Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.170
      1  1.170  christos /*	$NetBSD: kern_time.c,v 1.170 2011/10/27 16:12:52 christos Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8  1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  *
     19   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30   1.42       cgd  */
     31    1.9       cgd 
     32    1.1       cgd /*
     33    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37    1.1       cgd  * modification, are permitted provided that the following conditions
     38    1.1       cgd  * are met:
     39    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45    1.1       cgd  *    may be used to endorse or promote products derived from this software
     46    1.1       cgd  *    without specific prior written permission.
     47    1.1       cgd  *
     48    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58    1.1       cgd  * SUCH DAMAGE.
     59    1.1       cgd  *
     60   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61    1.1       cgd  */
     62   1.58     lukem 
     63   1.58     lukem #include <sys/cdefs.h>
     64  1.170  christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.170 2011/10/27 16:12:52 christos Exp $");
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/resourcevar.h>
     68    1.5   mycroft #include <sys/kernel.h>
     69    1.8       cgd #include <sys/systm.h>
     70    1.5   mycroft #include <sys/proc.h>
     71    1.8       cgd #include <sys/vnode.h>
     72   1.17  christos #include <sys/signalvar.h>
     73   1.25     perry #include <sys/syslog.h>
     74  1.101    kardel #include <sys/timetc.h>
     75  1.143        ad #include <sys/timex.h>
     76   1.99      elad #include <sys/kauth.h>
     77   1.11       cgd #include <sys/mount.h>
     78  1.154  wrstuden #include <sys/sa.h>
     79  1.154  wrstuden #include <sys/savar.h>
     80   1.11       cgd #include <sys/syscallargs.h>
     81  1.143        ad #include <sys/cpu.h>
     82   1.19  christos 
     83  1.154  wrstuden #include "opt_sa.h"
     84  1.154  wrstuden 
     85  1.142        ad static void	timer_intr(void *);
     86  1.142        ad static void	itimerfire(struct ptimer *);
     87  1.142        ad static void	itimerfree(struct ptimers *, int);
     88  1.142        ad 
     89  1.142        ad kmutex_t	timer_lock;
     90  1.142        ad 
     91  1.142        ad static void	*timer_sih;
     92  1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     93  1.131        ad 
     94  1.161     pooka struct pool ptimer_pool, ptimers_pool;
     95   1.97    simonb 
     96  1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     97  1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     98  1.168      yamt 
     99  1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
    100  1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
    101  1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
    102  1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
    103  1.168      yamt 
    104  1.131        ad /*
    105  1.131        ad  * Initialize timekeeping.
    106  1.131        ad  */
    107  1.131        ad void
    108  1.131        ad time_init(void)
    109  1.131        ad {
    110  1.131        ad 
    111  1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    112  1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    113  1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    114  1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    115  1.131        ad }
    116  1.131        ad 
    117  1.142        ad void
    118  1.142        ad time_init2(void)
    119  1.142        ad {
    120  1.142        ad 
    121  1.142        ad 	TAILQ_INIT(&timer_queue);
    122  1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    123  1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    124  1.142        ad 	    timer_intr, NULL);
    125  1.142        ad }
    126  1.142        ad 
    127   1.63   thorpej /* Time of day and interval timer support.
    128    1.1       cgd  *
    129    1.1       cgd  * These routines provide the kernel entry points to get and set
    130    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    131    1.1       cgd  * here provide support for adding and subtracting timeval structures
    132    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    133    1.1       cgd  * timers when they expire.
    134    1.1       cgd  */
    135    1.1       cgd 
    136   1.22       jtc /* This function is used by clock_settime and settimeofday */
    137  1.132      elad static int
    138  1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    139   1.22       jtc {
    140  1.156  christos 	struct timespec delta, now;
    141  1.129        ad 	int s;
    142   1.22       jtc 
    143   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    144  1.129        ad 	s = splclock();
    145  1.156  christos 	nanotime(&now);
    146  1.156  christos 	timespecsub(ts, &now, &delta);
    147  1.132      elad 
    148  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    149  1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    150  1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    151  1.129        ad 		splx(s);
    152   1.29       tls 		return (EPERM);
    153   1.55      tron 	}
    154  1.132      elad 
    155   1.29       tls #ifdef notyet
    156  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    157  1.129        ad 		splx(s);
    158   1.29       tls 		return (EPERM);
    159   1.55      tron 	}
    160   1.29       tls #endif
    161  1.103    kardel 
    162  1.156  christos 	tc_setclock(ts);
    163  1.103    kardel 
    164  1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    165  1.103    kardel 
    166   1.22       jtc 	resettodr();
    167  1.129        ad 	splx(s);
    168  1.129        ad 
    169   1.29       tls 	return (0);
    170   1.22       jtc }
    171   1.22       jtc 
    172  1.132      elad int
    173  1.132      elad settime(struct proc *p, struct timespec *ts)
    174  1.132      elad {
    175  1.132      elad 	return (settime1(p, ts, true));
    176  1.132      elad }
    177  1.132      elad 
    178   1.22       jtc /* ARGSUSED */
    179   1.22       jtc int
    180  1.156  christos sys___clock_gettime50(struct lwp *l,
    181  1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    182   1.22       jtc {
    183  1.135       dsl 	/* {
    184   1.22       jtc 		syscallarg(clockid_t) clock_id;
    185   1.23       cgd 		syscallarg(struct timespec *) tp;
    186  1.135       dsl 	} */
    187  1.165     njoly 	int error;
    188   1.22       jtc 	struct timespec ats;
    189   1.22       jtc 
    190  1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    191  1.165     njoly 	if (error != 0)
    192  1.165     njoly 		return error;
    193  1.165     njoly 
    194  1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    195  1.165     njoly }
    196  1.165     njoly 
    197  1.165     njoly int
    198  1.165     njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
    199  1.165     njoly {
    200  1.165     njoly 
    201   1.61    simonb 	switch (clock_id) {
    202   1.61    simonb 	case CLOCK_REALTIME:
    203  1.165     njoly 		nanotime(ts);
    204   1.61    simonb 		break;
    205   1.61    simonb 	case CLOCK_MONOTONIC:
    206  1.165     njoly 		nanouptime(ts);
    207   1.61    simonb 		break;
    208   1.61    simonb 	default:
    209  1.165     njoly 		return EINVAL;
    210   1.61    simonb 	}
    211   1.22       jtc 
    212  1.165     njoly 	return 0;
    213   1.22       jtc }
    214   1.22       jtc 
    215   1.22       jtc /* ARGSUSED */
    216   1.22       jtc int
    217  1.156  christos sys___clock_settime50(struct lwp *l,
    218  1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    219   1.22       jtc {
    220  1.135       dsl 	/* {
    221   1.22       jtc 		syscallarg(clockid_t) clock_id;
    222   1.23       cgd 		syscallarg(const struct timespec *) tp;
    223  1.135       dsl 	} */
    224  1.156  christos 	int error;
    225  1.156  christos 	struct timespec ats;
    226   1.22       jtc 
    227  1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    228  1.156  christos 		return error;
    229  1.156  christos 
    230  1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    231   1.56      manu }
    232   1.56      manu 
    233   1.56      manu 
    234   1.56      manu int
    235  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    236  1.132      elad     bool check_kauth)
    237   1.56      manu {
    238   1.56      manu 	int error;
    239   1.56      manu 
    240   1.61    simonb 	switch (clock_id) {
    241   1.61    simonb 	case CLOCK_REALTIME:
    242  1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    243   1.61    simonb 			return (error);
    244   1.61    simonb 		break;
    245   1.61    simonb 	case CLOCK_MONOTONIC:
    246   1.61    simonb 		return (EINVAL);	/* read-only clock */
    247   1.61    simonb 	default:
    248   1.56      manu 		return (EINVAL);
    249   1.61    simonb 	}
    250   1.22       jtc 
    251   1.22       jtc 	return 0;
    252   1.22       jtc }
    253   1.22       jtc 
    254   1.22       jtc int
    255  1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    256  1.140      yamt     register_t *retval)
    257   1.22       jtc {
    258  1.135       dsl 	/* {
    259   1.22       jtc 		syscallarg(clockid_t) clock_id;
    260   1.23       cgd 		syscallarg(struct timespec *) tp;
    261  1.135       dsl 	} */
    262   1.22       jtc 	struct timespec ts;
    263   1.22       jtc 	int error = 0;
    264   1.22       jtc 
    265  1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    266  1.164     njoly 		return error;
    267  1.164     njoly 
    268  1.164     njoly 	if (SCARG(uap, tp))
    269  1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    270  1.164     njoly 
    271  1.164     njoly 	return error;
    272  1.164     njoly }
    273  1.164     njoly 
    274  1.164     njoly int
    275  1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    276  1.164     njoly {
    277  1.164     njoly 
    278   1.61    simonb 	switch (clock_id) {
    279   1.61    simonb 	case CLOCK_REALTIME:
    280   1.61    simonb 	case CLOCK_MONOTONIC:
    281  1.164     njoly 		ts->tv_sec = 0;
    282  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    283  1.164     njoly 			ts->tv_nsec = 1;
    284  1.102    kardel 		else
    285  1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    286   1.61    simonb 		break;
    287   1.61    simonb 	default:
    288  1.164     njoly 		return EINVAL;
    289   1.61    simonb 	}
    290   1.22       jtc 
    291  1.164     njoly 	return 0;
    292   1.22       jtc }
    293   1.22       jtc 
    294   1.27       jtc /* ARGSUSED */
    295   1.27       jtc int
    296  1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    297  1.140      yamt     register_t *retval)
    298   1.27       jtc {
    299  1.135       dsl 	/* {
    300  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    301  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    302  1.135       dsl 	} */
    303  1.101    kardel 	struct timespec rmt, rqt;
    304  1.120       dsl 	int error, error1;
    305  1.101    kardel 
    306  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    307  1.101    kardel 	if (error)
    308  1.101    kardel 		return (error);
    309  1.101    kardel 
    310  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    311  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    312  1.120       dsl 		return error;
    313  1.120       dsl 
    314  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    315  1.120       dsl 	return error1 ? error1 : error;
    316  1.120       dsl }
    317  1.120       dsl 
    318  1.120       dsl int
    319  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    320  1.120       dsl {
    321  1.141      yamt 	struct timespec rmtstart;
    322  1.120       dsl 	int error, timo;
    323  1.120       dsl 
    324  1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    325  1.160  christos 		return error;
    326  1.101    kardel 
    327  1.120       dsl 	timo = tstohz(rqt);
    328  1.101    kardel 	/*
    329  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    330  1.101    kardel 	 */
    331  1.101    kardel 	if (timo == 0)
    332  1.101    kardel 		timo = 1;
    333  1.141      yamt 	getnanouptime(&rmtstart);
    334  1.141      yamt again:
    335  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    336  1.141      yamt 	if (rmt != NULL || error == 0) {
    337  1.141      yamt 		struct timespec rmtend;
    338  1.141      yamt 		struct timespec t0;
    339  1.141      yamt 		struct timespec *t;
    340  1.101    kardel 
    341  1.141      yamt 		getnanouptime(&rmtend);
    342  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    343  1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    344  1.141      yamt 		timespecsub(rqt, t, t);
    345  1.141      yamt 		if (t->tv_sec < 0)
    346  1.141      yamt 			timespecclear(t);
    347  1.141      yamt 		if (error == 0) {
    348  1.141      yamt 			timo = tstohz(t);
    349  1.141      yamt 			if (timo > 0)
    350  1.141      yamt 				goto again;
    351  1.141      yamt 		}
    352  1.141      yamt 	}
    353  1.104    kardel 
    354  1.101    kardel 	if (error == ERESTART)
    355  1.101    kardel 		error = EINTR;
    356  1.101    kardel 	if (error == EWOULDBLOCK)
    357  1.101    kardel 		error = 0;
    358  1.101    kardel 
    359  1.101    kardel 	return error;
    360   1.27       jtc }
    361   1.22       jtc 
    362    1.1       cgd /* ARGSUSED */
    363    1.3    andrew int
    364  1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    365  1.140      yamt     register_t *retval)
    366   1.15   thorpej {
    367  1.135       dsl 	/* {
    368   1.11       cgd 		syscallarg(struct timeval *) tp;
    369  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    370  1.135       dsl 	} */
    371    1.1       cgd 	struct timeval atv;
    372    1.1       cgd 	int error = 0;
    373   1.25     perry 	struct timezone tzfake;
    374    1.1       cgd 
    375   1.11       cgd 	if (SCARG(uap, tp)) {
    376    1.1       cgd 		microtime(&atv);
    377   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    378   1.17  christos 		if (error)
    379    1.1       cgd 			return (error);
    380    1.1       cgd 	}
    381   1.25     perry 	if (SCARG(uap, tzp)) {
    382   1.25     perry 		/*
    383   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    384   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    385   1.25     perry 		 */
    386   1.25     perry 		tzfake.tz_minuteswest = 0;
    387   1.25     perry 		tzfake.tz_dsttime = 0;
    388   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    389   1.25     perry 	}
    390    1.1       cgd 	return (error);
    391    1.1       cgd }
    392    1.1       cgd 
    393    1.1       cgd /* ARGSUSED */
    394    1.3    andrew int
    395  1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    396  1.140      yamt     register_t *retval)
    397   1.15   thorpej {
    398  1.135       dsl 	/* {
    399   1.24       cgd 		syscallarg(const struct timeval *) tv;
    400  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    401  1.135       dsl 	} */
    402   1.60      manu 
    403  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    404   1.60      manu }
    405   1.60      manu 
    406   1.60      manu int
    407  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    408  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    409   1.60      manu {
    410   1.22       jtc 	struct timeval atv;
    411   1.98  christos 	struct timespec ts;
    412   1.22       jtc 	int error;
    413    1.1       cgd 
    414    1.8       cgd 	/* Verify all parameters before changing time. */
    415  1.119       dsl 
    416   1.25     perry 	/*
    417   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    418   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    419   1.25     perry 	 */
    420   1.98  christos 	if (utzp)
    421   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    422  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    423   1.98  christos 
    424   1.98  christos 	if (utv == NULL)
    425   1.98  christos 		return 0;
    426   1.98  christos 
    427  1.119       dsl 	if (userspace) {
    428  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    429  1.119       dsl 			return error;
    430  1.119       dsl 		utv = &atv;
    431  1.119       dsl 	}
    432  1.119       dsl 
    433  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    434  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    435    1.1       cgd }
    436    1.1       cgd 
    437   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    438    1.1       cgd 
    439    1.1       cgd /* ARGSUSED */
    440    1.3    andrew int
    441  1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    442  1.140      yamt     register_t *retval)
    443   1.15   thorpej {
    444  1.135       dsl 	/* {
    445   1.24       cgd 		syscallarg(const struct timeval *) delta;
    446   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    447  1.135       dsl 	} */
    448  1.156  christos 	int error = 0;
    449  1.156  christos 	struct timeval atv, oldatv;
    450    1.1       cgd 
    451  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    452  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    453  1.156  christos 		return error;
    454   1.17  christos 
    455  1.156  christos 	if (SCARG(uap, delta)) {
    456  1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    457  1.156  christos 		    sizeof(*SCARG(uap, delta)));
    458  1.156  christos 		if (error)
    459  1.156  christos 			return (error);
    460  1.156  christos 	}
    461  1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    462  1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    463  1.156  christos 	if (SCARG(uap, olddelta))
    464  1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    465  1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    466  1.156  christos 	return error;
    467   1.56      manu }
    468   1.56      manu 
    469  1.156  christos void
    470  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    471   1.56      manu {
    472  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    473  1.101    kardel 
    474  1.101    kardel 	if (olddelta) {
    475  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    476  1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    477  1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    478  1.156  christos 		if (olddelta->tv_usec < 0) {
    479  1.156  christos 			olddelta->tv_usec += 1000000;
    480  1.156  christos 			olddelta->tv_sec--;
    481  1.101    kardel 		}
    482  1.157  christos 		mutex_spin_exit(&timecounter_lock);
    483  1.101    kardel 	}
    484  1.101    kardel 
    485  1.101    kardel 	if (delta) {
    486  1.156  christos 		mutex_spin_enter(&timecounter_lock);
    487  1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    488  1.101    kardel 
    489  1.143        ad 		if (time_adjtime) {
    490  1.101    kardel 			/* We need to save the system time during shutdown */
    491  1.101    kardel 			time_adjusted |= 1;
    492  1.143        ad 		}
    493  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    494  1.101    kardel 	}
    495    1.1       cgd }
    496    1.1       cgd 
    497    1.1       cgd /*
    498   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    499   1.63   thorpej  * timer_*() family of routines are supported.
    500    1.1       cgd  *
    501   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    502   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    503   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    504  1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    505  1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    506  1.170  christos  * allocated by the timer_create() syscall.
    507    1.1       cgd  *
    508   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    509   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    510    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    511   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    512   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    513   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    514   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    515   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    516   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    517   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    518   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    519   1.63   thorpej 
    520   1.63   thorpej /* Allocate a POSIX realtime timer. */
    521   1.63   thorpej int
    522  1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    523  1.140      yamt     register_t *retval)
    524   1.63   thorpej {
    525  1.135       dsl 	/* {
    526   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    527   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    528   1.63   thorpej 		syscallarg(timer_t *) timerid;
    529  1.135       dsl 	} */
    530   1.92      cube 
    531   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    532  1.105        ad 	    SCARG(uap, evp), copyin, l);
    533   1.92      cube }
    534   1.92      cube 
    535   1.92      cube int
    536   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    537  1.105        ad     copyin_t fetch_event, struct lwp *l)
    538   1.92      cube {
    539   1.92      cube 	int error;
    540   1.92      cube 	timer_t timerid;
    541  1.142        ad 	struct ptimers *pts;
    542   1.63   thorpej 	struct ptimer *pt;
    543  1.105        ad 	struct proc *p;
    544  1.105        ad 
    545  1.105        ad 	p = l->l_proc;
    546   1.63   thorpej 
    547  1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    548   1.63   thorpej 		return (EINVAL);
    549   1.63   thorpej 
    550  1.142        ad 	if ((pts = p->p_timers) == NULL)
    551  1.142        ad 		pts = timers_alloc(p);
    552   1.63   thorpej 
    553   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    554  1.142        ad 	if (evp != NULL) {
    555   1.63   thorpej 		if (((error =
    556   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    557   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    558  1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    559  1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    560  1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    561  1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    562   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    563   1.63   thorpej 			return (error ? error : EINVAL);
    564   1.63   thorpej 		}
    565  1.142        ad 	}
    566  1.142        ad 
    567  1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    568  1.142        ad 	mutex_spin_enter(&timer_lock);
    569  1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    570  1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    571  1.142        ad 			break;
    572  1.142        ad 	if (timerid == TIMER_MAX) {
    573  1.142        ad 		mutex_spin_exit(&timer_lock);
    574  1.142        ad 		pool_put(&ptimer_pool, pt);
    575  1.142        ad 		return EAGAIN;
    576  1.142        ad 	}
    577  1.142        ad 	if (evp == NULL) {
    578   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    579   1.63   thorpej 		switch (id) {
    580   1.63   thorpej 		case CLOCK_REALTIME:
    581  1.168      yamt 		case CLOCK_MONOTONIC:
    582   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    583   1.63   thorpej 			break;
    584   1.63   thorpej 		case CLOCK_VIRTUAL:
    585   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    586   1.63   thorpej 			break;
    587   1.63   thorpej 		case CLOCK_PROF:
    588   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    589   1.63   thorpej 			break;
    590   1.63   thorpej 		}
    591   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    592   1.63   thorpej 	}
    593   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    594   1.73  christos 	pt->pt_info.ksi_errno = 0;
    595   1.73  christos 	pt->pt_info.ksi_code = 0;
    596   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    597  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    598  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    599   1.63   thorpej 	pt->pt_type = id;
    600   1.63   thorpej 	pt->pt_proc = p;
    601   1.63   thorpej 	pt->pt_overruns = 0;
    602   1.63   thorpej 	pt->pt_poverruns = 0;
    603   1.64   nathanw 	pt->pt_entry = timerid;
    604  1.142        ad 	pt->pt_queued = false;
    605  1.150  christos 	timespecclear(&pt->pt_time.it_value);
    606  1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    607  1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    608  1.149  christos 	else
    609  1.149  christos 		pt->pt_active = 0;
    610  1.149  christos 
    611  1.142        ad 	pts->pts_timers[timerid] = pt;
    612  1.142        ad 	mutex_spin_exit(&timer_lock);
    613   1.63   thorpej 
    614   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    615   1.63   thorpej }
    616   1.63   thorpej 
    617   1.63   thorpej /* Delete a POSIX realtime timer */
    618    1.3    andrew int
    619  1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    620  1.140      yamt     register_t *retval)
    621   1.15   thorpej {
    622  1.135       dsl 	/* {
    623   1.63   thorpej 		syscallarg(timer_t) timerid;
    624  1.135       dsl 	} */
    625   1.63   thorpej 	struct proc *p = l->l_proc;
    626   1.65  jdolecek 	timer_t timerid;
    627  1.142        ad 	struct ptimers *pts;
    628   1.63   thorpej 	struct ptimer *pt, *ptn;
    629    1.1       cgd 
    630   1.63   thorpej 	timerid = SCARG(uap, timerid);
    631  1.142        ad 	pts = p->p_timers;
    632  1.142        ad 
    633  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    634  1.142        ad 		return (EINVAL);
    635   1.63   thorpej 
    636  1.142        ad 	mutex_spin_enter(&timer_lock);
    637  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    638  1.142        ad 		mutex_spin_exit(&timer_lock);
    639    1.1       cgd 		return (EINVAL);
    640  1.142        ad 	}
    641  1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    642  1.149  christos 		if (pt->pt_active) {
    643  1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    644  1.149  christos 			LIST_REMOVE(pt, pt_list);
    645  1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    646  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    647  1.149  christos 				    &ptn->pt_time.it_value,
    648  1.149  christos 				    &ptn->pt_time.it_value);
    649  1.149  christos 			pt->pt_active = 0;
    650  1.149  christos 		}
    651   1.63   thorpej 	}
    652  1.142        ad 	itimerfree(pts, timerid);
    653   1.63   thorpej 
    654   1.63   thorpej 	return (0);
    655   1.63   thorpej }
    656   1.63   thorpej 
    657   1.63   thorpej /*
    658   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    659  1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    660  1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    661   1.63   thorpej  */
    662   1.63   thorpej void
    663   1.63   thorpej timer_settime(struct ptimer *pt)
    664   1.63   thorpej {
    665   1.63   thorpej 	struct ptimer *ptn, *pptn;
    666   1.63   thorpej 	struct ptlist *ptl;
    667   1.63   thorpej 
    668  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    669  1.142        ad 
    670  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    671  1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    672  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    673   1.63   thorpej 			/*
    674  1.150  christos 			 * Don't need to check tshzto() return value, here.
    675   1.63   thorpej 			 * callout_reset() does it for us.
    676   1.63   thorpej 			 */
    677  1.150  christos 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    678   1.63   thorpej 			    realtimerexpire, pt);
    679   1.63   thorpej 		}
    680   1.63   thorpej 	} else {
    681   1.63   thorpej 		if (pt->pt_active) {
    682   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    683   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    684   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    685  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    686   1.63   thorpej 				    &ptn->pt_time.it_value,
    687   1.63   thorpej 				    &ptn->pt_time.it_value);
    688   1.63   thorpej 		}
    689  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    690   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    691   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    692   1.63   thorpej 			else
    693   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    694   1.63   thorpej 
    695   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    696  1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    697   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    698   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    699  1.150  christos 				timespecsub(&pt->pt_time.it_value,
    700   1.63   thorpej 				    &ptn->pt_time.it_value,
    701   1.63   thorpej 				    &pt->pt_time.it_value);
    702   1.63   thorpej 
    703   1.63   thorpej 			if (pptn)
    704   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    705   1.63   thorpej 			else
    706   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    707   1.63   thorpej 
    708   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    709  1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    710   1.63   thorpej 				    &pt->pt_time.it_value,
    711   1.63   thorpej 				    &ptn->pt_time.it_value);
    712   1.63   thorpej 
    713   1.63   thorpej 			pt->pt_active = 1;
    714   1.63   thorpej 		} else
    715   1.63   thorpej 			pt->pt_active = 0;
    716   1.63   thorpej 	}
    717   1.63   thorpej }
    718   1.63   thorpej 
    719   1.63   thorpej void
    720  1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    721   1.63   thorpej {
    722  1.150  christos 	struct timespec now;
    723   1.63   thorpej 	struct ptimer *ptn;
    724   1.63   thorpej 
    725  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    726  1.142        ad 
    727  1.150  christos 	*aits = pt->pt_time;
    728  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    729    1.1       cgd 		/*
    730   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    731   1.63   thorpej 		 * part of real time timer.  If time for real time
    732   1.63   thorpej 		 * timer has passed return 0, else return difference
    733   1.63   thorpej 		 * between current time and time for the timer to go
    734   1.63   thorpej 		 * off.
    735    1.1       cgd 		 */
    736  1.150  christos 		if (timespecisset(&aits->it_value)) {
    737  1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    738  1.168      yamt 				getnanotime(&now);
    739  1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    740  1.168      yamt 				getnanouptime(&now);
    741  1.168      yamt 			}
    742  1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    743  1.150  christos 				timespecclear(&aits->it_value);
    744  1.101    kardel 			else
    745  1.150  christos 				timespecsub(&aits->it_value, &now,
    746  1.150  christos 				    &aits->it_value);
    747   1.36   thorpej 		}
    748   1.63   thorpej 	} else if (pt->pt_active) {
    749   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    750   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    751   1.63   thorpej 		else
    752   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    753   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    754  1.150  christos 			timespecadd(&aits->it_value,
    755  1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    756   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    757    1.1       cgd 	} else
    758  1.150  christos 		timespecclear(&aits->it_value);
    759   1.63   thorpej }
    760   1.63   thorpej 
    761   1.63   thorpej 
    762   1.63   thorpej 
    763   1.63   thorpej /* Set and arm a POSIX realtime timer */
    764   1.63   thorpej int
    765  1.156  christos sys___timer_settime50(struct lwp *l,
    766  1.156  christos     const struct sys___timer_settime50_args *uap,
    767  1.140      yamt     register_t *retval)
    768   1.63   thorpej {
    769  1.135       dsl 	/* {
    770   1.63   thorpej 		syscallarg(timer_t) timerid;
    771   1.63   thorpej 		syscallarg(int) flags;
    772   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    773   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    774  1.135       dsl 	} */
    775   1.92      cube 	int error;
    776   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    777   1.92      cube 
    778   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    779   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    780   1.92      cube 		return (error);
    781   1.92      cube 
    782   1.92      cube 	if (SCARG(uap, ovalue))
    783   1.92      cube 		ovp = &ovalue;
    784   1.92      cube 
    785   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    786   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    787   1.92      cube 		return error;
    788   1.92      cube 
    789   1.92      cube 	if (ovp)
    790   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    791   1.92      cube 		    sizeof(struct itimerspec));
    792   1.92      cube 	return 0;
    793   1.92      cube }
    794   1.92      cube 
    795   1.92      cube int
    796   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    797   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    798   1.92      cube {
    799  1.150  christos 	struct timespec now;
    800  1.150  christos 	struct itimerspec val, oval;
    801  1.142        ad 	struct ptimers *pts;
    802   1.63   thorpej 	struct ptimer *pt;
    803  1.160  christos 	int error;
    804   1.63   thorpej 
    805  1.142        ad 	pts = p->p_timers;
    806   1.63   thorpej 
    807  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    808  1.142        ad 		return EINVAL;
    809  1.150  christos 	val = *value;
    810  1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    811  1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    812  1.160  christos 		return error;
    813   1.63   thorpej 
    814  1.142        ad 	mutex_spin_enter(&timer_lock);
    815  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    816  1.142        ad 		mutex_spin_exit(&timer_lock);
    817  1.150  christos 		return EINVAL;
    818  1.142        ad 	}
    819  1.142        ad 
    820   1.63   thorpej 	oval = pt->pt_time;
    821   1.63   thorpej 	pt->pt_time = val;
    822   1.63   thorpej 
    823   1.67   nathanw 	/*
    824   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    825   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    826   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    827   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    828   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    829   1.67   nathanw 	 */
    830  1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    831  1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    832  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    833  1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    834  1.168      yamt 					getnanotime(&now);
    835  1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    836  1.168      yamt 					getnanouptime(&now);
    837  1.168      yamt 				}
    838  1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    839  1.101    kardel 				    &pt->pt_time.it_value);
    840  1.101    kardel 			}
    841   1.67   nathanw 		} else {
    842   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    843  1.150  christos 				getnanotime(&now);
    844  1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    845  1.101    kardel 				    &pt->pt_time.it_value);
    846  1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    847   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    848   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    849  1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    850   1.67   nathanw 				}
    851   1.67   nathanw 			}
    852   1.67   nathanw 		}
    853   1.67   nathanw 	}
    854   1.67   nathanw 
    855   1.63   thorpej 	timer_settime(pt);
    856  1.142        ad 	mutex_spin_exit(&timer_lock);
    857   1.63   thorpej 
    858  1.150  christos 	if (ovalue)
    859  1.150  christos 		*ovalue = oval;
    860   1.63   thorpej 
    861   1.63   thorpej 	return (0);
    862   1.63   thorpej }
    863   1.63   thorpej 
    864   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    865   1.63   thorpej int
    866  1.156  christos sys___timer_gettime50(struct lwp *l,
    867  1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    868   1.63   thorpej {
    869  1.135       dsl 	/* {
    870   1.63   thorpej 		syscallarg(timer_t) timerid;
    871   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    872  1.135       dsl 	} */
    873   1.63   thorpej 	struct itimerspec its;
    874   1.92      cube 	int error;
    875   1.92      cube 
    876   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    877   1.92      cube 	    &its)) != 0)
    878   1.92      cube 		return error;
    879   1.92      cube 
    880   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    881   1.92      cube }
    882   1.92      cube 
    883   1.92      cube int
    884   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    885   1.92      cube {
    886   1.63   thorpej 	struct ptimer *pt;
    887  1.142        ad 	struct ptimers *pts;
    888   1.63   thorpej 
    889  1.142        ad 	pts = p->p_timers;
    890  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    891   1.63   thorpej 		return (EINVAL);
    892  1.142        ad 	mutex_spin_enter(&timer_lock);
    893  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    894  1.142        ad 		mutex_spin_exit(&timer_lock);
    895  1.142        ad 		return (EINVAL);
    896  1.142        ad 	}
    897  1.150  christos 	timer_gettime(pt, its);
    898  1.142        ad 	mutex_spin_exit(&timer_lock);
    899   1.63   thorpej 
    900   1.92      cube 	return 0;
    901   1.63   thorpej }
    902   1.63   thorpej 
    903   1.63   thorpej /*
    904   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    905   1.63   thorpej  * while a notification was already pending. The counter is reset when
    906   1.63   thorpej  * a timer expires and a notification can be posted.
    907   1.63   thorpej  */
    908   1.63   thorpej int
    909  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    910  1.140      yamt     register_t *retval)
    911   1.63   thorpej {
    912  1.135       dsl 	/* {
    913   1.63   thorpej 		syscallarg(timer_t) timerid;
    914  1.135       dsl 	} */
    915   1.63   thorpej 	struct proc *p = l->l_proc;
    916  1.142        ad 	struct ptimers *pts;
    917   1.63   thorpej 	int timerid;
    918   1.63   thorpej 	struct ptimer *pt;
    919   1.63   thorpej 
    920   1.63   thorpej 	timerid = SCARG(uap, timerid);
    921   1.63   thorpej 
    922  1.142        ad 	pts = p->p_timers;
    923  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    924  1.142        ad 		return (EINVAL);
    925  1.142        ad 	mutex_spin_enter(&timer_lock);
    926  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    927  1.142        ad 		mutex_spin_exit(&timer_lock);
    928   1.63   thorpej 		return (EINVAL);
    929  1.142        ad 	}
    930   1.63   thorpej 	*retval = pt->pt_poverruns;
    931  1.142        ad 	mutex_spin_exit(&timer_lock);
    932   1.63   thorpej 
    933   1.63   thorpej 	return (0);
    934   1.63   thorpej }
    935   1.63   thorpej 
    936  1.154  wrstuden #ifdef KERN_SA
    937  1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    938  1.154  wrstuden void
    939  1.154  wrstuden timerupcall(struct lwp *l)
    940  1.154  wrstuden {
    941  1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    942  1.154  wrstuden 	struct proc *p = l->l_proc;
    943  1.154  wrstuden 	unsigned int i, fired, done;
    944  1.154  wrstuden 
    945  1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    946  1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    947  1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    948  1.154  wrstuden 		return ;
    949  1.154  wrstuden 
    950  1.154  wrstuden 	mutex_enter(p->p_lock);
    951  1.154  wrstuden 
    952  1.154  wrstuden 	fired = pt->pts_fired;
    953  1.154  wrstuden 	done = 0;
    954  1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    955  1.154  wrstuden 		siginfo_t *si;
    956  1.154  wrstuden 		int mask = 1 << --i;
    957  1.154  wrstuden 		int f;
    958  1.154  wrstuden 
    959  1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    960  1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    961  1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    962  1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    963  1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    964  1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    965  1.154  wrstuden 			siginfo_free(si);
    966  1.154  wrstuden 			/* XXX What do we do here?? */
    967  1.154  wrstuden 		} else
    968  1.154  wrstuden 			done |= mask;
    969  1.154  wrstuden 		fired &= ~mask;
    970  1.154  wrstuden 		l->l_pflag ^= f;
    971  1.154  wrstuden 	}
    972  1.154  wrstuden 	pt->pts_fired &= ~done;
    973  1.154  wrstuden 	if (pt->pts_fired == 0)
    974  1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    975  1.154  wrstuden 
    976  1.154  wrstuden 	mutex_exit(p->p_lock);
    977  1.154  wrstuden }
    978  1.154  wrstuden #endif /* KERN_SA */
    979  1.154  wrstuden 
    980   1.63   thorpej /*
    981   1.63   thorpej  * Real interval timer expired:
    982   1.63   thorpej  * send process whose timer expired an alarm signal.
    983   1.63   thorpej  * If time is not set up to reload, then just return.
    984   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    985   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    986   1.63   thorpej  * SIGALRM calls to be compressed into one.
    987   1.63   thorpej  */
    988   1.63   thorpej void
    989   1.63   thorpej realtimerexpire(void *arg)
    990   1.63   thorpej {
    991  1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    992  1.150  christos 	struct timespec now, next;
    993   1.63   thorpej 	struct ptimer *pt;
    994  1.148     joerg 	int backwards;
    995   1.63   thorpej 
    996  1.142        ad 	pt = arg;
    997   1.63   thorpej 
    998  1.142        ad 	mutex_spin_enter(&timer_lock);
    999   1.63   thorpej 	itimerfire(pt);
   1000   1.63   thorpej 
   1001  1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1002  1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1003  1.142        ad 		mutex_spin_exit(&timer_lock);
   1004   1.63   thorpej 		return;
   1005   1.63   thorpej 	}
   1006  1.148     joerg 
   1007  1.150  christos 	getnanotime(&now);
   1008  1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1009  1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1010  1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1011  1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1012  1.148     joerg 		pt->pt_time.it_value = next;
   1013  1.148     joerg 	} else {
   1014  1.166      yamt 		now_ns = timespec2ns(&now);
   1015  1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1016  1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1017  1.148     joerg 
   1018  1.166      yamt 		next_val = now_ns +
   1019  1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1020  1.148     joerg 
   1021  1.148     joerg 		if (backwards)
   1022  1.148     joerg 			next_val += interval;
   1023  1.148     joerg 		else
   1024  1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1025  1.148     joerg 
   1026  1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1027  1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1028  1.101    kardel 	}
   1029  1.148     joerg 
   1030  1.148     joerg 	/*
   1031  1.150  christos 	 * Don't need to check tshzto() return value, here.
   1032  1.148     joerg 	 * callout_reset() does it for us.
   1033  1.148     joerg 	 */
   1034  1.150  christos 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1035  1.148     joerg 	    realtimerexpire, pt);
   1036  1.148     joerg 	mutex_spin_exit(&timer_lock);
   1037   1.63   thorpej }
   1038   1.63   thorpej 
   1039   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1040   1.63   thorpej /* ARGSUSED */
   1041   1.63   thorpej int
   1042  1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1043  1.140      yamt     register_t *retval)
   1044   1.63   thorpej {
   1045  1.135       dsl 	/* {
   1046   1.63   thorpej 		syscallarg(int) which;
   1047   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1048  1.135       dsl 	} */
   1049   1.63   thorpej 	struct proc *p = l->l_proc;
   1050   1.63   thorpej 	struct itimerval aitv;
   1051   1.91      cube 	int error;
   1052   1.91      cube 
   1053   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1054   1.91      cube 	if (error)
   1055   1.91      cube 		return error;
   1056   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1057   1.91      cube }
   1058   1.63   thorpej 
   1059   1.91      cube int
   1060   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1061   1.91      cube {
   1062  1.142        ad 	struct ptimers *pts;
   1063  1.142        ad 	struct ptimer *pt;
   1064  1.150  christos 	struct itimerspec its;
   1065   1.63   thorpej 
   1066  1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1067   1.63   thorpej 		return (EINVAL);
   1068   1.63   thorpej 
   1069  1.142        ad 	mutex_spin_enter(&timer_lock);
   1070  1.142        ad 	pts = p->p_timers;
   1071  1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1072   1.91      cube 		timerclear(&itvp->it_value);
   1073   1.91      cube 		timerclear(&itvp->it_interval);
   1074  1.150  christos 	} else {
   1075  1.150  christos 		timer_gettime(pt, &its);
   1076  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1077  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1078  1.150  christos 	}
   1079  1.142        ad 	mutex_spin_exit(&timer_lock);
   1080   1.63   thorpej 
   1081   1.91      cube 	return 0;
   1082    1.1       cgd }
   1083    1.1       cgd 
   1084   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1085    1.1       cgd /* ARGSUSED */
   1086    1.3    andrew int
   1087  1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1088  1.140      yamt     register_t *retval)
   1089   1.15   thorpej {
   1090  1.135       dsl 	/* {
   1091   1.30   mycroft 		syscallarg(int) which;
   1092   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1093   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1094  1.135       dsl 	} */
   1095   1.63   thorpej 	struct proc *p = l->l_proc;
   1096   1.30   mycroft 	int which = SCARG(uap, which);
   1097  1.156  christos 	struct sys___getitimer50_args getargs;
   1098   1.91      cube 	const struct itimerval *itvp;
   1099    1.1       cgd 	struct itimerval aitv;
   1100   1.91      cube 	int error;
   1101    1.1       cgd 
   1102  1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1103    1.1       cgd 		return (EINVAL);
   1104   1.11       cgd 	itvp = SCARG(uap, itv);
   1105   1.63   thorpej 	if (itvp &&
   1106   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1107    1.1       cgd 		return (error);
   1108   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1109   1.30   mycroft 		SCARG(&getargs, which) = which;
   1110   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1111  1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1112   1.21       cgd 			return (error);
   1113   1.21       cgd 	}
   1114    1.1       cgd 	if (itvp == 0)
   1115    1.1       cgd 		return (0);
   1116   1.91      cube 
   1117   1.91      cube 	return dosetitimer(p, which, &aitv);
   1118   1.91      cube }
   1119   1.91      cube 
   1120   1.91      cube int
   1121   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1122   1.91      cube {
   1123  1.150  christos 	struct timespec now;
   1124  1.142        ad 	struct ptimers *pts;
   1125  1.142        ad 	struct ptimer *pt, *spare;
   1126   1.91      cube 
   1127  1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1128   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1129    1.1       cgd 		return (EINVAL);
   1130   1.63   thorpej 
   1131   1.63   thorpej 	/*
   1132   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1133   1.63   thorpej 	 * wants to clear the timer.
   1134   1.63   thorpej 	 */
   1135  1.142        ad 	spare = NULL;
   1136  1.142        ad 	pts = p->p_timers;
   1137  1.142        ad  retry:
   1138  1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1139  1.142        ad 	    pts->pts_timers[which] == NULL))
   1140   1.63   thorpej 		return (0);
   1141  1.142        ad 	if (pts == NULL)
   1142  1.142        ad 		pts = timers_alloc(p);
   1143  1.142        ad 	mutex_spin_enter(&timer_lock);
   1144  1.142        ad 	pt = pts->pts_timers[which];
   1145  1.142        ad 	if (pt == NULL) {
   1146  1.142        ad 		if (spare == NULL) {
   1147  1.142        ad 			mutex_spin_exit(&timer_lock);
   1148  1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1149  1.142        ad 			goto retry;
   1150  1.142        ad 		}
   1151  1.142        ad 		pt = spare;
   1152  1.142        ad 		spare = NULL;
   1153   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1154   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1155   1.63   thorpej 		pt->pt_overruns = 0;
   1156   1.63   thorpej 		pt->pt_proc = p;
   1157   1.63   thorpej 		pt->pt_type = which;
   1158   1.64   nathanw 		pt->pt_entry = which;
   1159  1.142        ad 		pt->pt_queued = false;
   1160  1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1161  1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1162  1.149  christos 		else
   1163  1.149  christos 			pt->pt_active = 0;
   1164  1.149  christos 
   1165   1.63   thorpej 		switch (which) {
   1166   1.63   thorpej 		case ITIMER_REAL:
   1167  1.170  christos 		case ITIMER_MONOTONIC:
   1168   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1169   1.63   thorpej 			break;
   1170   1.63   thorpej 		case ITIMER_VIRTUAL:
   1171   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1172   1.63   thorpej 			break;
   1173   1.63   thorpej 		case ITIMER_PROF:
   1174   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1175   1.63   thorpej 			break;
   1176    1.1       cgd 		}
   1177  1.142        ad 		pts->pts_timers[which] = pt;
   1178  1.142        ad 	}
   1179   1.63   thorpej 
   1180  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1181  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1182  1.150  christos 
   1183  1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1184   1.67   nathanw 		/* Convert to absolute time */
   1185  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1186  1.170  christos 		switch (which) {
   1187  1.170  christos 		case ITIMER_REAL:
   1188  1.170  christos 			getnanotime(&now);
   1189  1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1190  1.170  christos 			    &pt->pt_time.it_value);
   1191  1.170  christos 			break;
   1192  1.170  christos 		case ITIMER_MONOTONIC:
   1193  1.170  christos 			getnanouptime(&now);
   1194  1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1195  1.170  christos 			    &pt->pt_time.it_value);
   1196  1.170  christos 			break;
   1197  1.170  christos 		default:
   1198  1.170  christos 			break;
   1199  1.170  christos 		}
   1200   1.67   nathanw 	}
   1201   1.63   thorpej 	timer_settime(pt);
   1202  1.142        ad 	mutex_spin_exit(&timer_lock);
   1203  1.142        ad 	if (spare != NULL)
   1204  1.142        ad 		pool_put(&ptimer_pool, spare);
   1205   1.63   thorpej 
   1206    1.1       cgd 	return (0);
   1207    1.1       cgd }
   1208    1.1       cgd 
   1209   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1210  1.142        ad struct ptimers *
   1211   1.63   thorpej timers_alloc(struct proc *p)
   1212   1.63   thorpej {
   1213  1.142        ad 	struct ptimers *pts;
   1214   1.63   thorpej 	int i;
   1215   1.63   thorpej 
   1216  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1217   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1218   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1219   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1220   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1221   1.64   nathanw 	pts->pts_fired = 0;
   1222  1.142        ad 	mutex_spin_enter(&timer_lock);
   1223  1.142        ad 	if (p->p_timers == NULL) {
   1224  1.142        ad 		p->p_timers = pts;
   1225  1.142        ad 		mutex_spin_exit(&timer_lock);
   1226  1.142        ad 		return pts;
   1227  1.142        ad 	}
   1228  1.142        ad 	mutex_spin_exit(&timer_lock);
   1229  1.142        ad 	pool_put(&ptimers_pool, pts);
   1230  1.142        ad 	return p->p_timers;
   1231   1.63   thorpej }
   1232   1.63   thorpej 
   1233    1.1       cgd /*
   1234   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1235   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1236   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1237   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1238   1.63   thorpej  * structure if none of those remain.
   1239    1.1       cgd  */
   1240    1.3    andrew void
   1241   1.63   thorpej timers_free(struct proc *p, int which)
   1242    1.6       cgd {
   1243   1.63   thorpej 	struct ptimers *pts;
   1244  1.142        ad 	struct ptimer *ptn;
   1245  1.150  christos 	struct timespec ts;
   1246  1.142        ad 	int i;
   1247   1.63   thorpej 
   1248  1.142        ad 	if (p->p_timers == NULL)
   1249  1.142        ad 		return;
   1250   1.63   thorpej 
   1251  1.142        ad 	pts = p->p_timers;
   1252  1.142        ad 	mutex_spin_enter(&timer_lock);
   1253  1.142        ad 	if (which == TIMERS_ALL) {
   1254  1.142        ad 		p->p_timers = NULL;
   1255  1.142        ad 		i = 0;
   1256  1.142        ad 	} else {
   1257  1.150  christos 		timespecclear(&ts);
   1258  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1259  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1260  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1261  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1262  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1263  1.149  christos 		}
   1264  1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1265  1.142        ad 		if (ptn) {
   1266  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1267  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1268  1.142        ad 			    &ptn->pt_time.it_value);
   1269  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1270  1.142        ad 		}
   1271  1.150  christos 		timespecclear(&ts);
   1272  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1273  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1274  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1275  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1276  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1277  1.149  christos 		}
   1278  1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1279  1.142        ad 		if (ptn) {
   1280  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1281  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1282  1.142        ad 			    &ptn->pt_time.it_value);
   1283  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1284   1.63   thorpej 		}
   1285  1.142        ad 		i = 3;
   1286  1.142        ad 	}
   1287  1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1288  1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1289  1.142        ad 			itimerfree(pts, i);
   1290  1.142        ad 			mutex_spin_enter(&timer_lock);
   1291    1.1       cgd 		}
   1292    1.1       cgd 	}
   1293  1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1294  1.142        ad 	    pts->pts_timers[2] == NULL) {
   1295  1.142        ad 		p->p_timers = NULL;
   1296  1.142        ad 		mutex_spin_exit(&timer_lock);
   1297  1.142        ad 		pool_put(&ptimers_pool, pts);
   1298  1.142        ad 	} else
   1299  1.142        ad 		mutex_spin_exit(&timer_lock);
   1300  1.142        ad }
   1301  1.142        ad 
   1302  1.142        ad static void
   1303  1.142        ad itimerfree(struct ptimers *pts, int index)
   1304  1.142        ad {
   1305  1.142        ad 	struct ptimer *pt;
   1306  1.142        ad 
   1307  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1308  1.142        ad 
   1309  1.142        ad 	pt = pts->pts_timers[index];
   1310  1.142        ad 	pts->pts_timers[index] = NULL;
   1311  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1312  1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1313  1.167      yamt 	if (pt->pt_queued)
   1314  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1315  1.144        ad 	mutex_spin_exit(&timer_lock);
   1316  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1317  1.149  christos 		callout_destroy(&pt->pt_ch);
   1318  1.142        ad 	pool_put(&ptimer_pool, pt);
   1319    1.1       cgd }
   1320    1.1       cgd 
   1321    1.1       cgd /*
   1322    1.1       cgd  * Decrement an interval timer by a specified number
   1323  1.152  christos  * of nanoseconds, which must be less than a second,
   1324  1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1325  1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1326    1.8       cgd  * reduce the value reloaded into the timer so that
   1327    1.1       cgd  * the timer does not drift.  This routine assumes
   1328    1.1       cgd  * that it is called in a context where the timers
   1329    1.1       cgd  * on which it is operating cannot change in value.
   1330    1.1       cgd  */
   1331  1.142        ad static int
   1332  1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1333   1.63   thorpej {
   1334  1.150  christos 	struct itimerspec *itp;
   1335    1.1       cgd 
   1336  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1337  1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1338  1.142        ad 
   1339   1.63   thorpej 	itp = &pt->pt_time;
   1340  1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1341    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1342    1.1       cgd 			/* expired, and already in next interval */
   1343  1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1344    1.1       cgd 			goto expire;
   1345    1.1       cgd 		}
   1346  1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1347    1.1       cgd 		itp->it_value.tv_sec--;
   1348    1.1       cgd 	}
   1349  1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1350  1.152  christos 	nsec = 0;
   1351  1.150  christos 	if (timespecisset(&itp->it_value))
   1352    1.1       cgd 		return (1);
   1353    1.1       cgd 	/* expired, exactly at end of interval */
   1354    1.1       cgd expire:
   1355  1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1356    1.1       cgd 		itp->it_value = itp->it_interval;
   1357  1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1358  1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1359  1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1360    1.1       cgd 			itp->it_value.tv_sec--;
   1361    1.1       cgd 		}
   1362   1.63   thorpej 		timer_settime(pt);
   1363    1.1       cgd 	} else
   1364  1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1365    1.1       cgd 	return (0);
   1366   1.42       cgd }
   1367   1.42       cgd 
   1368  1.142        ad static void
   1369   1.63   thorpej itimerfire(struct ptimer *pt)
   1370   1.63   thorpej {
   1371   1.78        cl 
   1372  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1373  1.142        ad 
   1374  1.142        ad 	/*
   1375  1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1376  1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1377  1.142        ad 	 */
   1378  1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1379  1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1380  1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1381  1.142        ad 		return;
   1382  1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1383  1.142        ad 	pt->pt_queued = true;
   1384  1.142        ad 	softint_schedule(timer_sih);
   1385  1.142        ad }
   1386  1.142        ad 
   1387  1.142        ad void
   1388  1.142        ad timer_tick(lwp_t *l, bool user)
   1389  1.142        ad {
   1390  1.142        ad 	struct ptimers *pts;
   1391  1.142        ad 	struct ptimer *pt;
   1392  1.142        ad 	proc_t *p;
   1393  1.142        ad 
   1394  1.142        ad 	p = l->l_proc;
   1395  1.142        ad 	if (p->p_timers == NULL)
   1396  1.142        ad 		return;
   1397  1.142        ad 
   1398  1.142        ad 	mutex_spin_enter(&timer_lock);
   1399  1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1400   1.63   thorpej 		/*
   1401  1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1402   1.63   thorpej 		 */
   1403  1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1404  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1405  1.142        ad 				itimerfire(pt);
   1406  1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1407  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1408  1.142        ad 				itimerfire(pt);
   1409  1.142        ad 	}
   1410  1.142        ad 	mutex_spin_exit(&timer_lock);
   1411  1.142        ad }
   1412  1.142        ad 
   1413  1.154  wrstuden #ifdef KERN_SA
   1414  1.154  wrstuden /*
   1415  1.154  wrstuden  * timer_sa_intr:
   1416  1.154  wrstuden  *
   1417  1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1418  1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1419  1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1420  1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1421  1.154  wrstuden  */
   1422  1.154  wrstuden static void
   1423  1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1424  1.154  wrstuden {
   1425  1.155  wrstuden 	unsigned int		i;
   1426  1.155  wrstuden 	struct sadata		*sa;
   1427  1.155  wrstuden 	struct sadata_vp	*vp;
   1428  1.154  wrstuden 
   1429  1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1430  1.154  wrstuden 	if (!p->p_timerpend) {
   1431  1.154  wrstuden 		/*
   1432  1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1433  1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1434  1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1435  1.154  wrstuden 		 * determine if we really should call setrunnable.
   1436  1.154  wrstuden 		 */
   1437  1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1438  1.154  wrstuden 		pt->pt_overruns = 0;
   1439  1.154  wrstuden 		i = 1 << pt->pt_entry;
   1440  1.154  wrstuden 		p->p_timers->pts_fired = i;
   1441  1.154  wrstuden 		p->p_timerpend = 1;
   1442  1.154  wrstuden 
   1443  1.155  wrstuden 		sa = p->p_sa;
   1444  1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1445  1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1446  1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1447  1.155  wrstuden 			lwp_lock(vp_lwp);
   1448  1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1449  1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1450  1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1451  1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1452  1.154  wrstuden 				break;
   1453  1.154  wrstuden 			}
   1454  1.155  wrstuden 			lwp_unlock(vp_lwp);
   1455  1.154  wrstuden 		}
   1456  1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1457  1.154  wrstuden 	} else {
   1458  1.154  wrstuden 		i = 1 << pt->pt_entry;
   1459  1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1460  1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1461  1.154  wrstuden 			pt->pt_overruns = 0;
   1462  1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1463  1.154  wrstuden 		} else
   1464  1.154  wrstuden 			pt->pt_overruns++;
   1465  1.154  wrstuden 	}
   1466  1.154  wrstuden }
   1467  1.154  wrstuden #endif /* KERN_SA */
   1468  1.154  wrstuden 
   1469  1.142        ad static void
   1470  1.142        ad timer_intr(void *cookie)
   1471  1.142        ad {
   1472  1.142        ad 	ksiginfo_t ksi;
   1473  1.142        ad 	struct ptimer *pt;
   1474  1.142        ad 	proc_t *p;
   1475  1.142        ad 
   1476  1.158        ad 	mutex_enter(proc_lock);
   1477  1.142        ad 	mutex_spin_enter(&timer_lock);
   1478  1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1479  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1480  1.142        ad 		KASSERT(pt->pt_queued);
   1481  1.142        ad 		pt->pt_queued = false;
   1482  1.142        ad 
   1483  1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1484  1.154  wrstuden 			/* Process is dying. */
   1485  1.142        ad 			continue;
   1486  1.154  wrstuden 		}
   1487  1.142        ad 		p = pt->pt_proc;
   1488  1.154  wrstuden #ifdef KERN_SA
   1489  1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1490  1.154  wrstuden 			timer_sa_intr(pt, p);
   1491  1.142        ad 			continue;
   1492  1.142        ad 		}
   1493  1.154  wrstuden #endif /* KERN_SA */
   1494  1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1495  1.154  wrstuden 			continue;
   1496  1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1497   1.63   thorpej 			pt->pt_overruns++;
   1498  1.142        ad 			continue;
   1499   1.64   nathanw 		}
   1500  1.142        ad 
   1501  1.142        ad 		KSI_INIT(&ksi);
   1502  1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1503  1.142        ad 		ksi.ksi_code = SI_TIMER;
   1504  1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1505  1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1506  1.142        ad 		pt->pt_overruns = 0;
   1507  1.142        ad 		mutex_spin_exit(&timer_lock);
   1508  1.142        ad 		kpsignal(p, &ksi, NULL);
   1509  1.142        ad 		mutex_spin_enter(&timer_lock);
   1510   1.63   thorpej 	}
   1511  1.142        ad 	mutex_spin_exit(&timer_lock);
   1512  1.158        ad 	mutex_exit(proc_lock);
   1513   1.63   thorpej }
   1514  1.162      elad 
   1515  1.162      elad /*
   1516  1.162      elad  * Check if the time will wrap if set to ts.
   1517  1.162      elad  *
   1518  1.162      elad  * ts - timespec describing the new time
   1519  1.162      elad  * delta - the delta between the current time and ts
   1520  1.162      elad  */
   1521  1.162      elad bool
   1522  1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1523  1.162      elad {
   1524  1.162      elad 
   1525  1.162      elad 	/*
   1526  1.162      elad 	 * Don't allow the time to be set forward so far it
   1527  1.162      elad 	 * will wrap and become negative, thus allowing an
   1528  1.162      elad 	 * attacker to bypass the next check below.  The
   1529  1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1530  1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1531  1.162      elad 	 * past the cutoff, it will take a very long time
   1532  1.162      elad 	 * to get to the wrap point.
   1533  1.162      elad 	 */
   1534  1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1535  1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1536  1.162      elad 		return true;
   1537  1.162      elad 
   1538  1.162      elad 	return false;
   1539  1.162      elad }
   1540