kern_time.c revision 1.171 1 1.171 christos /* $NetBSD: kern_time.c,v 1.171 2011/12/18 22:30:25 christos Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.158 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.158 ad * by Christopher G. Demetriou, and by Andrew Doran.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd *
19 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
30 1.42 cgd */
31 1.9 cgd
32 1.1 cgd /*
33 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.8 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * Redistribution and use in source and binary forms, with or without
37 1.1 cgd * modification, are permitted provided that the following conditions
38 1.1 cgd * are met:
39 1.1 cgd * 1. Redistributions of source code must retain the above copyright
40 1.1 cgd * notice, this list of conditions and the following disclaimer.
41 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer in the
43 1.1 cgd * documentation and/or other materials provided with the distribution.
44 1.72 agc * 3. Neither the name of the University nor the names of its contributors
45 1.1 cgd * may be used to endorse or promote products derived from this software
46 1.1 cgd * without specific prior written permission.
47 1.1 cgd *
48 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 1.1 cgd * SUCH DAMAGE.
59 1.1 cgd *
60 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 1.1 cgd */
62 1.58 lukem
63 1.58 lukem #include <sys/cdefs.h>
64 1.171 christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.171 2011/12/18 22:30:25 christos Exp $");
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/resourcevar.h>
68 1.5 mycroft #include <sys/kernel.h>
69 1.8 cgd #include <sys/systm.h>
70 1.5 mycroft #include <sys/proc.h>
71 1.8 cgd #include <sys/vnode.h>
72 1.17 christos #include <sys/signalvar.h>
73 1.25 perry #include <sys/syslog.h>
74 1.101 kardel #include <sys/timetc.h>
75 1.143 ad #include <sys/timex.h>
76 1.99 elad #include <sys/kauth.h>
77 1.11 cgd #include <sys/mount.h>
78 1.154 wrstuden #include <sys/sa.h>
79 1.154 wrstuden #include <sys/savar.h>
80 1.11 cgd #include <sys/syscallargs.h>
81 1.143 ad #include <sys/cpu.h>
82 1.19 christos
83 1.154 wrstuden #include "opt_sa.h"
84 1.154 wrstuden
85 1.142 ad static void timer_intr(void *);
86 1.142 ad static void itimerfire(struct ptimer *);
87 1.142 ad static void itimerfree(struct ptimers *, int);
88 1.142 ad
89 1.142 ad kmutex_t timer_lock;
90 1.142 ad
91 1.142 ad static void *timer_sih;
92 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
93 1.131 ad
94 1.161 pooka struct pool ptimer_pool, ptimers_pool;
95 1.97 simonb
96 1.168 yamt #define CLOCK_VIRTUAL_P(clockid) \
97 1.168 yamt ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
98 1.168 yamt
99 1.168 yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
100 1.168 yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
101 1.168 yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
102 1.170 christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
103 1.168 yamt
104 1.131 ad /*
105 1.131 ad * Initialize timekeeping.
106 1.131 ad */
107 1.131 ad void
108 1.131 ad time_init(void)
109 1.131 ad {
110 1.131 ad
111 1.161 pooka pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
112 1.161 pooka &pool_allocator_nointr, IPL_NONE);
113 1.161 pooka pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
114 1.161 pooka &pool_allocator_nointr, IPL_NONE);
115 1.131 ad }
116 1.131 ad
117 1.142 ad void
118 1.142 ad time_init2(void)
119 1.142 ad {
120 1.142 ad
121 1.142 ad TAILQ_INIT(&timer_queue);
122 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
123 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
124 1.142 ad timer_intr, NULL);
125 1.142 ad }
126 1.142 ad
127 1.63 thorpej /* Time of day and interval timer support.
128 1.1 cgd *
129 1.1 cgd * These routines provide the kernel entry points to get and set
130 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
131 1.1 cgd * here provide support for adding and subtracting timeval structures
132 1.1 cgd * and decrementing interval timers, optionally reloading the interval
133 1.1 cgd * timers when they expire.
134 1.1 cgd */
135 1.1 cgd
136 1.22 jtc /* This function is used by clock_settime and settimeofday */
137 1.132 elad static int
138 1.156 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
139 1.22 jtc {
140 1.156 christos struct timespec delta, now;
141 1.129 ad int s;
142 1.22 jtc
143 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
144 1.129 ad s = splclock();
145 1.156 christos nanotime(&now);
146 1.156 christos timespecsub(ts, &now, &delta);
147 1.132 elad
148 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
149 1.156 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
150 1.156 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
151 1.129 ad splx(s);
152 1.29 tls return (EPERM);
153 1.55 tron }
154 1.132 elad
155 1.29 tls #ifdef notyet
156 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
157 1.129 ad splx(s);
158 1.29 tls return (EPERM);
159 1.55 tron }
160 1.29 tls #endif
161 1.103 kardel
162 1.156 christos tc_setclock(ts);
163 1.103 kardel
164 1.156 christos timespecadd(&boottime, &delta, &boottime);
165 1.103 kardel
166 1.22 jtc resettodr();
167 1.129 ad splx(s);
168 1.129 ad
169 1.29 tls return (0);
170 1.22 jtc }
171 1.22 jtc
172 1.132 elad int
173 1.132 elad settime(struct proc *p, struct timespec *ts)
174 1.132 elad {
175 1.132 elad return (settime1(p, ts, true));
176 1.132 elad }
177 1.132 elad
178 1.22 jtc /* ARGSUSED */
179 1.22 jtc int
180 1.156 christos sys___clock_gettime50(struct lwp *l,
181 1.156 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
182 1.22 jtc {
183 1.135 dsl /* {
184 1.22 jtc syscallarg(clockid_t) clock_id;
185 1.23 cgd syscallarg(struct timespec *) tp;
186 1.135 dsl } */
187 1.165 njoly int error;
188 1.22 jtc struct timespec ats;
189 1.22 jtc
190 1.165 njoly error = clock_gettime1(SCARG(uap, clock_id), &ats);
191 1.165 njoly if (error != 0)
192 1.165 njoly return error;
193 1.165 njoly
194 1.165 njoly return copyout(&ats, SCARG(uap, tp), sizeof(ats));
195 1.165 njoly }
196 1.165 njoly
197 1.165 njoly int
198 1.165 njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
199 1.165 njoly {
200 1.165 njoly
201 1.61 simonb switch (clock_id) {
202 1.61 simonb case CLOCK_REALTIME:
203 1.165 njoly nanotime(ts);
204 1.61 simonb break;
205 1.61 simonb case CLOCK_MONOTONIC:
206 1.165 njoly nanouptime(ts);
207 1.61 simonb break;
208 1.61 simonb default:
209 1.165 njoly return EINVAL;
210 1.61 simonb }
211 1.22 jtc
212 1.165 njoly return 0;
213 1.22 jtc }
214 1.22 jtc
215 1.22 jtc /* ARGSUSED */
216 1.22 jtc int
217 1.156 christos sys___clock_settime50(struct lwp *l,
218 1.156 christos const struct sys___clock_settime50_args *uap, register_t *retval)
219 1.22 jtc {
220 1.135 dsl /* {
221 1.22 jtc syscallarg(clockid_t) clock_id;
222 1.23 cgd syscallarg(const struct timespec *) tp;
223 1.135 dsl } */
224 1.156 christos int error;
225 1.156 christos struct timespec ats;
226 1.22 jtc
227 1.156 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
228 1.156 christos return error;
229 1.156 christos
230 1.156 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
231 1.56 manu }
232 1.56 manu
233 1.56 manu
234 1.56 manu int
235 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
236 1.132 elad bool check_kauth)
237 1.56 manu {
238 1.56 manu int error;
239 1.56 manu
240 1.61 simonb switch (clock_id) {
241 1.61 simonb case CLOCK_REALTIME:
242 1.156 christos if ((error = settime1(p, tp, check_kauth)) != 0)
243 1.61 simonb return (error);
244 1.61 simonb break;
245 1.61 simonb case CLOCK_MONOTONIC:
246 1.61 simonb return (EINVAL); /* read-only clock */
247 1.61 simonb default:
248 1.56 manu return (EINVAL);
249 1.61 simonb }
250 1.22 jtc
251 1.22 jtc return 0;
252 1.22 jtc }
253 1.22 jtc
254 1.22 jtc int
255 1.156 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
256 1.140 yamt register_t *retval)
257 1.22 jtc {
258 1.135 dsl /* {
259 1.22 jtc syscallarg(clockid_t) clock_id;
260 1.23 cgd syscallarg(struct timespec *) tp;
261 1.135 dsl } */
262 1.22 jtc struct timespec ts;
263 1.22 jtc int error = 0;
264 1.22 jtc
265 1.164 njoly if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
266 1.164 njoly return error;
267 1.164 njoly
268 1.164 njoly if (SCARG(uap, tp))
269 1.164 njoly error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
270 1.164 njoly
271 1.164 njoly return error;
272 1.164 njoly }
273 1.164 njoly
274 1.164 njoly int
275 1.164 njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
276 1.164 njoly {
277 1.164 njoly
278 1.61 simonb switch (clock_id) {
279 1.61 simonb case CLOCK_REALTIME:
280 1.61 simonb case CLOCK_MONOTONIC:
281 1.164 njoly ts->tv_sec = 0;
282 1.102 kardel if (tc_getfrequency() > 1000000000)
283 1.164 njoly ts->tv_nsec = 1;
284 1.102 kardel else
285 1.164 njoly ts->tv_nsec = 1000000000 / tc_getfrequency();
286 1.61 simonb break;
287 1.61 simonb default:
288 1.164 njoly return EINVAL;
289 1.61 simonb }
290 1.22 jtc
291 1.164 njoly return 0;
292 1.22 jtc }
293 1.22 jtc
294 1.27 jtc /* ARGSUSED */
295 1.27 jtc int
296 1.156 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
297 1.140 yamt register_t *retval)
298 1.27 jtc {
299 1.135 dsl /* {
300 1.101 kardel syscallarg(struct timespec *) rqtp;
301 1.101 kardel syscallarg(struct timespec *) rmtp;
302 1.135 dsl } */
303 1.101 kardel struct timespec rmt, rqt;
304 1.120 dsl int error, error1;
305 1.101 kardel
306 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307 1.101 kardel if (error)
308 1.101 kardel return (error);
309 1.101 kardel
310 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
311 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
312 1.120 dsl return error;
313 1.120 dsl
314 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
315 1.120 dsl return error1 ? error1 : error;
316 1.120 dsl }
317 1.120 dsl
318 1.120 dsl int
319 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
320 1.120 dsl {
321 1.141 yamt struct timespec rmtstart;
322 1.120 dsl int error, timo;
323 1.120 dsl
324 1.160 christos if ((error = itimespecfix(rqt)) != 0)
325 1.160 christos return error;
326 1.101 kardel
327 1.120 dsl timo = tstohz(rqt);
328 1.101 kardel /*
329 1.101 kardel * Avoid inadvertantly sleeping forever
330 1.101 kardel */
331 1.101 kardel if (timo == 0)
332 1.101 kardel timo = 1;
333 1.141 yamt getnanouptime(&rmtstart);
334 1.141 yamt again:
335 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
336 1.141 yamt if (rmt != NULL || error == 0) {
337 1.141 yamt struct timespec rmtend;
338 1.141 yamt struct timespec t0;
339 1.141 yamt struct timespec *t;
340 1.101 kardel
341 1.141 yamt getnanouptime(&rmtend);
342 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
343 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
344 1.141 yamt timespecsub(rqt, t, t);
345 1.141 yamt if (t->tv_sec < 0)
346 1.141 yamt timespecclear(t);
347 1.141 yamt if (error == 0) {
348 1.141 yamt timo = tstohz(t);
349 1.141 yamt if (timo > 0)
350 1.141 yamt goto again;
351 1.141 yamt }
352 1.141 yamt }
353 1.104 kardel
354 1.101 kardel if (error == ERESTART)
355 1.101 kardel error = EINTR;
356 1.101 kardel if (error == EWOULDBLOCK)
357 1.101 kardel error = 0;
358 1.101 kardel
359 1.101 kardel return error;
360 1.27 jtc }
361 1.22 jtc
362 1.1 cgd /* ARGSUSED */
363 1.3 andrew int
364 1.156 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
365 1.140 yamt register_t *retval)
366 1.15 thorpej {
367 1.135 dsl /* {
368 1.11 cgd syscallarg(struct timeval *) tp;
369 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
370 1.135 dsl } */
371 1.1 cgd struct timeval atv;
372 1.1 cgd int error = 0;
373 1.25 perry struct timezone tzfake;
374 1.1 cgd
375 1.11 cgd if (SCARG(uap, tp)) {
376 1.1 cgd microtime(&atv);
377 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
378 1.17 christos if (error)
379 1.1 cgd return (error);
380 1.1 cgd }
381 1.25 perry if (SCARG(uap, tzp)) {
382 1.25 perry /*
383 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
384 1.25 perry * fake up a timezone struct and return it if demanded.
385 1.25 perry */
386 1.25 perry tzfake.tz_minuteswest = 0;
387 1.25 perry tzfake.tz_dsttime = 0;
388 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
389 1.25 perry }
390 1.1 cgd return (error);
391 1.1 cgd }
392 1.1 cgd
393 1.1 cgd /* ARGSUSED */
394 1.3 andrew int
395 1.156 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
396 1.140 yamt register_t *retval)
397 1.15 thorpej {
398 1.135 dsl /* {
399 1.24 cgd syscallarg(const struct timeval *) tv;
400 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
401 1.135 dsl } */
402 1.60 manu
403 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
404 1.60 manu }
405 1.60 manu
406 1.60 manu int
407 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
408 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
409 1.60 manu {
410 1.22 jtc struct timeval atv;
411 1.98 christos struct timespec ts;
412 1.22 jtc int error;
413 1.1 cgd
414 1.8 cgd /* Verify all parameters before changing time. */
415 1.119 dsl
416 1.25 perry /*
417 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
418 1.25 perry * obsolete program would try to set it, so we log a warning.
419 1.25 perry */
420 1.98 christos if (utzp)
421 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
422 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
423 1.98 christos
424 1.98 christos if (utv == NULL)
425 1.98 christos return 0;
426 1.98 christos
427 1.119 dsl if (userspace) {
428 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
429 1.119 dsl return error;
430 1.119 dsl utv = &atv;
431 1.119 dsl }
432 1.119 dsl
433 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
434 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
435 1.1 cgd }
436 1.1 cgd
437 1.68 dsl int time_adjusted; /* set if an adjustment is made */
438 1.1 cgd
439 1.1 cgd /* ARGSUSED */
440 1.3 andrew int
441 1.156 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
442 1.140 yamt register_t *retval)
443 1.15 thorpej {
444 1.135 dsl /* {
445 1.24 cgd syscallarg(const struct timeval *) delta;
446 1.11 cgd syscallarg(struct timeval *) olddelta;
447 1.135 dsl } */
448 1.156 christos int error = 0;
449 1.156 christos struct timeval atv, oldatv;
450 1.1 cgd
451 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
452 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
453 1.156 christos return error;
454 1.17 christos
455 1.156 christos if (SCARG(uap, delta)) {
456 1.156 christos error = copyin(SCARG(uap, delta), &atv,
457 1.156 christos sizeof(*SCARG(uap, delta)));
458 1.156 christos if (error)
459 1.156 christos return (error);
460 1.156 christos }
461 1.156 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
462 1.156 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
463 1.156 christos if (SCARG(uap, olddelta))
464 1.156 christos error = copyout(&oldatv, SCARG(uap, olddelta),
465 1.156 christos sizeof(*SCARG(uap, olddelta)));
466 1.156 christos return error;
467 1.56 manu }
468 1.56 manu
469 1.156 christos void
470 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
471 1.56 manu {
472 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
473 1.101 kardel
474 1.101 kardel if (olddelta) {
475 1.143 ad mutex_spin_enter(&timecounter_lock);
476 1.156 christos olddelta->tv_sec = time_adjtime / 1000000;
477 1.156 christos olddelta->tv_usec = time_adjtime % 1000000;
478 1.156 christos if (olddelta->tv_usec < 0) {
479 1.156 christos olddelta->tv_usec += 1000000;
480 1.156 christos olddelta->tv_sec--;
481 1.101 kardel }
482 1.157 christos mutex_spin_exit(&timecounter_lock);
483 1.101 kardel }
484 1.101 kardel
485 1.101 kardel if (delta) {
486 1.156 christos mutex_spin_enter(&timecounter_lock);
487 1.157 christos time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
488 1.101 kardel
489 1.143 ad if (time_adjtime) {
490 1.101 kardel /* We need to save the system time during shutdown */
491 1.101 kardel time_adjusted |= 1;
492 1.143 ad }
493 1.143 ad mutex_spin_exit(&timecounter_lock);
494 1.101 kardel }
495 1.1 cgd }
496 1.1 cgd
497 1.1 cgd /*
498 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
499 1.63 thorpej * timer_*() family of routines are supported.
500 1.1 cgd *
501 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
502 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
503 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
504 1.170 christos * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
505 1.170 christos * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
506 1.170 christos * allocated by the timer_create() syscall.
507 1.1 cgd *
508 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
509 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
510 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
511 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
512 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
513 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
514 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
515 1.63 thorpej * given below), to be delayed in real time past when it is supposed
516 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
517 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
518 1.63 thorpej * compute the next time in absolute time the timer should go off. */
519 1.63 thorpej
520 1.63 thorpej /* Allocate a POSIX realtime timer. */
521 1.63 thorpej int
522 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
523 1.140 yamt register_t *retval)
524 1.63 thorpej {
525 1.135 dsl /* {
526 1.63 thorpej syscallarg(clockid_t) clock_id;
527 1.63 thorpej syscallarg(struct sigevent *) evp;
528 1.63 thorpej syscallarg(timer_t *) timerid;
529 1.135 dsl } */
530 1.92 cube
531 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
532 1.105 ad SCARG(uap, evp), copyin, l);
533 1.92 cube }
534 1.92 cube
535 1.92 cube int
536 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
537 1.105 ad copyin_t fetch_event, struct lwp *l)
538 1.92 cube {
539 1.92 cube int error;
540 1.92 cube timer_t timerid;
541 1.142 ad struct ptimers *pts;
542 1.63 thorpej struct ptimer *pt;
543 1.105 ad struct proc *p;
544 1.105 ad
545 1.105 ad p = l->l_proc;
546 1.63 thorpej
547 1.170 christos if ((u_int)id > CLOCK_MONOTONIC)
548 1.63 thorpej return (EINVAL);
549 1.63 thorpej
550 1.142 ad if ((pts = p->p_timers) == NULL)
551 1.142 ad pts = timers_alloc(p);
552 1.63 thorpej
553 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
554 1.142 ad if (evp != NULL) {
555 1.63 thorpej if (((error =
556 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
557 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
558 1.163 drochner (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
559 1.163 drochner (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
560 1.163 drochner (pt->pt_ev.sigev_signo <= 0 ||
561 1.163 drochner pt->pt_ev.sigev_signo >= NSIG))) {
562 1.63 thorpej pool_put(&ptimer_pool, pt);
563 1.63 thorpej return (error ? error : EINVAL);
564 1.63 thorpej }
565 1.142 ad }
566 1.142 ad
567 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
568 1.142 ad mutex_spin_enter(&timer_lock);
569 1.142 ad for (timerid = 3; timerid < TIMER_MAX; timerid++)
570 1.142 ad if (pts->pts_timers[timerid] == NULL)
571 1.142 ad break;
572 1.142 ad if (timerid == TIMER_MAX) {
573 1.142 ad mutex_spin_exit(&timer_lock);
574 1.142 ad pool_put(&ptimer_pool, pt);
575 1.142 ad return EAGAIN;
576 1.142 ad }
577 1.142 ad if (evp == NULL) {
578 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
579 1.63 thorpej switch (id) {
580 1.63 thorpej case CLOCK_REALTIME:
581 1.168 yamt case CLOCK_MONOTONIC:
582 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
583 1.63 thorpej break;
584 1.63 thorpej case CLOCK_VIRTUAL:
585 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
586 1.63 thorpej break;
587 1.63 thorpej case CLOCK_PROF:
588 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
589 1.63 thorpej break;
590 1.63 thorpej }
591 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
592 1.63 thorpej }
593 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
594 1.73 christos pt->pt_info.ksi_errno = 0;
595 1.73 christos pt->pt_info.ksi_code = 0;
596 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
597 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
598 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
599 1.63 thorpej pt->pt_type = id;
600 1.63 thorpej pt->pt_proc = p;
601 1.63 thorpej pt->pt_overruns = 0;
602 1.63 thorpej pt->pt_poverruns = 0;
603 1.64 nathanw pt->pt_entry = timerid;
604 1.142 ad pt->pt_queued = false;
605 1.150 christos timespecclear(&pt->pt_time.it_value);
606 1.168 yamt if (!CLOCK_VIRTUAL_P(id))
607 1.168 yamt callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
608 1.149 christos else
609 1.149 christos pt->pt_active = 0;
610 1.149 christos
611 1.142 ad pts->pts_timers[timerid] = pt;
612 1.142 ad mutex_spin_exit(&timer_lock);
613 1.63 thorpej
614 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
615 1.63 thorpej }
616 1.63 thorpej
617 1.63 thorpej /* Delete a POSIX realtime timer */
618 1.3 andrew int
619 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
620 1.140 yamt register_t *retval)
621 1.15 thorpej {
622 1.135 dsl /* {
623 1.63 thorpej syscallarg(timer_t) timerid;
624 1.135 dsl } */
625 1.63 thorpej struct proc *p = l->l_proc;
626 1.65 jdolecek timer_t timerid;
627 1.142 ad struct ptimers *pts;
628 1.63 thorpej struct ptimer *pt, *ptn;
629 1.1 cgd
630 1.63 thorpej timerid = SCARG(uap, timerid);
631 1.142 ad pts = p->p_timers;
632 1.142 ad
633 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
634 1.142 ad return (EINVAL);
635 1.63 thorpej
636 1.142 ad mutex_spin_enter(&timer_lock);
637 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
638 1.142 ad mutex_spin_exit(&timer_lock);
639 1.1 cgd return (EINVAL);
640 1.142 ad }
641 1.168 yamt if (CLOCK_VIRTUAL_P(pt->pt_type)) {
642 1.149 christos if (pt->pt_active) {
643 1.149 christos ptn = LIST_NEXT(pt, pt_list);
644 1.149 christos LIST_REMOVE(pt, pt_list);
645 1.149 christos for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
646 1.150 christos timespecadd(&pt->pt_time.it_value,
647 1.149 christos &ptn->pt_time.it_value,
648 1.149 christos &ptn->pt_time.it_value);
649 1.149 christos pt->pt_active = 0;
650 1.149 christos }
651 1.63 thorpej }
652 1.142 ad itimerfree(pts, timerid);
653 1.63 thorpej
654 1.63 thorpej return (0);
655 1.63 thorpej }
656 1.63 thorpej
657 1.63 thorpej /*
658 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
659 1.168 yamt * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
660 1.168 yamt * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
661 1.63 thorpej */
662 1.63 thorpej void
663 1.63 thorpej timer_settime(struct ptimer *pt)
664 1.63 thorpej {
665 1.63 thorpej struct ptimer *ptn, *pptn;
666 1.63 thorpej struct ptlist *ptl;
667 1.63 thorpej
668 1.142 ad KASSERT(mutex_owned(&timer_lock));
669 1.142 ad
670 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
671 1.168 yamt callout_halt(&pt->pt_ch, &timer_lock);
672 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
673 1.63 thorpej /*
674 1.150 christos * Don't need to check tshzto() return value, here.
675 1.63 thorpej * callout_reset() does it for us.
676 1.63 thorpej */
677 1.171 christos callout_reset(&pt->pt_ch,
678 1.171 christos pt->pt_type == CLOCK_MONOTONIC ?
679 1.171 christos tshztoup(&pt->pt_time.it_value) :
680 1.171 christos tshzto(&pt->pt_time.it_value),
681 1.63 thorpej realtimerexpire, pt);
682 1.63 thorpej }
683 1.63 thorpej } else {
684 1.63 thorpej if (pt->pt_active) {
685 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
686 1.63 thorpej LIST_REMOVE(pt, pt_list);
687 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
688 1.150 christos timespecadd(&pt->pt_time.it_value,
689 1.63 thorpej &ptn->pt_time.it_value,
690 1.63 thorpej &ptn->pt_time.it_value);
691 1.63 thorpej }
692 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
693 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
694 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
695 1.63 thorpej else
696 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
697 1.63 thorpej
698 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
699 1.150 christos ptn && timespeccmp(&pt->pt_time.it_value,
700 1.63 thorpej &ptn->pt_time.it_value, >);
701 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
702 1.150 christos timespecsub(&pt->pt_time.it_value,
703 1.63 thorpej &ptn->pt_time.it_value,
704 1.63 thorpej &pt->pt_time.it_value);
705 1.63 thorpej
706 1.63 thorpej if (pptn)
707 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
708 1.63 thorpej else
709 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
710 1.63 thorpej
711 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
712 1.150 christos timespecsub(&ptn->pt_time.it_value,
713 1.63 thorpej &pt->pt_time.it_value,
714 1.63 thorpej &ptn->pt_time.it_value);
715 1.63 thorpej
716 1.63 thorpej pt->pt_active = 1;
717 1.63 thorpej } else
718 1.63 thorpej pt->pt_active = 0;
719 1.63 thorpej }
720 1.63 thorpej }
721 1.63 thorpej
722 1.63 thorpej void
723 1.150 christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
724 1.63 thorpej {
725 1.150 christos struct timespec now;
726 1.63 thorpej struct ptimer *ptn;
727 1.63 thorpej
728 1.142 ad KASSERT(mutex_owned(&timer_lock));
729 1.142 ad
730 1.150 christos *aits = pt->pt_time;
731 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
732 1.1 cgd /*
733 1.12 mycroft * Convert from absolute to relative time in .it_value
734 1.63 thorpej * part of real time timer. If time for real time
735 1.63 thorpej * timer has passed return 0, else return difference
736 1.63 thorpej * between current time and time for the timer to go
737 1.63 thorpej * off.
738 1.1 cgd */
739 1.150 christos if (timespecisset(&aits->it_value)) {
740 1.168 yamt if (pt->pt_type == CLOCK_REALTIME) {
741 1.168 yamt getnanotime(&now);
742 1.168 yamt } else { /* CLOCK_MONOTONIC */
743 1.168 yamt getnanouptime(&now);
744 1.168 yamt }
745 1.150 christos if (timespeccmp(&aits->it_value, &now, <))
746 1.150 christos timespecclear(&aits->it_value);
747 1.101 kardel else
748 1.150 christos timespecsub(&aits->it_value, &now,
749 1.150 christos &aits->it_value);
750 1.36 thorpej }
751 1.63 thorpej } else if (pt->pt_active) {
752 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
753 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
754 1.63 thorpej else
755 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
756 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
757 1.150 christos timespecadd(&aits->it_value,
758 1.150 christos &ptn->pt_time.it_value, &aits->it_value);
759 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
760 1.1 cgd } else
761 1.150 christos timespecclear(&aits->it_value);
762 1.63 thorpej }
763 1.63 thorpej
764 1.63 thorpej
765 1.63 thorpej
766 1.63 thorpej /* Set and arm a POSIX realtime timer */
767 1.63 thorpej int
768 1.156 christos sys___timer_settime50(struct lwp *l,
769 1.156 christos const struct sys___timer_settime50_args *uap,
770 1.140 yamt register_t *retval)
771 1.63 thorpej {
772 1.135 dsl /* {
773 1.63 thorpej syscallarg(timer_t) timerid;
774 1.63 thorpej syscallarg(int) flags;
775 1.63 thorpej syscallarg(const struct itimerspec *) value;
776 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
777 1.135 dsl } */
778 1.92 cube int error;
779 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
780 1.92 cube
781 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
782 1.92 cube sizeof(struct itimerspec))) != 0)
783 1.92 cube return (error);
784 1.92 cube
785 1.92 cube if (SCARG(uap, ovalue))
786 1.92 cube ovp = &ovalue;
787 1.92 cube
788 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
789 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
790 1.92 cube return error;
791 1.92 cube
792 1.92 cube if (ovp)
793 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
794 1.92 cube sizeof(struct itimerspec));
795 1.92 cube return 0;
796 1.92 cube }
797 1.92 cube
798 1.92 cube int
799 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
800 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
801 1.92 cube {
802 1.150 christos struct timespec now;
803 1.150 christos struct itimerspec val, oval;
804 1.142 ad struct ptimers *pts;
805 1.63 thorpej struct ptimer *pt;
806 1.160 christos int error;
807 1.63 thorpej
808 1.142 ad pts = p->p_timers;
809 1.63 thorpej
810 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
811 1.142 ad return EINVAL;
812 1.150 christos val = *value;
813 1.160 christos if ((error = itimespecfix(&val.it_value)) != 0 ||
814 1.160 christos (error = itimespecfix(&val.it_interval)) != 0)
815 1.160 christos return error;
816 1.63 thorpej
817 1.142 ad mutex_spin_enter(&timer_lock);
818 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
819 1.142 ad mutex_spin_exit(&timer_lock);
820 1.150 christos return EINVAL;
821 1.142 ad }
822 1.142 ad
823 1.63 thorpej oval = pt->pt_time;
824 1.63 thorpej pt->pt_time = val;
825 1.63 thorpej
826 1.67 nathanw /*
827 1.67 nathanw * If we've been passed a relative time for a realtime timer,
828 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
829 1.67 nathanw * timer, convert it to relative and make sure we don't set it
830 1.67 nathanw * to zero, which would cancel the timer, or let it go
831 1.67 nathanw * negative, which would confuse the comparison tests.
832 1.67 nathanw */
833 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
834 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
835 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
836 1.168 yamt if (pt->pt_type == CLOCK_REALTIME) {
837 1.168 yamt getnanotime(&now);
838 1.168 yamt } else { /* CLOCK_MONOTONIC */
839 1.168 yamt getnanouptime(&now);
840 1.168 yamt }
841 1.150 christos timespecadd(&pt->pt_time.it_value, &now,
842 1.101 kardel &pt->pt_time.it_value);
843 1.101 kardel }
844 1.67 nathanw } else {
845 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
846 1.150 christos getnanotime(&now);
847 1.150 christos timespecsub(&pt->pt_time.it_value, &now,
848 1.101 kardel &pt->pt_time.it_value);
849 1.150 christos if (!timespecisset(&pt->pt_time.it_value) ||
850 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
851 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
852 1.150 christos pt->pt_time.it_value.tv_nsec = 1;
853 1.67 nathanw }
854 1.67 nathanw }
855 1.67 nathanw }
856 1.67 nathanw }
857 1.67 nathanw
858 1.63 thorpej timer_settime(pt);
859 1.142 ad mutex_spin_exit(&timer_lock);
860 1.63 thorpej
861 1.150 christos if (ovalue)
862 1.150 christos *ovalue = oval;
863 1.63 thorpej
864 1.63 thorpej return (0);
865 1.63 thorpej }
866 1.63 thorpej
867 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
868 1.63 thorpej int
869 1.156 christos sys___timer_gettime50(struct lwp *l,
870 1.156 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
871 1.63 thorpej {
872 1.135 dsl /* {
873 1.63 thorpej syscallarg(timer_t) timerid;
874 1.63 thorpej syscallarg(struct itimerspec *) value;
875 1.135 dsl } */
876 1.63 thorpej struct itimerspec its;
877 1.92 cube int error;
878 1.92 cube
879 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
880 1.92 cube &its)) != 0)
881 1.92 cube return error;
882 1.92 cube
883 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
884 1.92 cube }
885 1.92 cube
886 1.92 cube int
887 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
888 1.92 cube {
889 1.63 thorpej struct ptimer *pt;
890 1.142 ad struct ptimers *pts;
891 1.63 thorpej
892 1.142 ad pts = p->p_timers;
893 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
894 1.63 thorpej return (EINVAL);
895 1.142 ad mutex_spin_enter(&timer_lock);
896 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
897 1.142 ad mutex_spin_exit(&timer_lock);
898 1.142 ad return (EINVAL);
899 1.142 ad }
900 1.150 christos timer_gettime(pt, its);
901 1.142 ad mutex_spin_exit(&timer_lock);
902 1.63 thorpej
903 1.92 cube return 0;
904 1.63 thorpej }
905 1.63 thorpej
906 1.63 thorpej /*
907 1.63 thorpej * Return the count of the number of times a periodic timer expired
908 1.63 thorpej * while a notification was already pending. The counter is reset when
909 1.63 thorpej * a timer expires and a notification can be posted.
910 1.63 thorpej */
911 1.63 thorpej int
912 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
913 1.140 yamt register_t *retval)
914 1.63 thorpej {
915 1.135 dsl /* {
916 1.63 thorpej syscallarg(timer_t) timerid;
917 1.135 dsl } */
918 1.63 thorpej struct proc *p = l->l_proc;
919 1.142 ad struct ptimers *pts;
920 1.63 thorpej int timerid;
921 1.63 thorpej struct ptimer *pt;
922 1.63 thorpej
923 1.63 thorpej timerid = SCARG(uap, timerid);
924 1.63 thorpej
925 1.142 ad pts = p->p_timers;
926 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
927 1.142 ad return (EINVAL);
928 1.142 ad mutex_spin_enter(&timer_lock);
929 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
930 1.142 ad mutex_spin_exit(&timer_lock);
931 1.63 thorpej return (EINVAL);
932 1.142 ad }
933 1.63 thorpej *retval = pt->pt_poverruns;
934 1.142 ad mutex_spin_exit(&timer_lock);
935 1.63 thorpej
936 1.63 thorpej return (0);
937 1.63 thorpej }
938 1.63 thorpej
939 1.154 wrstuden #ifdef KERN_SA
940 1.154 wrstuden /* Glue function that triggers an upcall; called from userret(). */
941 1.154 wrstuden void
942 1.154 wrstuden timerupcall(struct lwp *l)
943 1.154 wrstuden {
944 1.154 wrstuden struct ptimers *pt = l->l_proc->p_timers;
945 1.154 wrstuden struct proc *p = l->l_proc;
946 1.154 wrstuden unsigned int i, fired, done;
947 1.154 wrstuden
948 1.154 wrstuden KDASSERT(l->l_proc->p_sa);
949 1.154 wrstuden /* Bail out if we do not own the virtual processor */
950 1.154 wrstuden if (l->l_savp->savp_lwp != l)
951 1.154 wrstuden return ;
952 1.154 wrstuden
953 1.154 wrstuden mutex_enter(p->p_lock);
954 1.154 wrstuden
955 1.154 wrstuden fired = pt->pts_fired;
956 1.154 wrstuden done = 0;
957 1.154 wrstuden while ((i = ffs(fired)) != 0) {
958 1.154 wrstuden siginfo_t *si;
959 1.154 wrstuden int mask = 1 << --i;
960 1.154 wrstuden int f;
961 1.154 wrstuden
962 1.154 wrstuden f = ~l->l_pflag & LP_SA_NOBLOCK;
963 1.154 wrstuden l->l_pflag |= LP_SA_NOBLOCK;
964 1.154 wrstuden si = siginfo_alloc(PR_WAITOK);
965 1.154 wrstuden si->_info = pt->pts_timers[i]->pt_info.ksi_info;
966 1.154 wrstuden if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
967 1.154 wrstuden sizeof(*si), si, siginfo_free) != 0) {
968 1.154 wrstuden siginfo_free(si);
969 1.154 wrstuden /* XXX What do we do here?? */
970 1.154 wrstuden } else
971 1.154 wrstuden done |= mask;
972 1.154 wrstuden fired &= ~mask;
973 1.154 wrstuden l->l_pflag ^= f;
974 1.154 wrstuden }
975 1.154 wrstuden pt->pts_fired &= ~done;
976 1.154 wrstuden if (pt->pts_fired == 0)
977 1.154 wrstuden l->l_proc->p_timerpend = 0;
978 1.154 wrstuden
979 1.154 wrstuden mutex_exit(p->p_lock);
980 1.154 wrstuden }
981 1.154 wrstuden #endif /* KERN_SA */
982 1.154 wrstuden
983 1.63 thorpej /*
984 1.63 thorpej * Real interval timer expired:
985 1.63 thorpej * send process whose timer expired an alarm signal.
986 1.63 thorpej * If time is not set up to reload, then just return.
987 1.63 thorpej * Else compute next time timer should go off which is > current time.
988 1.63 thorpej * This is where delay in processing this timeout causes multiple
989 1.63 thorpej * SIGALRM calls to be compressed into one.
990 1.63 thorpej */
991 1.63 thorpej void
992 1.63 thorpej realtimerexpire(void *arg)
993 1.63 thorpej {
994 1.166 yamt uint64_t last_val, next_val, interval, now_ns;
995 1.150 christos struct timespec now, next;
996 1.63 thorpej struct ptimer *pt;
997 1.148 joerg int backwards;
998 1.63 thorpej
999 1.142 ad pt = arg;
1000 1.63 thorpej
1001 1.142 ad mutex_spin_enter(&timer_lock);
1002 1.63 thorpej itimerfire(pt);
1003 1.63 thorpej
1004 1.150 christos if (!timespecisset(&pt->pt_time.it_interval)) {
1005 1.150 christos timespecclear(&pt->pt_time.it_value);
1006 1.142 ad mutex_spin_exit(&timer_lock);
1007 1.63 thorpej return;
1008 1.63 thorpej }
1009 1.148 joerg
1010 1.171 christos if (pt->pt_type == CLOCK_MONOTONIC) {
1011 1.171 christos getnanouptime(&now);
1012 1.171 christos } else {
1013 1.171 christos getnanotime(&now);
1014 1.171 christos }
1015 1.150 christos backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1016 1.150 christos timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1017 1.148 joerg /* Handle the easy case of non-overflown timers first. */
1018 1.150 christos if (!backwards && timespeccmp(&next, &now, >)) {
1019 1.148 joerg pt->pt_time.it_value = next;
1020 1.148 joerg } else {
1021 1.166 yamt now_ns = timespec2ns(&now);
1022 1.150 christos last_val = timespec2ns(&pt->pt_time.it_value);
1023 1.150 christos interval = timespec2ns(&pt->pt_time.it_interval);
1024 1.148 joerg
1025 1.166 yamt next_val = now_ns +
1026 1.166 yamt (now_ns - last_val + interval - 1) % interval;
1027 1.148 joerg
1028 1.148 joerg if (backwards)
1029 1.148 joerg next_val += interval;
1030 1.148 joerg else
1031 1.166 yamt pt->pt_overruns += (now_ns - last_val) / interval;
1032 1.148 joerg
1033 1.150 christos pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1034 1.150 christos pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1035 1.101 kardel }
1036 1.148 joerg
1037 1.148 joerg /*
1038 1.150 christos * Don't need to check tshzto() return value, here.
1039 1.148 joerg * callout_reset() does it for us.
1040 1.148 joerg */
1041 1.171 christos callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1042 1.171 christos tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1043 1.148 joerg realtimerexpire, pt);
1044 1.148 joerg mutex_spin_exit(&timer_lock);
1045 1.63 thorpej }
1046 1.63 thorpej
1047 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1048 1.63 thorpej /* ARGSUSED */
1049 1.63 thorpej int
1050 1.156 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1051 1.140 yamt register_t *retval)
1052 1.63 thorpej {
1053 1.135 dsl /* {
1054 1.63 thorpej syscallarg(int) which;
1055 1.63 thorpej syscallarg(struct itimerval *) itv;
1056 1.135 dsl } */
1057 1.63 thorpej struct proc *p = l->l_proc;
1058 1.63 thorpej struct itimerval aitv;
1059 1.91 cube int error;
1060 1.91 cube
1061 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1062 1.91 cube if (error)
1063 1.91 cube return error;
1064 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1065 1.91 cube }
1066 1.63 thorpej
1067 1.91 cube int
1068 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1069 1.91 cube {
1070 1.142 ad struct ptimers *pts;
1071 1.142 ad struct ptimer *pt;
1072 1.150 christos struct itimerspec its;
1073 1.63 thorpej
1074 1.170 christos if ((u_int)which > ITIMER_MONOTONIC)
1075 1.63 thorpej return (EINVAL);
1076 1.63 thorpej
1077 1.142 ad mutex_spin_enter(&timer_lock);
1078 1.142 ad pts = p->p_timers;
1079 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1080 1.91 cube timerclear(&itvp->it_value);
1081 1.91 cube timerclear(&itvp->it_interval);
1082 1.150 christos } else {
1083 1.150 christos timer_gettime(pt, &its);
1084 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1085 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1086 1.150 christos }
1087 1.142 ad mutex_spin_exit(&timer_lock);
1088 1.63 thorpej
1089 1.91 cube return 0;
1090 1.1 cgd }
1091 1.1 cgd
1092 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1093 1.1 cgd /* ARGSUSED */
1094 1.3 andrew int
1095 1.156 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1096 1.140 yamt register_t *retval)
1097 1.15 thorpej {
1098 1.135 dsl /* {
1099 1.30 mycroft syscallarg(int) which;
1100 1.24 cgd syscallarg(const struct itimerval *) itv;
1101 1.11 cgd syscallarg(struct itimerval *) oitv;
1102 1.135 dsl } */
1103 1.63 thorpej struct proc *p = l->l_proc;
1104 1.30 mycroft int which = SCARG(uap, which);
1105 1.156 christos struct sys___getitimer50_args getargs;
1106 1.91 cube const struct itimerval *itvp;
1107 1.1 cgd struct itimerval aitv;
1108 1.91 cube int error;
1109 1.1 cgd
1110 1.170 christos if ((u_int)which > ITIMER_MONOTONIC)
1111 1.1 cgd return (EINVAL);
1112 1.11 cgd itvp = SCARG(uap, itv);
1113 1.63 thorpej if (itvp &&
1114 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1115 1.1 cgd return (error);
1116 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1117 1.30 mycroft SCARG(&getargs, which) = which;
1118 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1119 1.156 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1120 1.21 cgd return (error);
1121 1.21 cgd }
1122 1.1 cgd if (itvp == 0)
1123 1.1 cgd return (0);
1124 1.91 cube
1125 1.91 cube return dosetitimer(p, which, &aitv);
1126 1.91 cube }
1127 1.91 cube
1128 1.91 cube int
1129 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1130 1.91 cube {
1131 1.150 christos struct timespec now;
1132 1.142 ad struct ptimers *pts;
1133 1.142 ad struct ptimer *pt, *spare;
1134 1.91 cube
1135 1.170 christos KASSERT((u_int)which <= CLOCK_MONOTONIC);
1136 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1137 1.1 cgd return (EINVAL);
1138 1.63 thorpej
1139 1.63 thorpej /*
1140 1.63 thorpej * Don't bother allocating data structures if the process just
1141 1.63 thorpej * wants to clear the timer.
1142 1.63 thorpej */
1143 1.142 ad spare = NULL;
1144 1.142 ad pts = p->p_timers;
1145 1.142 ad retry:
1146 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1147 1.142 ad pts->pts_timers[which] == NULL))
1148 1.63 thorpej return (0);
1149 1.142 ad if (pts == NULL)
1150 1.142 ad pts = timers_alloc(p);
1151 1.142 ad mutex_spin_enter(&timer_lock);
1152 1.142 ad pt = pts->pts_timers[which];
1153 1.142 ad if (pt == NULL) {
1154 1.142 ad if (spare == NULL) {
1155 1.142 ad mutex_spin_exit(&timer_lock);
1156 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1157 1.142 ad goto retry;
1158 1.142 ad }
1159 1.142 ad pt = spare;
1160 1.142 ad spare = NULL;
1161 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1162 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1163 1.63 thorpej pt->pt_overruns = 0;
1164 1.63 thorpej pt->pt_proc = p;
1165 1.63 thorpej pt->pt_type = which;
1166 1.64 nathanw pt->pt_entry = which;
1167 1.142 ad pt->pt_queued = false;
1168 1.149 christos if (pt->pt_type == CLOCK_REALTIME)
1169 1.149 christos callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1170 1.149 christos else
1171 1.149 christos pt->pt_active = 0;
1172 1.149 christos
1173 1.63 thorpej switch (which) {
1174 1.63 thorpej case ITIMER_REAL:
1175 1.170 christos case ITIMER_MONOTONIC:
1176 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1177 1.63 thorpej break;
1178 1.63 thorpej case ITIMER_VIRTUAL:
1179 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1180 1.63 thorpej break;
1181 1.63 thorpej case ITIMER_PROF:
1182 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1183 1.63 thorpej break;
1184 1.1 cgd }
1185 1.142 ad pts->pts_timers[which] = pt;
1186 1.142 ad }
1187 1.63 thorpej
1188 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1189 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1190 1.150 christos
1191 1.170 christos if (timespecisset(&pt->pt_time.it_value)) {
1192 1.67 nathanw /* Convert to absolute time */
1193 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1194 1.170 christos switch (which) {
1195 1.170 christos case ITIMER_REAL:
1196 1.170 christos getnanotime(&now);
1197 1.170 christos timespecadd(&pt->pt_time.it_value, &now,
1198 1.170 christos &pt->pt_time.it_value);
1199 1.170 christos break;
1200 1.170 christos case ITIMER_MONOTONIC:
1201 1.170 christos getnanouptime(&now);
1202 1.170 christos timespecadd(&pt->pt_time.it_value, &now,
1203 1.170 christos &pt->pt_time.it_value);
1204 1.170 christos break;
1205 1.170 christos default:
1206 1.170 christos break;
1207 1.170 christos }
1208 1.67 nathanw }
1209 1.63 thorpej timer_settime(pt);
1210 1.142 ad mutex_spin_exit(&timer_lock);
1211 1.142 ad if (spare != NULL)
1212 1.142 ad pool_put(&ptimer_pool, spare);
1213 1.63 thorpej
1214 1.1 cgd return (0);
1215 1.1 cgd }
1216 1.1 cgd
1217 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1218 1.142 ad struct ptimers *
1219 1.63 thorpej timers_alloc(struct proc *p)
1220 1.63 thorpej {
1221 1.142 ad struct ptimers *pts;
1222 1.63 thorpej int i;
1223 1.63 thorpej
1224 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1225 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1226 1.63 thorpej LIST_INIT(&pts->pts_prof);
1227 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1228 1.63 thorpej pts->pts_timers[i] = NULL;
1229 1.64 nathanw pts->pts_fired = 0;
1230 1.142 ad mutex_spin_enter(&timer_lock);
1231 1.142 ad if (p->p_timers == NULL) {
1232 1.142 ad p->p_timers = pts;
1233 1.142 ad mutex_spin_exit(&timer_lock);
1234 1.142 ad return pts;
1235 1.142 ad }
1236 1.142 ad mutex_spin_exit(&timer_lock);
1237 1.142 ad pool_put(&ptimers_pool, pts);
1238 1.142 ad return p->p_timers;
1239 1.63 thorpej }
1240 1.63 thorpej
1241 1.1 cgd /*
1242 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1243 1.63 thorpej * then clean up all timers and free all the data structures. If
1244 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1245 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1246 1.63 thorpej * structure if none of those remain.
1247 1.1 cgd */
1248 1.3 andrew void
1249 1.63 thorpej timers_free(struct proc *p, int which)
1250 1.6 cgd {
1251 1.63 thorpej struct ptimers *pts;
1252 1.142 ad struct ptimer *ptn;
1253 1.150 christos struct timespec ts;
1254 1.142 ad int i;
1255 1.63 thorpej
1256 1.142 ad if (p->p_timers == NULL)
1257 1.142 ad return;
1258 1.63 thorpej
1259 1.142 ad pts = p->p_timers;
1260 1.142 ad mutex_spin_enter(&timer_lock);
1261 1.142 ad if (which == TIMERS_ALL) {
1262 1.142 ad p->p_timers = NULL;
1263 1.142 ad i = 0;
1264 1.142 ad } else {
1265 1.150 christos timespecclear(&ts);
1266 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1267 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1268 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1269 1.168 yamt KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1270 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1271 1.149 christos }
1272 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1273 1.142 ad if (ptn) {
1274 1.168 yamt KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1275 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1276 1.142 ad &ptn->pt_time.it_value);
1277 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1278 1.142 ad }
1279 1.150 christos timespecclear(&ts);
1280 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1281 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1282 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1283 1.168 yamt KASSERT(ptn->pt_type == CLOCK_PROF);
1284 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1285 1.149 christos }
1286 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1287 1.142 ad if (ptn) {
1288 1.168 yamt KASSERT(ptn->pt_type == CLOCK_PROF);
1289 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1290 1.142 ad &ptn->pt_time.it_value);
1291 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1292 1.63 thorpej }
1293 1.142 ad i = 3;
1294 1.142 ad }
1295 1.142 ad for ( ; i < TIMER_MAX; i++) {
1296 1.142 ad if (pts->pts_timers[i] != NULL) {
1297 1.142 ad itimerfree(pts, i);
1298 1.142 ad mutex_spin_enter(&timer_lock);
1299 1.1 cgd }
1300 1.1 cgd }
1301 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1302 1.142 ad pts->pts_timers[2] == NULL) {
1303 1.142 ad p->p_timers = NULL;
1304 1.142 ad mutex_spin_exit(&timer_lock);
1305 1.142 ad pool_put(&ptimers_pool, pts);
1306 1.142 ad } else
1307 1.142 ad mutex_spin_exit(&timer_lock);
1308 1.142 ad }
1309 1.142 ad
1310 1.142 ad static void
1311 1.142 ad itimerfree(struct ptimers *pts, int index)
1312 1.142 ad {
1313 1.142 ad struct ptimer *pt;
1314 1.142 ad
1315 1.142 ad KASSERT(mutex_owned(&timer_lock));
1316 1.142 ad
1317 1.142 ad pt = pts->pts_timers[index];
1318 1.142 ad pts->pts_timers[index] = NULL;
1319 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type))
1320 1.144 ad callout_halt(&pt->pt_ch, &timer_lock);
1321 1.167 yamt if (pt->pt_queued)
1322 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1323 1.144 ad mutex_spin_exit(&timer_lock);
1324 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type))
1325 1.149 christos callout_destroy(&pt->pt_ch);
1326 1.142 ad pool_put(&ptimer_pool, pt);
1327 1.1 cgd }
1328 1.1 cgd
1329 1.1 cgd /*
1330 1.1 cgd * Decrement an interval timer by a specified number
1331 1.152 christos * of nanoseconds, which must be less than a second,
1332 1.152 christos * i.e. < 1000000000. If the timer expires, then reload
1333 1.152 christos * it. In this case, carry over (nsec - old value) to
1334 1.8 cgd * reduce the value reloaded into the timer so that
1335 1.1 cgd * the timer does not drift. This routine assumes
1336 1.1 cgd * that it is called in a context where the timers
1337 1.1 cgd * on which it is operating cannot change in value.
1338 1.1 cgd */
1339 1.142 ad static int
1340 1.152 christos itimerdecr(struct ptimer *pt, int nsec)
1341 1.63 thorpej {
1342 1.150 christos struct itimerspec *itp;
1343 1.1 cgd
1344 1.142 ad KASSERT(mutex_owned(&timer_lock));
1345 1.168 yamt KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1346 1.142 ad
1347 1.63 thorpej itp = &pt->pt_time;
1348 1.150 christos if (itp->it_value.tv_nsec < nsec) {
1349 1.1 cgd if (itp->it_value.tv_sec == 0) {
1350 1.1 cgd /* expired, and already in next interval */
1351 1.150 christos nsec -= itp->it_value.tv_nsec;
1352 1.1 cgd goto expire;
1353 1.1 cgd }
1354 1.150 christos itp->it_value.tv_nsec += 1000000000;
1355 1.1 cgd itp->it_value.tv_sec--;
1356 1.1 cgd }
1357 1.152 christos itp->it_value.tv_nsec -= nsec;
1358 1.152 christos nsec = 0;
1359 1.150 christos if (timespecisset(&itp->it_value))
1360 1.1 cgd return (1);
1361 1.1 cgd /* expired, exactly at end of interval */
1362 1.1 cgd expire:
1363 1.150 christos if (timespecisset(&itp->it_interval)) {
1364 1.1 cgd itp->it_value = itp->it_interval;
1365 1.150 christos itp->it_value.tv_nsec -= nsec;
1366 1.150 christos if (itp->it_value.tv_nsec < 0) {
1367 1.150 christos itp->it_value.tv_nsec += 1000000000;
1368 1.1 cgd itp->it_value.tv_sec--;
1369 1.1 cgd }
1370 1.63 thorpej timer_settime(pt);
1371 1.1 cgd } else
1372 1.150 christos itp->it_value.tv_nsec = 0; /* sec is already 0 */
1373 1.1 cgd return (0);
1374 1.42 cgd }
1375 1.42 cgd
1376 1.142 ad static void
1377 1.63 thorpej itimerfire(struct ptimer *pt)
1378 1.63 thorpej {
1379 1.78 cl
1380 1.142 ad KASSERT(mutex_owned(&timer_lock));
1381 1.142 ad
1382 1.142 ad /*
1383 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1384 1.142 ad * XXX Relying on the clock interrupt is stupid.
1385 1.142 ad */
1386 1.154 wrstuden if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1387 1.154 wrstuden (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1388 1.154 wrstuden pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1389 1.142 ad return;
1390 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1391 1.142 ad pt->pt_queued = true;
1392 1.142 ad softint_schedule(timer_sih);
1393 1.142 ad }
1394 1.142 ad
1395 1.142 ad void
1396 1.142 ad timer_tick(lwp_t *l, bool user)
1397 1.142 ad {
1398 1.142 ad struct ptimers *pts;
1399 1.142 ad struct ptimer *pt;
1400 1.142 ad proc_t *p;
1401 1.142 ad
1402 1.142 ad p = l->l_proc;
1403 1.142 ad if (p->p_timers == NULL)
1404 1.142 ad return;
1405 1.142 ad
1406 1.142 ad mutex_spin_enter(&timer_lock);
1407 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1408 1.63 thorpej /*
1409 1.142 ad * Run current process's virtual and profile time, as needed.
1410 1.63 thorpej */
1411 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1412 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1413 1.142 ad itimerfire(pt);
1414 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1415 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1416 1.142 ad itimerfire(pt);
1417 1.142 ad }
1418 1.142 ad mutex_spin_exit(&timer_lock);
1419 1.142 ad }
1420 1.142 ad
1421 1.154 wrstuden #ifdef KERN_SA
1422 1.154 wrstuden /*
1423 1.154 wrstuden * timer_sa_intr:
1424 1.154 wrstuden *
1425 1.154 wrstuden * SIGEV_SA handling for timer_intr(). We are called (and return)
1426 1.154 wrstuden * with the timer lock held. We know that the process had SA enabled
1427 1.154 wrstuden * when this timer was enqueued. As timer_intr() is a soft interrupt
1428 1.154 wrstuden * handler, SA should still be enabled by the time we get here.
1429 1.154 wrstuden */
1430 1.154 wrstuden static void
1431 1.154 wrstuden timer_sa_intr(struct ptimer *pt, proc_t *p)
1432 1.154 wrstuden {
1433 1.155 wrstuden unsigned int i;
1434 1.155 wrstuden struct sadata *sa;
1435 1.155 wrstuden struct sadata_vp *vp;
1436 1.154 wrstuden
1437 1.154 wrstuden /* Cause the process to generate an upcall when it returns. */
1438 1.154 wrstuden if (!p->p_timerpend) {
1439 1.154 wrstuden /*
1440 1.154 wrstuden * XXX stop signals can be processed inside tsleep,
1441 1.154 wrstuden * which can be inside sa_yield's inner loop, which
1442 1.154 wrstuden * makes testing for sa_idle alone insuffucent to
1443 1.154 wrstuden * determine if we really should call setrunnable.
1444 1.154 wrstuden */
1445 1.154 wrstuden pt->pt_poverruns = pt->pt_overruns;
1446 1.154 wrstuden pt->pt_overruns = 0;
1447 1.154 wrstuden i = 1 << pt->pt_entry;
1448 1.154 wrstuden p->p_timers->pts_fired = i;
1449 1.154 wrstuden p->p_timerpend = 1;
1450 1.154 wrstuden
1451 1.155 wrstuden sa = p->p_sa;
1452 1.155 wrstuden mutex_enter(&sa->sa_mutex);
1453 1.155 wrstuden SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1454 1.155 wrstuden struct lwp *vp_lwp = vp->savp_lwp;
1455 1.155 wrstuden lwp_lock(vp_lwp);
1456 1.155 wrstuden lwp_need_userret(vp_lwp);
1457 1.155 wrstuden if (vp_lwp->l_flag & LW_SA_IDLE) {
1458 1.155 wrstuden vp_lwp->l_flag &= ~LW_SA_IDLE;
1459 1.155 wrstuden lwp_unsleep(vp_lwp, true);
1460 1.154 wrstuden break;
1461 1.154 wrstuden }
1462 1.155 wrstuden lwp_unlock(vp_lwp);
1463 1.154 wrstuden }
1464 1.155 wrstuden mutex_exit(&sa->sa_mutex);
1465 1.154 wrstuden } else {
1466 1.154 wrstuden i = 1 << pt->pt_entry;
1467 1.154 wrstuden if ((p->p_timers->pts_fired & i) == 0) {
1468 1.154 wrstuden pt->pt_poverruns = pt->pt_overruns;
1469 1.154 wrstuden pt->pt_overruns = 0;
1470 1.154 wrstuden p->p_timers->pts_fired |= i;
1471 1.154 wrstuden } else
1472 1.154 wrstuden pt->pt_overruns++;
1473 1.154 wrstuden }
1474 1.154 wrstuden }
1475 1.154 wrstuden #endif /* KERN_SA */
1476 1.154 wrstuden
1477 1.142 ad static void
1478 1.142 ad timer_intr(void *cookie)
1479 1.142 ad {
1480 1.142 ad ksiginfo_t ksi;
1481 1.142 ad struct ptimer *pt;
1482 1.142 ad proc_t *p;
1483 1.142 ad
1484 1.158 ad mutex_enter(proc_lock);
1485 1.142 ad mutex_spin_enter(&timer_lock);
1486 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1487 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1488 1.142 ad KASSERT(pt->pt_queued);
1489 1.142 ad pt->pt_queued = false;
1490 1.142 ad
1491 1.154 wrstuden if (pt->pt_proc->p_timers == NULL) {
1492 1.154 wrstuden /* Process is dying. */
1493 1.142 ad continue;
1494 1.154 wrstuden }
1495 1.142 ad p = pt->pt_proc;
1496 1.154 wrstuden #ifdef KERN_SA
1497 1.154 wrstuden if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1498 1.154 wrstuden timer_sa_intr(pt, p);
1499 1.142 ad continue;
1500 1.142 ad }
1501 1.154 wrstuden #endif /* KERN_SA */
1502 1.154 wrstuden if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1503 1.154 wrstuden continue;
1504 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1505 1.63 thorpej pt->pt_overruns++;
1506 1.142 ad continue;
1507 1.64 nathanw }
1508 1.142 ad
1509 1.142 ad KSI_INIT(&ksi);
1510 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1511 1.142 ad ksi.ksi_code = SI_TIMER;
1512 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1513 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1514 1.142 ad pt->pt_overruns = 0;
1515 1.142 ad mutex_spin_exit(&timer_lock);
1516 1.142 ad kpsignal(p, &ksi, NULL);
1517 1.142 ad mutex_spin_enter(&timer_lock);
1518 1.63 thorpej }
1519 1.142 ad mutex_spin_exit(&timer_lock);
1520 1.158 ad mutex_exit(proc_lock);
1521 1.63 thorpej }
1522 1.162 elad
1523 1.162 elad /*
1524 1.162 elad * Check if the time will wrap if set to ts.
1525 1.162 elad *
1526 1.162 elad * ts - timespec describing the new time
1527 1.162 elad * delta - the delta between the current time and ts
1528 1.162 elad */
1529 1.162 elad bool
1530 1.162 elad time_wraps(struct timespec *ts, struct timespec *delta)
1531 1.162 elad {
1532 1.162 elad
1533 1.162 elad /*
1534 1.162 elad * Don't allow the time to be set forward so far it
1535 1.162 elad * will wrap and become negative, thus allowing an
1536 1.162 elad * attacker to bypass the next check below. The
1537 1.162 elad * cutoff is 1 year before rollover occurs, so even
1538 1.162 elad * if the attacker uses adjtime(2) to move the time
1539 1.162 elad * past the cutoff, it will take a very long time
1540 1.162 elad * to get to the wrap point.
1541 1.162 elad */
1542 1.162 elad if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1543 1.162 elad (delta->tv_sec < 0 || delta->tv_nsec < 0))
1544 1.162 elad return true;
1545 1.162 elad
1546 1.162 elad return false;
1547 1.162 elad }
1548