Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.170.6.2
      1  1.170.6.2       mrg /*	$NetBSD: kern_time.c,v 1.170.6.2 2012/02/24 09:11:47 mrg Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.170.6.2       mrg __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.170.6.2 2012/02/24 09:11:47 mrg Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78       1.11       cgd #include <sys/syscallargs.h>
     79      1.143        ad #include <sys/cpu.h>
     80       1.19  christos 
     81      1.142        ad static void	timer_intr(void *);
     82      1.142        ad static void	itimerfire(struct ptimer *);
     83      1.142        ad static void	itimerfree(struct ptimers *, int);
     84      1.142        ad 
     85      1.142        ad kmutex_t	timer_lock;
     86      1.142        ad 
     87      1.142        ad static void	*timer_sih;
     88      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89      1.131        ad 
     90      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91       1.97    simonb 
     92      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94      1.168      yamt 
     95      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99      1.168      yamt 
    100      1.131        ad /*
    101      1.131        ad  * Initialize timekeeping.
    102      1.131        ad  */
    103      1.131        ad void
    104      1.131        ad time_init(void)
    105      1.131        ad {
    106      1.131        ad 
    107      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111      1.131        ad }
    112      1.131        ad 
    113      1.142        ad void
    114      1.142        ad time_init2(void)
    115      1.142        ad {
    116      1.142        ad 
    117      1.142        ad 	TAILQ_INIT(&timer_queue);
    118      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120      1.142        ad 	    timer_intr, NULL);
    121      1.142        ad }
    122      1.142        ad 
    123       1.63   thorpej /* Time of day and interval timer support.
    124        1.1       cgd  *
    125        1.1       cgd  * These routines provide the kernel entry points to get and set
    126        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    127        1.1       cgd  * here provide support for adding and subtracting timeval structures
    128        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    129        1.1       cgd  * timers when they expire.
    130        1.1       cgd  */
    131        1.1       cgd 
    132       1.22       jtc /* This function is used by clock_settime and settimeofday */
    133      1.132      elad static int
    134      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135       1.22       jtc {
    136      1.156  christos 	struct timespec delta, now;
    137      1.129        ad 	int s;
    138       1.22       jtc 
    139       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140      1.129        ad 	s = splclock();
    141      1.156  christos 	nanotime(&now);
    142      1.156  christos 	timespecsub(ts, &now, &delta);
    143      1.132      elad 
    144      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147      1.129        ad 		splx(s);
    148       1.29       tls 		return (EPERM);
    149       1.55      tron 	}
    150      1.132      elad 
    151       1.29       tls #ifdef notyet
    152      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153      1.129        ad 		splx(s);
    154       1.29       tls 		return (EPERM);
    155       1.55      tron 	}
    156       1.29       tls #endif
    157      1.103    kardel 
    158      1.156  christos 	tc_setclock(ts);
    159      1.103    kardel 
    160      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161      1.103    kardel 
    162       1.22       jtc 	resettodr();
    163      1.129        ad 	splx(s);
    164      1.129        ad 
    165       1.29       tls 	return (0);
    166       1.22       jtc }
    167       1.22       jtc 
    168      1.132      elad int
    169      1.132      elad settime(struct proc *p, struct timespec *ts)
    170      1.132      elad {
    171      1.132      elad 	return (settime1(p, ts, true));
    172      1.132      elad }
    173      1.132      elad 
    174       1.22       jtc /* ARGSUSED */
    175       1.22       jtc int
    176      1.156  christos sys___clock_gettime50(struct lwp *l,
    177      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178       1.22       jtc {
    179      1.135       dsl 	/* {
    180       1.22       jtc 		syscallarg(clockid_t) clock_id;
    181       1.23       cgd 		syscallarg(struct timespec *) tp;
    182      1.135       dsl 	} */
    183      1.165     njoly 	int error;
    184       1.22       jtc 	struct timespec ats;
    185       1.22       jtc 
    186      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187      1.165     njoly 	if (error != 0)
    188      1.165     njoly 		return error;
    189      1.165     njoly 
    190      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191      1.165     njoly }
    192      1.165     njoly 
    193      1.165     njoly int
    194      1.165     njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
    195      1.165     njoly {
    196      1.165     njoly 
    197       1.61    simonb 	switch (clock_id) {
    198       1.61    simonb 	case CLOCK_REALTIME:
    199      1.165     njoly 		nanotime(ts);
    200       1.61    simonb 		break;
    201       1.61    simonb 	case CLOCK_MONOTONIC:
    202      1.165     njoly 		nanouptime(ts);
    203       1.61    simonb 		break;
    204       1.61    simonb 	default:
    205      1.165     njoly 		return EINVAL;
    206       1.61    simonb 	}
    207       1.22       jtc 
    208      1.165     njoly 	return 0;
    209       1.22       jtc }
    210       1.22       jtc 
    211       1.22       jtc /* ARGSUSED */
    212       1.22       jtc int
    213      1.156  christos sys___clock_settime50(struct lwp *l,
    214      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    215       1.22       jtc {
    216      1.135       dsl 	/* {
    217       1.22       jtc 		syscallarg(clockid_t) clock_id;
    218       1.23       cgd 		syscallarg(const struct timespec *) tp;
    219      1.135       dsl 	} */
    220      1.156  christos 	int error;
    221      1.156  christos 	struct timespec ats;
    222       1.22       jtc 
    223      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    224      1.156  christos 		return error;
    225      1.156  christos 
    226      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    227       1.56      manu }
    228       1.56      manu 
    229       1.56      manu 
    230       1.56      manu int
    231      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    232      1.132      elad     bool check_kauth)
    233       1.56      manu {
    234       1.56      manu 	int error;
    235       1.56      manu 
    236       1.61    simonb 	switch (clock_id) {
    237       1.61    simonb 	case CLOCK_REALTIME:
    238      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    239       1.61    simonb 			return (error);
    240       1.61    simonb 		break;
    241       1.61    simonb 	case CLOCK_MONOTONIC:
    242       1.61    simonb 		return (EINVAL);	/* read-only clock */
    243       1.61    simonb 	default:
    244       1.56      manu 		return (EINVAL);
    245       1.61    simonb 	}
    246       1.22       jtc 
    247       1.22       jtc 	return 0;
    248       1.22       jtc }
    249       1.22       jtc 
    250       1.22       jtc int
    251      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    252      1.140      yamt     register_t *retval)
    253       1.22       jtc {
    254      1.135       dsl 	/* {
    255       1.22       jtc 		syscallarg(clockid_t) clock_id;
    256       1.23       cgd 		syscallarg(struct timespec *) tp;
    257      1.135       dsl 	} */
    258       1.22       jtc 	struct timespec ts;
    259       1.22       jtc 	int error = 0;
    260       1.22       jtc 
    261      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    262      1.164     njoly 		return error;
    263      1.164     njoly 
    264      1.164     njoly 	if (SCARG(uap, tp))
    265      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    266      1.164     njoly 
    267      1.164     njoly 	return error;
    268      1.164     njoly }
    269      1.164     njoly 
    270      1.164     njoly int
    271      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    272      1.164     njoly {
    273      1.164     njoly 
    274       1.61    simonb 	switch (clock_id) {
    275       1.61    simonb 	case CLOCK_REALTIME:
    276       1.61    simonb 	case CLOCK_MONOTONIC:
    277      1.164     njoly 		ts->tv_sec = 0;
    278      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    279      1.164     njoly 			ts->tv_nsec = 1;
    280      1.102    kardel 		else
    281      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    282       1.61    simonb 		break;
    283       1.61    simonb 	default:
    284      1.164     njoly 		return EINVAL;
    285       1.61    simonb 	}
    286       1.22       jtc 
    287      1.164     njoly 	return 0;
    288       1.22       jtc }
    289       1.22       jtc 
    290       1.27       jtc /* ARGSUSED */
    291       1.27       jtc int
    292      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    293      1.140      yamt     register_t *retval)
    294       1.27       jtc {
    295      1.135       dsl 	/* {
    296      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    297      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    298      1.135       dsl 	} */
    299      1.101    kardel 	struct timespec rmt, rqt;
    300      1.120       dsl 	int error, error1;
    301      1.101    kardel 
    302      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    303      1.101    kardel 	if (error)
    304      1.101    kardel 		return (error);
    305      1.101    kardel 
    306      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    307      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    308      1.120       dsl 		return error;
    309      1.120       dsl 
    310      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    311      1.120       dsl 	return error1 ? error1 : error;
    312      1.120       dsl }
    313      1.120       dsl 
    314      1.120       dsl int
    315      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    316      1.120       dsl {
    317      1.141      yamt 	struct timespec rmtstart;
    318      1.120       dsl 	int error, timo;
    319      1.120       dsl 
    320      1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    321      1.160  christos 		return error;
    322      1.101    kardel 
    323      1.120       dsl 	timo = tstohz(rqt);
    324      1.101    kardel 	/*
    325      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    326      1.101    kardel 	 */
    327      1.101    kardel 	if (timo == 0)
    328      1.101    kardel 		timo = 1;
    329      1.141      yamt 	getnanouptime(&rmtstart);
    330      1.141      yamt again:
    331      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    332      1.141      yamt 	if (rmt != NULL || error == 0) {
    333      1.141      yamt 		struct timespec rmtend;
    334      1.141      yamt 		struct timespec t0;
    335      1.141      yamt 		struct timespec *t;
    336      1.101    kardel 
    337      1.141      yamt 		getnanouptime(&rmtend);
    338      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    339      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    340      1.141      yamt 		timespecsub(rqt, t, t);
    341      1.141      yamt 		if (t->tv_sec < 0)
    342      1.141      yamt 			timespecclear(t);
    343      1.141      yamt 		if (error == 0) {
    344      1.141      yamt 			timo = tstohz(t);
    345      1.141      yamt 			if (timo > 0)
    346      1.141      yamt 				goto again;
    347      1.141      yamt 		}
    348      1.141      yamt 	}
    349      1.104    kardel 
    350      1.101    kardel 	if (error == ERESTART)
    351      1.101    kardel 		error = EINTR;
    352      1.101    kardel 	if (error == EWOULDBLOCK)
    353      1.101    kardel 		error = 0;
    354      1.101    kardel 
    355      1.101    kardel 	return error;
    356       1.27       jtc }
    357       1.22       jtc 
    358        1.1       cgd /* ARGSUSED */
    359        1.3    andrew int
    360      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    361      1.140      yamt     register_t *retval)
    362       1.15   thorpej {
    363      1.135       dsl 	/* {
    364       1.11       cgd 		syscallarg(struct timeval *) tp;
    365      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    366      1.135       dsl 	} */
    367        1.1       cgd 	struct timeval atv;
    368        1.1       cgd 	int error = 0;
    369       1.25     perry 	struct timezone tzfake;
    370        1.1       cgd 
    371       1.11       cgd 	if (SCARG(uap, tp)) {
    372        1.1       cgd 		microtime(&atv);
    373       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    374       1.17  christos 		if (error)
    375        1.1       cgd 			return (error);
    376        1.1       cgd 	}
    377       1.25     perry 	if (SCARG(uap, tzp)) {
    378       1.25     perry 		/*
    379       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    380       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    381       1.25     perry 		 */
    382       1.25     perry 		tzfake.tz_minuteswest = 0;
    383       1.25     perry 		tzfake.tz_dsttime = 0;
    384       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    385       1.25     perry 	}
    386        1.1       cgd 	return (error);
    387        1.1       cgd }
    388        1.1       cgd 
    389        1.1       cgd /* ARGSUSED */
    390        1.3    andrew int
    391      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    392      1.140      yamt     register_t *retval)
    393       1.15   thorpej {
    394      1.135       dsl 	/* {
    395       1.24       cgd 		syscallarg(const struct timeval *) tv;
    396      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    397      1.135       dsl 	} */
    398       1.60      manu 
    399      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    400       1.60      manu }
    401       1.60      manu 
    402       1.60      manu int
    403      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    404      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    405       1.60      manu {
    406       1.22       jtc 	struct timeval atv;
    407       1.98  christos 	struct timespec ts;
    408       1.22       jtc 	int error;
    409        1.1       cgd 
    410        1.8       cgd 	/* Verify all parameters before changing time. */
    411      1.119       dsl 
    412       1.25     perry 	/*
    413       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    414       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    415       1.25     perry 	 */
    416       1.98  christos 	if (utzp)
    417       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    418      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    419       1.98  christos 
    420       1.98  christos 	if (utv == NULL)
    421       1.98  christos 		return 0;
    422       1.98  christos 
    423      1.119       dsl 	if (userspace) {
    424      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    425      1.119       dsl 			return error;
    426      1.119       dsl 		utv = &atv;
    427      1.119       dsl 	}
    428      1.119       dsl 
    429      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    430      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    431        1.1       cgd }
    432        1.1       cgd 
    433       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    434        1.1       cgd 
    435        1.1       cgd /* ARGSUSED */
    436        1.3    andrew int
    437      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    438      1.140      yamt     register_t *retval)
    439       1.15   thorpej {
    440      1.135       dsl 	/* {
    441       1.24       cgd 		syscallarg(const struct timeval *) delta;
    442       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    443      1.135       dsl 	} */
    444      1.156  christos 	int error = 0;
    445      1.156  christos 	struct timeval atv, oldatv;
    446        1.1       cgd 
    447      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    448      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    449      1.156  christos 		return error;
    450       1.17  christos 
    451      1.156  christos 	if (SCARG(uap, delta)) {
    452      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    453      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    454      1.156  christos 		if (error)
    455      1.156  christos 			return (error);
    456      1.156  christos 	}
    457      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    458      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    459      1.156  christos 	if (SCARG(uap, olddelta))
    460      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    461      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    462      1.156  christos 	return error;
    463       1.56      manu }
    464       1.56      manu 
    465      1.156  christos void
    466      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    467       1.56      manu {
    468      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    469      1.101    kardel 
    470      1.101    kardel 	if (olddelta) {
    471      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    472      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    473      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    474      1.156  christos 		if (olddelta->tv_usec < 0) {
    475      1.156  christos 			olddelta->tv_usec += 1000000;
    476      1.156  christos 			olddelta->tv_sec--;
    477      1.101    kardel 		}
    478      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    479      1.101    kardel 	}
    480      1.101    kardel 
    481      1.101    kardel 	if (delta) {
    482      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    483      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    484      1.101    kardel 
    485      1.143        ad 		if (time_adjtime) {
    486      1.101    kardel 			/* We need to save the system time during shutdown */
    487      1.101    kardel 			time_adjusted |= 1;
    488      1.143        ad 		}
    489      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    490      1.101    kardel 	}
    491        1.1       cgd }
    492        1.1       cgd 
    493        1.1       cgd /*
    494       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495       1.63   thorpej  * timer_*() family of routines are supported.
    496        1.1       cgd  *
    497       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    498       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    499       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    500      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    501      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    502      1.170  christos  * allocated by the timer_create() syscall.
    503        1.1       cgd  *
    504       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    505       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    506        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    507       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    508       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    509       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    510       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    511       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    512       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    513       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    514       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    515       1.63   thorpej 
    516       1.63   thorpej /* Allocate a POSIX realtime timer. */
    517       1.63   thorpej int
    518      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    519      1.140      yamt     register_t *retval)
    520       1.63   thorpej {
    521      1.135       dsl 	/* {
    522       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    523       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    524       1.63   thorpej 		syscallarg(timer_t *) timerid;
    525      1.135       dsl 	} */
    526       1.92      cube 
    527       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    528      1.105        ad 	    SCARG(uap, evp), copyin, l);
    529       1.92      cube }
    530       1.92      cube 
    531       1.92      cube int
    532       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    533      1.105        ad     copyin_t fetch_event, struct lwp *l)
    534       1.92      cube {
    535       1.92      cube 	int error;
    536       1.92      cube 	timer_t timerid;
    537      1.142        ad 	struct ptimers *pts;
    538       1.63   thorpej 	struct ptimer *pt;
    539      1.105        ad 	struct proc *p;
    540      1.105        ad 
    541      1.105        ad 	p = l->l_proc;
    542       1.63   thorpej 
    543      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    544       1.63   thorpej 		return (EINVAL);
    545       1.63   thorpej 
    546      1.142        ad 	if ((pts = p->p_timers) == NULL)
    547      1.142        ad 		pts = timers_alloc(p);
    548       1.63   thorpej 
    549       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    550      1.142        ad 	if (evp != NULL) {
    551       1.63   thorpej 		if (((error =
    552       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    553       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    554      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    555      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    556      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    557      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    558       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    559       1.63   thorpej 			return (error ? error : EINVAL);
    560       1.63   thorpej 		}
    561      1.142        ad 	}
    562      1.142        ad 
    563      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    564      1.142        ad 	mutex_spin_enter(&timer_lock);
    565      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    566      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    567      1.142        ad 			break;
    568      1.142        ad 	if (timerid == TIMER_MAX) {
    569      1.142        ad 		mutex_spin_exit(&timer_lock);
    570      1.142        ad 		pool_put(&ptimer_pool, pt);
    571      1.142        ad 		return EAGAIN;
    572      1.142        ad 	}
    573      1.142        ad 	if (evp == NULL) {
    574       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    575       1.63   thorpej 		switch (id) {
    576       1.63   thorpej 		case CLOCK_REALTIME:
    577      1.168      yamt 		case CLOCK_MONOTONIC:
    578       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    579       1.63   thorpej 			break;
    580       1.63   thorpej 		case CLOCK_VIRTUAL:
    581       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    582       1.63   thorpej 			break;
    583       1.63   thorpej 		case CLOCK_PROF:
    584       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    585       1.63   thorpej 			break;
    586       1.63   thorpej 		}
    587       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    588       1.63   thorpej 	}
    589       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    590       1.73  christos 	pt->pt_info.ksi_errno = 0;
    591       1.73  christos 	pt->pt_info.ksi_code = 0;
    592       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    593      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    594      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    595       1.63   thorpej 	pt->pt_type = id;
    596       1.63   thorpej 	pt->pt_proc = p;
    597       1.63   thorpej 	pt->pt_overruns = 0;
    598       1.63   thorpej 	pt->pt_poverruns = 0;
    599       1.64   nathanw 	pt->pt_entry = timerid;
    600      1.142        ad 	pt->pt_queued = false;
    601      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    602      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    603      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    604      1.149  christos 	else
    605      1.149  christos 		pt->pt_active = 0;
    606      1.149  christos 
    607      1.142        ad 	pts->pts_timers[timerid] = pt;
    608      1.142        ad 	mutex_spin_exit(&timer_lock);
    609       1.63   thorpej 
    610       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    611       1.63   thorpej }
    612       1.63   thorpej 
    613       1.63   thorpej /* Delete a POSIX realtime timer */
    614        1.3    andrew int
    615      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    616      1.140      yamt     register_t *retval)
    617       1.15   thorpej {
    618      1.135       dsl 	/* {
    619       1.63   thorpej 		syscallarg(timer_t) timerid;
    620      1.135       dsl 	} */
    621       1.63   thorpej 	struct proc *p = l->l_proc;
    622       1.65  jdolecek 	timer_t timerid;
    623      1.142        ad 	struct ptimers *pts;
    624       1.63   thorpej 	struct ptimer *pt, *ptn;
    625        1.1       cgd 
    626       1.63   thorpej 	timerid = SCARG(uap, timerid);
    627      1.142        ad 	pts = p->p_timers;
    628      1.142        ad 
    629      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    630      1.142        ad 		return (EINVAL);
    631       1.63   thorpej 
    632      1.142        ad 	mutex_spin_enter(&timer_lock);
    633      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    634      1.142        ad 		mutex_spin_exit(&timer_lock);
    635        1.1       cgd 		return (EINVAL);
    636      1.142        ad 	}
    637      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    638      1.149  christos 		if (pt->pt_active) {
    639      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    640      1.149  christos 			LIST_REMOVE(pt, pt_list);
    641      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    642      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    643      1.149  christos 				    &ptn->pt_time.it_value,
    644      1.149  christos 				    &ptn->pt_time.it_value);
    645      1.149  christos 			pt->pt_active = 0;
    646      1.149  christos 		}
    647       1.63   thorpej 	}
    648      1.142        ad 	itimerfree(pts, timerid);
    649       1.63   thorpej 
    650       1.63   thorpej 	return (0);
    651       1.63   thorpej }
    652       1.63   thorpej 
    653       1.63   thorpej /*
    654       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    655      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    656      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    657       1.63   thorpej  */
    658       1.63   thorpej void
    659       1.63   thorpej timer_settime(struct ptimer *pt)
    660       1.63   thorpej {
    661       1.63   thorpej 	struct ptimer *ptn, *pptn;
    662       1.63   thorpej 	struct ptlist *ptl;
    663       1.63   thorpej 
    664      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    665      1.142        ad 
    666      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    667      1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    668      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    669       1.63   thorpej 			/*
    670      1.150  christos 			 * Don't need to check tshzto() return value, here.
    671       1.63   thorpej 			 * callout_reset() does it for us.
    672       1.63   thorpej 			 */
    673  1.170.6.1       mrg 			callout_reset(&pt->pt_ch,
    674  1.170.6.1       mrg 			    pt->pt_type == CLOCK_MONOTONIC ?
    675  1.170.6.1       mrg 			    tshztoup(&pt->pt_time.it_value) :
    676  1.170.6.1       mrg 			    tshzto(&pt->pt_time.it_value),
    677       1.63   thorpej 			    realtimerexpire, pt);
    678       1.63   thorpej 		}
    679       1.63   thorpej 	} else {
    680       1.63   thorpej 		if (pt->pt_active) {
    681       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    682       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    683       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    684      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    685       1.63   thorpej 				    &ptn->pt_time.it_value,
    686       1.63   thorpej 				    &ptn->pt_time.it_value);
    687       1.63   thorpej 		}
    688      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    689       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    690       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    691       1.63   thorpej 			else
    692       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    693       1.63   thorpej 
    694       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    695      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    696       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    697       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    698      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    699       1.63   thorpej 				    &ptn->pt_time.it_value,
    700       1.63   thorpej 				    &pt->pt_time.it_value);
    701       1.63   thorpej 
    702       1.63   thorpej 			if (pptn)
    703       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    704       1.63   thorpej 			else
    705       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    706       1.63   thorpej 
    707       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    708      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    709       1.63   thorpej 				    &pt->pt_time.it_value,
    710       1.63   thorpej 				    &ptn->pt_time.it_value);
    711       1.63   thorpej 
    712       1.63   thorpej 			pt->pt_active = 1;
    713       1.63   thorpej 		} else
    714       1.63   thorpej 			pt->pt_active = 0;
    715       1.63   thorpej 	}
    716       1.63   thorpej }
    717       1.63   thorpej 
    718       1.63   thorpej void
    719      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    720       1.63   thorpej {
    721      1.150  christos 	struct timespec now;
    722       1.63   thorpej 	struct ptimer *ptn;
    723       1.63   thorpej 
    724      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    725      1.142        ad 
    726      1.150  christos 	*aits = pt->pt_time;
    727      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    728        1.1       cgd 		/*
    729       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    730       1.63   thorpej 		 * part of real time timer.  If time for real time
    731       1.63   thorpej 		 * timer has passed return 0, else return difference
    732       1.63   thorpej 		 * between current time and time for the timer to go
    733       1.63   thorpej 		 * off.
    734        1.1       cgd 		 */
    735      1.150  christos 		if (timespecisset(&aits->it_value)) {
    736      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    737      1.168      yamt 				getnanotime(&now);
    738      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    739      1.168      yamt 				getnanouptime(&now);
    740      1.168      yamt 			}
    741      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    742      1.150  christos 				timespecclear(&aits->it_value);
    743      1.101    kardel 			else
    744      1.150  christos 				timespecsub(&aits->it_value, &now,
    745      1.150  christos 				    &aits->it_value);
    746       1.36   thorpej 		}
    747       1.63   thorpej 	} else if (pt->pt_active) {
    748       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    749       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    750       1.63   thorpej 		else
    751       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    752       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    753      1.150  christos 			timespecadd(&aits->it_value,
    754      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    755       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    756        1.1       cgd 	} else
    757      1.150  christos 		timespecclear(&aits->it_value);
    758       1.63   thorpej }
    759       1.63   thorpej 
    760       1.63   thorpej 
    761       1.63   thorpej 
    762       1.63   thorpej /* Set and arm a POSIX realtime timer */
    763       1.63   thorpej int
    764      1.156  christos sys___timer_settime50(struct lwp *l,
    765      1.156  christos     const struct sys___timer_settime50_args *uap,
    766      1.140      yamt     register_t *retval)
    767       1.63   thorpej {
    768      1.135       dsl 	/* {
    769       1.63   thorpej 		syscallarg(timer_t) timerid;
    770       1.63   thorpej 		syscallarg(int) flags;
    771       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    772       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    773      1.135       dsl 	} */
    774       1.92      cube 	int error;
    775       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    776       1.92      cube 
    777       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    778       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    779       1.92      cube 		return (error);
    780       1.92      cube 
    781       1.92      cube 	if (SCARG(uap, ovalue))
    782       1.92      cube 		ovp = &ovalue;
    783       1.92      cube 
    784       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    785       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    786       1.92      cube 		return error;
    787       1.92      cube 
    788       1.92      cube 	if (ovp)
    789       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    790       1.92      cube 		    sizeof(struct itimerspec));
    791       1.92      cube 	return 0;
    792       1.92      cube }
    793       1.92      cube 
    794       1.92      cube int
    795       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    796       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    797       1.92      cube {
    798      1.150  christos 	struct timespec now;
    799      1.150  christos 	struct itimerspec val, oval;
    800      1.142        ad 	struct ptimers *pts;
    801       1.63   thorpej 	struct ptimer *pt;
    802      1.160  christos 	int error;
    803       1.63   thorpej 
    804      1.142        ad 	pts = p->p_timers;
    805       1.63   thorpej 
    806      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    807      1.142        ad 		return EINVAL;
    808      1.150  christos 	val = *value;
    809      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    810      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    811      1.160  christos 		return error;
    812       1.63   thorpej 
    813      1.142        ad 	mutex_spin_enter(&timer_lock);
    814      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    815      1.142        ad 		mutex_spin_exit(&timer_lock);
    816      1.150  christos 		return EINVAL;
    817      1.142        ad 	}
    818      1.142        ad 
    819       1.63   thorpej 	oval = pt->pt_time;
    820       1.63   thorpej 	pt->pt_time = val;
    821       1.63   thorpej 
    822       1.67   nathanw 	/*
    823       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    824       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    825       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    826       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    827       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    828       1.67   nathanw 	 */
    829      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    830      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    831      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    832      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    833      1.168      yamt 					getnanotime(&now);
    834      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    835      1.168      yamt 					getnanouptime(&now);
    836      1.168      yamt 				}
    837      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    838      1.101    kardel 				    &pt->pt_time.it_value);
    839      1.101    kardel 			}
    840       1.67   nathanw 		} else {
    841       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    842      1.150  christos 				getnanotime(&now);
    843      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    844      1.101    kardel 				    &pt->pt_time.it_value);
    845      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    846       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    847       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    848      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    849       1.67   nathanw 				}
    850       1.67   nathanw 			}
    851       1.67   nathanw 		}
    852       1.67   nathanw 	}
    853       1.67   nathanw 
    854       1.63   thorpej 	timer_settime(pt);
    855      1.142        ad 	mutex_spin_exit(&timer_lock);
    856       1.63   thorpej 
    857      1.150  christos 	if (ovalue)
    858      1.150  christos 		*ovalue = oval;
    859       1.63   thorpej 
    860       1.63   thorpej 	return (0);
    861       1.63   thorpej }
    862       1.63   thorpej 
    863       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    864       1.63   thorpej int
    865      1.156  christos sys___timer_gettime50(struct lwp *l,
    866      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    867       1.63   thorpej {
    868      1.135       dsl 	/* {
    869       1.63   thorpej 		syscallarg(timer_t) timerid;
    870       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    871      1.135       dsl 	} */
    872       1.63   thorpej 	struct itimerspec its;
    873       1.92      cube 	int error;
    874       1.92      cube 
    875       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    876       1.92      cube 	    &its)) != 0)
    877       1.92      cube 		return error;
    878       1.92      cube 
    879       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    880       1.92      cube }
    881       1.92      cube 
    882       1.92      cube int
    883       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    884       1.92      cube {
    885       1.63   thorpej 	struct ptimer *pt;
    886      1.142        ad 	struct ptimers *pts;
    887       1.63   thorpej 
    888      1.142        ad 	pts = p->p_timers;
    889      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    890       1.63   thorpej 		return (EINVAL);
    891      1.142        ad 	mutex_spin_enter(&timer_lock);
    892      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    893      1.142        ad 		mutex_spin_exit(&timer_lock);
    894      1.142        ad 		return (EINVAL);
    895      1.142        ad 	}
    896      1.150  christos 	timer_gettime(pt, its);
    897      1.142        ad 	mutex_spin_exit(&timer_lock);
    898       1.63   thorpej 
    899       1.92      cube 	return 0;
    900       1.63   thorpej }
    901       1.63   thorpej 
    902       1.63   thorpej /*
    903       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    904       1.63   thorpej  * while a notification was already pending. The counter is reset when
    905       1.63   thorpej  * a timer expires and a notification can be posted.
    906       1.63   thorpej  */
    907       1.63   thorpej int
    908      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    909      1.140      yamt     register_t *retval)
    910       1.63   thorpej {
    911      1.135       dsl 	/* {
    912       1.63   thorpej 		syscallarg(timer_t) timerid;
    913      1.135       dsl 	} */
    914       1.63   thorpej 	struct proc *p = l->l_proc;
    915      1.142        ad 	struct ptimers *pts;
    916       1.63   thorpej 	int timerid;
    917       1.63   thorpej 	struct ptimer *pt;
    918       1.63   thorpej 
    919       1.63   thorpej 	timerid = SCARG(uap, timerid);
    920       1.63   thorpej 
    921      1.142        ad 	pts = p->p_timers;
    922      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    923      1.142        ad 		return (EINVAL);
    924      1.142        ad 	mutex_spin_enter(&timer_lock);
    925      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    926      1.142        ad 		mutex_spin_exit(&timer_lock);
    927       1.63   thorpej 		return (EINVAL);
    928      1.142        ad 	}
    929       1.63   thorpej 	*retval = pt->pt_poverruns;
    930      1.142        ad 	mutex_spin_exit(&timer_lock);
    931       1.63   thorpej 
    932       1.63   thorpej 	return (0);
    933       1.63   thorpej }
    934       1.63   thorpej 
    935       1.63   thorpej /*
    936       1.63   thorpej  * Real interval timer expired:
    937       1.63   thorpej  * send process whose timer expired an alarm signal.
    938       1.63   thorpej  * If time is not set up to reload, then just return.
    939       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    940       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    941       1.63   thorpej  * SIGALRM calls to be compressed into one.
    942       1.63   thorpej  */
    943       1.63   thorpej void
    944       1.63   thorpej realtimerexpire(void *arg)
    945       1.63   thorpej {
    946      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    947      1.150  christos 	struct timespec now, next;
    948       1.63   thorpej 	struct ptimer *pt;
    949      1.148     joerg 	int backwards;
    950       1.63   thorpej 
    951      1.142        ad 	pt = arg;
    952       1.63   thorpej 
    953      1.142        ad 	mutex_spin_enter(&timer_lock);
    954       1.63   thorpej 	itimerfire(pt);
    955       1.63   thorpej 
    956      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    957      1.150  christos 		timespecclear(&pt->pt_time.it_value);
    958      1.142        ad 		mutex_spin_exit(&timer_lock);
    959       1.63   thorpej 		return;
    960       1.63   thorpej 	}
    961      1.148     joerg 
    962  1.170.6.1       mrg 	if (pt->pt_type == CLOCK_MONOTONIC) {
    963  1.170.6.1       mrg 		getnanouptime(&now);
    964  1.170.6.1       mrg 	} else {
    965  1.170.6.1       mrg 		getnanotime(&now);
    966  1.170.6.1       mrg 	}
    967      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    968      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    969      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    970      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    971      1.148     joerg 		pt->pt_time.it_value = next;
    972      1.148     joerg 	} else {
    973      1.166      yamt 		now_ns = timespec2ns(&now);
    974      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    975      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    976      1.148     joerg 
    977      1.166      yamt 		next_val = now_ns +
    978      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
    979      1.148     joerg 
    980      1.148     joerg 		if (backwards)
    981      1.148     joerg 			next_val += interval;
    982      1.148     joerg 		else
    983      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
    984      1.148     joerg 
    985      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    986      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
    987      1.101    kardel 	}
    988      1.148     joerg 
    989      1.148     joerg 	/*
    990      1.150  christos 	 * Don't need to check tshzto() return value, here.
    991      1.148     joerg 	 * callout_reset() does it for us.
    992      1.148     joerg 	 */
    993  1.170.6.1       mrg 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
    994  1.170.6.1       mrg 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
    995      1.148     joerg 	    realtimerexpire, pt);
    996      1.148     joerg 	mutex_spin_exit(&timer_lock);
    997       1.63   thorpej }
    998       1.63   thorpej 
    999       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1000       1.63   thorpej /* ARGSUSED */
   1001       1.63   thorpej int
   1002      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1003      1.140      yamt     register_t *retval)
   1004       1.63   thorpej {
   1005      1.135       dsl 	/* {
   1006       1.63   thorpej 		syscallarg(int) which;
   1007       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1008      1.135       dsl 	} */
   1009       1.63   thorpej 	struct proc *p = l->l_proc;
   1010       1.63   thorpej 	struct itimerval aitv;
   1011       1.91      cube 	int error;
   1012       1.91      cube 
   1013       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1014       1.91      cube 	if (error)
   1015       1.91      cube 		return error;
   1016       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1017       1.91      cube }
   1018       1.63   thorpej 
   1019       1.91      cube int
   1020       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1021       1.91      cube {
   1022      1.142        ad 	struct ptimers *pts;
   1023      1.142        ad 	struct ptimer *pt;
   1024      1.150  christos 	struct itimerspec its;
   1025       1.63   thorpej 
   1026      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1027       1.63   thorpej 		return (EINVAL);
   1028       1.63   thorpej 
   1029      1.142        ad 	mutex_spin_enter(&timer_lock);
   1030      1.142        ad 	pts = p->p_timers;
   1031      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1032       1.91      cube 		timerclear(&itvp->it_value);
   1033       1.91      cube 		timerclear(&itvp->it_interval);
   1034      1.150  christos 	} else {
   1035      1.150  christos 		timer_gettime(pt, &its);
   1036      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1037      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1038      1.150  christos 	}
   1039      1.142        ad 	mutex_spin_exit(&timer_lock);
   1040       1.63   thorpej 
   1041       1.91      cube 	return 0;
   1042        1.1       cgd }
   1043        1.1       cgd 
   1044       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1045        1.1       cgd /* ARGSUSED */
   1046        1.3    andrew int
   1047      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1048      1.140      yamt     register_t *retval)
   1049       1.15   thorpej {
   1050      1.135       dsl 	/* {
   1051       1.30   mycroft 		syscallarg(int) which;
   1052       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1053       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1054      1.135       dsl 	} */
   1055       1.63   thorpej 	struct proc *p = l->l_proc;
   1056       1.30   mycroft 	int which = SCARG(uap, which);
   1057      1.156  christos 	struct sys___getitimer50_args getargs;
   1058       1.91      cube 	const struct itimerval *itvp;
   1059        1.1       cgd 	struct itimerval aitv;
   1060       1.91      cube 	int error;
   1061        1.1       cgd 
   1062      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1063        1.1       cgd 		return (EINVAL);
   1064       1.11       cgd 	itvp = SCARG(uap, itv);
   1065       1.63   thorpej 	if (itvp &&
   1066       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1067        1.1       cgd 		return (error);
   1068       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1069       1.30   mycroft 		SCARG(&getargs, which) = which;
   1070       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1071      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1072       1.21       cgd 			return (error);
   1073       1.21       cgd 	}
   1074        1.1       cgd 	if (itvp == 0)
   1075        1.1       cgd 		return (0);
   1076       1.91      cube 
   1077       1.91      cube 	return dosetitimer(p, which, &aitv);
   1078       1.91      cube }
   1079       1.91      cube 
   1080       1.91      cube int
   1081       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1082       1.91      cube {
   1083      1.150  christos 	struct timespec now;
   1084      1.142        ad 	struct ptimers *pts;
   1085      1.142        ad 	struct ptimer *pt, *spare;
   1086       1.91      cube 
   1087      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1088       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1089        1.1       cgd 		return (EINVAL);
   1090       1.63   thorpej 
   1091       1.63   thorpej 	/*
   1092       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1093       1.63   thorpej 	 * wants to clear the timer.
   1094       1.63   thorpej 	 */
   1095      1.142        ad 	spare = NULL;
   1096      1.142        ad 	pts = p->p_timers;
   1097      1.142        ad  retry:
   1098      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1099      1.142        ad 	    pts->pts_timers[which] == NULL))
   1100       1.63   thorpej 		return (0);
   1101      1.142        ad 	if (pts == NULL)
   1102      1.142        ad 		pts = timers_alloc(p);
   1103      1.142        ad 	mutex_spin_enter(&timer_lock);
   1104      1.142        ad 	pt = pts->pts_timers[which];
   1105      1.142        ad 	if (pt == NULL) {
   1106      1.142        ad 		if (spare == NULL) {
   1107      1.142        ad 			mutex_spin_exit(&timer_lock);
   1108      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1109      1.142        ad 			goto retry;
   1110      1.142        ad 		}
   1111      1.142        ad 		pt = spare;
   1112      1.142        ad 		spare = NULL;
   1113       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1114       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1115       1.63   thorpej 		pt->pt_overruns = 0;
   1116       1.63   thorpej 		pt->pt_proc = p;
   1117       1.63   thorpej 		pt->pt_type = which;
   1118       1.64   nathanw 		pt->pt_entry = which;
   1119      1.142        ad 		pt->pt_queued = false;
   1120      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1121      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1122      1.149  christos 		else
   1123      1.149  christos 			pt->pt_active = 0;
   1124      1.149  christos 
   1125       1.63   thorpej 		switch (which) {
   1126       1.63   thorpej 		case ITIMER_REAL:
   1127      1.170  christos 		case ITIMER_MONOTONIC:
   1128       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1129       1.63   thorpej 			break;
   1130       1.63   thorpej 		case ITIMER_VIRTUAL:
   1131       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1132       1.63   thorpej 			break;
   1133       1.63   thorpej 		case ITIMER_PROF:
   1134       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1135       1.63   thorpej 			break;
   1136        1.1       cgd 		}
   1137      1.142        ad 		pts->pts_timers[which] = pt;
   1138      1.142        ad 	}
   1139       1.63   thorpej 
   1140      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1141      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1142      1.150  christos 
   1143      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1144       1.67   nathanw 		/* Convert to absolute time */
   1145      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1146      1.170  christos 		switch (which) {
   1147      1.170  christos 		case ITIMER_REAL:
   1148      1.170  christos 			getnanotime(&now);
   1149      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1150      1.170  christos 			    &pt->pt_time.it_value);
   1151      1.170  christos 			break;
   1152      1.170  christos 		case ITIMER_MONOTONIC:
   1153      1.170  christos 			getnanouptime(&now);
   1154      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1155      1.170  christos 			    &pt->pt_time.it_value);
   1156      1.170  christos 			break;
   1157      1.170  christos 		default:
   1158      1.170  christos 			break;
   1159      1.170  christos 		}
   1160       1.67   nathanw 	}
   1161       1.63   thorpej 	timer_settime(pt);
   1162      1.142        ad 	mutex_spin_exit(&timer_lock);
   1163      1.142        ad 	if (spare != NULL)
   1164      1.142        ad 		pool_put(&ptimer_pool, spare);
   1165       1.63   thorpej 
   1166        1.1       cgd 	return (0);
   1167        1.1       cgd }
   1168        1.1       cgd 
   1169       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1170      1.142        ad struct ptimers *
   1171       1.63   thorpej timers_alloc(struct proc *p)
   1172       1.63   thorpej {
   1173      1.142        ad 	struct ptimers *pts;
   1174       1.63   thorpej 	int i;
   1175       1.63   thorpej 
   1176      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1177       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1178       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1179       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1180       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1181       1.64   nathanw 	pts->pts_fired = 0;
   1182      1.142        ad 	mutex_spin_enter(&timer_lock);
   1183      1.142        ad 	if (p->p_timers == NULL) {
   1184      1.142        ad 		p->p_timers = pts;
   1185      1.142        ad 		mutex_spin_exit(&timer_lock);
   1186      1.142        ad 		return pts;
   1187      1.142        ad 	}
   1188      1.142        ad 	mutex_spin_exit(&timer_lock);
   1189      1.142        ad 	pool_put(&ptimers_pool, pts);
   1190      1.142        ad 	return p->p_timers;
   1191       1.63   thorpej }
   1192       1.63   thorpej 
   1193        1.1       cgd /*
   1194       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1195       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1196       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1197       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1198       1.63   thorpej  * structure if none of those remain.
   1199        1.1       cgd  */
   1200        1.3    andrew void
   1201       1.63   thorpej timers_free(struct proc *p, int which)
   1202        1.6       cgd {
   1203       1.63   thorpej 	struct ptimers *pts;
   1204      1.142        ad 	struct ptimer *ptn;
   1205      1.150  christos 	struct timespec ts;
   1206      1.142        ad 	int i;
   1207       1.63   thorpej 
   1208      1.142        ad 	if (p->p_timers == NULL)
   1209      1.142        ad 		return;
   1210       1.63   thorpej 
   1211      1.142        ad 	pts = p->p_timers;
   1212      1.142        ad 	mutex_spin_enter(&timer_lock);
   1213      1.142        ad 	if (which == TIMERS_ALL) {
   1214      1.142        ad 		p->p_timers = NULL;
   1215      1.142        ad 		i = 0;
   1216      1.142        ad 	} else {
   1217      1.150  christos 		timespecclear(&ts);
   1218      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1219      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1220      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1221      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1222      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1223      1.149  christos 		}
   1224      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1225      1.142        ad 		if (ptn) {
   1226      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1227      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1228      1.142        ad 			    &ptn->pt_time.it_value);
   1229      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1230      1.142        ad 		}
   1231      1.150  christos 		timespecclear(&ts);
   1232      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1233      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1234      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1235      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1236      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1237      1.149  christos 		}
   1238      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1239      1.142        ad 		if (ptn) {
   1240      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1241      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1242      1.142        ad 			    &ptn->pt_time.it_value);
   1243      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1244       1.63   thorpej 		}
   1245      1.142        ad 		i = 3;
   1246      1.142        ad 	}
   1247      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1248      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1249      1.142        ad 			itimerfree(pts, i);
   1250      1.142        ad 			mutex_spin_enter(&timer_lock);
   1251        1.1       cgd 		}
   1252        1.1       cgd 	}
   1253      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1254      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1255      1.142        ad 		p->p_timers = NULL;
   1256      1.142        ad 		mutex_spin_exit(&timer_lock);
   1257      1.142        ad 		pool_put(&ptimers_pool, pts);
   1258      1.142        ad 	} else
   1259      1.142        ad 		mutex_spin_exit(&timer_lock);
   1260      1.142        ad }
   1261      1.142        ad 
   1262      1.142        ad static void
   1263      1.142        ad itimerfree(struct ptimers *pts, int index)
   1264      1.142        ad {
   1265      1.142        ad 	struct ptimer *pt;
   1266      1.142        ad 
   1267      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1268      1.142        ad 
   1269      1.142        ad 	pt = pts->pts_timers[index];
   1270      1.142        ad 	pts->pts_timers[index] = NULL;
   1271      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1272      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1273      1.167      yamt 	if (pt->pt_queued)
   1274      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1275      1.144        ad 	mutex_spin_exit(&timer_lock);
   1276      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1277      1.149  christos 		callout_destroy(&pt->pt_ch);
   1278      1.142        ad 	pool_put(&ptimer_pool, pt);
   1279        1.1       cgd }
   1280        1.1       cgd 
   1281        1.1       cgd /*
   1282        1.1       cgd  * Decrement an interval timer by a specified number
   1283      1.152  christos  * of nanoseconds, which must be less than a second,
   1284      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1285      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1286        1.8       cgd  * reduce the value reloaded into the timer so that
   1287        1.1       cgd  * the timer does not drift.  This routine assumes
   1288        1.1       cgd  * that it is called in a context where the timers
   1289        1.1       cgd  * on which it is operating cannot change in value.
   1290        1.1       cgd  */
   1291      1.142        ad static int
   1292      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1293       1.63   thorpej {
   1294      1.150  christos 	struct itimerspec *itp;
   1295        1.1       cgd 
   1296      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1297      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1298      1.142        ad 
   1299       1.63   thorpej 	itp = &pt->pt_time;
   1300      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1301        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1302        1.1       cgd 			/* expired, and already in next interval */
   1303      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1304        1.1       cgd 			goto expire;
   1305        1.1       cgd 		}
   1306      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1307        1.1       cgd 		itp->it_value.tv_sec--;
   1308        1.1       cgd 	}
   1309      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1310      1.152  christos 	nsec = 0;
   1311      1.150  christos 	if (timespecisset(&itp->it_value))
   1312        1.1       cgd 		return (1);
   1313        1.1       cgd 	/* expired, exactly at end of interval */
   1314        1.1       cgd expire:
   1315      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1316        1.1       cgd 		itp->it_value = itp->it_interval;
   1317      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1318      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1319      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1320        1.1       cgd 			itp->it_value.tv_sec--;
   1321        1.1       cgd 		}
   1322       1.63   thorpej 		timer_settime(pt);
   1323        1.1       cgd 	} else
   1324      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1325        1.1       cgd 	return (0);
   1326       1.42       cgd }
   1327       1.42       cgd 
   1328      1.142        ad static void
   1329       1.63   thorpej itimerfire(struct ptimer *pt)
   1330       1.63   thorpej {
   1331       1.78        cl 
   1332      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1333      1.142        ad 
   1334      1.142        ad 	/*
   1335      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1336      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1337      1.142        ad 	 */
   1338  1.170.6.2       mrg 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1339      1.142        ad 		return;
   1340  1.170.6.2       mrg 	}
   1341      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1342      1.142        ad 	pt->pt_queued = true;
   1343      1.142        ad 	softint_schedule(timer_sih);
   1344      1.142        ad }
   1345      1.142        ad 
   1346      1.142        ad void
   1347      1.142        ad timer_tick(lwp_t *l, bool user)
   1348      1.142        ad {
   1349      1.142        ad 	struct ptimers *pts;
   1350      1.142        ad 	struct ptimer *pt;
   1351      1.142        ad 	proc_t *p;
   1352      1.142        ad 
   1353      1.142        ad 	p = l->l_proc;
   1354      1.142        ad 	if (p->p_timers == NULL)
   1355      1.142        ad 		return;
   1356      1.142        ad 
   1357      1.142        ad 	mutex_spin_enter(&timer_lock);
   1358      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1359       1.63   thorpej 		/*
   1360      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1361       1.63   thorpej 		 */
   1362      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1363      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1364      1.142        ad 				itimerfire(pt);
   1365      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1366      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1367      1.142        ad 				itimerfire(pt);
   1368      1.142        ad 	}
   1369      1.142        ad 	mutex_spin_exit(&timer_lock);
   1370      1.142        ad }
   1371      1.142        ad 
   1372      1.142        ad static void
   1373      1.142        ad timer_intr(void *cookie)
   1374      1.142        ad {
   1375      1.142        ad 	ksiginfo_t ksi;
   1376      1.142        ad 	struct ptimer *pt;
   1377      1.142        ad 	proc_t *p;
   1378      1.142        ad 
   1379      1.158        ad 	mutex_enter(proc_lock);
   1380      1.142        ad 	mutex_spin_enter(&timer_lock);
   1381      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1382      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1383      1.142        ad 		KASSERT(pt->pt_queued);
   1384      1.142        ad 		pt->pt_queued = false;
   1385      1.142        ad 
   1386      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1387      1.154  wrstuden 			/* Process is dying. */
   1388      1.142        ad 			continue;
   1389      1.154  wrstuden 		}
   1390      1.142        ad 		p = pt->pt_proc;
   1391  1.170.6.2       mrg 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1392      1.142        ad 			continue;
   1393      1.142        ad 		}
   1394      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1395       1.63   thorpej 			pt->pt_overruns++;
   1396      1.142        ad 			continue;
   1397       1.64   nathanw 		}
   1398      1.142        ad 
   1399      1.142        ad 		KSI_INIT(&ksi);
   1400      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1401      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1402      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1403      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1404      1.142        ad 		pt->pt_overruns = 0;
   1405      1.142        ad 		mutex_spin_exit(&timer_lock);
   1406      1.142        ad 		kpsignal(p, &ksi, NULL);
   1407      1.142        ad 		mutex_spin_enter(&timer_lock);
   1408       1.63   thorpej 	}
   1409      1.142        ad 	mutex_spin_exit(&timer_lock);
   1410      1.158        ad 	mutex_exit(proc_lock);
   1411       1.63   thorpej }
   1412      1.162      elad 
   1413      1.162      elad /*
   1414      1.162      elad  * Check if the time will wrap if set to ts.
   1415      1.162      elad  *
   1416      1.162      elad  * ts - timespec describing the new time
   1417      1.162      elad  * delta - the delta between the current time and ts
   1418      1.162      elad  */
   1419      1.162      elad bool
   1420      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1421      1.162      elad {
   1422      1.162      elad 
   1423      1.162      elad 	/*
   1424      1.162      elad 	 * Don't allow the time to be set forward so far it
   1425      1.162      elad 	 * will wrap and become negative, thus allowing an
   1426      1.162      elad 	 * attacker to bypass the next check below.  The
   1427      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1428      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1429      1.162      elad 	 * past the cutoff, it will take a very long time
   1430      1.162      elad 	 * to get to the wrap point.
   1431      1.162      elad 	 */
   1432      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1433      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1434      1.162      elad 		return true;
   1435      1.162      elad 
   1436      1.162      elad 	return false;
   1437      1.162      elad }
   1438