *pt, *ptn;
    631        1.1       cgd 
    632       1.63   thorpej 	timerid = SCARG(uap, timerid);
    633      1.142        ad 	pts = p->p_timers;
    634      1.142        ad 
    635      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    636      1.142        ad 		return (EINVAL);
    637       1.63   thorpej 
    638      1.142        ad 	mutex_spin_enter(&timer_lock);
    639      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    640      1.142        ad 		mutex_spin_exit(&timer_lock);
    641        1.1       cgd 		return (EINVAL);
    642      1.142        ad 	}
    643  1.166.2.1    jruoho 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    644      1.149  christos 		if (pt->pt_active) {
    645      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    646      1.149  christos 			LIST_REMOVE(pt, pt_list);
    647      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    648      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    649      1.149  christos 				    &ptn->pt_time.it_value,
    650      1.149  christos 				    &ptn->pt_time.it_value);
    651      1.149  christos 			pt->pt_active = 0;
    652      1.149  christos 		}
    653       1.63   thorpej 	}
    654      1.142        ad 	itimerfree(pts, timerid);
    655       1.63   thorpej 
    656       1.63   thorpej 	return (0);
    657       1.63   thorpej }
    658       1.63   thorpej 
    659       1.63   thorpej /*
    660       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    661  1.166.2.1    jruoho  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    662  1.166.2.1    jruoho  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    663       1.63   thorpej  */
    664       1.63   thorpej void
    665       1.63   thorpej timer_settime(struct ptimer *pt)
    666       1.63   thorpej {
    667       1.63   thorpej 	struct ptimer *ptn, *pptn;
    668       1.63   thorpej 	struct ptlist *ptl;
    669       1.63   thorpej 
    670      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    671      1.142        ad 
    672  1.166.2.1    jruoho 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    673  1.166.2.1    jruoho 		callout_halt(&pt->pt_ch, &timer_lock);
    674      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    675       1.63   thorpej 			/*
    676      1.150  christos 			 * Don't need to check tshzto() return value, here.
    677       1.63   thorpej 			 * callout_reset() does it for us.
    678       1.63   thorpej 			 */
    679      1.150  christos 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    680       1.63   thorpej 			    realtimerexpire, pt);
    681       1.63   thorpej 		}
    682       1.63   thorpej 	} else {
    683       1.63   thorpej 		if (pt->pt_active) {
    684       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    685       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    686       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    687      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    688       1.63   thorpej 				    &ptn->pt_time.it_value,
    689       1.63   thorpej 				    &ptn->pt_time.it_value);
    690       1.63   thorpej 		}
    691      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    692       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    693       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    694       1.63   thorpej 			else
    695       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    696       1.63   thorpej 
    697       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    698      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    699       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    700       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    701      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    702       1.63   thorpej 				    &ptn->pt_time.it_value,
    703       1.63   thorpej 				    &pt->pt_time.it_value);
    704       1.63   thorpej 
    705       1.63   thorpej 			if (pptn)
    706       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    707       1.63   thorpej 			else
    708       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    709       1.63   thorpej 
    710       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    711      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    712       1.63   thorpej 				    &pt->pt_time.it_value,
    713       1.63   thorpej 				    &ptn->pt_time.it_value);
    714       1.63   thorpej 
    715       1.63   thorpej 			pt->pt_active = 1;
    716       1.63   thorpej 		} else
    717       1.63   thorpej 			pt->pt_active = 0;
    718       1.63   thorpej 	}
    719       1.63   thorpej }
    720       1.63   thorpej 
    721       1.63   thorpej void
    722      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    723       1.63   thorpej {
    724      1.150  christos 	struct timespec now;
    725       1.63   thorpej 	struct ptimer *ptn;
    726       1.63   thorpej 
    727      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    728      1.142        ad 
    729      1.150  christos 	*aits = pt->pt_time;
    730  1.166.2.1    jruoho 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    731        1.1       cgd 		/*
    732       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    733       1.63   thorpej 		 * part of real time timer.  If time for real time
    734       1.63   thorpej 		 * timer has passed return 0, else return difference
    735       1.63   thorpej 		 * between current time and time for the timer to go
    736       1.63   thorpej 		 * off.
    737        1.1       cgd 		 */
    738      1.150  christos 		if (timespecisset(&aits->it_value)) {
    739  1.166.2.1    jruoho 			if (pt->pt_type == CLOCK_REALTIME) {
    740  1.166.2.1    jruoho 				getnanotime(&now);
    741  1.166.2.1    jruoho 			} else { /* CLOCK_MONOTONIC */
    742  1.166.2.1    jruoho 				getnanouptime(&now);
    743  1.166.2.1    jruoho 			}
    744      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    745      1.150  christos 				timespecclear(&aits->it_value);
    746      1.101    kardel 			else
    747      1.150  christos 				timespecsub(&aits->it_value, &now,
    748      1.150  christos 				    &aits->it_value);
    749       1.36   thorpej 		}
    750       1.63   thorpej 	} else if (pt->pt_active) {
    751       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    752       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    753       1.63   thorpej 		else
    754       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    755       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    756      1.150  christos 			timespecadd(&aits->it_value,
    757      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    758       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    759        1.1       cgd 	} else
    760      1.150  christos 		timespecclear(&aits->it_value);
    761       1.63   thorpej }
    762       1.63   thorpej 
    763       1.63   thorpej 
    764       1.63   thorpej 
    765       1.63   thorpej /* Set and arm a POSIX realtime timer */
    766       1.63   thorpej int
    767      1.156  christos sys___timer_settime50(struct lwp *l,
    768      1.156  christos     const struct sys___timer_settime50_args *uap,
    769      1.140      yamt     register_t *retval)
    770       1.63   thorpej {
    771      1.135       dsl 	/* {
    772       1.63   thorpej 		syscallarg(timer_t) timerid;
    773       1.63   thorpej 		syscallarg(int) flags;
    774       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    775       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    776      1.135       dsl 	} */
    777       1.92      cube 	int error;
    778       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    779       1.92      cube 
    780       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    781       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    782       1.92      cube 		return (error);
    783       1.92      cube 
    784       1.92      cube 	if (SCARG(uap, ovalue))
    785       1.92      cube 		ovp = &ovalue;
    786       1.92      cube 
    787       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    788       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    789       1.92      cube 		return error;
    790       1.92      cube 
    791       1.92      cube 	if (ovp)
    792       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    793       1.92      cube 		    sizeof(struct itimerspec));
    794       1.92      cube 	return 0;
    795       1.92      cube }
    796       1.92      cube 
    797       1.92      cube int
    798       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    799       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    800       1.92      cube {
    801      1.150  christos 	struct timespec now;
    802      1.150  christos 	struct itimerspec val, oval;
    803      1.142        ad 	struct ptimers *pts;
    804       1.63   thorpej 	struct ptimer *pt;
    805      1.160  christos 	int error;
    806       1.63   thorpej 
    807      1.142        ad 	pts = p->p_timers;
    808       1.63   thorpej 
    809      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    810      1.142        ad 		return EINVAL;
    811      1.150  christos 	val = *value;
    812      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    813      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    814      1.160  christos 		return error;
    815       1.63   thorpej 
    816      1.142        ad 	mutex_spin_enter(&timer_lock);
    817      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    818      1.142        ad 		mutex_spin_exit(&timer_lock);
    819      1.150  christos 		return EINVAL;
    820      1.142        ad 	}
    821      1.142        ad 
    822       1.63   thorpej 	oval = pt->pt_time;
    823       1.63   thorpej 	pt->pt_time = val;
    824       1.63   thorpej 
    825       1.67   nathanw 	/*
    826       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    827       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    828       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    829       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    830       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    831       1.67   nathanw 	 */
    832      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    833  1.166.2.1    jruoho 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    834      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    835  1.166.2.1    jruoho 				if (pt->pt_type == CLOCK_REALTIME) {
    836  1.166.2.1    jruoho 					getnanotime(&now);
    837  1.166.2.1    jruoho 				} else { /* CLOCK_MONOTONIC */
    838  1.166.2.1    jruoho 					getnanouptime(&now);
    839  1.166.2.1    jruoho 				}
    840      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    841      1.101    kardel 				    &pt->pt_time.it_value);
    842      1.101    kardel 			}
    843       1.67   nathanw 		} else {
    844       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    845      1.150  christos 				getnanotime(&now);
    846      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    847      1.101    kardel 				    &pt->pt_time.it_value);
    848      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    849       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    850       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    851      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    852       1.67   nathanw 				}
    853       1.67   nathanw 			}
    854       1.67   nathanw 		}
    855       1.67   nathanw 	}
    856       1.67   nathanw 
    857       1.63   thorpej 	timer_settime(pt);
    858      1.142        ad 	mutex_spin_exit(&timer_lock);
    859       1.63   thorpej 
    860      1.150  christos 	if (ovalue)
    861      1.150  christos 		*ovalue = oval;
    862       1.63   thorpej 
    863       1.63   thorpej 	return (0);
    864       1.63   thorpej }
    865       1.63   thorpej 
    866       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    867       1.63   thorpej int
    868      1.156  christos sys___timer_gettime50(struct lwp *l,
    869      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    870       1.63   thorpej {
    871      1.135       dsl 	/* {
    872       1.63   thorpej 		syscallarg(timer_t) timerid;
    873       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    874      1.135       dsl 	} */
    875       1.63   thorpej 	struct itimerspec its;
    876       1.92      cube 	int error;
    877       1.92      cube 
    878       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    879       1.92      cube 	    &its)) != 0)
    880       1.92      cube 		return error;
    881       1.92      cube 
    882       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    883       1.92      cube }
    884       1.92      cube 
    885       1.92      cube int
    886       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    887       1.92      cube {
    888       1.63   thorpej 	struct ptimer *pt;
    889      1.142        ad 	struct ptimers *pts;
    890       1.63   thorpej 
    891      1.142        ad 	pts = p->p_timers;
    892      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    893       1.63   thorpej 		return (EINVAL);
    894      1.142        ad 	mutex_spin_enter(&timer_lock);
    895      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    896      1.142        ad 		mutex_spin_exit(&timer_lock);
    897      1.142        ad 		return (EINVAL);
    898      1.142        ad 	}
    899      1.150  christos 	timer_gettime(pt, its);
    900      1.142        ad 	mutex_spin_exit(&timer_lock);
    901       1.63   thorpej 
    902       1.92      cube 	return 0;
    903       1.63   thorpej }
    904       1.63   thorpej 
    905       1.63   thorpej /*
    906       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    907       1.63   thorpej  * while a notification was already pending. The counter is reset when
    908       1.63   thorpej  * a timer expires and a notification can be posted.
    909       1.63   thorpej  */
    910       1.63   thorpej int
    911      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    912      1.140      yamt     register_t *retval)
    913       1.63   thorpej {
    914      1.135       dsl 	/* {
    915       1.63   thorpej 		syscallarg(timer_t) timerid;
    916      1.135       dsl 	} */
    917       1.63   thorpej 	struct proc *p = l->l_proc;
    918      1.142        ad 	struct ptimers *pts;
    919       1.63   thorpej 	int timerid;
    920       1.63   thorpej 	struct ptimer *pt;
    921       1.63   thorpej 
    922       1.63   thorpej 	timerid = SCARG(uap, timerid);
    923       1.63   thorpej 
    924      1.142        ad 	pts = p->p_timers;
    925      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    926      1.142        ad 		return (EINVAL);
    927      1.142        ad 	mutex_spin_enter(&timer_lock);
    928      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    929      1.142        ad 		mutex_spin_exit(&timer_lock);
    930       1.63   thorpej 		return (EINVAL);
    931      1.142        ad 	}
    932       1.63   thorpej 	*retval = pt->pt_poverruns;
    933      1.142        ad 	mutex_spin_exit(&timer_lock);
    934       1.63   thorpej 
    935       1.63   thorpej 	return (0);
    936       1.63   thorpej }
    937       1.63   thorpej 
    938      1.154  wrstuden #ifdef KERN_SA
    939      1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    940      1.154  wrstuden void
    941      1.154  wrstuden timerupcall(struct lwp *l)
    942      1.154  wrstuden {
    943      1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    944      1.154  wrstuden 	struct proc *p = l->l_proc;
    945      1.154  wrstuden 	unsigned int i, fired, done;
    946      1.154  wrstuden 
    947      1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    948      1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    949      1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    950      1.154  wrstuden 		return ;
    951      1.154  wrstuden 
    952      1.154  wrstuden 	mutex_enter(p->p_lock);
    953      1.154  wrstuden 
    954      1.154  wrstuden 	fired = pt->pts_fired;
    955      1.154  wrstuden 	done = 0;
    956      1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    957      1.154  wrstuden 		siginfo_t *si;
    958      1.154  wrstuden 		int mask = 1 << --i;
    959      1.154  wrstuden 		int f;
    960      1.154  wrstuden 
    961      1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    962      1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    963      1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    964      1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    965      1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    966      1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    967      1.154  wrstuden 			siginfo_free(si);
    968      1.154  wrstuden 			/* XXX What do we do here?? */
    969      1.154  wrstuden 		} else
    970      1.154  wrstuden 			done |= mask;
    971      1.154  wrstuden 		fired &= ~mask;
    972      1.154  wrstuden 		l->l_pflag ^= f;
    973      1.154  wrstuden 	}
    974      1.154  wrstuden 	pt->pts_fired &= ~done;
    975      1.154  wrstuden 	if (pt->pts_fired == 0)
    976      1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    977      1.154  wrstuden 
    978      1.154  wrstuden 	mutex_exit(p->p_lock);
    979      1.154  wrstuden }
    980      1.154  wrstuden #endif /* KERN_SA */
    981      1.154  wrstuden 
    982       1.63   thorpej /*
    983       1.63   thorpej  * Real interval timer expired:
    984       1.63   thorpej  * send process whose timer expired an alarm signal.
    985       1.63   thorpej  * If time is not set up to reload, then just return.
    986       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    987       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    988       1.63   thorpej  * SIGALRM calls to be compressed into one.
    989       1.63   thorpej  */
    990       1.63   thorpej void
    991       1.63   thorpej realtimerexpire(void *arg)
    992       1.63   thorpej {
    993      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    994      1.150  christos 	struct timespec now, next;
    995       1.63   thorpej 	struct ptimer *pt;
    996      1.148     joerg 	int backwards;
    997       1.63   thorpej 
    998      1.142        ad 	pt = arg;
    999       1.63   thorpej 
   1000      1.142        ad 	mutex_spin_enter(&timer_lock);
   1001       1.63   thorpej 	itimerfire(pt);
   1002       1.63   thorpej 
   1003      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1004      1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1005      1.142        ad 		mutex_spin_exit(&timer_lock);
   1006       1.63   thorpej 		return;
   1007       1.63   thorpej 	}
   1008      1.148     joerg 
   1009      1.150  christos 	getnanotime(&now);
   1010      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1011      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1012      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1013      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1014      1.148     joerg 		pt->pt_time.it_value = next;
   1015      1.148     joerg 	} else {
   1016      1.166      yamt 		now_ns = timespec2ns(&now);
   1017      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1018      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1019      1.148     joerg 
   1020      1.166      yamt 		next_val = now_ns +
   1021      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1022      1.148     joerg 
   1023      1.148     joerg 		if (backwards)
   1024      1.148     joerg 			next_val += interval;
   1025      1.148     joerg 		else
   1026      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1027      1.148     joerg 
   1028      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1029      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1030      1.101    kardel 	}
   1031      1.148     joerg 
   1032      1.148     joerg 	/*
   1033      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1034      1.148     joerg 	 * callout_reset() does it for us.
   1035      1.148     joerg 	 */
   1036      1.150  christos 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1037      1.148     joerg 	    realtimerexpire, pt);
   1038      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1039       1.63   thorpej }
   1040       1.63   thorpej 
   1041       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1042       1.63   thorpej /* ARGSUSED */
   1043       1.63   thorpej int
   1044      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1045      1.140      yamt     register_t *retval)
   1046       1.63   thorpej {
   1047      1.135       dsl 	/* {
   1048       1.63   thorpej 		syscallarg(int) which;
   1049       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1050      1.135       dsl 	} */
   1051       1.63   thorpej 	struct proc *p = l->l_proc;
   1052       1.63   thorpej 	struct itimerval aitv;
   1053       1.91      cube 	int error;
   1054       1.91      cube 
   1055       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1056       1.91      cube 	if (error)
   1057       1.91      cube 		return error;
   1058       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1059       1.91      cube }
   1060       1.63   thorpej 
   1061       1.91      cube int
   1062       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1063       1.91      cube {
   1064      1.142        ad 	struct ptimers *pts;
   1065      1.142        ad 	struct ptimer *pt;
   1066      1.150  christos 	struct itimerspec its;
   1067       1.63   thorpej 
   1068       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1069       1.63   thorpej 		return (EINVAL);
   1070       1.63   thorpej 
   1071      1.142        ad 	mutex_spin_enter(&timer_lock);
   1072      1.142        ad 	pts = p->p_timers;
   1073      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1074       1.91      cube 		timerclear(&itvp->it_value);
   1075       1.91      cube 		timerclear(&itvp->it_interval);
   1076      1.150  christos 	} else {
   1077      1.150  christos 		timer_gettime(pt, &its);
   1078      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1079      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1080      1.150  christos 	}
   1081      1.142        ad 	mutex_spin_exit(&timer_lock);
   1082       1.63   thorpej 
   1083       1.91      cube 	return 0;
   1084        1.1       cgd }
   1085        1.1       cgd 
   1086       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1087        1.1       cgd /* ARGSUSED */
   1088        1.3    andrew int
   1089      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1090      1.140      yamt     register_t *retval)
   1091       1.15   thorpej {
   1092      1.135       dsl 	/* {
   1093       1.30   mycroft 		syscallarg(int) which;
   1094       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1095       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1096      1.135       dsl 	} */
   1097       1.63   thorpej 	struct proc *p = l->l_proc;
   1098       1.30   mycroft 	int which = SCARG(uap, which);
   1099      1.156  christos 	struct sys___getitimer50_args getargs;
   1100       1.91      cube 	const struct itimerval *itvp;
   1101        1.1       cgd 	struct itimerval aitv;
   1102       1.91      cube 	int error;
   1103        1.1       cgd 
   1104       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1105        1.1       cgd 		return (EINVAL);
   1106       1.11       cgd 	itvp = SCARG(uap, itv);
   1107       1.63   thorpej 	if (itvp &&
   1108       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1109        1.1       cgd 		return (error);
   1110       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1111       1.30   mycroft 		SCARG(&getargs, which) = which;
   1112       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1113      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1114       1.21       cgd 			return (error);
   1115       1.21       cgd 	}
   1116        1.1       cgd 	if (itvp == 0)
   1117        1.1       cgd 		return (0);
   1118       1.91      cube 
   1119       1.91      cube 	return dosetitimer(p, which, &aitv);
   1120       1.91      cube }
   1121       1.91      cube 
   1122       1.91      cube int
   1123       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1124       1.91      cube {
   1125      1.150  christos 	struct timespec now;
   1126      1.142        ad 	struct ptimers *pts;
   1127      1.142        ad 	struct ptimer *pt, *spare;
   1128       1.91      cube 
   1129  1.166.2.1    jruoho 	KASSERT(which == CLOCK_REALTIME || which == CLOCK_VIRTUAL ||
   1130  1.166.2.1    jruoho 	    which == CLOCK_PROF);
   1131       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1132        1.1       cgd 		return (EINVAL);
   1133       1.63   thorpej 
   1134       1.63   thorpej 	/*
   1135       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1136       1.63   thorpej 	 * wants to clear the timer.
   1137       1.63   thorpej 	 */
   1138      1.142        ad 	spare = NULL;
   1139      1.142        ad 	pts = p->p_timers;
   1140      1.142        ad  retry:
   1141      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1142      1.142        ad 	    pts->pts_timers[which] == NULL))
   1143       1.63   thorpej 		return (0);
   1144      1.142        ad 	if (pts == NULL)
   1145      1.142        ad 		pts = timers_alloc(p);
   1146      1.142        ad 	mutex_spin_enter(&timer_lock);
   1147      1.142        ad 	pt = pts->pts_timers[which];
   1148      1.142        ad 	if (pt == NULL) {
   1149      1.142        ad 		if (spare == NULL) {
   1150      1.142        ad 			mutex_spin_exit(&timer_lock);
   1151      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1152      1.142        ad 			goto retry;
   1153      1.142        ad 		}
   1154      1.142        ad 		pt = spare;
   1155      1.142        ad 		spare = NULL;
   1156       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1157       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1158       1.63   thorpej 		pt->pt_overruns = 0;
   1159       1.63   thorpej 		pt->pt_proc = p;
   1160       1.63   thorpej 		pt->pt_type = which;
   1161       1.64   nathanw 		pt->pt_entry = which;
   1162      1.142        ad 		pt->pt_queued = false;
   1163      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1164      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1165      1.149  christos 		else
   1166      1.149  christos 			pt->pt_active = 0;
   1167      1.149  christos 
   1168       1.63   thorpej 		switch (which) {
   1169       1.63   thorpej 		case ITIMER_REAL:
   1170       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1171       1.63   thorpej 			break;
   1172       1.63   thorpej 		case ITIMER_VIRTUAL:
   1173       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1174       1.63   thorpej 			break;
   1175       1.63   thorpej 		case ITIMER_PROF:
   1176       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1177       1.63   thorpej 			break;
   1178        1.1       cgd 		}
   1179      1.142        ad 		pts->pts_timers[which] = pt;
   1180      1.142        ad 	}
   1181       1.63   thorpej 
   1182      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1183      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1184      1.150  christos 
   1185      1.150  christos 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1186       1.67   nathanw 		/* Convert to absolute time */
   1187      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1188      1.150  christos 		getnanotime(&now);
   1189      1.150  christos 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1190       1.67   nathanw 	}
   1191       1.63   thorpej 	timer_settime(pt);
   1192      1.142        ad 	mutex_spin_exit(&timer_lock);
   1193      1.142        ad 	if (spare != NULL)
   1194      1.142        ad 		pool_put(&ptimer_pool, spare);
   1195       1.63   thorpej 
   1196        1.1       cgd 	return (0);
   1197        1.1       cgd }
   1198        1.1       cgd 
   1199       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1200      1.142        ad struct ptimers *
   1201       1.63   thorpej timers_alloc(struct proc *p)
   1202       1.63   thorpej {
   1203      1.142        ad 	struct ptimers *pts;
   1204       1.63   thorpej 	int i;
   1205       1.63   thorpej 
   1206      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1207       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1208       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1209       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1210       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1211       1.64   nathanw 	pts->pts_fired = 0;
   1212      1.142        ad 	mutex_spin_enter(&timer_lock);
   1213      1.142        ad 	if (p->p_timers == NULL) {
   1214      1.142        ad 		p->p_timers = pts;
   1215      1.142        ad 		mutex_spin_exit(&timer_lock);
   1216      1.142        ad 		return pts;
   1217      1.142        ad 	}
   1218      1.142        ad 	mutex_spin_exit(&timer_lock);
   1219      1.142        ad 	pool_put(&ptimers_pool, pts);
   1220      1.142        ad 	return p->p_timers;
   1221       1.63   thorpej }
   1222       1.63   thorpej 
   1223        1.1       cgd /*
   1224       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1225       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1226       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1227       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1228       1.63   thorpej  * structure if none of those remain.
   1229        1.1       cgd  */
   1230        1.3    andrew void
   1231       1.63   thorpej timers_free(struct proc *p, int which)
   1232        1.6       cgd {
   1233       1.63   thorpej 	struct ptimers *pts;
   1234      1.142        ad 	struct ptimer *ptn;
   1235      1.150  christos 	struct timespec ts;
   1236      1.142        ad 	int i;
   1237       1.63   thorpej 
   1238      1.142        ad 	if (p->p_timers == NULL)
   1239      1.142        ad 		return;
   1240       1.63   thorpej 
   1241      1.142        ad 	pts = p->p_timers;
   1242      1.142        ad 	mutex_spin_enter(&timer_lock);
   1243      1.142        ad 	if (which == TIMERS_ALL) {
   1244      1.142        ad 		p->p_timers = NULL;
   1245      1.142        ad 		i = 0;
   1246      1.142        ad 	} else {
   1247      1.150  christos 		timespecclear(&ts);
   1248      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1249      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1250      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1251  1.166.2.1    jruoho 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1252      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1253      1.149  christos 		}
   1254      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1255      1.142        ad 		if (ptn) {
   1256  1.166.2.1    jruoho 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1257      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1258      1.142        ad 			    &ptn->pt_time.it_value);
   1259      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1260      1.142        ad 		}
   1261      1.150  christos 		timespecclear(&ts);
   1262      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1263      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1264      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1265  1.166.2.1    jruoho 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1266      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1267      1.149  christos 		}
   1268      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1269      1.142        ad 		if (ptn) {
   1270  1.166.2.1    jruoho 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1271      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1272      1.142        ad 			    &ptn->pt_time.it_value);
   1273      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1274       1.63   thorpej 		}
   1275      1.142        ad 		i = 3;
   1276      1.142        ad 	}
   1277      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1278      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1279      1.142        ad 			itimerfree(pts, i);
   1280      1.142        ad 			mutex_spin_enter(&timer_lock);
   1281        1.1       cgd 		}
   1282        1.1       cgd 	}
   1283      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1284      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1285      1.142        ad 		p->p_timers = NULL;
   1286      1.142        ad 		mutex_spin_exit(&timer_lock);
   1287      1.142        ad 		pool_put(&ptimers_pool, pts);
   1288      1.142        ad 	} else
   1289      1.142        ad 		mutex_spin_exit(&timer_lock);
   1290      1.142        ad }
   1291      1.142        ad 
   1292      1.142        ad static void
   1293      1.142        ad itimerfree(struct ptimers *pts, int index)
   1294      1.142        ad {
   1295      1.142        ad 	struct ptimer *pt;
   1296      1.142        ad 
   1297      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1298      1.142        ad 
   1299      1.142        ad 	pt = pts->pts_timers[index];
   1300      1.142        ad 	pts->pts_timers[index] = NULL;
   1301  1.166.2.1    jruoho 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1302      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1303  1.166.2.1    jruoho 	if (pt->pt_queued)
   1304      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1305      1.144        ad 	mutex_spin_exit(&timer_lock);
   1306  1.166.2.1    jruoho 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1307      1.149  christos 		callout_destroy(&pt->pt_ch);
   1308      1.142        ad 	pool_put(&ptimer_pool, pt);
   1309        1.1       cgd }
   1310        1.1       cgd 
   1311        1.1       cgd /*
   1312        1.1       cgd  * Decrement an interval timer by a specified number
   1313      1.152  christos  * of nanoseconds, which must be less than a second,
   1314      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1315      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1316        1.8       cgd  * reduce the value reloaded into the timer so that
   1317        1.1       cgd  * the timer does not drift.  This routine assumes
   1318        1.1       cgd  * that it is called in a context where the timers
   1319        1.1       cgd  * on which it is operating cannot change in value.
   1320        1.1       cgd  */
   1321      1.142        ad static int
   1322      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1323       1.63   thorpej {
   1324      1.150  christos 	struct itimerspec *itp;
   1325        1.1       cgd 
   1326      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1327  1.166.2.1    jruoho 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1328      1.142        ad 
   1329       1.63   thorpej 	itp = &pt->pt_time;
   1330      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1331        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1332        1.1       cgd 			/* expired, and already in next interval */
   1333      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1334        1.1       cgd 			goto expire;
   1335        1.1       cgd 		}
   1336      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1337        1.1       cgd 		itp->it_value.tv_sec--;
   1338        1.1       cgd 	}
   1339      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1340      1.152  christos 	nsec = 0;
   1341      1.150  christos 	if (timespecisset(&itp->it_value))
   1342        1.1       cgd 		return (1);
   1343        1.1       cgd 	/* expired, exactly at end of interval */
   1344        1.1       cgd expire:
   1345      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1346        1.1       cgd 		itp->it_value = itp->it_interval;
   1347      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1348      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1349      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1350        1.1       cgd 			itp->it_value.tv_sec--;
   1351        1.1       cgd 		}
   1352       1.63   thorpej 		timer_settime(pt);
   1353        1.1       cgd 	} else
   1354      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1355        1.1       cgd 	return (0);
   1356       1.42       cgd }
   1357       1.42       cgd 
   1358      1.142        ad static void
   1359       1.63   thorpej itimerfire(struct ptimer *pt)
   1360       1.63   thorpej {
   1361       1.78        cl 
   1362      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1363      1.142        ad 
   1364      1.142        ad 	/*
   1365      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1366      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1367      1.142        ad 	 */
   1368      1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1369      1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1370      1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1371      1.142        ad 		return;
   1372      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1373      1.142        ad 	pt->pt_queued = true;
   1374      1.142        ad 	softint_schedule(timer_sih);
   1375      1.142        ad }
   1376      1.142        ad 
   1377      1.142        ad void
   1378      1.142        ad timer_tick(lwp_t *l, bool user)
   1379      1.142        ad {
   1380      1.142        ad 	struct ptimers *pts;
   1381      1.142        ad 	struct ptimer *pt;
   1382      1.142        ad 	proc_t *p;
   1383      1.142        ad 
   1384      1.142        ad 	p = l->l_proc;
   1385      1.142        ad 	if (p->p_timers == NULL)
   1386      1.142        ad 		return;
   1387      1.142        ad 
   1388      1.142        ad 	mutex_spin_enter(&timer_lock);
   1389      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1390       1.63   thorpej 		/*
   1391      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1392       1.63   thorpej 		 */
   1393      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1394      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1395      1.142        ad 				itimerfire(pt);
   1396      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1397      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1398      1.142        ad 				itimerfire(pt);
   1399      1.142        ad 	}
   1400      1.142        ad 	mutex_spin_exit(&timer_lock);
   1401      1.142        ad }
   1402      1.142        ad 
   1403      1.154  wrstuden #ifdef KERN_SA
   1404      1.154  wrstuden /*
   1405      1.154  wrstuden  * timer_sa_intr:
   1406      1.154  wrstuden  *
   1407      1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1408      1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1409      1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1410      1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1411      1.154  wrstuden  */
   1412      1.154  wrstuden static void
   1413      1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1414      1.154  wrstuden {
   1415      1.155  wrstuden 	unsigned int		i;
   1416      1.155  wrstuden 	struct sadata		*sa;
   1417      1.155  wrstuden 	struct sadata_vp	*vp;
   1418      1.154  wrstuden 
   1419      1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1420      1.154  wrstuden 	if (!p->p_timerpend) {
   1421      1.154  wrstuden 		/*
   1422      1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1423      1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1424      1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1425      1.154  wrstuden 		 * determine if we really should call setrunnable.
   1426      1.154  wrstuden 		 */
   1427      1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1428      1.154  wrstuden 		pt->pt_overruns = 0;
   1429      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1430      1.154  wrstuden 		p->p_timers->pts_fired = i;
   1431      1.154  wrstuden 		p->p_timerpend = 1;
   1432      1.154  wrstuden 
   1433      1.155  wrstuden 		sa = p->p_sa;
   1434      1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1435      1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1436      1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1437      1.155  wrstuden 			lwp_lock(vp_lwp);
   1438      1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1439      1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1440      1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1441      1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1442      1.154  wrstuden 				break;
   1443      1.154  wrstuden 			}
   1444      1.155  wrstuden 			lwp_unlock(vp_lwp);
   1445      1.154  wrstuden 		}
   1446      1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1447      1.154  wrstuden 	} else {
   1448      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1449      1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1450      1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1451      1.154  wrstuden 			pt->pt_overruns = 0;
   1452      1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1453      1.154  wrstuden 		} else
   1454      1.154  wrstuden 			pt->pt_overruns++;
   1455      1.154  wrstuden 	}
   1456      1.154  wrstuden }
   1457      1.154  wrstuden #endif /* KERN_SA */
   1458      1.154  wrstuden 
   1459      1.142        ad static void
   1460      1.142        ad timer_intr(void *cookie)
   1461      1.142        ad {
   1462      1.142        ad 	ksiginfo_t ksi;
   1463      1.142        ad 	struct ptimer *pt;
   1464      1.142        ad 	proc_t *p;
   1465      1.142        ad 
   1466      1.158        ad 	mutex_enter(proc_lock);
   1467      1.142        ad 	mutex_spin_enter(&timer_lock);
   1468      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1469      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1470      1.142        ad 		KASSERT(pt->pt_queued);
   1471      1.142        ad 		pt->pt_queued = false;
   1472      1.142        ad 
   1473      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1474      1.154  wrstuden 			/* Process is dying. */
   1475      1.142        ad 			continue;
   1476      1.154  wrstuden 		}
   1477      1.142        ad 		p = pt->pt_proc;
   1478      1.154  wrstuden #ifdef KERN_SA
   1479      1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1480      1.154  wrstuden 			timer_sa_intr(pt, p);
   1481      1.142        ad 			continue;
   1482      1.142        ad 		}
   1483      1.154  wrstuden #endif /* KERN_SA */
   1484      1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1485      1.154  wrstuden 			continue;
   1486      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1487       1.63   thorpej 			pt->pt_overruns++;
   1488      1.142        ad 			continue;
   1489       1.64   nathanw 		}
   1490      1.142        ad 
   1491      1.142        ad 		KSI_INIT(&ksi);
   1492      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1493      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1494      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1495      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1496      1.142        ad 		pt->pt_overruns = 0;
   1497      1.142        ad 		mutex_spin_exit(&timer_lock);
   1498      1.142        ad 		kpsignal(p, &ksi, NULL);
   1499      1.142        ad 		mutex_spin_enter(&timer_lock);
   1500       1.63   thorpej 	}
   1501      1.142        ad 	mutex_spin_exit(&timer_lock);
   1502      1.158        ad 	mutex_exit(proc_lock);
   1503       1.63   thorpej }
   1504      1.162      elad 
   1505      1.162      elad /*
   1506      1.162      elad  * Check if the time will wrap if set to ts.
   1507      1.162      elad  *
   1508      1.162      elad  * ts - timespec describing the new time
   1509      1.162      elad  * delta - the delta between the current time and ts
   1510      1.162      elad  */
   1511      1.162      elad bool
   1512      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1513      1.162      elad {
   1514      1.162      elad 
   1515      1.162      elad 	/*
   1516      1.162      elad 	 * Don't allow the time to be set forward so far it
   1517      1.162      elad 	 * will wrap and become negative, thus allowing an
   1518      1.162      elad 	 * attacker to bypass the next check below.  The
   1519      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1520      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1521      1.162      elad 	 * past the cutoff, it will take a very long time
   1522      1.162      elad 	 * to get to the wrap point.
   1523      1.162      elad 	 */
   1524      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1525      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1526      1.162      elad 		return true;
   1527      1.162      elad 
   1528      1.162      elad 	return false;
   1529      1.162      elad }
   1530