Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.170.6.1
      1  1.170.6.1       mrg /*	$NetBSD: kern_time.c,v 1.170.6.1 2012/02/18 07:35:31 mrg Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.170.6.1       mrg __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.170.6.1 2012/02/18 07:35:31 mrg Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78      1.154  wrstuden #include <sys/sa.h>
     79      1.154  wrstuden #include <sys/savar.h>
     80       1.11       cgd #include <sys/syscallargs.h>
     81      1.143        ad #include <sys/cpu.h>
     82       1.19  christos 
     83      1.154  wrstuden #include "opt_sa.h"
     84      1.154  wrstuden 
     85      1.142        ad static void	timer_intr(void *);
     86      1.142        ad static void	itimerfire(struct ptimer *);
     87      1.142        ad static void	itimerfree(struct ptimers *, int);
     88      1.142        ad 
     89      1.142        ad kmutex_t	timer_lock;
     90      1.142        ad 
     91      1.142        ad static void	*timer_sih;
     92      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     93      1.131        ad 
     94      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     95       1.97    simonb 
     96      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     97      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     98      1.168      yamt 
     99      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
    100      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
    101      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
    102      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
    103      1.168      yamt 
    104      1.131        ad /*
    105      1.131        ad  * Initialize timekeeping.
    106      1.131        ad  */
    107      1.131        ad void
    108      1.131        ad time_init(void)
    109      1.131        ad {
    110      1.131        ad 
    111      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    112      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    113      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    114      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    115      1.131        ad }
    116      1.131        ad 
    117      1.142        ad void
    118      1.142        ad time_init2(void)
    119      1.142        ad {
    120      1.142        ad 
    121      1.142        ad 	TAILQ_INIT(&timer_queue);
    122      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    123      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    124      1.142        ad 	    timer_intr, NULL);
    125      1.142        ad }
    126      1.142        ad 
    127       1.63   thorpej /* Time of day and interval timer support.
    128        1.1       cgd  *
    129        1.1       cgd  * These routines provide the kernel entry points to get and set
    130        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    131        1.1       cgd  * here provide support for adding and subtracting timeval structures
    132        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    133        1.1       cgd  * timers when they expire.
    134        1.1       cgd  */
    135        1.1       cgd 
    136       1.22       jtc /* This function is used by clock_settime and settimeofday */
    137      1.132      elad static int
    138      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    139       1.22       jtc {
    140      1.156  christos 	struct timespec delta, now;
    141      1.129        ad 	int s;
    142       1.22       jtc 
    143       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    144      1.129        ad 	s = splclock();
    145      1.156  christos 	nanotime(&now);
    146      1.156  christos 	timespecsub(ts, &now, &delta);
    147      1.132      elad 
    148      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    149      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    150      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    151      1.129        ad 		splx(s);
    152       1.29       tls 		return (EPERM);
    153       1.55      tron 	}
    154      1.132      elad 
    155       1.29       tls #ifdef notyet
    156      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    157      1.129        ad 		splx(s);
    158       1.29       tls 		return (EPERM);
    159       1.55      tron 	}
    160       1.29       tls #endif
    161      1.103    kardel 
    162      1.156  christos 	tc_setclock(ts);
    163      1.103    kardel 
    164      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    165      1.103    kardel 
    166       1.22       jtc 	resettodr();
    167      1.129        ad 	splx(s);
    168      1.129        ad 
    169       1.29       tls 	return (0);
    170       1.22       jtc }
    171       1.22       jtc 
    172      1.132      elad int
    173      1.132      elad settime(struct proc *p, struct timespec *ts)
    174      1.132      elad {
    175      1.132      elad 	return (settime1(p, ts, true));
    176      1.132      elad }
    177      1.132      elad 
    178       1.22       jtc /* ARGSUSED */
    179       1.22       jtc int
    180      1.156  christos sys___clock_gettime50(struct lwp *l,
    181      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    182       1.22       jtc {
    183      1.135       dsl 	/* {
    184       1.22       jtc 		syscallarg(clockid_t) clock_id;
    185       1.23       cgd 		syscallarg(struct timespec *) tp;
    186      1.135       dsl 	} */
    187      1.165     njoly 	int error;
    188       1.22       jtc 	struct timespec ats;
    189       1.22       jtc 
    190      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    191      1.165     njoly 	if (error != 0)
    192      1.165     njoly 		return error;
    193      1.165     njoly 
    194      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    195      1.165     njoly }
    196      1.165     njoly 
    197      1.165     njoly int
    198      1.165     njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
    199      1.165     njoly {
    200      1.165     njoly 
    201       1.61    simonb 	switch (clock_id) {
    202       1.61    simonb 	case CLOCK_REALTIME:
    203      1.165     njoly 		nanotime(ts);
    204       1.61    simonb 		break;
    205       1.61    simonb 	case CLOCK_MONOTONIC:
    206      1.165     njoly 		nanouptime(ts);
    207       1.61    simonb 		break;
    208       1.61    simonb 	default:
    209      1.165     njoly 		return EINVAL;
    210       1.61    simonb 	}
    211       1.22       jtc 
    212      1.165     njoly 	return 0;
    213       1.22       jtc }
    214       1.22       jtc 
    215       1.22       jtc /* ARGSUSED */
    216       1.22       jtc int
    217      1.156  christos sys___clock_settime50(struct lwp *l,
    218      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    219       1.22       jtc {
    220      1.135       dsl 	/* {
    221       1.22       jtc 		syscallarg(clockid_t) clock_id;
    222       1.23       cgd 		syscallarg(const struct timespec *) tp;
    223      1.135       dsl 	} */
    224      1.156  christos 	int error;
    225      1.156  christos 	struct timespec ats;
    226       1.22       jtc 
    227      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    228      1.156  christos 		return error;
    229      1.156  christos 
    230      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    231       1.56      manu }
    232       1.56      manu 
    233       1.56      manu 
    234       1.56      manu int
    235      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    236      1.132      elad     bool check_kauth)
    237       1.56      manu {
    238       1.56      manu 	int error;
    239       1.56      manu 
    240       1.61    simonb 	switch (clock_id) {
    241       1.61    simonb 	case CLOCK_REALTIME:
    242      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    243       1.61    simonb 			return (error);
    244       1.61    simonb 		break;
    245       1.61    simonb 	case CLOCK_MONOTONIC:
    246       1.61    simonb 		return (EINVAL);	/* read-only clock */
    247       1.61    simonb 	default:
    248       1.56      manu 		return (EINVAL);
    249       1.61    simonb 	}
    250       1.22       jtc 
    251       1.22       jtc 	return 0;
    252       1.22       jtc }
    253       1.22       jtc 
    254       1.22       jtc int
    255      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    256      1.140      yamt     register_t *retval)
    257       1.22       jtc {
    258      1.135       dsl 	/* {
    259       1.22       jtc 		syscallarg(clockid_t) clock_id;
    260       1.23       cgd 		syscallarg(struct timespec *) tp;
    261      1.135       dsl 	} */
    262       1.22       jtc 	struct timespec ts;
    263       1.22       jtc 	int error = 0;
    264       1.22       jtc 
    265      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    266      1.164     njoly 		return error;
    267      1.164     njoly 
    268      1.164     njoly 	if (SCARG(uap, tp))
    269      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    270      1.164     njoly 
    271      1.164     njoly 	return error;
    272      1.164     njoly }
    273      1.164     njoly 
    274      1.164     njoly int
    275      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    276      1.164     njoly {
    277      1.164     njoly 
    278       1.61    simonb 	switch (clock_id) {
    279       1.61    simonb 	case CLOCK_REALTIME:
    280       1.61    simonb 	case CLOCK_MONOTONIC:
    281      1.164     njoly 		ts->tv_sec = 0;
    282      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    283      1.164     njoly 			ts->tv_nsec = 1;
    284      1.102    kardel 		else
    285      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    286       1.61    simonb 		break;
    287       1.61    simonb 	default:
    288      1.164     njoly 		return EINVAL;
    289       1.61    simonb 	}
    290       1.22       jtc 
    291      1.164     njoly 	return 0;
    292       1.22       jtc }
    293       1.22       jtc 
    294       1.27       jtc /* ARGSUSED */
    295       1.27       jtc int
    296      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    297      1.140      yamt     register_t *retval)
    298       1.27       jtc {
    299      1.135       dsl 	/* {
    300      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    301      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    302      1.135       dsl 	} */
    303      1.101    kardel 	struct timespec rmt, rqt;
    304      1.120       dsl 	int error, error1;
    305      1.101    kardel 
    306      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    307      1.101    kardel 	if (error)
    308      1.101    kardel 		return (error);
    309      1.101    kardel 
    310      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    311      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    312      1.120       dsl 		return error;
    313      1.120       dsl 
    314      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    315      1.120       dsl 	return error1 ? error1 : error;
    316      1.120       dsl }
    317      1.120       dsl 
    318      1.120       dsl int
    319      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    320      1.120       dsl {
    321      1.141      yamt 	struct timespec rmtstart;
    322      1.120       dsl 	int error, timo;
    323      1.120       dsl 
    324      1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    325      1.160  christos 		return error;
    326      1.101    kardel 
    327      1.120       dsl 	timo = tstohz(rqt);
    328      1.101    kardel 	/*
    329      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    330      1.101    kardel 	 */
    331      1.101    kardel 	if (timo == 0)
    332      1.101    kardel 		timo = 1;
    333      1.141      yamt 	getnanouptime(&rmtstart);
    334      1.141      yamt again:
    335      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    336      1.141      yamt 	if (rmt != NULL || error == 0) {
    337      1.141      yamt 		struct timespec rmtend;
    338      1.141      yamt 		struct timespec t0;
    339      1.141      yamt 		struct timespec *t;
    340      1.101    kardel 
    341      1.141      yamt 		getnanouptime(&rmtend);
    342      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    343      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    344      1.141      yamt 		timespecsub(rqt, t, t);
    345      1.141      yamt 		if (t->tv_sec < 0)
    346      1.141      yamt 			timespecclear(t);
    347      1.141      yamt 		if (error == 0) {
    348      1.141      yamt 			timo = tstohz(t);
    349      1.141      yamt 			if (timo > 0)
    350      1.141      yamt 				goto again;
    351      1.141      yamt 		}
    352      1.141      yamt 	}
    353      1.104    kardel 
    354      1.101    kardel 	if (error == ERESTART)
    355      1.101    kardel 		error = EINTR;
    356      1.101    kardel 	if (error == EWOULDBLOCK)
    357      1.101    kardel 		error = 0;
    358      1.101    kardel 
    359      1.101    kardel 	return error;
    360       1.27       jtc }
    361       1.22       jtc 
    362        1.1       cgd /* ARGSUSED */
    363        1.3    andrew int
    364      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    365      1.140      yamt     register_t *retval)
    366       1.15   thorpej {
    367      1.135       dsl 	/* {
    368       1.11       cgd 		syscallarg(struct timeval *) tp;
    369      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    370      1.135       dsl 	} */
    371        1.1       cgd 	struct timeval atv;
    372        1.1       cgd 	int error = 0;
    373       1.25     perry 	struct timezone tzfake;
    374        1.1       cgd 
    375       1.11       cgd 	if (SCARG(uap, tp)) {
    376        1.1       cgd 		microtime(&atv);
    377       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    378       1.17  christos 		if (error)
    379        1.1       cgd 			return (error);
    380        1.1       cgd 	}
    381       1.25     perry 	if (SCARG(uap, tzp)) {
    382       1.25     perry 		/*
    383       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    384       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    385       1.25     perry 		 */
    386       1.25     perry 		tzfake.tz_minuteswest = 0;
    387       1.25     perry 		tzfake.tz_dsttime = 0;
    388       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    389       1.25     perry 	}
    390        1.1       cgd 	return (error);
    391        1.1       cgd }
    392        1.1       cgd 
    393        1.1       cgd /* ARGSUSED */
    394        1.3    andrew int
    395      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    396      1.140      yamt     register_t *retval)
    397       1.15   thorpej {
    398      1.135       dsl 	/* {
    399       1.24       cgd 		syscallarg(const struct timeval *) tv;
    400      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    401      1.135       dsl 	} */
    402       1.60      manu 
    403      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    404       1.60      manu }
    405       1.60      manu 
    406       1.60      manu int
    407      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    408      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    409       1.60      manu {
    410       1.22       jtc 	struct timeval atv;
    411       1.98  christos 	struct timespec ts;
    412       1.22       jtc 	int error;
    413        1.1       cgd 
    414        1.8       cgd 	/* Verify all parameters before changing time. */
    415      1.119       dsl 
    416       1.25     perry 	/*
    417       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    418       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    419       1.25     perry 	 */
    420       1.98  christos 	if (utzp)
    421       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    422      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    423       1.98  christos 
    424       1.98  christos 	if (utv == NULL)
    425       1.98  christos 		return 0;
    426       1.98  christos 
    427      1.119       dsl 	if (userspace) {
    428      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    429      1.119       dsl 			return error;
    430      1.119       dsl 		utv = &atv;
    431      1.119       dsl 	}
    432      1.119       dsl 
    433      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    434      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    435        1.1       cgd }
    436        1.1       cgd 
    437       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    438        1.1       cgd 
    439        1.1       cgd /* ARGSUSED */
    440        1.3    andrew int
    441      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    442      1.140      yamt     register_t *retval)
    443       1.15   thorpej {
    444      1.135       dsl 	/* {
    445       1.24       cgd 		syscallarg(const struct timeval *) delta;
    446       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    447      1.135       dsl 	} */
    448      1.156  christos 	int error = 0;
    449      1.156  christos 	struct timeval atv, oldatv;
    450        1.1       cgd 
    451      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    452      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    453      1.156  christos 		return error;
    454       1.17  christos 
    455      1.156  christos 	if (SCARG(uap, delta)) {
    456      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    457      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    458      1.156  christos 		if (error)
    459      1.156  christos 			return (error);
    460      1.156  christos 	}
    461      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    462      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    463      1.156  christos 	if (SCARG(uap, olddelta))
    464      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    465      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    466      1.156  christos 	return error;
    467       1.56      manu }
    468       1.56      manu 
    469      1.156  christos void
    470      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    471       1.56      manu {
    472      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    473      1.101    kardel 
    474      1.101    kardel 	if (olddelta) {
    475      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    476      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    477      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    478      1.156  christos 		if (olddelta->tv_usec < 0) {
    479      1.156  christos 			olddelta->tv_usec += 1000000;
    480      1.156  christos 			olddelta->tv_sec--;
    481      1.101    kardel 		}
    482      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    483      1.101    kardel 	}
    484      1.101    kardel 
    485      1.101    kardel 	if (delta) {
    486      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    487      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    488      1.101    kardel 
    489      1.143        ad 		if (time_adjtime) {
    490      1.101    kardel 			/* We need to save the system time during shutdown */
    491      1.101    kardel 			time_adjusted |= 1;
    492      1.143        ad 		}
    493      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    494      1.101    kardel 	}
    495        1.1       cgd }
    496        1.1       cgd 
    497        1.1       cgd /*
    498       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    499       1.63   thorpej  * timer_*() family of routines are supported.
    500        1.1       cgd  *
    501       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    502       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    503       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    504      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    505      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    506      1.170  christos  * allocated by the timer_create() syscall.
    507        1.1       cgd  *
    508       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    509       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    510        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    511       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    512       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    513       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    514       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    515       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    516       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    517       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    518       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    519       1.63   thorpej 
    520       1.63   thorpej /* Allocate a POSIX realtime timer. */
    521       1.63   thorpej int
    522      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    523      1.140      yamt     register_t *retval)
    524       1.63   thorpej {
    525      1.135       dsl 	/* {
    526       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    527       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    528       1.63   thorpej 		syscallarg(timer_t *) timerid;
    529      1.135       dsl 	} */
    530       1.92      cube 
    531       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    532      1.105        ad 	    SCARG(uap, evp), copyin, l);
    533       1.92      cube }
    534       1.92      cube 
    535       1.92      cube int
    536       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    537      1.105        ad     copyin_t fetch_event, struct lwp *l)
    538       1.92      cube {
    539       1.92      cube 	int error;
    540       1.92      cube 	timer_t timerid;
    541      1.142        ad 	struct ptimers *pts;
    542       1.63   thorpej 	struct ptimer *pt;
    543      1.105        ad 	struct proc *p;
    544      1.105        ad 
    545      1.105        ad 	p = l->l_proc;
    546       1.63   thorpej 
    547      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    548       1.63   thorpej 		return (EINVAL);
    549       1.63   thorpej 
    550      1.142        ad 	if ((pts = p->p_timers) == NULL)
    551      1.142        ad 		pts = timers_alloc(p);
    552       1.63   thorpej 
    553       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    554      1.142        ad 	if (evp != NULL) {
    555       1.63   thorpej 		if (((error =
    556       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    557       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    558      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    559      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    560      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    561      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    562       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    563       1.63   thorpej 			return (error ? error : EINVAL);
    564       1.63   thorpej 		}
    565      1.142        ad 	}
    566      1.142        ad 
    567      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    568      1.142        ad 	mutex_spin_enter(&timer_lock);
    569      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    570      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    571      1.142        ad 			break;
    572      1.142        ad 	if (timerid == TIMER_MAX) {
    573      1.142        ad 		mutex_spin_exit(&timer_lock);
    574      1.142        ad 		pool_put(&ptimer_pool, pt);
    575      1.142        ad 		return EAGAIN;
    576      1.142        ad 	}
    577      1.142        ad 	if (evp == NULL) {
    578       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    579       1.63   thorpej 		switch (id) {
    580       1.63   thorpej 		case CLOCK_REALTIME:
    581      1.168      yamt 		case CLOCK_MONOTONIC:
    582       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    583       1.63   thorpej 			break;
    584       1.63   thorpej 		case CLOCK_VIRTUAL:
    585       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    586       1.63   thorpej 			break;
    587       1.63   thorpej 		case CLOCK_PROF:
    588       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    589       1.63   thorpej 			break;
    590       1.63   thorpej 		}
    591       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    592       1.63   thorpej 	}
    593       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    594       1.73  christos 	pt->pt_info.ksi_errno = 0;
    595       1.73  christos 	pt->pt_info.ksi_code = 0;
    596       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    597      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    598      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    599       1.63   thorpej 	pt->pt_type = id;
    600       1.63   thorpej 	pt->pt_proc = p;
    601       1.63   thorpej 	pt->pt_overruns = 0;
    602       1.63   thorpej 	pt->pt_poverruns = 0;
    603       1.64   nathanw 	pt->pt_entry = timerid;
    604      1.142        ad 	pt->pt_queued = false;
    605      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    606      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    607      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    608      1.149  christos 	else
    609      1.149  christos 		pt->pt_active = 0;
    610      1.149  christos 
    611      1.142        ad 	pts->pts_timers[timerid] = pt;
    612      1.142        ad 	mutex_spin_exit(&timer_lock);
    613       1.63   thorpej 
    614       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    615       1.63   thorpej }
    616       1.63   thorpej 
    617       1.63   thorpej /* Delete a POSIX realtime timer */
    618        1.3    andrew int
    619      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    620      1.140      yamt     register_t *retval)
    621       1.15   thorpej {
    622      1.135       dsl 	/* {
    623       1.63   thorpej 		syscallarg(timer_t) timerid;
    624      1.135       dsl 	} */
    625       1.63   thorpej 	struct proc *p = l->l_proc;
    626       1.65  jdolecek 	timer_t timerid;
    627      1.142        ad 	struct ptimers *pts;
    628       1.63   thorpej 	struct ptimer *pt, *ptn;
    629        1.1       cgd 
    630       1.63   thorpej 	timerid = SCARG(uap, timerid);
    631      1.142        ad 	pts = p->p_timers;
    632      1.142        ad 
    633      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    634      1.142        ad 		return (EINVAL);
    635       1.63   thorpej 
    636      1.142        ad 	mutex_spin_enter(&timer_lock);
    637      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    638      1.142        ad 		mutex_spin_exit(&timer_lock);
    639        1.1       cgd 		return (EINVAL);
    640      1.142        ad 	}
    641      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    642      1.149  christos 		if (pt->pt_active) {
    643      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    644      1.149  christos 			LIST_REMOVE(pt, pt_list);
    645      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    646      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    647      1.149  christos 				    &ptn->pt_time.it_value,
    648      1.149  christos 				    &ptn->pt_time.it_value);
    649      1.149  christos 			pt->pt_active = 0;
    650      1.149  christos 		}
    651       1.63   thorpej 	}
    652      1.142        ad 	itimerfree(pts, timerid);
    653       1.63   thorpej 
    654       1.63   thorpej 	return (0);
    655       1.63   thorpej }
    656       1.63   thorpej 
    657       1.63   thorpej /*
    658       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    659      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    660      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    661       1.63   thorpej  */
    662       1.63   thorpej void
    663       1.63   thorpej timer_settime(struct ptimer *pt)
    664       1.63   thorpej {
    665       1.63   thorpej 	struct ptimer *ptn, *pptn;
    666       1.63   thorpej 	struct ptlist *ptl;
    667       1.63   thorpej 
    668      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    669      1.142        ad 
    670      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    671      1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    672      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    673       1.63   thorpej 			/*
    674      1.150  christos 			 * Don't need to check tshzto() return value, here.
    675       1.63   thorpej 			 * callout_reset() does it for us.
    676       1.63   thorpej 			 */
    677  1.170.6.1       mrg 			callout_reset(&pt->pt_ch,
    678  1.170.6.1       mrg 			    pt->pt_type == CLOCK_MONOTONIC ?
    679  1.170.6.1       mrg 			    tshztoup(&pt->pt_time.it_value) :
    680  1.170.6.1       mrg 			    tshzto(&pt->pt_time.it_value),
    681       1.63   thorpej 			    realtimerexpire, pt);
    682       1.63   thorpej 		}
    683       1.63   thorpej 	} else {
    684       1.63   thorpej 		if (pt->pt_active) {
    685       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    686       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    687       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    688      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    689       1.63   thorpej 				    &ptn->pt_time.it_value,
    690       1.63   thorpej 				    &ptn->pt_time.it_value);
    691       1.63   thorpej 		}
    692      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    693       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    694       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    695       1.63   thorpej 			else
    696       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    697       1.63   thorpej 
    698       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    699      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    700       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    701       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    702      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    703       1.63   thorpej 				    &ptn->pt_time.it_value,
    704       1.63   thorpej 				    &pt->pt_time.it_value);
    705       1.63   thorpej 
    706       1.63   thorpej 			if (pptn)
    707       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    708       1.63   thorpej 			else
    709       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    710       1.63   thorpej 
    711       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    712      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    713       1.63   thorpej 				    &pt->pt_time.it_value,
    714       1.63   thorpej 				    &ptn->pt_time.it_value);
    715       1.63   thorpej 
    716       1.63   thorpej 			pt->pt_active = 1;
    717       1.63   thorpej 		} else
    718       1.63   thorpej 			pt->pt_active = 0;
    719       1.63   thorpej 	}
    720       1.63   thorpej }
    721       1.63   thorpej 
    722       1.63   thorpej void
    723      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    724       1.63   thorpej {
    725      1.150  christos 	struct timespec now;
    726       1.63   thorpej 	struct ptimer *ptn;
    727       1.63   thorpej 
    728      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    729      1.142        ad 
    730      1.150  christos 	*aits = pt->pt_time;
    731      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    732        1.1       cgd 		/*
    733       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    734       1.63   thorpej 		 * part of real time timer.  If time for real time
    735       1.63   thorpej 		 * timer has passed return 0, else return difference
    736       1.63   thorpej 		 * between current time and time for the timer to go
    737       1.63   thorpej 		 * off.
    738        1.1       cgd 		 */
    739      1.150  christos 		if (timespecisset(&aits->it_value)) {
    740      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    741      1.168      yamt 				getnanotime(&now);
    742      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    743      1.168      yamt 				getnanouptime(&now);
    744      1.168      yamt 			}
    745      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    746      1.150  christos 				timespecclear(&aits->it_value);
    747      1.101    kardel 			else
    748      1.150  christos 				timespecsub(&aits->it_value, &now,
    749      1.150  christos 				    &aits->it_value);
    750       1.36   thorpej 		}
    751       1.63   thorpej 	} else if (pt->pt_active) {
    752       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    753       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    754       1.63   thorpej 		else
    755       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    756       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    757      1.150  christos 			timespecadd(&aits->it_value,
    758      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    759       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    760        1.1       cgd 	} else
    761      1.150  christos 		timespecclear(&aits->it_value);
    762       1.63   thorpej }
    763       1.63   thorpej 
    764       1.63   thorpej 
    765       1.63   thorpej 
    766       1.63   thorpej /* Set and arm a POSIX realtime timer */
    767       1.63   thorpej int
    768      1.156  christos sys___timer_settime50(struct lwp *l,
    769      1.156  christos     const struct sys___timer_settime50_args *uap,
    770      1.140      yamt     register_t *retval)
    771       1.63   thorpej {
    772      1.135       dsl 	/* {
    773       1.63   thorpej 		syscallarg(timer_t) timerid;
    774       1.63   thorpej 		syscallarg(int) flags;
    775       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    776       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    777      1.135       dsl 	} */
    778       1.92      cube 	int error;
    779       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    780       1.92      cube 
    781       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    782       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    783       1.92      cube 		return (error);
    784       1.92      cube 
    785       1.92      cube 	if (SCARG(uap, ovalue))
    786       1.92      cube 		ovp = &ovalue;
    787       1.92      cube 
    788       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    789       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    790       1.92      cube 		return error;
    791       1.92      cube 
    792       1.92      cube 	if (ovp)
    793       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    794       1.92      cube 		    sizeof(struct itimerspec));
    795       1.92      cube 	return 0;
    796       1.92      cube }
    797       1.92      cube 
    798       1.92      cube int
    799       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    800       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    801       1.92      cube {
    802      1.150  christos 	struct timespec now;
    803      1.150  christos 	struct itimerspec val, oval;
    804      1.142        ad 	struct ptimers *pts;
    805       1.63   thorpej 	struct ptimer *pt;
    806      1.160  christos 	int error;
    807       1.63   thorpej 
    808      1.142        ad 	pts = p->p_timers;
    809       1.63   thorpej 
    810      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    811      1.142        ad 		return EINVAL;
    812      1.150  christos 	val = *value;
    813      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    814      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    815      1.160  christos 		return error;
    816       1.63   thorpej 
    817      1.142        ad 	mutex_spin_enter(&timer_lock);
    818      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    819      1.142        ad 		mutex_spin_exit(&timer_lock);
    820      1.150  christos 		return EINVAL;
    821      1.142        ad 	}
    822      1.142        ad 
    823       1.63   thorpej 	oval = pt->pt_time;
    824       1.63   thorpej 	pt->pt_time = val;
    825       1.63   thorpej 
    826       1.67   nathanw 	/*
    827       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    828       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    829       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    830       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    831       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    832       1.67   nathanw 	 */
    833      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    834      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    835      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    836      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    837      1.168      yamt 					getnanotime(&now);
    838      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    839      1.168      yamt 					getnanouptime(&now);
    840      1.168      yamt 				}
    841      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    842      1.101    kardel 				    &pt->pt_time.it_value);
    843      1.101    kardel 			}
    844       1.67   nathanw 		} else {
    845       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    846      1.150  christos 				getnanotime(&now);
    847      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    848      1.101    kardel 				    &pt->pt_time.it_value);
    849      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    850       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    851       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    852      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    853       1.67   nathanw 				}
    854       1.67   nathanw 			}
    855       1.67   nathanw 		}
    856       1.67   nathanw 	}
    857       1.67   nathanw 
    858       1.63   thorpej 	timer_settime(pt);
    859      1.142        ad 	mutex_spin_exit(&timer_lock);
    860       1.63   thorpej 
    861      1.150  christos 	if (ovalue)
    862      1.150  christos 		*ovalue = oval;
    863       1.63   thorpej 
    864       1.63   thorpej 	return (0);
    865       1.63   thorpej }
    866       1.63   thorpej 
    867       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    868       1.63   thorpej int
    869      1.156  christos sys___timer_gettime50(struct lwp *l,
    870      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    871       1.63   thorpej {
    872      1.135       dsl 	/* {
    873       1.63   thorpej 		syscallarg(timer_t) timerid;
    874       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    875      1.135       dsl 	} */
    876       1.63   thorpej 	struct itimerspec its;
    877       1.92      cube 	int error;
    878       1.92      cube 
    879       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    880       1.92      cube 	    &its)) != 0)
    881       1.92      cube 		return error;
    882       1.92      cube 
    883       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    884       1.92      cube }
    885       1.92      cube 
    886       1.92      cube int
    887       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    888       1.92      cube {
    889       1.63   thorpej 	struct ptimer *pt;
    890      1.142        ad 	struct ptimers *pts;
    891       1.63   thorpej 
    892      1.142        ad 	pts = p->p_timers;
    893      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    894       1.63   thorpej 		return (EINVAL);
    895      1.142        ad 	mutex_spin_enter(&timer_lock);
    896      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    897      1.142        ad 		mutex_spin_exit(&timer_lock);
    898      1.142        ad 		return (EINVAL);
    899      1.142        ad 	}
    900      1.150  christos 	timer_gettime(pt, its);
    901      1.142        ad 	mutex_spin_exit(&timer_lock);
    902       1.63   thorpej 
    903       1.92      cube 	return 0;
    904       1.63   thorpej }
    905       1.63   thorpej 
    906       1.63   thorpej /*
    907       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    908       1.63   thorpej  * while a notification was already pending. The counter is reset when
    909       1.63   thorpej  * a timer expires and a notification can be posted.
    910       1.63   thorpej  */
    911       1.63   thorpej int
    912      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    913      1.140      yamt     register_t *retval)
    914       1.63   thorpej {
    915      1.135       dsl 	/* {
    916       1.63   thorpej 		syscallarg(timer_t) timerid;
    917      1.135       dsl 	} */
    918       1.63   thorpej 	struct proc *p = l->l_proc;
    919      1.142        ad 	struct ptimers *pts;
    920       1.63   thorpej 	int timerid;
    921       1.63   thorpej 	struct ptimer *pt;
    922       1.63   thorpej 
    923       1.63   thorpej 	timerid = SCARG(uap, timerid);
    924       1.63   thorpej 
    925      1.142        ad 	pts = p->p_timers;
    926      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    927      1.142        ad 		return (EINVAL);
    928      1.142        ad 	mutex_spin_enter(&timer_lock);
    929      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    930      1.142        ad 		mutex_spin_exit(&timer_lock);
    931       1.63   thorpej 		return (EINVAL);
    932      1.142        ad 	}
    933       1.63   thorpej 	*retval = pt->pt_poverruns;
    934      1.142        ad 	mutex_spin_exit(&timer_lock);
    935       1.63   thorpej 
    936       1.63   thorpej 	return (0);
    937       1.63   thorpej }
    938       1.63   thorpej 
    939      1.154  wrstuden #ifdef KERN_SA
    940      1.154  wrstuden /* Glue function that triggers an upcall; called from userret(). */
    941      1.154  wrstuden void
    942      1.154  wrstuden timerupcall(struct lwp *l)
    943      1.154  wrstuden {
    944      1.154  wrstuden 	struct ptimers *pt = l->l_proc->p_timers;
    945      1.154  wrstuden 	struct proc *p = l->l_proc;
    946      1.154  wrstuden 	unsigned int i, fired, done;
    947      1.154  wrstuden 
    948      1.154  wrstuden 	KDASSERT(l->l_proc->p_sa);
    949      1.154  wrstuden 	/* Bail out if we do not own the virtual processor */
    950      1.154  wrstuden 	if (l->l_savp->savp_lwp != l)
    951      1.154  wrstuden 		return ;
    952      1.154  wrstuden 
    953      1.154  wrstuden 	mutex_enter(p->p_lock);
    954      1.154  wrstuden 
    955      1.154  wrstuden 	fired = pt->pts_fired;
    956      1.154  wrstuden 	done = 0;
    957      1.154  wrstuden 	while ((i = ffs(fired)) != 0) {
    958      1.154  wrstuden 		siginfo_t *si;
    959      1.154  wrstuden 		int mask = 1 << --i;
    960      1.154  wrstuden 		int f;
    961      1.154  wrstuden 
    962      1.154  wrstuden 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    963      1.154  wrstuden 		l->l_pflag |= LP_SA_NOBLOCK;
    964      1.154  wrstuden 		si = siginfo_alloc(PR_WAITOK);
    965      1.154  wrstuden 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    966      1.154  wrstuden 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    967      1.154  wrstuden 		    sizeof(*si), si, siginfo_free) != 0) {
    968      1.154  wrstuden 			siginfo_free(si);
    969      1.154  wrstuden 			/* XXX What do we do here?? */
    970      1.154  wrstuden 		} else
    971      1.154  wrstuden 			done |= mask;
    972      1.154  wrstuden 		fired &= ~mask;
    973      1.154  wrstuden 		l->l_pflag ^= f;
    974      1.154  wrstuden 	}
    975      1.154  wrstuden 	pt->pts_fired &= ~done;
    976      1.154  wrstuden 	if (pt->pts_fired == 0)
    977      1.154  wrstuden 		l->l_proc->p_timerpend = 0;
    978      1.154  wrstuden 
    979      1.154  wrstuden 	mutex_exit(p->p_lock);
    980      1.154  wrstuden }
    981      1.154  wrstuden #endif /* KERN_SA */
    982      1.154  wrstuden 
    983       1.63   thorpej /*
    984       1.63   thorpej  * Real interval timer expired:
    985       1.63   thorpej  * send process whose timer expired an alarm signal.
    986       1.63   thorpej  * If time is not set up to reload, then just return.
    987       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    988       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    989       1.63   thorpej  * SIGALRM calls to be compressed into one.
    990       1.63   thorpej  */
    991       1.63   thorpej void
    992       1.63   thorpej realtimerexpire(void *arg)
    993       1.63   thorpej {
    994      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    995      1.150  christos 	struct timespec now, next;
    996       1.63   thorpej 	struct ptimer *pt;
    997      1.148     joerg 	int backwards;
    998       1.63   thorpej 
    999      1.142        ad 	pt = arg;
   1000       1.63   thorpej 
   1001      1.142        ad 	mutex_spin_enter(&timer_lock);
   1002       1.63   thorpej 	itimerfire(pt);
   1003       1.63   thorpej 
   1004      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1005      1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1006      1.142        ad 		mutex_spin_exit(&timer_lock);
   1007       1.63   thorpej 		return;
   1008       1.63   thorpej 	}
   1009      1.148     joerg 
   1010  1.170.6.1       mrg 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1011  1.170.6.1       mrg 		getnanouptime(&now);
   1012  1.170.6.1       mrg 	} else {
   1013  1.170.6.1       mrg 		getnanotime(&now);
   1014  1.170.6.1       mrg 	}
   1015      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1016      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1017      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1018      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1019      1.148     joerg 		pt->pt_time.it_value = next;
   1020      1.148     joerg 	} else {
   1021      1.166      yamt 		now_ns = timespec2ns(&now);
   1022      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1023      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1024      1.148     joerg 
   1025      1.166      yamt 		next_val = now_ns +
   1026      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1027      1.148     joerg 
   1028      1.148     joerg 		if (backwards)
   1029      1.148     joerg 			next_val += interval;
   1030      1.148     joerg 		else
   1031      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1032      1.148     joerg 
   1033      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1034      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1035      1.101    kardel 	}
   1036      1.148     joerg 
   1037      1.148     joerg 	/*
   1038      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1039      1.148     joerg 	 * callout_reset() does it for us.
   1040      1.148     joerg 	 */
   1041  1.170.6.1       mrg 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1042  1.170.6.1       mrg 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1043      1.148     joerg 	    realtimerexpire, pt);
   1044      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1045       1.63   thorpej }
   1046       1.63   thorpej 
   1047       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1048       1.63   thorpej /* ARGSUSED */
   1049       1.63   thorpej int
   1050      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1051      1.140      yamt     register_t *retval)
   1052       1.63   thorpej {
   1053      1.135       dsl 	/* {
   1054       1.63   thorpej 		syscallarg(int) which;
   1055       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1056      1.135       dsl 	} */
   1057       1.63   thorpej 	struct proc *p = l->l_proc;
   1058       1.63   thorpej 	struct itimerval aitv;
   1059       1.91      cube 	int error;
   1060       1.91      cube 
   1061       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1062       1.91      cube 	if (error)
   1063       1.91      cube 		return error;
   1064       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1065       1.91      cube }
   1066       1.63   thorpej 
   1067       1.91      cube int
   1068       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1069       1.91      cube {
   1070      1.142        ad 	struct ptimers *pts;
   1071      1.142        ad 	struct ptimer *pt;
   1072      1.150  christos 	struct itimerspec its;
   1073       1.63   thorpej 
   1074      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1075       1.63   thorpej 		return (EINVAL);
   1076       1.63   thorpej 
   1077      1.142        ad 	mutex_spin_enter(&timer_lock);
   1078      1.142        ad 	pts = p->p_timers;
   1079      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1080       1.91      cube 		timerclear(&itvp->it_value);
   1081       1.91      cube 		timerclear(&itvp->it_interval);
   1082      1.150  christos 	} else {
   1083      1.150  christos 		timer_gettime(pt, &its);
   1084      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1085      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1086      1.150  christos 	}
   1087      1.142        ad 	mutex_spin_exit(&timer_lock);
   1088       1.63   thorpej 
   1089       1.91      cube 	return 0;
   1090        1.1       cgd }
   1091        1.1       cgd 
   1092       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1093        1.1       cgd /* ARGSUSED */
   1094        1.3    andrew int
   1095      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1096      1.140      yamt     register_t *retval)
   1097       1.15   thorpej {
   1098      1.135       dsl 	/* {
   1099       1.30   mycroft 		syscallarg(int) which;
   1100       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1101       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1102      1.135       dsl 	} */
   1103       1.63   thorpej 	struct proc *p = l->l_proc;
   1104       1.30   mycroft 	int which = SCARG(uap, which);
   1105      1.156  christos 	struct sys___getitimer50_args getargs;
   1106       1.91      cube 	const struct itimerval *itvp;
   1107        1.1       cgd 	struct itimerval aitv;
   1108       1.91      cube 	int error;
   1109        1.1       cgd 
   1110      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1111        1.1       cgd 		return (EINVAL);
   1112       1.11       cgd 	itvp = SCARG(uap, itv);
   1113       1.63   thorpej 	if (itvp &&
   1114       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1115        1.1       cgd 		return (error);
   1116       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1117       1.30   mycroft 		SCARG(&getargs, which) = which;
   1118       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1119      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1120       1.21       cgd 			return (error);
   1121       1.21       cgd 	}
   1122        1.1       cgd 	if (itvp == 0)
   1123        1.1       cgd 		return (0);
   1124       1.91      cube 
   1125       1.91      cube 	return dosetitimer(p, which, &aitv);
   1126       1.91      cube }
   1127       1.91      cube 
   1128       1.91      cube int
   1129       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1130       1.91      cube {
   1131      1.150  christos 	struct timespec now;
   1132      1.142        ad 	struct ptimers *pts;
   1133      1.142        ad 	struct ptimer *pt, *spare;
   1134       1.91      cube 
   1135      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1136       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1137        1.1       cgd 		return (EINVAL);
   1138       1.63   thorpej 
   1139       1.63   thorpej 	/*
   1140       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1141       1.63   thorpej 	 * wants to clear the timer.
   1142       1.63   thorpej 	 */
   1143      1.142        ad 	spare = NULL;
   1144      1.142        ad 	pts = p->p_timers;
   1145      1.142        ad  retry:
   1146      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1147      1.142        ad 	    pts->pts_timers[which] == NULL))
   1148       1.63   thorpej 		return (0);
   1149      1.142        ad 	if (pts == NULL)
   1150      1.142        ad 		pts = timers_alloc(p);
   1151      1.142        ad 	mutex_spin_enter(&timer_lock);
   1152      1.142        ad 	pt = pts->pts_timers[which];
   1153      1.142        ad 	if (pt == NULL) {
   1154      1.142        ad 		if (spare == NULL) {
   1155      1.142        ad 			mutex_spin_exit(&timer_lock);
   1156      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1157      1.142        ad 			goto retry;
   1158      1.142        ad 		}
   1159      1.142        ad 		pt = spare;
   1160      1.142        ad 		spare = NULL;
   1161       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1162       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1163       1.63   thorpej 		pt->pt_overruns = 0;
   1164       1.63   thorpej 		pt->pt_proc = p;
   1165       1.63   thorpej 		pt->pt_type = which;
   1166       1.64   nathanw 		pt->pt_entry = which;
   1167      1.142        ad 		pt->pt_queued = false;
   1168      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1169      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1170      1.149  christos 		else
   1171      1.149  christos 			pt->pt_active = 0;
   1172      1.149  christos 
   1173       1.63   thorpej 		switch (which) {
   1174       1.63   thorpej 		case ITIMER_REAL:
   1175      1.170  christos 		case ITIMER_MONOTONIC:
   1176       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1177       1.63   thorpej 			break;
   1178       1.63   thorpej 		case ITIMER_VIRTUAL:
   1179       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1180       1.63   thorpej 			break;
   1181       1.63   thorpej 		case ITIMER_PROF:
   1182       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1183       1.63   thorpej 			break;
   1184        1.1       cgd 		}
   1185      1.142        ad 		pts->pts_timers[which] = pt;
   1186      1.142        ad 	}
   1187       1.63   thorpej 
   1188      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1189      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1190      1.150  christos 
   1191      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1192       1.67   nathanw 		/* Convert to absolute time */
   1193      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1194      1.170  christos 		switch (which) {
   1195      1.170  christos 		case ITIMER_REAL:
   1196      1.170  christos 			getnanotime(&now);
   1197      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1198      1.170  christos 			    &pt->pt_time.it_value);
   1199      1.170  christos 			break;
   1200      1.170  christos 		case ITIMER_MONOTONIC:
   1201      1.170  christos 			getnanouptime(&now);
   1202      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1203      1.170  christos 			    &pt->pt_time.it_value);
   1204      1.170  christos 			break;
   1205      1.170  christos 		default:
   1206      1.170  christos 			break;
   1207      1.170  christos 		}
   1208       1.67   nathanw 	}
   1209       1.63   thorpej 	timer_settime(pt);
   1210      1.142        ad 	mutex_spin_exit(&timer_lock);
   1211      1.142        ad 	if (spare != NULL)
   1212      1.142        ad 		pool_put(&ptimer_pool, spare);
   1213       1.63   thorpej 
   1214        1.1       cgd 	return (0);
   1215        1.1       cgd }
   1216        1.1       cgd 
   1217       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1218      1.142        ad struct ptimers *
   1219       1.63   thorpej timers_alloc(struct proc *p)
   1220       1.63   thorpej {
   1221      1.142        ad 	struct ptimers *pts;
   1222       1.63   thorpej 	int i;
   1223       1.63   thorpej 
   1224      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1225       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1226       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1227       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1228       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1229       1.64   nathanw 	pts->pts_fired = 0;
   1230      1.142        ad 	mutex_spin_enter(&timer_lock);
   1231      1.142        ad 	if (p->p_timers == NULL) {
   1232      1.142        ad 		p->p_timers = pts;
   1233      1.142        ad 		mutex_spin_exit(&timer_lock);
   1234      1.142        ad 		return pts;
   1235      1.142        ad 	}
   1236      1.142        ad 	mutex_spin_exit(&timer_lock);
   1237      1.142        ad 	pool_put(&ptimers_pool, pts);
   1238      1.142        ad 	return p->p_timers;
   1239       1.63   thorpej }
   1240       1.63   thorpej 
   1241        1.1       cgd /*
   1242       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1243       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1244       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1245       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1246       1.63   thorpej  * structure if none of those remain.
   1247        1.1       cgd  */
   1248        1.3    andrew void
   1249       1.63   thorpej timers_free(struct proc *p, int which)
   1250        1.6       cgd {
   1251       1.63   thorpej 	struct ptimers *pts;
   1252      1.142        ad 	struct ptimer *ptn;
   1253      1.150  christos 	struct timespec ts;
   1254      1.142        ad 	int i;
   1255       1.63   thorpej 
   1256      1.142        ad 	if (p->p_timers == NULL)
   1257      1.142        ad 		return;
   1258       1.63   thorpej 
   1259      1.142        ad 	pts = p->p_timers;
   1260      1.142        ad 	mutex_spin_enter(&timer_lock);
   1261      1.142        ad 	if (which == TIMERS_ALL) {
   1262      1.142        ad 		p->p_timers = NULL;
   1263      1.142        ad 		i = 0;
   1264      1.142        ad 	} else {
   1265      1.150  christos 		timespecclear(&ts);
   1266      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1267      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1268      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1269      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1270      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1271      1.149  christos 		}
   1272      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1273      1.142        ad 		if (ptn) {
   1274      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1275      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1276      1.142        ad 			    &ptn->pt_time.it_value);
   1277      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1278      1.142        ad 		}
   1279      1.150  christos 		timespecclear(&ts);
   1280      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1281      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1282      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1283      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1284      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1285      1.149  christos 		}
   1286      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1287      1.142        ad 		if (ptn) {
   1288      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1289      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1290      1.142        ad 			    &ptn->pt_time.it_value);
   1291      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1292       1.63   thorpej 		}
   1293      1.142        ad 		i = 3;
   1294      1.142        ad 	}
   1295      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1296      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1297      1.142        ad 			itimerfree(pts, i);
   1298      1.142        ad 			mutex_spin_enter(&timer_lock);
   1299        1.1       cgd 		}
   1300        1.1       cgd 	}
   1301      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1302      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1303      1.142        ad 		p->p_timers = NULL;
   1304      1.142        ad 		mutex_spin_exit(&timer_lock);
   1305      1.142        ad 		pool_put(&ptimers_pool, pts);
   1306      1.142        ad 	} else
   1307      1.142        ad 		mutex_spin_exit(&timer_lock);
   1308      1.142        ad }
   1309      1.142        ad 
   1310      1.142        ad static void
   1311      1.142        ad itimerfree(struct ptimers *pts, int index)
   1312      1.142        ad {
   1313      1.142        ad 	struct ptimer *pt;
   1314      1.142        ad 
   1315      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1316      1.142        ad 
   1317      1.142        ad 	pt = pts->pts_timers[index];
   1318      1.142        ad 	pts->pts_timers[index] = NULL;
   1319      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1320      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1321      1.167      yamt 	if (pt->pt_queued)
   1322      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1323      1.144        ad 	mutex_spin_exit(&timer_lock);
   1324      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1325      1.149  christos 		callout_destroy(&pt->pt_ch);
   1326      1.142        ad 	pool_put(&ptimer_pool, pt);
   1327        1.1       cgd }
   1328        1.1       cgd 
   1329        1.1       cgd /*
   1330        1.1       cgd  * Decrement an interval timer by a specified number
   1331      1.152  christos  * of nanoseconds, which must be less than a second,
   1332      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1333      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1334        1.8       cgd  * reduce the value reloaded into the timer so that
   1335        1.1       cgd  * the timer does not drift.  This routine assumes
   1336        1.1       cgd  * that it is called in a context where the timers
   1337        1.1       cgd  * on which it is operating cannot change in value.
   1338        1.1       cgd  */
   1339      1.142        ad static int
   1340      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1341       1.63   thorpej {
   1342      1.150  christos 	struct itimerspec *itp;
   1343        1.1       cgd 
   1344      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1345      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1346      1.142        ad 
   1347       1.63   thorpej 	itp = &pt->pt_time;
   1348      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1349        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1350        1.1       cgd 			/* expired, and already in next interval */
   1351      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1352        1.1       cgd 			goto expire;
   1353        1.1       cgd 		}
   1354      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1355        1.1       cgd 		itp->it_value.tv_sec--;
   1356        1.1       cgd 	}
   1357      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1358      1.152  christos 	nsec = 0;
   1359      1.150  christos 	if (timespecisset(&itp->it_value))
   1360        1.1       cgd 		return (1);
   1361        1.1       cgd 	/* expired, exactly at end of interval */
   1362        1.1       cgd expire:
   1363      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1364        1.1       cgd 		itp->it_value = itp->it_interval;
   1365      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1366      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1367      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1368        1.1       cgd 			itp->it_value.tv_sec--;
   1369        1.1       cgd 		}
   1370       1.63   thorpej 		timer_settime(pt);
   1371        1.1       cgd 	} else
   1372      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1373        1.1       cgd 	return (0);
   1374       1.42       cgd }
   1375       1.42       cgd 
   1376      1.142        ad static void
   1377       1.63   thorpej itimerfire(struct ptimer *pt)
   1378       1.63   thorpej {
   1379       1.78        cl 
   1380      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1381      1.142        ad 
   1382      1.142        ad 	/*
   1383      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1384      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1385      1.142        ad 	 */
   1386      1.154  wrstuden 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1387      1.154  wrstuden 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1388      1.154  wrstuden 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1389      1.142        ad 		return;
   1390      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1391      1.142        ad 	pt->pt_queued = true;
   1392      1.142        ad 	softint_schedule(timer_sih);
   1393      1.142        ad }
   1394      1.142        ad 
   1395      1.142        ad void
   1396      1.142        ad timer_tick(lwp_t *l, bool user)
   1397      1.142        ad {
   1398      1.142        ad 	struct ptimers *pts;
   1399      1.142        ad 	struct ptimer *pt;
   1400      1.142        ad 	proc_t *p;
   1401      1.142        ad 
   1402      1.142        ad 	p = l->l_proc;
   1403      1.142        ad 	if (p->p_timers == NULL)
   1404      1.142        ad 		return;
   1405      1.142        ad 
   1406      1.142        ad 	mutex_spin_enter(&timer_lock);
   1407      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1408       1.63   thorpej 		/*
   1409      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1410       1.63   thorpej 		 */
   1411      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1412      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1413      1.142        ad 				itimerfire(pt);
   1414      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1415      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1416      1.142        ad 				itimerfire(pt);
   1417      1.142        ad 	}
   1418      1.142        ad 	mutex_spin_exit(&timer_lock);
   1419      1.142        ad }
   1420      1.142        ad 
   1421      1.154  wrstuden #ifdef KERN_SA
   1422      1.154  wrstuden /*
   1423      1.154  wrstuden  * timer_sa_intr:
   1424      1.154  wrstuden  *
   1425      1.154  wrstuden  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1426      1.154  wrstuden  * with the timer lock held. We know that the process had SA enabled
   1427      1.154  wrstuden  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1428      1.154  wrstuden  * handler, SA should still be enabled by the time we get here.
   1429      1.154  wrstuden  */
   1430      1.154  wrstuden static void
   1431      1.154  wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
   1432      1.154  wrstuden {
   1433      1.155  wrstuden 	unsigned int		i;
   1434      1.155  wrstuden 	struct sadata		*sa;
   1435      1.155  wrstuden 	struct sadata_vp	*vp;
   1436      1.154  wrstuden 
   1437      1.154  wrstuden 	/* Cause the process to generate an upcall when it returns. */
   1438      1.154  wrstuden 	if (!p->p_timerpend) {
   1439      1.154  wrstuden 		/*
   1440      1.154  wrstuden 		 * XXX stop signals can be processed inside tsleep,
   1441      1.154  wrstuden 		 * which can be inside sa_yield's inner loop, which
   1442      1.154  wrstuden 		 * makes testing for sa_idle alone insuffucent to
   1443      1.154  wrstuden 		 * determine if we really should call setrunnable.
   1444      1.154  wrstuden 		 */
   1445      1.154  wrstuden 		pt->pt_poverruns = pt->pt_overruns;
   1446      1.154  wrstuden 		pt->pt_overruns = 0;
   1447      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1448      1.154  wrstuden 		p->p_timers->pts_fired = i;
   1449      1.154  wrstuden 		p->p_timerpend = 1;
   1450      1.154  wrstuden 
   1451      1.155  wrstuden 		sa = p->p_sa;
   1452      1.155  wrstuden 		mutex_enter(&sa->sa_mutex);
   1453      1.155  wrstuden 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1454      1.155  wrstuden 			struct lwp *vp_lwp = vp->savp_lwp;
   1455      1.155  wrstuden 			lwp_lock(vp_lwp);
   1456      1.155  wrstuden 			lwp_need_userret(vp_lwp);
   1457      1.155  wrstuden 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1458      1.155  wrstuden 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1459      1.155  wrstuden 				lwp_unsleep(vp_lwp, true);
   1460      1.154  wrstuden 				break;
   1461      1.154  wrstuden 			}
   1462      1.155  wrstuden 			lwp_unlock(vp_lwp);
   1463      1.154  wrstuden 		}
   1464      1.155  wrstuden 		mutex_exit(&sa->sa_mutex);
   1465      1.154  wrstuden 	} else {
   1466      1.154  wrstuden 		i = 1 << pt->pt_entry;
   1467      1.154  wrstuden 		if ((p->p_timers->pts_fired & i) == 0) {
   1468      1.154  wrstuden 			pt->pt_poverruns = pt->pt_overruns;
   1469      1.154  wrstuden 			pt->pt_overruns = 0;
   1470      1.154  wrstuden 			p->p_timers->pts_fired |= i;
   1471      1.154  wrstuden 		} else
   1472      1.154  wrstuden 			pt->pt_overruns++;
   1473      1.154  wrstuden 	}
   1474      1.154  wrstuden }
   1475      1.154  wrstuden #endif /* KERN_SA */
   1476      1.154  wrstuden 
   1477      1.142        ad static void
   1478      1.142        ad timer_intr(void *cookie)
   1479      1.142        ad {
   1480      1.142        ad 	ksiginfo_t ksi;
   1481      1.142        ad 	struct ptimer *pt;
   1482      1.142        ad 	proc_t *p;
   1483      1.142        ad 
   1484      1.158        ad 	mutex_enter(proc_lock);
   1485      1.142        ad 	mutex_spin_enter(&timer_lock);
   1486      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1487      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1488      1.142        ad 		KASSERT(pt->pt_queued);
   1489      1.142        ad 		pt->pt_queued = false;
   1490      1.142        ad 
   1491      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1492      1.154  wrstuden 			/* Process is dying. */
   1493      1.142        ad 			continue;
   1494      1.154  wrstuden 		}
   1495      1.142        ad 		p = pt->pt_proc;
   1496      1.154  wrstuden #ifdef KERN_SA
   1497      1.154  wrstuden 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1498      1.154  wrstuden 			timer_sa_intr(pt, p);
   1499      1.142        ad 			continue;
   1500      1.142        ad 		}
   1501      1.154  wrstuden #endif /* KERN_SA */
   1502      1.154  wrstuden 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1503      1.154  wrstuden 			continue;
   1504      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1505       1.63   thorpej 			pt->pt_overruns++;
   1506      1.142        ad 			continue;
   1507       1.64   nathanw 		}
   1508      1.142        ad 
   1509      1.142        ad 		KSI_INIT(&ksi);
   1510      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1511      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1512      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1513      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1514      1.142        ad 		pt->pt_overruns = 0;
   1515      1.142        ad 		mutex_spin_exit(&timer_lock);
   1516      1.142        ad 		kpsignal(p, &ksi, NULL);
   1517      1.142        ad 		mutex_spin_enter(&timer_lock);
   1518       1.63   thorpej 	}
   1519      1.142        ad 	mutex_spin_exit(&timer_lock);
   1520      1.158        ad 	mutex_exit(proc_lock);
   1521       1.63   thorpej }
   1522      1.162      elad 
   1523      1.162      elad /*
   1524      1.162      elad  * Check if the time will wrap if set to ts.
   1525      1.162      elad  *
   1526      1.162      elad  * ts - timespec describing the new time
   1527      1.162      elad  * delta - the delta between the current time and ts
   1528      1.162      elad  */
   1529      1.162      elad bool
   1530      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1531      1.162      elad {
   1532      1.162      elad 
   1533      1.162      elad 	/*
   1534      1.162      elad 	 * Don't allow the time to be set forward so far it
   1535      1.162      elad 	 * will wrap and become negative, thus allowing an
   1536      1.162      elad 	 * attacker to bypass the next check below.  The
   1537      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1538      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1539      1.162      elad 	 * past the cutoff, it will take a very long time
   1540      1.162      elad 	 * to get to the wrap point.
   1541      1.162      elad 	 */
   1542      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1543      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1544      1.162      elad 		return true;
   1545      1.162      elad 
   1546      1.162      elad 	return false;
   1547      1.162      elad }
   1548