Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.174.2.1
      1  1.174.2.1       tls /*	$NetBSD: kern_time.c,v 1.174.2.1 2012/11/20 03:02:43 tls Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.174.2.1       tls __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.174.2.1 2012/11/20 03:02:43 tls Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78       1.11       cgd #include <sys/syscallargs.h>
     79      1.143        ad #include <sys/cpu.h>
     80       1.19  christos 
     81      1.142        ad static void	timer_intr(void *);
     82      1.142        ad static void	itimerfire(struct ptimer *);
     83      1.142        ad static void	itimerfree(struct ptimers *, int);
     84      1.142        ad 
     85      1.142        ad kmutex_t	timer_lock;
     86      1.142        ad 
     87      1.142        ad static void	*timer_sih;
     88      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89      1.131        ad 
     90      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91       1.97    simonb 
     92      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94      1.168      yamt 
     95      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99      1.168      yamt 
    100      1.131        ad /*
    101      1.131        ad  * Initialize timekeeping.
    102      1.131        ad  */
    103      1.131        ad void
    104      1.131        ad time_init(void)
    105      1.131        ad {
    106      1.131        ad 
    107      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111      1.131        ad }
    112      1.131        ad 
    113      1.142        ad void
    114      1.142        ad time_init2(void)
    115      1.142        ad {
    116      1.142        ad 
    117      1.142        ad 	TAILQ_INIT(&timer_queue);
    118      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120      1.142        ad 	    timer_intr, NULL);
    121      1.142        ad }
    122      1.142        ad 
    123       1.63   thorpej /* Time of day and interval timer support.
    124        1.1       cgd  *
    125        1.1       cgd  * These routines provide the kernel entry points to get and set
    126        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    127        1.1       cgd  * here provide support for adding and subtracting timeval structures
    128        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    129        1.1       cgd  * timers when they expire.
    130        1.1       cgd  */
    131        1.1       cgd 
    132       1.22       jtc /* This function is used by clock_settime and settimeofday */
    133      1.132      elad static int
    134      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135       1.22       jtc {
    136      1.156  christos 	struct timespec delta, now;
    137      1.129        ad 	int s;
    138       1.22       jtc 
    139       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140      1.129        ad 	s = splclock();
    141      1.156  christos 	nanotime(&now);
    142      1.156  christos 	timespecsub(ts, &now, &delta);
    143      1.132      elad 
    144      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147      1.129        ad 		splx(s);
    148       1.29       tls 		return (EPERM);
    149       1.55      tron 	}
    150      1.132      elad 
    151       1.29       tls #ifdef notyet
    152      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153      1.129        ad 		splx(s);
    154       1.29       tls 		return (EPERM);
    155       1.55      tron 	}
    156       1.29       tls #endif
    157      1.103    kardel 
    158      1.156  christos 	tc_setclock(ts);
    159      1.103    kardel 
    160      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161      1.103    kardel 
    162       1.22       jtc 	resettodr();
    163      1.129        ad 	splx(s);
    164      1.129        ad 
    165       1.29       tls 	return (0);
    166       1.22       jtc }
    167       1.22       jtc 
    168      1.132      elad int
    169      1.132      elad settime(struct proc *p, struct timespec *ts)
    170      1.132      elad {
    171      1.132      elad 	return (settime1(p, ts, true));
    172      1.132      elad }
    173      1.132      elad 
    174       1.22       jtc /* ARGSUSED */
    175       1.22       jtc int
    176      1.156  christos sys___clock_gettime50(struct lwp *l,
    177      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178       1.22       jtc {
    179      1.135       dsl 	/* {
    180       1.22       jtc 		syscallarg(clockid_t) clock_id;
    181       1.23       cgd 		syscallarg(struct timespec *) tp;
    182      1.135       dsl 	} */
    183      1.165     njoly 	int error;
    184       1.22       jtc 	struct timespec ats;
    185       1.22       jtc 
    186      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187      1.165     njoly 	if (error != 0)
    188      1.165     njoly 		return error;
    189      1.165     njoly 
    190      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191      1.165     njoly }
    192      1.165     njoly 
    193      1.165     njoly int
    194      1.165     njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
    195      1.165     njoly {
    196      1.165     njoly 
    197       1.61    simonb 	switch (clock_id) {
    198       1.61    simonb 	case CLOCK_REALTIME:
    199      1.165     njoly 		nanotime(ts);
    200       1.61    simonb 		break;
    201       1.61    simonb 	case CLOCK_MONOTONIC:
    202      1.165     njoly 		nanouptime(ts);
    203       1.61    simonb 		break;
    204       1.61    simonb 	default:
    205      1.165     njoly 		return EINVAL;
    206       1.61    simonb 	}
    207       1.22       jtc 
    208      1.165     njoly 	return 0;
    209       1.22       jtc }
    210       1.22       jtc 
    211       1.22       jtc /* ARGSUSED */
    212       1.22       jtc int
    213      1.156  christos sys___clock_settime50(struct lwp *l,
    214      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    215       1.22       jtc {
    216      1.135       dsl 	/* {
    217       1.22       jtc 		syscallarg(clockid_t) clock_id;
    218       1.23       cgd 		syscallarg(const struct timespec *) tp;
    219      1.135       dsl 	} */
    220      1.156  christos 	int error;
    221      1.156  christos 	struct timespec ats;
    222       1.22       jtc 
    223      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    224      1.156  christos 		return error;
    225      1.156  christos 
    226      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    227       1.56      manu }
    228       1.56      manu 
    229       1.56      manu 
    230       1.56      manu int
    231      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    232      1.132      elad     bool check_kauth)
    233       1.56      manu {
    234       1.56      manu 	int error;
    235       1.56      manu 
    236       1.61    simonb 	switch (clock_id) {
    237       1.61    simonb 	case CLOCK_REALTIME:
    238      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    239       1.61    simonb 			return (error);
    240       1.61    simonb 		break;
    241       1.61    simonb 	case CLOCK_MONOTONIC:
    242       1.61    simonb 		return (EINVAL);	/* read-only clock */
    243       1.61    simonb 	default:
    244       1.56      manu 		return (EINVAL);
    245       1.61    simonb 	}
    246       1.22       jtc 
    247       1.22       jtc 	return 0;
    248       1.22       jtc }
    249       1.22       jtc 
    250       1.22       jtc int
    251      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    252      1.140      yamt     register_t *retval)
    253       1.22       jtc {
    254      1.135       dsl 	/* {
    255       1.22       jtc 		syscallarg(clockid_t) clock_id;
    256       1.23       cgd 		syscallarg(struct timespec *) tp;
    257      1.135       dsl 	} */
    258       1.22       jtc 	struct timespec ts;
    259       1.22       jtc 	int error = 0;
    260       1.22       jtc 
    261      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    262      1.164     njoly 		return error;
    263      1.164     njoly 
    264      1.164     njoly 	if (SCARG(uap, tp))
    265      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    266      1.164     njoly 
    267      1.164     njoly 	return error;
    268      1.164     njoly }
    269      1.164     njoly 
    270      1.164     njoly int
    271      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    272      1.164     njoly {
    273      1.164     njoly 
    274       1.61    simonb 	switch (clock_id) {
    275       1.61    simonb 	case CLOCK_REALTIME:
    276       1.61    simonb 	case CLOCK_MONOTONIC:
    277      1.164     njoly 		ts->tv_sec = 0;
    278      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    279      1.164     njoly 			ts->tv_nsec = 1;
    280      1.102    kardel 		else
    281      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    282       1.61    simonb 		break;
    283       1.61    simonb 	default:
    284      1.164     njoly 		return EINVAL;
    285       1.61    simonb 	}
    286       1.22       jtc 
    287      1.164     njoly 	return 0;
    288       1.22       jtc }
    289       1.22       jtc 
    290       1.27       jtc /* ARGSUSED */
    291       1.27       jtc int
    292      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    293      1.140      yamt     register_t *retval)
    294       1.27       jtc {
    295      1.135       dsl 	/* {
    296      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    297      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    298      1.135       dsl 	} */
    299      1.101    kardel 	struct timespec rmt, rqt;
    300      1.120       dsl 	int error, error1;
    301      1.101    kardel 
    302      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    303      1.101    kardel 	if (error)
    304      1.101    kardel 		return (error);
    305      1.101    kardel 
    306  1.174.2.1       tls 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    307  1.174.2.1       tls 	    SCARG(uap, rmtp) ? &rmt : NULL);
    308  1.174.2.1       tls 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    309  1.174.2.1       tls 		return error;
    310  1.174.2.1       tls 
    311  1.174.2.1       tls 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    312  1.174.2.1       tls 	return error1 ? error1 : error;
    313  1.174.2.1       tls }
    314  1.174.2.1       tls 
    315  1.174.2.1       tls /* ARGSUSED */
    316  1.174.2.1       tls int
    317  1.174.2.1       tls sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    318  1.174.2.1       tls     register_t *retval)
    319  1.174.2.1       tls {
    320  1.174.2.1       tls 	/* {
    321  1.174.2.1       tls 		syscallarg(clockid_t) clock_id;
    322  1.174.2.1       tls 		syscallarg(int) flags;
    323  1.174.2.1       tls 		syscallarg(struct timespec *) rqtp;
    324  1.174.2.1       tls 		syscallarg(struct timespec *) rmtp;
    325  1.174.2.1       tls 	} */
    326  1.174.2.1       tls 	struct timespec rmt, rqt;
    327  1.174.2.1       tls 	int error, error1;
    328  1.174.2.1       tls 
    329  1.174.2.1       tls 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    330  1.174.2.1       tls 	if (error)
    331  1.174.2.1       tls 		return (error);
    332  1.174.2.1       tls 
    333  1.174.2.1       tls 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    334  1.174.2.1       tls 	    SCARG(uap, rmtp) ? &rmt : NULL);
    335      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    336      1.120       dsl 		return error;
    337      1.120       dsl 
    338      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    339      1.120       dsl 	return error1 ? error1 : error;
    340      1.120       dsl }
    341      1.120       dsl 
    342      1.120       dsl int
    343  1.174.2.1       tls nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    344  1.174.2.1       tls     struct timespec *rmt)
    345      1.120       dsl {
    346      1.141      yamt 	struct timespec rmtstart;
    347      1.120       dsl 	int error, timo;
    348      1.120       dsl 
    349  1.174.2.1       tls 	if ((error = clock_gettime1(clock_id, &rmtstart)) != 0)
    350  1.174.2.1       tls 		return ENOTSUP;
    351  1.174.2.1       tls 
    352  1.174.2.1       tls 	if (flags & TIMER_ABSTIME)
    353  1.174.2.1       tls 		timespecsub(rqt, &rmtstart, rqt);
    354  1.174.2.1       tls 
    355      1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    356      1.160  christos 		return error;
    357      1.101    kardel 
    358      1.120       dsl 	timo = tstohz(rqt);
    359      1.101    kardel 	/*
    360  1.174.2.1       tls 	 * Avoid inadvertently sleeping forever
    361      1.101    kardel 	 */
    362      1.101    kardel 	if (timo == 0)
    363      1.101    kardel 		timo = 1;
    364      1.141      yamt again:
    365      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    366      1.141      yamt 	if (rmt != NULL || error == 0) {
    367      1.141      yamt 		struct timespec rmtend;
    368      1.141      yamt 		struct timespec t0;
    369      1.141      yamt 		struct timespec *t;
    370      1.101    kardel 
    371  1.174.2.1       tls 		(void)clock_gettime1(clock_id, &rmtend);
    372      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    373      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    374      1.141      yamt 		timespecsub(rqt, t, t);
    375      1.141      yamt 		if (t->tv_sec < 0)
    376      1.141      yamt 			timespecclear(t);
    377      1.141      yamt 		if (error == 0) {
    378      1.141      yamt 			timo = tstohz(t);
    379      1.141      yamt 			if (timo > 0)
    380      1.141      yamt 				goto again;
    381      1.141      yamt 		}
    382      1.141      yamt 	}
    383      1.104    kardel 
    384      1.101    kardel 	if (error == ERESTART)
    385      1.101    kardel 		error = EINTR;
    386      1.101    kardel 	if (error == EWOULDBLOCK)
    387      1.101    kardel 		error = 0;
    388      1.101    kardel 
    389      1.101    kardel 	return error;
    390       1.27       jtc }
    391       1.22       jtc 
    392        1.1       cgd /* ARGSUSED */
    393        1.3    andrew int
    394      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    395      1.140      yamt     register_t *retval)
    396       1.15   thorpej {
    397      1.135       dsl 	/* {
    398       1.11       cgd 		syscallarg(struct timeval *) tp;
    399      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    400      1.135       dsl 	} */
    401        1.1       cgd 	struct timeval atv;
    402        1.1       cgd 	int error = 0;
    403       1.25     perry 	struct timezone tzfake;
    404        1.1       cgd 
    405       1.11       cgd 	if (SCARG(uap, tp)) {
    406        1.1       cgd 		microtime(&atv);
    407       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    408       1.17  christos 		if (error)
    409        1.1       cgd 			return (error);
    410        1.1       cgd 	}
    411       1.25     perry 	if (SCARG(uap, tzp)) {
    412       1.25     perry 		/*
    413       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    414       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    415       1.25     perry 		 */
    416       1.25     perry 		tzfake.tz_minuteswest = 0;
    417       1.25     perry 		tzfake.tz_dsttime = 0;
    418       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    419       1.25     perry 	}
    420        1.1       cgd 	return (error);
    421        1.1       cgd }
    422        1.1       cgd 
    423        1.1       cgd /* ARGSUSED */
    424        1.3    andrew int
    425      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    426      1.140      yamt     register_t *retval)
    427       1.15   thorpej {
    428      1.135       dsl 	/* {
    429       1.24       cgd 		syscallarg(const struct timeval *) tv;
    430      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    431      1.135       dsl 	} */
    432       1.60      manu 
    433      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    434       1.60      manu }
    435       1.60      manu 
    436       1.60      manu int
    437      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    438      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    439       1.60      manu {
    440       1.22       jtc 	struct timeval atv;
    441       1.98  christos 	struct timespec ts;
    442       1.22       jtc 	int error;
    443        1.1       cgd 
    444        1.8       cgd 	/* Verify all parameters before changing time. */
    445      1.119       dsl 
    446       1.25     perry 	/*
    447       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    448       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    449       1.25     perry 	 */
    450       1.98  christos 	if (utzp)
    451       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    452      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    453       1.98  christos 
    454       1.98  christos 	if (utv == NULL)
    455       1.98  christos 		return 0;
    456       1.98  christos 
    457      1.119       dsl 	if (userspace) {
    458      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    459      1.119       dsl 			return error;
    460      1.119       dsl 		utv = &atv;
    461      1.119       dsl 	}
    462      1.119       dsl 
    463      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    464      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    465        1.1       cgd }
    466        1.1       cgd 
    467       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    468        1.1       cgd 
    469        1.1       cgd /* ARGSUSED */
    470        1.3    andrew int
    471      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    472      1.140      yamt     register_t *retval)
    473       1.15   thorpej {
    474      1.135       dsl 	/* {
    475       1.24       cgd 		syscallarg(const struct timeval *) delta;
    476       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    477      1.135       dsl 	} */
    478      1.156  christos 	int error = 0;
    479      1.156  christos 	struct timeval atv, oldatv;
    480        1.1       cgd 
    481      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    482      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    483      1.156  christos 		return error;
    484       1.17  christos 
    485      1.156  christos 	if (SCARG(uap, delta)) {
    486      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    487      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    488      1.156  christos 		if (error)
    489      1.156  christos 			return (error);
    490      1.156  christos 	}
    491      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    492      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    493      1.156  christos 	if (SCARG(uap, olddelta))
    494      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    495      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    496      1.156  christos 	return error;
    497       1.56      manu }
    498       1.56      manu 
    499      1.156  christos void
    500      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    501       1.56      manu {
    502      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    503      1.101    kardel 
    504      1.101    kardel 	if (olddelta) {
    505      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    506      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    507      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    508      1.156  christos 		if (olddelta->tv_usec < 0) {
    509      1.156  christos 			olddelta->tv_usec += 1000000;
    510      1.156  christos 			olddelta->tv_sec--;
    511      1.101    kardel 		}
    512      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    513      1.101    kardel 	}
    514      1.101    kardel 
    515      1.101    kardel 	if (delta) {
    516      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    517      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    518      1.101    kardel 
    519      1.143        ad 		if (time_adjtime) {
    520      1.101    kardel 			/* We need to save the system time during shutdown */
    521      1.101    kardel 			time_adjusted |= 1;
    522      1.143        ad 		}
    523      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    524      1.101    kardel 	}
    525        1.1       cgd }
    526        1.1       cgd 
    527        1.1       cgd /*
    528       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    529       1.63   thorpej  * timer_*() family of routines are supported.
    530        1.1       cgd  *
    531       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    532       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    533       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    534      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    535      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    536      1.170  christos  * allocated by the timer_create() syscall.
    537        1.1       cgd  *
    538       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    539       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    540        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    541       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    542       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    543       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    544       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    545       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    546       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    547       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    548       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    549       1.63   thorpej 
    550       1.63   thorpej /* Allocate a POSIX realtime timer. */
    551       1.63   thorpej int
    552      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    553      1.140      yamt     register_t *retval)
    554       1.63   thorpej {
    555      1.135       dsl 	/* {
    556       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    557       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    558       1.63   thorpej 		syscallarg(timer_t *) timerid;
    559      1.135       dsl 	} */
    560       1.92      cube 
    561       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    562      1.105        ad 	    SCARG(uap, evp), copyin, l);
    563       1.92      cube }
    564       1.92      cube 
    565       1.92      cube int
    566       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    567      1.105        ad     copyin_t fetch_event, struct lwp *l)
    568       1.92      cube {
    569       1.92      cube 	int error;
    570       1.92      cube 	timer_t timerid;
    571      1.142        ad 	struct ptimers *pts;
    572       1.63   thorpej 	struct ptimer *pt;
    573      1.105        ad 	struct proc *p;
    574      1.105        ad 
    575      1.105        ad 	p = l->l_proc;
    576       1.63   thorpej 
    577      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    578       1.63   thorpej 		return (EINVAL);
    579       1.63   thorpej 
    580      1.142        ad 	if ((pts = p->p_timers) == NULL)
    581      1.142        ad 		pts = timers_alloc(p);
    582       1.63   thorpej 
    583       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    584      1.142        ad 	if (evp != NULL) {
    585       1.63   thorpej 		if (((error =
    586       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    587       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    588      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    589      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    590      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    591      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    592       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    593       1.63   thorpej 			return (error ? error : EINVAL);
    594       1.63   thorpej 		}
    595      1.142        ad 	}
    596      1.142        ad 
    597      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    598      1.142        ad 	mutex_spin_enter(&timer_lock);
    599      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    600      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    601      1.142        ad 			break;
    602      1.142        ad 	if (timerid == TIMER_MAX) {
    603      1.142        ad 		mutex_spin_exit(&timer_lock);
    604      1.142        ad 		pool_put(&ptimer_pool, pt);
    605      1.142        ad 		return EAGAIN;
    606      1.142        ad 	}
    607      1.142        ad 	if (evp == NULL) {
    608       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    609       1.63   thorpej 		switch (id) {
    610       1.63   thorpej 		case CLOCK_REALTIME:
    611      1.168      yamt 		case CLOCK_MONOTONIC:
    612       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    613       1.63   thorpej 			break;
    614       1.63   thorpej 		case CLOCK_VIRTUAL:
    615       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    616       1.63   thorpej 			break;
    617       1.63   thorpej 		case CLOCK_PROF:
    618       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    619       1.63   thorpej 			break;
    620       1.63   thorpej 		}
    621       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    622       1.63   thorpej 	}
    623       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    624       1.73  christos 	pt->pt_info.ksi_errno = 0;
    625       1.73  christos 	pt->pt_info.ksi_code = 0;
    626       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    627      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    628      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    629       1.63   thorpej 	pt->pt_type = id;
    630       1.63   thorpej 	pt->pt_proc = p;
    631       1.63   thorpej 	pt->pt_overruns = 0;
    632       1.63   thorpej 	pt->pt_poverruns = 0;
    633       1.64   nathanw 	pt->pt_entry = timerid;
    634      1.142        ad 	pt->pt_queued = false;
    635      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    636      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    637      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    638      1.149  christos 	else
    639      1.149  christos 		pt->pt_active = 0;
    640      1.149  christos 
    641      1.142        ad 	pts->pts_timers[timerid] = pt;
    642      1.142        ad 	mutex_spin_exit(&timer_lock);
    643       1.63   thorpej 
    644       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    645       1.63   thorpej }
    646       1.63   thorpej 
    647       1.63   thorpej /* Delete a POSIX realtime timer */
    648        1.3    andrew int
    649      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    650      1.140      yamt     register_t *retval)
    651       1.15   thorpej {
    652      1.135       dsl 	/* {
    653       1.63   thorpej 		syscallarg(timer_t) timerid;
    654      1.135       dsl 	} */
    655       1.63   thorpej 	struct proc *p = l->l_proc;
    656       1.65  jdolecek 	timer_t timerid;
    657      1.142        ad 	struct ptimers *pts;
    658       1.63   thorpej 	struct ptimer *pt, *ptn;
    659        1.1       cgd 
    660       1.63   thorpej 	timerid = SCARG(uap, timerid);
    661      1.142        ad 	pts = p->p_timers;
    662      1.142        ad 
    663      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    664      1.142        ad 		return (EINVAL);
    665       1.63   thorpej 
    666      1.142        ad 	mutex_spin_enter(&timer_lock);
    667      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    668      1.142        ad 		mutex_spin_exit(&timer_lock);
    669        1.1       cgd 		return (EINVAL);
    670      1.142        ad 	}
    671      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    672      1.149  christos 		if (pt->pt_active) {
    673      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    674      1.149  christos 			LIST_REMOVE(pt, pt_list);
    675      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    676      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    677      1.149  christos 				    &ptn->pt_time.it_value,
    678      1.149  christos 				    &ptn->pt_time.it_value);
    679      1.149  christos 			pt->pt_active = 0;
    680      1.149  christos 		}
    681       1.63   thorpej 	}
    682      1.142        ad 	itimerfree(pts, timerid);
    683       1.63   thorpej 
    684       1.63   thorpej 	return (0);
    685       1.63   thorpej }
    686       1.63   thorpej 
    687       1.63   thorpej /*
    688       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    689      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    690      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    691       1.63   thorpej  */
    692       1.63   thorpej void
    693       1.63   thorpej timer_settime(struct ptimer *pt)
    694       1.63   thorpej {
    695       1.63   thorpej 	struct ptimer *ptn, *pptn;
    696       1.63   thorpej 	struct ptlist *ptl;
    697       1.63   thorpej 
    698      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    699      1.142        ad 
    700      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    701      1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    702      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    703       1.63   thorpej 			/*
    704      1.150  christos 			 * Don't need to check tshzto() return value, here.
    705       1.63   thorpej 			 * callout_reset() does it for us.
    706       1.63   thorpej 			 */
    707      1.171  christos 			callout_reset(&pt->pt_ch,
    708      1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    709      1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    710      1.171  christos 			    tshzto(&pt->pt_time.it_value),
    711       1.63   thorpej 			    realtimerexpire, pt);
    712       1.63   thorpej 		}
    713       1.63   thorpej 	} else {
    714       1.63   thorpej 		if (pt->pt_active) {
    715       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    716       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    717       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    718      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    719       1.63   thorpej 				    &ptn->pt_time.it_value,
    720       1.63   thorpej 				    &ptn->pt_time.it_value);
    721       1.63   thorpej 		}
    722      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    723       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    724       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    725       1.63   thorpej 			else
    726       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    727       1.63   thorpej 
    728       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    729      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    730       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    731       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    732      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    733       1.63   thorpej 				    &ptn->pt_time.it_value,
    734       1.63   thorpej 				    &pt->pt_time.it_value);
    735       1.63   thorpej 
    736       1.63   thorpej 			if (pptn)
    737       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    738       1.63   thorpej 			else
    739       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    740       1.63   thorpej 
    741       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    742      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    743       1.63   thorpej 				    &pt->pt_time.it_value,
    744       1.63   thorpej 				    &ptn->pt_time.it_value);
    745       1.63   thorpej 
    746       1.63   thorpej 			pt->pt_active = 1;
    747       1.63   thorpej 		} else
    748       1.63   thorpej 			pt->pt_active = 0;
    749       1.63   thorpej 	}
    750       1.63   thorpej }
    751       1.63   thorpej 
    752       1.63   thorpej void
    753      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    754       1.63   thorpej {
    755      1.150  christos 	struct timespec now;
    756       1.63   thorpej 	struct ptimer *ptn;
    757       1.63   thorpej 
    758      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    759      1.142        ad 
    760      1.150  christos 	*aits = pt->pt_time;
    761      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    762        1.1       cgd 		/*
    763       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    764       1.63   thorpej 		 * part of real time timer.  If time for real time
    765       1.63   thorpej 		 * timer has passed return 0, else return difference
    766       1.63   thorpej 		 * between current time and time for the timer to go
    767       1.63   thorpej 		 * off.
    768        1.1       cgd 		 */
    769      1.150  christos 		if (timespecisset(&aits->it_value)) {
    770      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    771      1.168      yamt 				getnanotime(&now);
    772      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    773      1.168      yamt 				getnanouptime(&now);
    774      1.168      yamt 			}
    775      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    776      1.150  christos 				timespecclear(&aits->it_value);
    777      1.101    kardel 			else
    778      1.150  christos 				timespecsub(&aits->it_value, &now,
    779      1.150  christos 				    &aits->it_value);
    780       1.36   thorpej 		}
    781       1.63   thorpej 	} else if (pt->pt_active) {
    782       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    783       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    784       1.63   thorpej 		else
    785       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    786       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    787      1.150  christos 			timespecadd(&aits->it_value,
    788      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    789       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    790        1.1       cgd 	} else
    791      1.150  christos 		timespecclear(&aits->it_value);
    792       1.63   thorpej }
    793       1.63   thorpej 
    794       1.63   thorpej 
    795       1.63   thorpej 
    796       1.63   thorpej /* Set and arm a POSIX realtime timer */
    797       1.63   thorpej int
    798      1.156  christos sys___timer_settime50(struct lwp *l,
    799      1.156  christos     const struct sys___timer_settime50_args *uap,
    800      1.140      yamt     register_t *retval)
    801       1.63   thorpej {
    802      1.135       dsl 	/* {
    803       1.63   thorpej 		syscallarg(timer_t) timerid;
    804       1.63   thorpej 		syscallarg(int) flags;
    805       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    806       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    807      1.135       dsl 	} */
    808       1.92      cube 	int error;
    809       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    810       1.92      cube 
    811       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    812       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    813       1.92      cube 		return (error);
    814       1.92      cube 
    815       1.92      cube 	if (SCARG(uap, ovalue))
    816       1.92      cube 		ovp = &ovalue;
    817       1.92      cube 
    818       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    819       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    820       1.92      cube 		return error;
    821       1.92      cube 
    822       1.92      cube 	if (ovp)
    823       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    824       1.92      cube 		    sizeof(struct itimerspec));
    825       1.92      cube 	return 0;
    826       1.92      cube }
    827       1.92      cube 
    828       1.92      cube int
    829       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    830       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    831       1.92      cube {
    832      1.150  christos 	struct timespec now;
    833      1.150  christos 	struct itimerspec val, oval;
    834      1.142        ad 	struct ptimers *pts;
    835       1.63   thorpej 	struct ptimer *pt;
    836      1.160  christos 	int error;
    837       1.63   thorpej 
    838      1.142        ad 	pts = p->p_timers;
    839       1.63   thorpej 
    840      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    841      1.142        ad 		return EINVAL;
    842      1.150  christos 	val = *value;
    843      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    844      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    845      1.160  christos 		return error;
    846       1.63   thorpej 
    847      1.142        ad 	mutex_spin_enter(&timer_lock);
    848      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    849      1.142        ad 		mutex_spin_exit(&timer_lock);
    850      1.150  christos 		return EINVAL;
    851      1.142        ad 	}
    852      1.142        ad 
    853       1.63   thorpej 	oval = pt->pt_time;
    854       1.63   thorpej 	pt->pt_time = val;
    855       1.63   thorpej 
    856       1.67   nathanw 	/*
    857       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    858       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    859       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    860       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    861       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    862       1.67   nathanw 	 */
    863      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    864      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    865      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    866      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    867      1.168      yamt 					getnanotime(&now);
    868      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    869      1.168      yamt 					getnanouptime(&now);
    870      1.168      yamt 				}
    871      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    872      1.101    kardel 				    &pt->pt_time.it_value);
    873      1.101    kardel 			}
    874       1.67   nathanw 		} else {
    875       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    876      1.150  christos 				getnanotime(&now);
    877      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    878      1.101    kardel 				    &pt->pt_time.it_value);
    879      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    880       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    881       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    882      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    883       1.67   nathanw 				}
    884       1.67   nathanw 			}
    885       1.67   nathanw 		}
    886       1.67   nathanw 	}
    887       1.67   nathanw 
    888       1.63   thorpej 	timer_settime(pt);
    889      1.142        ad 	mutex_spin_exit(&timer_lock);
    890       1.63   thorpej 
    891      1.150  christos 	if (ovalue)
    892      1.150  christos 		*ovalue = oval;
    893       1.63   thorpej 
    894       1.63   thorpej 	return (0);
    895       1.63   thorpej }
    896       1.63   thorpej 
    897       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    898       1.63   thorpej int
    899      1.156  christos sys___timer_gettime50(struct lwp *l,
    900      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    901       1.63   thorpej {
    902      1.135       dsl 	/* {
    903       1.63   thorpej 		syscallarg(timer_t) timerid;
    904       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    905      1.135       dsl 	} */
    906       1.63   thorpej 	struct itimerspec its;
    907       1.92      cube 	int error;
    908       1.92      cube 
    909       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    910       1.92      cube 	    &its)) != 0)
    911       1.92      cube 		return error;
    912       1.92      cube 
    913       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    914       1.92      cube }
    915       1.92      cube 
    916       1.92      cube int
    917       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    918       1.92      cube {
    919       1.63   thorpej 	struct ptimer *pt;
    920      1.142        ad 	struct ptimers *pts;
    921       1.63   thorpej 
    922      1.142        ad 	pts = p->p_timers;
    923      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    924       1.63   thorpej 		return (EINVAL);
    925      1.142        ad 	mutex_spin_enter(&timer_lock);
    926      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    927      1.142        ad 		mutex_spin_exit(&timer_lock);
    928      1.142        ad 		return (EINVAL);
    929      1.142        ad 	}
    930      1.150  christos 	timer_gettime(pt, its);
    931      1.142        ad 	mutex_spin_exit(&timer_lock);
    932       1.63   thorpej 
    933       1.92      cube 	return 0;
    934       1.63   thorpej }
    935       1.63   thorpej 
    936       1.63   thorpej /*
    937       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    938       1.63   thorpej  * while a notification was already pending. The counter is reset when
    939       1.63   thorpej  * a timer expires and a notification can be posted.
    940       1.63   thorpej  */
    941       1.63   thorpej int
    942      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    943      1.140      yamt     register_t *retval)
    944       1.63   thorpej {
    945      1.135       dsl 	/* {
    946       1.63   thorpej 		syscallarg(timer_t) timerid;
    947      1.135       dsl 	} */
    948       1.63   thorpej 	struct proc *p = l->l_proc;
    949      1.142        ad 	struct ptimers *pts;
    950       1.63   thorpej 	int timerid;
    951       1.63   thorpej 	struct ptimer *pt;
    952       1.63   thorpej 
    953       1.63   thorpej 	timerid = SCARG(uap, timerid);
    954       1.63   thorpej 
    955      1.142        ad 	pts = p->p_timers;
    956      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    957      1.142        ad 		return (EINVAL);
    958      1.142        ad 	mutex_spin_enter(&timer_lock);
    959      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    960      1.142        ad 		mutex_spin_exit(&timer_lock);
    961       1.63   thorpej 		return (EINVAL);
    962      1.142        ad 	}
    963       1.63   thorpej 	*retval = pt->pt_poverruns;
    964      1.142        ad 	mutex_spin_exit(&timer_lock);
    965       1.63   thorpej 
    966       1.63   thorpej 	return (0);
    967       1.63   thorpej }
    968       1.63   thorpej 
    969       1.63   thorpej /*
    970       1.63   thorpej  * Real interval timer expired:
    971       1.63   thorpej  * send process whose timer expired an alarm signal.
    972       1.63   thorpej  * If time is not set up to reload, then just return.
    973       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    974       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    975       1.63   thorpej  * SIGALRM calls to be compressed into one.
    976       1.63   thorpej  */
    977       1.63   thorpej void
    978       1.63   thorpej realtimerexpire(void *arg)
    979       1.63   thorpej {
    980      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    981      1.150  christos 	struct timespec now, next;
    982       1.63   thorpej 	struct ptimer *pt;
    983      1.148     joerg 	int backwards;
    984       1.63   thorpej 
    985      1.142        ad 	pt = arg;
    986       1.63   thorpej 
    987      1.142        ad 	mutex_spin_enter(&timer_lock);
    988       1.63   thorpej 	itimerfire(pt);
    989       1.63   thorpej 
    990      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    991      1.150  christos 		timespecclear(&pt->pt_time.it_value);
    992      1.142        ad 		mutex_spin_exit(&timer_lock);
    993       1.63   thorpej 		return;
    994       1.63   thorpej 	}
    995      1.148     joerg 
    996      1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
    997      1.171  christos 		getnanouptime(&now);
    998      1.171  christos 	} else {
    999      1.171  christos 		getnanotime(&now);
   1000      1.171  christos 	}
   1001      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1002      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1003      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1004      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1005      1.148     joerg 		pt->pt_time.it_value = next;
   1006      1.148     joerg 	} else {
   1007      1.166      yamt 		now_ns = timespec2ns(&now);
   1008      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1009      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1010      1.148     joerg 
   1011      1.166      yamt 		next_val = now_ns +
   1012      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1013      1.148     joerg 
   1014      1.148     joerg 		if (backwards)
   1015      1.148     joerg 			next_val += interval;
   1016      1.148     joerg 		else
   1017      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1018      1.148     joerg 
   1019      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1020      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1021      1.101    kardel 	}
   1022      1.148     joerg 
   1023      1.148     joerg 	/*
   1024      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1025      1.148     joerg 	 * callout_reset() does it for us.
   1026      1.148     joerg 	 */
   1027      1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1028      1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1029      1.148     joerg 	    realtimerexpire, pt);
   1030      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1031       1.63   thorpej }
   1032       1.63   thorpej 
   1033       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1034       1.63   thorpej /* ARGSUSED */
   1035       1.63   thorpej int
   1036      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1037      1.140      yamt     register_t *retval)
   1038       1.63   thorpej {
   1039      1.135       dsl 	/* {
   1040       1.63   thorpej 		syscallarg(int) which;
   1041       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1042      1.135       dsl 	} */
   1043       1.63   thorpej 	struct proc *p = l->l_proc;
   1044       1.63   thorpej 	struct itimerval aitv;
   1045       1.91      cube 	int error;
   1046       1.91      cube 
   1047       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1048       1.91      cube 	if (error)
   1049       1.91      cube 		return error;
   1050       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1051       1.91      cube }
   1052       1.63   thorpej 
   1053       1.91      cube int
   1054       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1055       1.91      cube {
   1056      1.142        ad 	struct ptimers *pts;
   1057      1.142        ad 	struct ptimer *pt;
   1058      1.150  christos 	struct itimerspec its;
   1059       1.63   thorpej 
   1060      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1061       1.63   thorpej 		return (EINVAL);
   1062       1.63   thorpej 
   1063      1.142        ad 	mutex_spin_enter(&timer_lock);
   1064      1.142        ad 	pts = p->p_timers;
   1065      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1066       1.91      cube 		timerclear(&itvp->it_value);
   1067       1.91      cube 		timerclear(&itvp->it_interval);
   1068      1.150  christos 	} else {
   1069      1.150  christos 		timer_gettime(pt, &its);
   1070      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1071      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1072      1.150  christos 	}
   1073      1.142        ad 	mutex_spin_exit(&timer_lock);
   1074       1.63   thorpej 
   1075       1.91      cube 	return 0;
   1076        1.1       cgd }
   1077        1.1       cgd 
   1078       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1079        1.1       cgd /* ARGSUSED */
   1080        1.3    andrew int
   1081      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1082      1.140      yamt     register_t *retval)
   1083       1.15   thorpej {
   1084      1.135       dsl 	/* {
   1085       1.30   mycroft 		syscallarg(int) which;
   1086       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1087       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1088      1.135       dsl 	} */
   1089       1.63   thorpej 	struct proc *p = l->l_proc;
   1090       1.30   mycroft 	int which = SCARG(uap, which);
   1091      1.156  christos 	struct sys___getitimer50_args getargs;
   1092       1.91      cube 	const struct itimerval *itvp;
   1093        1.1       cgd 	struct itimerval aitv;
   1094       1.91      cube 	int error;
   1095        1.1       cgd 
   1096      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1097        1.1       cgd 		return (EINVAL);
   1098       1.11       cgd 	itvp = SCARG(uap, itv);
   1099       1.63   thorpej 	if (itvp &&
   1100      1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1101        1.1       cgd 		return (error);
   1102       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1103       1.30   mycroft 		SCARG(&getargs, which) = which;
   1104       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1105      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1106       1.21       cgd 			return (error);
   1107       1.21       cgd 	}
   1108        1.1       cgd 	if (itvp == 0)
   1109        1.1       cgd 		return (0);
   1110       1.91      cube 
   1111       1.91      cube 	return dosetitimer(p, which, &aitv);
   1112       1.91      cube }
   1113       1.91      cube 
   1114       1.91      cube int
   1115       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1116       1.91      cube {
   1117      1.150  christos 	struct timespec now;
   1118      1.142        ad 	struct ptimers *pts;
   1119      1.142        ad 	struct ptimer *pt, *spare;
   1120       1.91      cube 
   1121      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1122       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1123        1.1       cgd 		return (EINVAL);
   1124       1.63   thorpej 
   1125       1.63   thorpej 	/*
   1126       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1127       1.63   thorpej 	 * wants to clear the timer.
   1128       1.63   thorpej 	 */
   1129      1.142        ad 	spare = NULL;
   1130      1.142        ad 	pts = p->p_timers;
   1131      1.142        ad  retry:
   1132      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1133      1.142        ad 	    pts->pts_timers[which] == NULL))
   1134       1.63   thorpej 		return (0);
   1135      1.142        ad 	if (pts == NULL)
   1136      1.142        ad 		pts = timers_alloc(p);
   1137      1.142        ad 	mutex_spin_enter(&timer_lock);
   1138      1.142        ad 	pt = pts->pts_timers[which];
   1139      1.142        ad 	if (pt == NULL) {
   1140      1.142        ad 		if (spare == NULL) {
   1141      1.142        ad 			mutex_spin_exit(&timer_lock);
   1142      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1143      1.142        ad 			goto retry;
   1144      1.142        ad 		}
   1145      1.142        ad 		pt = spare;
   1146      1.142        ad 		spare = NULL;
   1147       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1148       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1149       1.63   thorpej 		pt->pt_overruns = 0;
   1150       1.63   thorpej 		pt->pt_proc = p;
   1151       1.63   thorpej 		pt->pt_type = which;
   1152       1.64   nathanw 		pt->pt_entry = which;
   1153      1.142        ad 		pt->pt_queued = false;
   1154      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1155      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1156      1.149  christos 		else
   1157      1.149  christos 			pt->pt_active = 0;
   1158      1.149  christos 
   1159       1.63   thorpej 		switch (which) {
   1160       1.63   thorpej 		case ITIMER_REAL:
   1161      1.170  christos 		case ITIMER_MONOTONIC:
   1162       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1163       1.63   thorpej 			break;
   1164       1.63   thorpej 		case ITIMER_VIRTUAL:
   1165       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1166       1.63   thorpej 			break;
   1167       1.63   thorpej 		case ITIMER_PROF:
   1168       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1169       1.63   thorpej 			break;
   1170        1.1       cgd 		}
   1171      1.142        ad 		pts->pts_timers[which] = pt;
   1172      1.142        ad 	}
   1173       1.63   thorpej 
   1174      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1175      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1176      1.150  christos 
   1177      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1178       1.67   nathanw 		/* Convert to absolute time */
   1179      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1180      1.170  christos 		switch (which) {
   1181      1.170  christos 		case ITIMER_REAL:
   1182      1.170  christos 			getnanotime(&now);
   1183      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1184      1.170  christos 			    &pt->pt_time.it_value);
   1185      1.170  christos 			break;
   1186      1.170  christos 		case ITIMER_MONOTONIC:
   1187      1.170  christos 			getnanouptime(&now);
   1188      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1189      1.170  christos 			    &pt->pt_time.it_value);
   1190      1.170  christos 			break;
   1191      1.170  christos 		default:
   1192      1.170  christos 			break;
   1193      1.170  christos 		}
   1194       1.67   nathanw 	}
   1195       1.63   thorpej 	timer_settime(pt);
   1196      1.142        ad 	mutex_spin_exit(&timer_lock);
   1197      1.142        ad 	if (spare != NULL)
   1198      1.142        ad 		pool_put(&ptimer_pool, spare);
   1199       1.63   thorpej 
   1200        1.1       cgd 	return (0);
   1201        1.1       cgd }
   1202        1.1       cgd 
   1203       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1204      1.142        ad struct ptimers *
   1205       1.63   thorpej timers_alloc(struct proc *p)
   1206       1.63   thorpej {
   1207      1.142        ad 	struct ptimers *pts;
   1208       1.63   thorpej 	int i;
   1209       1.63   thorpej 
   1210      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1211       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1212       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1213       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1214       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1215       1.64   nathanw 	pts->pts_fired = 0;
   1216      1.142        ad 	mutex_spin_enter(&timer_lock);
   1217      1.142        ad 	if (p->p_timers == NULL) {
   1218      1.142        ad 		p->p_timers = pts;
   1219      1.142        ad 		mutex_spin_exit(&timer_lock);
   1220      1.142        ad 		return pts;
   1221      1.142        ad 	}
   1222      1.142        ad 	mutex_spin_exit(&timer_lock);
   1223      1.142        ad 	pool_put(&ptimers_pool, pts);
   1224      1.142        ad 	return p->p_timers;
   1225       1.63   thorpej }
   1226       1.63   thorpej 
   1227        1.1       cgd /*
   1228       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1229       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1230       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1231       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1232       1.63   thorpej  * structure if none of those remain.
   1233        1.1       cgd  */
   1234        1.3    andrew void
   1235       1.63   thorpej timers_free(struct proc *p, int which)
   1236        1.6       cgd {
   1237       1.63   thorpej 	struct ptimers *pts;
   1238      1.142        ad 	struct ptimer *ptn;
   1239      1.150  christos 	struct timespec ts;
   1240      1.142        ad 	int i;
   1241       1.63   thorpej 
   1242      1.142        ad 	if (p->p_timers == NULL)
   1243      1.142        ad 		return;
   1244       1.63   thorpej 
   1245      1.142        ad 	pts = p->p_timers;
   1246      1.142        ad 	mutex_spin_enter(&timer_lock);
   1247      1.142        ad 	if (which == TIMERS_ALL) {
   1248      1.142        ad 		p->p_timers = NULL;
   1249      1.142        ad 		i = 0;
   1250      1.142        ad 	} else {
   1251      1.150  christos 		timespecclear(&ts);
   1252      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1253      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1254      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1255      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1256      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1257      1.149  christos 		}
   1258      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1259      1.142        ad 		if (ptn) {
   1260      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1261      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1262      1.142        ad 			    &ptn->pt_time.it_value);
   1263      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1264      1.142        ad 		}
   1265      1.150  christos 		timespecclear(&ts);
   1266      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1267      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1268      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1269      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1270      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1271      1.149  christos 		}
   1272      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1273      1.142        ad 		if (ptn) {
   1274      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1275      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1276      1.142        ad 			    &ptn->pt_time.it_value);
   1277      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1278       1.63   thorpej 		}
   1279      1.142        ad 		i = 3;
   1280      1.142        ad 	}
   1281      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1282      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1283      1.142        ad 			itimerfree(pts, i);
   1284      1.142        ad 			mutex_spin_enter(&timer_lock);
   1285        1.1       cgd 		}
   1286        1.1       cgd 	}
   1287      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1288      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1289      1.142        ad 		p->p_timers = NULL;
   1290      1.142        ad 		mutex_spin_exit(&timer_lock);
   1291      1.142        ad 		pool_put(&ptimers_pool, pts);
   1292      1.142        ad 	} else
   1293      1.142        ad 		mutex_spin_exit(&timer_lock);
   1294      1.142        ad }
   1295      1.142        ad 
   1296      1.142        ad static void
   1297      1.142        ad itimerfree(struct ptimers *pts, int index)
   1298      1.142        ad {
   1299      1.142        ad 	struct ptimer *pt;
   1300      1.142        ad 
   1301      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1302      1.142        ad 
   1303      1.142        ad 	pt = pts->pts_timers[index];
   1304      1.142        ad 	pts->pts_timers[index] = NULL;
   1305      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1306      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1307      1.167      yamt 	if (pt->pt_queued)
   1308      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1309      1.144        ad 	mutex_spin_exit(&timer_lock);
   1310      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1311      1.149  christos 		callout_destroy(&pt->pt_ch);
   1312      1.142        ad 	pool_put(&ptimer_pool, pt);
   1313        1.1       cgd }
   1314        1.1       cgd 
   1315        1.1       cgd /*
   1316        1.1       cgd  * Decrement an interval timer by a specified number
   1317      1.152  christos  * of nanoseconds, which must be less than a second,
   1318      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1319      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1320        1.8       cgd  * reduce the value reloaded into the timer so that
   1321        1.1       cgd  * the timer does not drift.  This routine assumes
   1322        1.1       cgd  * that it is called in a context where the timers
   1323        1.1       cgd  * on which it is operating cannot change in value.
   1324        1.1       cgd  */
   1325      1.142        ad static int
   1326      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1327       1.63   thorpej {
   1328      1.150  christos 	struct itimerspec *itp;
   1329        1.1       cgd 
   1330      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1331      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1332      1.142        ad 
   1333       1.63   thorpej 	itp = &pt->pt_time;
   1334      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1335        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1336        1.1       cgd 			/* expired, and already in next interval */
   1337      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1338        1.1       cgd 			goto expire;
   1339        1.1       cgd 		}
   1340      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1341        1.1       cgd 		itp->it_value.tv_sec--;
   1342        1.1       cgd 	}
   1343      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1344      1.152  christos 	nsec = 0;
   1345      1.150  christos 	if (timespecisset(&itp->it_value))
   1346        1.1       cgd 		return (1);
   1347        1.1       cgd 	/* expired, exactly at end of interval */
   1348        1.1       cgd expire:
   1349      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1350        1.1       cgd 		itp->it_value = itp->it_interval;
   1351      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1352      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1353      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1354        1.1       cgd 			itp->it_value.tv_sec--;
   1355        1.1       cgd 		}
   1356       1.63   thorpej 		timer_settime(pt);
   1357        1.1       cgd 	} else
   1358      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1359        1.1       cgd 	return (0);
   1360       1.42       cgd }
   1361       1.42       cgd 
   1362      1.142        ad static void
   1363       1.63   thorpej itimerfire(struct ptimer *pt)
   1364       1.63   thorpej {
   1365       1.78        cl 
   1366      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1367      1.142        ad 
   1368      1.142        ad 	/*
   1369      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1370      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1371      1.142        ad 	 */
   1372      1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1373      1.142        ad 		return;
   1374      1.172     rmind 	}
   1375      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1376      1.142        ad 	pt->pt_queued = true;
   1377      1.142        ad 	softint_schedule(timer_sih);
   1378      1.142        ad }
   1379      1.142        ad 
   1380      1.142        ad void
   1381      1.142        ad timer_tick(lwp_t *l, bool user)
   1382      1.142        ad {
   1383      1.142        ad 	struct ptimers *pts;
   1384      1.142        ad 	struct ptimer *pt;
   1385      1.142        ad 	proc_t *p;
   1386      1.142        ad 
   1387      1.142        ad 	p = l->l_proc;
   1388      1.142        ad 	if (p->p_timers == NULL)
   1389      1.142        ad 		return;
   1390      1.142        ad 
   1391      1.142        ad 	mutex_spin_enter(&timer_lock);
   1392      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1393       1.63   thorpej 		/*
   1394      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1395       1.63   thorpej 		 */
   1396      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1397      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1398      1.142        ad 				itimerfire(pt);
   1399      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1400      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1401      1.142        ad 				itimerfire(pt);
   1402      1.142        ad 	}
   1403      1.142        ad 	mutex_spin_exit(&timer_lock);
   1404      1.142        ad }
   1405      1.142        ad 
   1406      1.142        ad static void
   1407      1.142        ad timer_intr(void *cookie)
   1408      1.142        ad {
   1409      1.142        ad 	ksiginfo_t ksi;
   1410      1.142        ad 	struct ptimer *pt;
   1411      1.142        ad 	proc_t *p;
   1412      1.142        ad 
   1413      1.158        ad 	mutex_enter(proc_lock);
   1414      1.142        ad 	mutex_spin_enter(&timer_lock);
   1415      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1416      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1417      1.142        ad 		KASSERT(pt->pt_queued);
   1418      1.142        ad 		pt->pt_queued = false;
   1419      1.142        ad 
   1420      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1421      1.154  wrstuden 			/* Process is dying. */
   1422      1.142        ad 			continue;
   1423      1.154  wrstuden 		}
   1424      1.142        ad 		p = pt->pt_proc;
   1425      1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1426      1.142        ad 			continue;
   1427      1.142        ad 		}
   1428      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1429       1.63   thorpej 			pt->pt_overruns++;
   1430      1.142        ad 			continue;
   1431       1.64   nathanw 		}
   1432      1.142        ad 
   1433      1.142        ad 		KSI_INIT(&ksi);
   1434      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1435      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1436      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1437      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1438      1.142        ad 		pt->pt_overruns = 0;
   1439      1.142        ad 		mutex_spin_exit(&timer_lock);
   1440      1.142        ad 		kpsignal(p, &ksi, NULL);
   1441      1.142        ad 		mutex_spin_enter(&timer_lock);
   1442       1.63   thorpej 	}
   1443      1.142        ad 	mutex_spin_exit(&timer_lock);
   1444      1.158        ad 	mutex_exit(proc_lock);
   1445       1.63   thorpej }
   1446      1.162      elad 
   1447      1.162      elad /*
   1448      1.162      elad  * Check if the time will wrap if set to ts.
   1449      1.162      elad  *
   1450      1.162      elad  * ts - timespec describing the new time
   1451      1.162      elad  * delta - the delta between the current time and ts
   1452      1.162      elad  */
   1453      1.162      elad bool
   1454      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1455      1.162      elad {
   1456      1.162      elad 
   1457      1.162      elad 	/*
   1458      1.162      elad 	 * Don't allow the time to be set forward so far it
   1459      1.162      elad 	 * will wrap and become negative, thus allowing an
   1460      1.162      elad 	 * attacker to bypass the next check below.  The
   1461      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1462      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1463      1.162      elad 	 * past the cutoff, it will take a very long time
   1464      1.162      elad 	 * to get to the wrap point.
   1465      1.162      elad 	 */
   1466      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1467      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1468      1.162      elad 		return true;
   1469      1.162      elad 
   1470      1.162      elad 	return false;
   1471      1.162      elad }
   1472