Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.174.2.2
      1  1.174.2.2       tls /*	$NetBSD: kern_time.c,v 1.174.2.2 2013/06/23 06:18:58 tls Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.174.2.2       tls __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.174.2.2 2013/06/23 06:18:58 tls Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78       1.11       cgd #include <sys/syscallargs.h>
     79      1.143        ad #include <sys/cpu.h>
     80       1.19  christos 
     81      1.142        ad static void	timer_intr(void *);
     82      1.142        ad static void	itimerfire(struct ptimer *);
     83      1.142        ad static void	itimerfree(struct ptimers *, int);
     84      1.142        ad 
     85      1.142        ad kmutex_t	timer_lock;
     86      1.142        ad 
     87      1.142        ad static void	*timer_sih;
     88      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89      1.131        ad 
     90      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91       1.97    simonb 
     92      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94      1.168      yamt 
     95      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99      1.168      yamt 
    100      1.131        ad /*
    101      1.131        ad  * Initialize timekeeping.
    102      1.131        ad  */
    103      1.131        ad void
    104      1.131        ad time_init(void)
    105      1.131        ad {
    106      1.131        ad 
    107      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111      1.131        ad }
    112      1.131        ad 
    113      1.142        ad void
    114      1.142        ad time_init2(void)
    115      1.142        ad {
    116      1.142        ad 
    117      1.142        ad 	TAILQ_INIT(&timer_queue);
    118      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120      1.142        ad 	    timer_intr, NULL);
    121      1.142        ad }
    122      1.142        ad 
    123       1.63   thorpej /* Time of day and interval timer support.
    124        1.1       cgd  *
    125        1.1       cgd  * These routines provide the kernel entry points to get and set
    126        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    127        1.1       cgd  * here provide support for adding and subtracting timeval structures
    128        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    129        1.1       cgd  * timers when they expire.
    130        1.1       cgd  */
    131        1.1       cgd 
    132       1.22       jtc /* This function is used by clock_settime and settimeofday */
    133      1.132      elad static int
    134      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135       1.22       jtc {
    136      1.156  christos 	struct timespec delta, now;
    137      1.129        ad 	int s;
    138       1.22       jtc 
    139       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140      1.129        ad 	s = splclock();
    141      1.156  christos 	nanotime(&now);
    142      1.156  christos 	timespecsub(ts, &now, &delta);
    143      1.132      elad 
    144      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147      1.129        ad 		splx(s);
    148       1.29       tls 		return (EPERM);
    149       1.55      tron 	}
    150      1.132      elad 
    151       1.29       tls #ifdef notyet
    152      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153      1.129        ad 		splx(s);
    154       1.29       tls 		return (EPERM);
    155       1.55      tron 	}
    156       1.29       tls #endif
    157      1.103    kardel 
    158      1.156  christos 	tc_setclock(ts);
    159      1.103    kardel 
    160      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161      1.103    kardel 
    162       1.22       jtc 	resettodr();
    163      1.129        ad 	splx(s);
    164      1.129        ad 
    165       1.29       tls 	return (0);
    166       1.22       jtc }
    167       1.22       jtc 
    168      1.132      elad int
    169      1.132      elad settime(struct proc *p, struct timespec *ts)
    170      1.132      elad {
    171      1.132      elad 	return (settime1(p, ts, true));
    172      1.132      elad }
    173      1.132      elad 
    174       1.22       jtc /* ARGSUSED */
    175       1.22       jtc int
    176      1.156  christos sys___clock_gettime50(struct lwp *l,
    177      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178       1.22       jtc {
    179      1.135       dsl 	/* {
    180       1.22       jtc 		syscallarg(clockid_t) clock_id;
    181       1.23       cgd 		syscallarg(struct timespec *) tp;
    182      1.135       dsl 	} */
    183      1.165     njoly 	int error;
    184       1.22       jtc 	struct timespec ats;
    185       1.22       jtc 
    186      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187      1.165     njoly 	if (error != 0)
    188      1.165     njoly 		return error;
    189      1.165     njoly 
    190      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191      1.165     njoly }
    192      1.165     njoly 
    193       1.22       jtc /* ARGSUSED */
    194       1.22       jtc int
    195      1.156  christos sys___clock_settime50(struct lwp *l,
    196      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    197       1.22       jtc {
    198      1.135       dsl 	/* {
    199       1.22       jtc 		syscallarg(clockid_t) clock_id;
    200       1.23       cgd 		syscallarg(const struct timespec *) tp;
    201      1.135       dsl 	} */
    202      1.156  christos 	int error;
    203      1.156  christos 	struct timespec ats;
    204       1.22       jtc 
    205      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    206      1.156  christos 		return error;
    207      1.156  christos 
    208      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    209       1.56      manu }
    210       1.56      manu 
    211       1.56      manu 
    212       1.56      manu int
    213      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    214      1.132      elad     bool check_kauth)
    215       1.56      manu {
    216       1.56      manu 	int error;
    217       1.56      manu 
    218       1.61    simonb 	switch (clock_id) {
    219       1.61    simonb 	case CLOCK_REALTIME:
    220      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    221       1.61    simonb 			return (error);
    222       1.61    simonb 		break;
    223       1.61    simonb 	case CLOCK_MONOTONIC:
    224       1.61    simonb 		return (EINVAL);	/* read-only clock */
    225       1.61    simonb 	default:
    226       1.56      manu 		return (EINVAL);
    227       1.61    simonb 	}
    228       1.22       jtc 
    229       1.22       jtc 	return 0;
    230       1.22       jtc }
    231       1.22       jtc 
    232       1.22       jtc int
    233      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    234      1.140      yamt     register_t *retval)
    235       1.22       jtc {
    236      1.135       dsl 	/* {
    237       1.22       jtc 		syscallarg(clockid_t) clock_id;
    238       1.23       cgd 		syscallarg(struct timespec *) tp;
    239      1.135       dsl 	} */
    240       1.22       jtc 	struct timespec ts;
    241       1.22       jtc 	int error = 0;
    242       1.22       jtc 
    243      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    244      1.164     njoly 		return error;
    245      1.164     njoly 
    246      1.164     njoly 	if (SCARG(uap, tp))
    247      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    248      1.164     njoly 
    249      1.164     njoly 	return error;
    250      1.164     njoly }
    251      1.164     njoly 
    252      1.164     njoly int
    253      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    254      1.164     njoly {
    255      1.164     njoly 
    256       1.61    simonb 	switch (clock_id) {
    257       1.61    simonb 	case CLOCK_REALTIME:
    258       1.61    simonb 	case CLOCK_MONOTONIC:
    259      1.164     njoly 		ts->tv_sec = 0;
    260      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    261      1.164     njoly 			ts->tv_nsec = 1;
    262      1.102    kardel 		else
    263      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    264       1.61    simonb 		break;
    265       1.61    simonb 	default:
    266      1.164     njoly 		return EINVAL;
    267       1.61    simonb 	}
    268       1.22       jtc 
    269      1.164     njoly 	return 0;
    270       1.22       jtc }
    271       1.22       jtc 
    272       1.27       jtc /* ARGSUSED */
    273       1.27       jtc int
    274      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    275      1.140      yamt     register_t *retval)
    276       1.27       jtc {
    277      1.135       dsl 	/* {
    278      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    279      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    280      1.135       dsl 	} */
    281      1.101    kardel 	struct timespec rmt, rqt;
    282      1.120       dsl 	int error, error1;
    283      1.101    kardel 
    284      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    285      1.101    kardel 	if (error)
    286      1.101    kardel 		return (error);
    287      1.101    kardel 
    288  1.174.2.1       tls 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    289  1.174.2.1       tls 	    SCARG(uap, rmtp) ? &rmt : NULL);
    290  1.174.2.1       tls 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291  1.174.2.1       tls 		return error;
    292  1.174.2.1       tls 
    293  1.174.2.1       tls 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294  1.174.2.1       tls 	return error1 ? error1 : error;
    295  1.174.2.1       tls }
    296  1.174.2.1       tls 
    297  1.174.2.1       tls /* ARGSUSED */
    298  1.174.2.1       tls int
    299  1.174.2.1       tls sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    300  1.174.2.1       tls     register_t *retval)
    301  1.174.2.1       tls {
    302  1.174.2.1       tls 	/* {
    303  1.174.2.1       tls 		syscallarg(clockid_t) clock_id;
    304  1.174.2.1       tls 		syscallarg(int) flags;
    305  1.174.2.1       tls 		syscallarg(struct timespec *) rqtp;
    306  1.174.2.1       tls 		syscallarg(struct timespec *) rmtp;
    307  1.174.2.1       tls 	} */
    308  1.174.2.1       tls 	struct timespec rmt, rqt;
    309  1.174.2.1       tls 	int error, error1;
    310  1.174.2.1       tls 
    311  1.174.2.1       tls 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    312  1.174.2.1       tls 	if (error)
    313  1.174.2.1       tls 		return (error);
    314  1.174.2.1       tls 
    315  1.174.2.1       tls 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    316  1.174.2.1       tls 	    SCARG(uap, rmtp) ? &rmt : NULL);
    317      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    318      1.120       dsl 		return error;
    319      1.120       dsl 
    320      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    321      1.120       dsl 	return error1 ? error1 : error;
    322      1.120       dsl }
    323      1.120       dsl 
    324      1.120       dsl int
    325  1.174.2.1       tls nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    326  1.174.2.1       tls     struct timespec *rmt)
    327      1.120       dsl {
    328      1.141      yamt 	struct timespec rmtstart;
    329      1.120       dsl 	int error, timo;
    330      1.120       dsl 
    331  1.174.2.2       tls 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
    332  1.174.2.2       tls 		return error == ETIMEDOUT ? 0 : error;
    333  1.174.2.1       tls 
    334      1.101    kardel 	/*
    335  1.174.2.1       tls 	 * Avoid inadvertently sleeping forever
    336      1.101    kardel 	 */
    337      1.101    kardel 	if (timo == 0)
    338      1.101    kardel 		timo = 1;
    339      1.141      yamt again:
    340      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    341      1.141      yamt 	if (rmt != NULL || error == 0) {
    342      1.141      yamt 		struct timespec rmtend;
    343      1.141      yamt 		struct timespec t0;
    344      1.141      yamt 		struct timespec *t;
    345      1.101    kardel 
    346  1.174.2.1       tls 		(void)clock_gettime1(clock_id, &rmtend);
    347      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    348  1.174.2.2       tls 		if (flags & TIMER_ABSTIME) {
    349  1.174.2.2       tls 			timespecsub(rqt, &rmtend, t);
    350  1.174.2.2       tls 		} else {
    351  1.174.2.2       tls 			timespecsub(&rmtend, &rmtstart, t);
    352  1.174.2.2       tls 			timespecsub(rqt, t, t);
    353  1.174.2.2       tls 		}
    354      1.141      yamt 		if (t->tv_sec < 0)
    355      1.141      yamt 			timespecclear(t);
    356      1.141      yamt 		if (error == 0) {
    357      1.141      yamt 			timo = tstohz(t);
    358      1.141      yamt 			if (timo > 0)
    359      1.141      yamt 				goto again;
    360      1.141      yamt 		}
    361      1.141      yamt 	}
    362      1.104    kardel 
    363      1.101    kardel 	if (error == ERESTART)
    364      1.101    kardel 		error = EINTR;
    365      1.101    kardel 	if (error == EWOULDBLOCK)
    366      1.101    kardel 		error = 0;
    367      1.101    kardel 
    368      1.101    kardel 	return error;
    369       1.27       jtc }
    370       1.22       jtc 
    371        1.1       cgd /* ARGSUSED */
    372        1.3    andrew int
    373      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    374      1.140      yamt     register_t *retval)
    375       1.15   thorpej {
    376      1.135       dsl 	/* {
    377       1.11       cgd 		syscallarg(struct timeval *) tp;
    378      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    379      1.135       dsl 	} */
    380        1.1       cgd 	struct timeval atv;
    381        1.1       cgd 	int error = 0;
    382       1.25     perry 	struct timezone tzfake;
    383        1.1       cgd 
    384       1.11       cgd 	if (SCARG(uap, tp)) {
    385        1.1       cgd 		microtime(&atv);
    386       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    387       1.17  christos 		if (error)
    388        1.1       cgd 			return (error);
    389        1.1       cgd 	}
    390       1.25     perry 	if (SCARG(uap, tzp)) {
    391       1.25     perry 		/*
    392       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    393       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    394       1.25     perry 		 */
    395       1.25     perry 		tzfake.tz_minuteswest = 0;
    396       1.25     perry 		tzfake.tz_dsttime = 0;
    397       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    398       1.25     perry 	}
    399        1.1       cgd 	return (error);
    400        1.1       cgd }
    401        1.1       cgd 
    402        1.1       cgd /* ARGSUSED */
    403        1.3    andrew int
    404      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    405      1.140      yamt     register_t *retval)
    406       1.15   thorpej {
    407      1.135       dsl 	/* {
    408       1.24       cgd 		syscallarg(const struct timeval *) tv;
    409      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    410      1.135       dsl 	} */
    411       1.60      manu 
    412      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    413       1.60      manu }
    414       1.60      manu 
    415       1.60      manu int
    416      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    417      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    418       1.60      manu {
    419       1.22       jtc 	struct timeval atv;
    420       1.98  christos 	struct timespec ts;
    421       1.22       jtc 	int error;
    422        1.1       cgd 
    423        1.8       cgd 	/* Verify all parameters before changing time. */
    424      1.119       dsl 
    425       1.25     perry 	/*
    426       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    427       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    428       1.25     perry 	 */
    429       1.98  christos 	if (utzp)
    430       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    431      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    432       1.98  christos 
    433       1.98  christos 	if (utv == NULL)
    434       1.98  christos 		return 0;
    435       1.98  christos 
    436      1.119       dsl 	if (userspace) {
    437      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    438      1.119       dsl 			return error;
    439      1.119       dsl 		utv = &atv;
    440      1.119       dsl 	}
    441      1.119       dsl 
    442      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    443      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    444        1.1       cgd }
    445        1.1       cgd 
    446       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    447        1.1       cgd 
    448        1.1       cgd /* ARGSUSED */
    449        1.3    andrew int
    450      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    451      1.140      yamt     register_t *retval)
    452       1.15   thorpej {
    453      1.135       dsl 	/* {
    454       1.24       cgd 		syscallarg(const struct timeval *) delta;
    455       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    456      1.135       dsl 	} */
    457      1.156  christos 	int error = 0;
    458      1.156  christos 	struct timeval atv, oldatv;
    459        1.1       cgd 
    460      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    461      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    462      1.156  christos 		return error;
    463       1.17  christos 
    464      1.156  christos 	if (SCARG(uap, delta)) {
    465      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    466      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    467      1.156  christos 		if (error)
    468      1.156  christos 			return (error);
    469      1.156  christos 	}
    470      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    471      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    472      1.156  christos 	if (SCARG(uap, olddelta))
    473      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    474      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    475      1.156  christos 	return error;
    476       1.56      manu }
    477       1.56      manu 
    478      1.156  christos void
    479      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    480       1.56      manu {
    481      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    482      1.101    kardel 
    483      1.101    kardel 	if (olddelta) {
    484      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    485      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    486      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    487      1.156  christos 		if (olddelta->tv_usec < 0) {
    488      1.156  christos 			olddelta->tv_usec += 1000000;
    489      1.156  christos 			olddelta->tv_sec--;
    490      1.101    kardel 		}
    491      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    492      1.101    kardel 	}
    493      1.101    kardel 
    494      1.101    kardel 	if (delta) {
    495      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    496      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    497      1.101    kardel 
    498      1.143        ad 		if (time_adjtime) {
    499      1.101    kardel 			/* We need to save the system time during shutdown */
    500      1.101    kardel 			time_adjusted |= 1;
    501      1.143        ad 		}
    502      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    503      1.101    kardel 	}
    504        1.1       cgd }
    505        1.1       cgd 
    506        1.1       cgd /*
    507       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    508       1.63   thorpej  * timer_*() family of routines are supported.
    509        1.1       cgd  *
    510       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    511       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    512       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    513      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    514      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    515      1.170  christos  * allocated by the timer_create() syscall.
    516        1.1       cgd  *
    517       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    518       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    519        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    520       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    521       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    522       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    523       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    524       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    525       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    526       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    527       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    528       1.63   thorpej 
    529       1.63   thorpej /* Allocate a POSIX realtime timer. */
    530       1.63   thorpej int
    531      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    532      1.140      yamt     register_t *retval)
    533       1.63   thorpej {
    534      1.135       dsl 	/* {
    535       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    536       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    537       1.63   thorpej 		syscallarg(timer_t *) timerid;
    538      1.135       dsl 	} */
    539       1.92      cube 
    540       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    541      1.105        ad 	    SCARG(uap, evp), copyin, l);
    542       1.92      cube }
    543       1.92      cube 
    544       1.92      cube int
    545       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    546      1.105        ad     copyin_t fetch_event, struct lwp *l)
    547       1.92      cube {
    548       1.92      cube 	int error;
    549       1.92      cube 	timer_t timerid;
    550      1.142        ad 	struct ptimers *pts;
    551       1.63   thorpej 	struct ptimer *pt;
    552      1.105        ad 	struct proc *p;
    553      1.105        ad 
    554      1.105        ad 	p = l->l_proc;
    555       1.63   thorpej 
    556      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    557       1.63   thorpej 		return (EINVAL);
    558       1.63   thorpej 
    559      1.142        ad 	if ((pts = p->p_timers) == NULL)
    560      1.142        ad 		pts = timers_alloc(p);
    561       1.63   thorpej 
    562       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    563      1.142        ad 	if (evp != NULL) {
    564       1.63   thorpej 		if (((error =
    565       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    566       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    567      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    568      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    569      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    570      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    571       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    572       1.63   thorpej 			return (error ? error : EINVAL);
    573       1.63   thorpej 		}
    574      1.142        ad 	}
    575      1.142        ad 
    576      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    577      1.142        ad 	mutex_spin_enter(&timer_lock);
    578      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    579      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    580      1.142        ad 			break;
    581      1.142        ad 	if (timerid == TIMER_MAX) {
    582      1.142        ad 		mutex_spin_exit(&timer_lock);
    583      1.142        ad 		pool_put(&ptimer_pool, pt);
    584      1.142        ad 		return EAGAIN;
    585      1.142        ad 	}
    586      1.142        ad 	if (evp == NULL) {
    587       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    588       1.63   thorpej 		switch (id) {
    589       1.63   thorpej 		case CLOCK_REALTIME:
    590      1.168      yamt 		case CLOCK_MONOTONIC:
    591       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    592       1.63   thorpej 			break;
    593       1.63   thorpej 		case CLOCK_VIRTUAL:
    594       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    595       1.63   thorpej 			break;
    596       1.63   thorpej 		case CLOCK_PROF:
    597       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    598       1.63   thorpej 			break;
    599       1.63   thorpej 		}
    600       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    601       1.63   thorpej 	}
    602       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    603       1.73  christos 	pt->pt_info.ksi_errno = 0;
    604       1.73  christos 	pt->pt_info.ksi_code = 0;
    605       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    606      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    607      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    608       1.63   thorpej 	pt->pt_type = id;
    609       1.63   thorpej 	pt->pt_proc = p;
    610       1.63   thorpej 	pt->pt_overruns = 0;
    611       1.63   thorpej 	pt->pt_poverruns = 0;
    612       1.64   nathanw 	pt->pt_entry = timerid;
    613      1.142        ad 	pt->pt_queued = false;
    614      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    615      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    616      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    617      1.149  christos 	else
    618      1.149  christos 		pt->pt_active = 0;
    619      1.149  christos 
    620      1.142        ad 	pts->pts_timers[timerid] = pt;
    621      1.142        ad 	mutex_spin_exit(&timer_lock);
    622       1.63   thorpej 
    623       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    624       1.63   thorpej }
    625       1.63   thorpej 
    626       1.63   thorpej /* Delete a POSIX realtime timer */
    627        1.3    andrew int
    628      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    629      1.140      yamt     register_t *retval)
    630       1.15   thorpej {
    631      1.135       dsl 	/* {
    632       1.63   thorpej 		syscallarg(timer_t) timerid;
    633      1.135       dsl 	} */
    634       1.63   thorpej 	struct proc *p = l->l_proc;
    635       1.65  jdolecek 	timer_t timerid;
    636      1.142        ad 	struct ptimers *pts;
    637       1.63   thorpej 	struct ptimer *pt, *ptn;
    638        1.1       cgd 
    639       1.63   thorpej 	timerid = SCARG(uap, timerid);
    640      1.142        ad 	pts = p->p_timers;
    641      1.142        ad 
    642      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    643      1.142        ad 		return (EINVAL);
    644       1.63   thorpej 
    645      1.142        ad 	mutex_spin_enter(&timer_lock);
    646      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    647      1.142        ad 		mutex_spin_exit(&timer_lock);
    648        1.1       cgd 		return (EINVAL);
    649      1.142        ad 	}
    650      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    651      1.149  christos 		if (pt->pt_active) {
    652      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    653      1.149  christos 			LIST_REMOVE(pt, pt_list);
    654      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    655      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    656      1.149  christos 				    &ptn->pt_time.it_value,
    657      1.149  christos 				    &ptn->pt_time.it_value);
    658      1.149  christos 			pt->pt_active = 0;
    659      1.149  christos 		}
    660       1.63   thorpej 	}
    661      1.142        ad 	itimerfree(pts, timerid);
    662       1.63   thorpej 
    663       1.63   thorpej 	return (0);
    664       1.63   thorpej }
    665       1.63   thorpej 
    666       1.63   thorpej /*
    667       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    668      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    669      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    670       1.63   thorpej  */
    671       1.63   thorpej void
    672       1.63   thorpej timer_settime(struct ptimer *pt)
    673       1.63   thorpej {
    674       1.63   thorpej 	struct ptimer *ptn, *pptn;
    675       1.63   thorpej 	struct ptlist *ptl;
    676       1.63   thorpej 
    677      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    678      1.142        ad 
    679      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    680      1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    681      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    682       1.63   thorpej 			/*
    683      1.150  christos 			 * Don't need to check tshzto() return value, here.
    684       1.63   thorpej 			 * callout_reset() does it for us.
    685       1.63   thorpej 			 */
    686      1.171  christos 			callout_reset(&pt->pt_ch,
    687      1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    688      1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    689      1.171  christos 			    tshzto(&pt->pt_time.it_value),
    690       1.63   thorpej 			    realtimerexpire, pt);
    691       1.63   thorpej 		}
    692       1.63   thorpej 	} else {
    693       1.63   thorpej 		if (pt->pt_active) {
    694       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    695       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    696       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    697      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    698       1.63   thorpej 				    &ptn->pt_time.it_value,
    699       1.63   thorpej 				    &ptn->pt_time.it_value);
    700       1.63   thorpej 		}
    701      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    702       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    703       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    704       1.63   thorpej 			else
    705       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    706       1.63   thorpej 
    707       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    708      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    709       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    710       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    711      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    712       1.63   thorpej 				    &ptn->pt_time.it_value,
    713       1.63   thorpej 				    &pt->pt_time.it_value);
    714       1.63   thorpej 
    715       1.63   thorpej 			if (pptn)
    716       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    717       1.63   thorpej 			else
    718       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    719       1.63   thorpej 
    720       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    721      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    722       1.63   thorpej 				    &pt->pt_time.it_value,
    723       1.63   thorpej 				    &ptn->pt_time.it_value);
    724       1.63   thorpej 
    725       1.63   thorpej 			pt->pt_active = 1;
    726       1.63   thorpej 		} else
    727       1.63   thorpej 			pt->pt_active = 0;
    728       1.63   thorpej 	}
    729       1.63   thorpej }
    730       1.63   thorpej 
    731       1.63   thorpej void
    732      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    733       1.63   thorpej {
    734      1.150  christos 	struct timespec now;
    735       1.63   thorpej 	struct ptimer *ptn;
    736       1.63   thorpej 
    737      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    738      1.142        ad 
    739      1.150  christos 	*aits = pt->pt_time;
    740      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    741        1.1       cgd 		/*
    742       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    743       1.63   thorpej 		 * part of real time timer.  If time for real time
    744       1.63   thorpej 		 * timer has passed return 0, else return difference
    745       1.63   thorpej 		 * between current time and time for the timer to go
    746       1.63   thorpej 		 * off.
    747        1.1       cgd 		 */
    748      1.150  christos 		if (timespecisset(&aits->it_value)) {
    749      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    750      1.168      yamt 				getnanotime(&now);
    751      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    752      1.168      yamt 				getnanouptime(&now);
    753      1.168      yamt 			}
    754      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    755      1.150  christos 				timespecclear(&aits->it_value);
    756      1.101    kardel 			else
    757      1.150  christos 				timespecsub(&aits->it_value, &now,
    758      1.150  christos 				    &aits->it_value);
    759       1.36   thorpej 		}
    760       1.63   thorpej 	} else if (pt->pt_active) {
    761       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    762       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    763       1.63   thorpej 		else
    764       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    765       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    766      1.150  christos 			timespecadd(&aits->it_value,
    767      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    768       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    769        1.1       cgd 	} else
    770      1.150  christos 		timespecclear(&aits->it_value);
    771       1.63   thorpej }
    772       1.63   thorpej 
    773       1.63   thorpej 
    774       1.63   thorpej 
    775       1.63   thorpej /* Set and arm a POSIX realtime timer */
    776       1.63   thorpej int
    777      1.156  christos sys___timer_settime50(struct lwp *l,
    778      1.156  christos     const struct sys___timer_settime50_args *uap,
    779      1.140      yamt     register_t *retval)
    780       1.63   thorpej {
    781      1.135       dsl 	/* {
    782       1.63   thorpej 		syscallarg(timer_t) timerid;
    783       1.63   thorpej 		syscallarg(int) flags;
    784       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    785       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    786      1.135       dsl 	} */
    787       1.92      cube 	int error;
    788       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    789       1.92      cube 
    790       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    791       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    792       1.92      cube 		return (error);
    793       1.92      cube 
    794       1.92      cube 	if (SCARG(uap, ovalue))
    795       1.92      cube 		ovp = &ovalue;
    796       1.92      cube 
    797       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    798       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    799       1.92      cube 		return error;
    800       1.92      cube 
    801       1.92      cube 	if (ovp)
    802       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    803       1.92      cube 		    sizeof(struct itimerspec));
    804       1.92      cube 	return 0;
    805       1.92      cube }
    806       1.92      cube 
    807       1.92      cube int
    808       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    809       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    810       1.92      cube {
    811      1.150  christos 	struct timespec now;
    812      1.150  christos 	struct itimerspec val, oval;
    813      1.142        ad 	struct ptimers *pts;
    814       1.63   thorpej 	struct ptimer *pt;
    815      1.160  christos 	int error;
    816       1.63   thorpej 
    817      1.142        ad 	pts = p->p_timers;
    818       1.63   thorpej 
    819      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    820      1.142        ad 		return EINVAL;
    821      1.150  christos 	val = *value;
    822      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    823      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    824      1.160  christos 		return error;
    825       1.63   thorpej 
    826      1.142        ad 	mutex_spin_enter(&timer_lock);
    827      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    828      1.142        ad 		mutex_spin_exit(&timer_lock);
    829      1.150  christos 		return EINVAL;
    830      1.142        ad 	}
    831      1.142        ad 
    832       1.63   thorpej 	oval = pt->pt_time;
    833       1.63   thorpej 	pt->pt_time = val;
    834       1.63   thorpej 
    835       1.67   nathanw 	/*
    836       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    837       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    838       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    839       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    840       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    841       1.67   nathanw 	 */
    842      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    843      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    844      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    845      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    846      1.168      yamt 					getnanotime(&now);
    847      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    848      1.168      yamt 					getnanouptime(&now);
    849      1.168      yamt 				}
    850      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    851      1.101    kardel 				    &pt->pt_time.it_value);
    852      1.101    kardel 			}
    853       1.67   nathanw 		} else {
    854       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    855      1.150  christos 				getnanotime(&now);
    856      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    857      1.101    kardel 				    &pt->pt_time.it_value);
    858      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    859       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    860       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    861      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    862       1.67   nathanw 				}
    863       1.67   nathanw 			}
    864       1.67   nathanw 		}
    865       1.67   nathanw 	}
    866       1.67   nathanw 
    867       1.63   thorpej 	timer_settime(pt);
    868      1.142        ad 	mutex_spin_exit(&timer_lock);
    869       1.63   thorpej 
    870      1.150  christos 	if (ovalue)
    871      1.150  christos 		*ovalue = oval;
    872       1.63   thorpej 
    873       1.63   thorpej 	return (0);
    874       1.63   thorpej }
    875       1.63   thorpej 
    876       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    877       1.63   thorpej int
    878      1.156  christos sys___timer_gettime50(struct lwp *l,
    879      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    880       1.63   thorpej {
    881      1.135       dsl 	/* {
    882       1.63   thorpej 		syscallarg(timer_t) timerid;
    883       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    884      1.135       dsl 	} */
    885       1.63   thorpej 	struct itimerspec its;
    886       1.92      cube 	int error;
    887       1.92      cube 
    888       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    889       1.92      cube 	    &its)) != 0)
    890       1.92      cube 		return error;
    891       1.92      cube 
    892       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    893       1.92      cube }
    894       1.92      cube 
    895       1.92      cube int
    896       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    897       1.92      cube {
    898       1.63   thorpej 	struct ptimer *pt;
    899      1.142        ad 	struct ptimers *pts;
    900       1.63   thorpej 
    901      1.142        ad 	pts = p->p_timers;
    902      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    903       1.63   thorpej 		return (EINVAL);
    904      1.142        ad 	mutex_spin_enter(&timer_lock);
    905      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    906      1.142        ad 		mutex_spin_exit(&timer_lock);
    907      1.142        ad 		return (EINVAL);
    908      1.142        ad 	}
    909      1.150  christos 	timer_gettime(pt, its);
    910      1.142        ad 	mutex_spin_exit(&timer_lock);
    911       1.63   thorpej 
    912       1.92      cube 	return 0;
    913       1.63   thorpej }
    914       1.63   thorpej 
    915       1.63   thorpej /*
    916       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    917       1.63   thorpej  * while a notification was already pending. The counter is reset when
    918       1.63   thorpej  * a timer expires and a notification can be posted.
    919       1.63   thorpej  */
    920       1.63   thorpej int
    921      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    922      1.140      yamt     register_t *retval)
    923       1.63   thorpej {
    924      1.135       dsl 	/* {
    925       1.63   thorpej 		syscallarg(timer_t) timerid;
    926      1.135       dsl 	} */
    927       1.63   thorpej 	struct proc *p = l->l_proc;
    928      1.142        ad 	struct ptimers *pts;
    929       1.63   thorpej 	int timerid;
    930       1.63   thorpej 	struct ptimer *pt;
    931       1.63   thorpej 
    932       1.63   thorpej 	timerid = SCARG(uap, timerid);
    933       1.63   thorpej 
    934      1.142        ad 	pts = p->p_timers;
    935      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    936      1.142        ad 		return (EINVAL);
    937      1.142        ad 	mutex_spin_enter(&timer_lock);
    938      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    939      1.142        ad 		mutex_spin_exit(&timer_lock);
    940       1.63   thorpej 		return (EINVAL);
    941      1.142        ad 	}
    942       1.63   thorpej 	*retval = pt->pt_poverruns;
    943      1.142        ad 	mutex_spin_exit(&timer_lock);
    944       1.63   thorpej 
    945       1.63   thorpej 	return (0);
    946       1.63   thorpej }
    947       1.63   thorpej 
    948       1.63   thorpej /*
    949       1.63   thorpej  * Real interval timer expired:
    950       1.63   thorpej  * send process whose timer expired an alarm signal.
    951       1.63   thorpej  * If time is not set up to reload, then just return.
    952       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    953       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    954       1.63   thorpej  * SIGALRM calls to be compressed into one.
    955       1.63   thorpej  */
    956       1.63   thorpej void
    957       1.63   thorpej realtimerexpire(void *arg)
    958       1.63   thorpej {
    959      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    960      1.150  christos 	struct timespec now, next;
    961       1.63   thorpej 	struct ptimer *pt;
    962      1.148     joerg 	int backwards;
    963       1.63   thorpej 
    964      1.142        ad 	pt = arg;
    965       1.63   thorpej 
    966      1.142        ad 	mutex_spin_enter(&timer_lock);
    967       1.63   thorpej 	itimerfire(pt);
    968       1.63   thorpej 
    969      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    970      1.150  christos 		timespecclear(&pt->pt_time.it_value);
    971      1.142        ad 		mutex_spin_exit(&timer_lock);
    972       1.63   thorpej 		return;
    973       1.63   thorpej 	}
    974      1.148     joerg 
    975      1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
    976      1.171  christos 		getnanouptime(&now);
    977      1.171  christos 	} else {
    978      1.171  christos 		getnanotime(&now);
    979      1.171  christos 	}
    980      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    981      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    982      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    983      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    984      1.148     joerg 		pt->pt_time.it_value = next;
    985      1.148     joerg 	} else {
    986      1.166      yamt 		now_ns = timespec2ns(&now);
    987      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    988      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    989      1.148     joerg 
    990      1.166      yamt 		next_val = now_ns +
    991      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
    992      1.148     joerg 
    993      1.148     joerg 		if (backwards)
    994      1.148     joerg 			next_val += interval;
    995      1.148     joerg 		else
    996      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
    997      1.148     joerg 
    998      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    999      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1000      1.101    kardel 	}
   1001      1.148     joerg 
   1002      1.148     joerg 	/*
   1003      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1004      1.148     joerg 	 * callout_reset() does it for us.
   1005      1.148     joerg 	 */
   1006      1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1007      1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1008      1.148     joerg 	    realtimerexpire, pt);
   1009      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1010       1.63   thorpej }
   1011       1.63   thorpej 
   1012       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1013       1.63   thorpej /* ARGSUSED */
   1014       1.63   thorpej int
   1015      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1016      1.140      yamt     register_t *retval)
   1017       1.63   thorpej {
   1018      1.135       dsl 	/* {
   1019       1.63   thorpej 		syscallarg(int) which;
   1020       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1021      1.135       dsl 	} */
   1022       1.63   thorpej 	struct proc *p = l->l_proc;
   1023       1.63   thorpej 	struct itimerval aitv;
   1024       1.91      cube 	int error;
   1025       1.91      cube 
   1026       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1027       1.91      cube 	if (error)
   1028       1.91      cube 		return error;
   1029       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1030       1.91      cube }
   1031       1.63   thorpej 
   1032       1.91      cube int
   1033       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1034       1.91      cube {
   1035      1.142        ad 	struct ptimers *pts;
   1036      1.142        ad 	struct ptimer *pt;
   1037      1.150  christos 	struct itimerspec its;
   1038       1.63   thorpej 
   1039      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1040       1.63   thorpej 		return (EINVAL);
   1041       1.63   thorpej 
   1042      1.142        ad 	mutex_spin_enter(&timer_lock);
   1043      1.142        ad 	pts = p->p_timers;
   1044      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1045       1.91      cube 		timerclear(&itvp->it_value);
   1046       1.91      cube 		timerclear(&itvp->it_interval);
   1047      1.150  christos 	} else {
   1048      1.150  christos 		timer_gettime(pt, &its);
   1049      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1050      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1051      1.150  christos 	}
   1052      1.142        ad 	mutex_spin_exit(&timer_lock);
   1053       1.63   thorpej 
   1054       1.91      cube 	return 0;
   1055        1.1       cgd }
   1056        1.1       cgd 
   1057       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1058        1.1       cgd /* ARGSUSED */
   1059        1.3    andrew int
   1060      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1061      1.140      yamt     register_t *retval)
   1062       1.15   thorpej {
   1063      1.135       dsl 	/* {
   1064       1.30   mycroft 		syscallarg(int) which;
   1065       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1066       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1067      1.135       dsl 	} */
   1068       1.63   thorpej 	struct proc *p = l->l_proc;
   1069       1.30   mycroft 	int which = SCARG(uap, which);
   1070      1.156  christos 	struct sys___getitimer50_args getargs;
   1071       1.91      cube 	const struct itimerval *itvp;
   1072        1.1       cgd 	struct itimerval aitv;
   1073       1.91      cube 	int error;
   1074        1.1       cgd 
   1075      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1076        1.1       cgd 		return (EINVAL);
   1077       1.11       cgd 	itvp = SCARG(uap, itv);
   1078       1.63   thorpej 	if (itvp &&
   1079      1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1080        1.1       cgd 		return (error);
   1081       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1082       1.30   mycroft 		SCARG(&getargs, which) = which;
   1083       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1084      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1085       1.21       cgd 			return (error);
   1086       1.21       cgd 	}
   1087        1.1       cgd 	if (itvp == 0)
   1088        1.1       cgd 		return (0);
   1089       1.91      cube 
   1090       1.91      cube 	return dosetitimer(p, which, &aitv);
   1091       1.91      cube }
   1092       1.91      cube 
   1093       1.91      cube int
   1094       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1095       1.91      cube {
   1096      1.150  christos 	struct timespec now;
   1097      1.142        ad 	struct ptimers *pts;
   1098      1.142        ad 	struct ptimer *pt, *spare;
   1099       1.91      cube 
   1100      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1101       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1102        1.1       cgd 		return (EINVAL);
   1103       1.63   thorpej 
   1104       1.63   thorpej 	/*
   1105       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1106       1.63   thorpej 	 * wants to clear the timer.
   1107       1.63   thorpej 	 */
   1108      1.142        ad 	spare = NULL;
   1109      1.142        ad 	pts = p->p_timers;
   1110      1.142        ad  retry:
   1111      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1112      1.142        ad 	    pts->pts_timers[which] == NULL))
   1113       1.63   thorpej 		return (0);
   1114      1.142        ad 	if (pts == NULL)
   1115      1.142        ad 		pts = timers_alloc(p);
   1116      1.142        ad 	mutex_spin_enter(&timer_lock);
   1117      1.142        ad 	pt = pts->pts_timers[which];
   1118      1.142        ad 	if (pt == NULL) {
   1119      1.142        ad 		if (spare == NULL) {
   1120      1.142        ad 			mutex_spin_exit(&timer_lock);
   1121      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1122      1.142        ad 			goto retry;
   1123      1.142        ad 		}
   1124      1.142        ad 		pt = spare;
   1125      1.142        ad 		spare = NULL;
   1126       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1127       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1128       1.63   thorpej 		pt->pt_overruns = 0;
   1129       1.63   thorpej 		pt->pt_proc = p;
   1130       1.63   thorpej 		pt->pt_type = which;
   1131       1.64   nathanw 		pt->pt_entry = which;
   1132      1.142        ad 		pt->pt_queued = false;
   1133      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1134      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1135      1.149  christos 		else
   1136      1.149  christos 			pt->pt_active = 0;
   1137      1.149  christos 
   1138       1.63   thorpej 		switch (which) {
   1139       1.63   thorpej 		case ITIMER_REAL:
   1140      1.170  christos 		case ITIMER_MONOTONIC:
   1141       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1142       1.63   thorpej 			break;
   1143       1.63   thorpej 		case ITIMER_VIRTUAL:
   1144       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1145       1.63   thorpej 			break;
   1146       1.63   thorpej 		case ITIMER_PROF:
   1147       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1148       1.63   thorpej 			break;
   1149        1.1       cgd 		}
   1150      1.142        ad 		pts->pts_timers[which] = pt;
   1151      1.142        ad 	}
   1152       1.63   thorpej 
   1153      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1154      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1155      1.150  christos 
   1156      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1157       1.67   nathanw 		/* Convert to absolute time */
   1158      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1159      1.170  christos 		switch (which) {
   1160      1.170  christos 		case ITIMER_REAL:
   1161      1.170  christos 			getnanotime(&now);
   1162      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1163      1.170  christos 			    &pt->pt_time.it_value);
   1164      1.170  christos 			break;
   1165      1.170  christos 		case ITIMER_MONOTONIC:
   1166      1.170  christos 			getnanouptime(&now);
   1167      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1168      1.170  christos 			    &pt->pt_time.it_value);
   1169      1.170  christos 			break;
   1170      1.170  christos 		default:
   1171      1.170  christos 			break;
   1172      1.170  christos 		}
   1173       1.67   nathanw 	}
   1174       1.63   thorpej 	timer_settime(pt);
   1175      1.142        ad 	mutex_spin_exit(&timer_lock);
   1176      1.142        ad 	if (spare != NULL)
   1177      1.142        ad 		pool_put(&ptimer_pool, spare);
   1178       1.63   thorpej 
   1179        1.1       cgd 	return (0);
   1180        1.1       cgd }
   1181        1.1       cgd 
   1182       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1183      1.142        ad struct ptimers *
   1184       1.63   thorpej timers_alloc(struct proc *p)
   1185       1.63   thorpej {
   1186      1.142        ad 	struct ptimers *pts;
   1187       1.63   thorpej 	int i;
   1188       1.63   thorpej 
   1189      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1190       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1191       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1192       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1193       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1194       1.64   nathanw 	pts->pts_fired = 0;
   1195      1.142        ad 	mutex_spin_enter(&timer_lock);
   1196      1.142        ad 	if (p->p_timers == NULL) {
   1197      1.142        ad 		p->p_timers = pts;
   1198      1.142        ad 		mutex_spin_exit(&timer_lock);
   1199      1.142        ad 		return pts;
   1200      1.142        ad 	}
   1201      1.142        ad 	mutex_spin_exit(&timer_lock);
   1202      1.142        ad 	pool_put(&ptimers_pool, pts);
   1203      1.142        ad 	return p->p_timers;
   1204       1.63   thorpej }
   1205       1.63   thorpej 
   1206        1.1       cgd /*
   1207       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1208       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1209       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1210       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1211       1.63   thorpej  * structure if none of those remain.
   1212        1.1       cgd  */
   1213        1.3    andrew void
   1214       1.63   thorpej timers_free(struct proc *p, int which)
   1215        1.6       cgd {
   1216       1.63   thorpej 	struct ptimers *pts;
   1217      1.142        ad 	struct ptimer *ptn;
   1218      1.150  christos 	struct timespec ts;
   1219      1.142        ad 	int i;
   1220       1.63   thorpej 
   1221      1.142        ad 	if (p->p_timers == NULL)
   1222      1.142        ad 		return;
   1223       1.63   thorpej 
   1224      1.142        ad 	pts = p->p_timers;
   1225      1.142        ad 	mutex_spin_enter(&timer_lock);
   1226      1.142        ad 	if (which == TIMERS_ALL) {
   1227      1.142        ad 		p->p_timers = NULL;
   1228      1.142        ad 		i = 0;
   1229      1.142        ad 	} else {
   1230      1.150  christos 		timespecclear(&ts);
   1231      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1232      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1233      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1234      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1235      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1236      1.149  christos 		}
   1237      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1238      1.142        ad 		if (ptn) {
   1239      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1240      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1241      1.142        ad 			    &ptn->pt_time.it_value);
   1242      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1243      1.142        ad 		}
   1244      1.150  christos 		timespecclear(&ts);
   1245      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1246      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1247      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1248      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1249      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1250      1.149  christos 		}
   1251      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1252      1.142        ad 		if (ptn) {
   1253      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1254      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1255      1.142        ad 			    &ptn->pt_time.it_value);
   1256      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1257       1.63   thorpej 		}
   1258      1.142        ad 		i = 3;
   1259      1.142        ad 	}
   1260      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1261      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1262      1.142        ad 			itimerfree(pts, i);
   1263      1.142        ad 			mutex_spin_enter(&timer_lock);
   1264        1.1       cgd 		}
   1265        1.1       cgd 	}
   1266      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1267      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1268      1.142        ad 		p->p_timers = NULL;
   1269      1.142        ad 		mutex_spin_exit(&timer_lock);
   1270      1.142        ad 		pool_put(&ptimers_pool, pts);
   1271      1.142        ad 	} else
   1272      1.142        ad 		mutex_spin_exit(&timer_lock);
   1273      1.142        ad }
   1274      1.142        ad 
   1275      1.142        ad static void
   1276      1.142        ad itimerfree(struct ptimers *pts, int index)
   1277      1.142        ad {
   1278      1.142        ad 	struct ptimer *pt;
   1279      1.142        ad 
   1280      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1281      1.142        ad 
   1282      1.142        ad 	pt = pts->pts_timers[index];
   1283      1.142        ad 	pts->pts_timers[index] = NULL;
   1284      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1285      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1286      1.167      yamt 	if (pt->pt_queued)
   1287      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1288      1.144        ad 	mutex_spin_exit(&timer_lock);
   1289      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1290      1.149  christos 		callout_destroy(&pt->pt_ch);
   1291      1.142        ad 	pool_put(&ptimer_pool, pt);
   1292        1.1       cgd }
   1293        1.1       cgd 
   1294        1.1       cgd /*
   1295        1.1       cgd  * Decrement an interval timer by a specified number
   1296      1.152  christos  * of nanoseconds, which must be less than a second,
   1297      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1298      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1299        1.8       cgd  * reduce the value reloaded into the timer so that
   1300        1.1       cgd  * the timer does not drift.  This routine assumes
   1301        1.1       cgd  * that it is called in a context where the timers
   1302        1.1       cgd  * on which it is operating cannot change in value.
   1303        1.1       cgd  */
   1304      1.142        ad static int
   1305      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1306       1.63   thorpej {
   1307      1.150  christos 	struct itimerspec *itp;
   1308        1.1       cgd 
   1309      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1310      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1311      1.142        ad 
   1312       1.63   thorpej 	itp = &pt->pt_time;
   1313      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1314        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1315        1.1       cgd 			/* expired, and already in next interval */
   1316      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1317        1.1       cgd 			goto expire;
   1318        1.1       cgd 		}
   1319      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1320        1.1       cgd 		itp->it_value.tv_sec--;
   1321        1.1       cgd 	}
   1322      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1323      1.152  christos 	nsec = 0;
   1324      1.150  christos 	if (timespecisset(&itp->it_value))
   1325        1.1       cgd 		return (1);
   1326        1.1       cgd 	/* expired, exactly at end of interval */
   1327        1.1       cgd expire:
   1328      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1329        1.1       cgd 		itp->it_value = itp->it_interval;
   1330      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1331      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1332      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1333        1.1       cgd 			itp->it_value.tv_sec--;
   1334        1.1       cgd 		}
   1335       1.63   thorpej 		timer_settime(pt);
   1336        1.1       cgd 	} else
   1337      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1338        1.1       cgd 	return (0);
   1339       1.42       cgd }
   1340       1.42       cgd 
   1341      1.142        ad static void
   1342       1.63   thorpej itimerfire(struct ptimer *pt)
   1343       1.63   thorpej {
   1344       1.78        cl 
   1345      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1346      1.142        ad 
   1347      1.142        ad 	/*
   1348      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1349      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1350      1.142        ad 	 */
   1351      1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1352      1.142        ad 		return;
   1353      1.172     rmind 	}
   1354      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1355      1.142        ad 	pt->pt_queued = true;
   1356      1.142        ad 	softint_schedule(timer_sih);
   1357      1.142        ad }
   1358      1.142        ad 
   1359      1.142        ad void
   1360      1.142        ad timer_tick(lwp_t *l, bool user)
   1361      1.142        ad {
   1362      1.142        ad 	struct ptimers *pts;
   1363      1.142        ad 	struct ptimer *pt;
   1364      1.142        ad 	proc_t *p;
   1365      1.142        ad 
   1366      1.142        ad 	p = l->l_proc;
   1367      1.142        ad 	if (p->p_timers == NULL)
   1368      1.142        ad 		return;
   1369      1.142        ad 
   1370      1.142        ad 	mutex_spin_enter(&timer_lock);
   1371      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1372       1.63   thorpej 		/*
   1373      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1374       1.63   thorpej 		 */
   1375      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1376      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1377      1.142        ad 				itimerfire(pt);
   1378      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1379      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1380      1.142        ad 				itimerfire(pt);
   1381      1.142        ad 	}
   1382      1.142        ad 	mutex_spin_exit(&timer_lock);
   1383      1.142        ad }
   1384      1.142        ad 
   1385      1.142        ad static void
   1386      1.142        ad timer_intr(void *cookie)
   1387      1.142        ad {
   1388      1.142        ad 	ksiginfo_t ksi;
   1389      1.142        ad 	struct ptimer *pt;
   1390      1.142        ad 	proc_t *p;
   1391      1.142        ad 
   1392      1.158        ad 	mutex_enter(proc_lock);
   1393      1.142        ad 	mutex_spin_enter(&timer_lock);
   1394      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1395      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1396      1.142        ad 		KASSERT(pt->pt_queued);
   1397      1.142        ad 		pt->pt_queued = false;
   1398      1.142        ad 
   1399      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1400      1.154  wrstuden 			/* Process is dying. */
   1401      1.142        ad 			continue;
   1402      1.154  wrstuden 		}
   1403      1.142        ad 		p = pt->pt_proc;
   1404      1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1405      1.142        ad 			continue;
   1406      1.142        ad 		}
   1407      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1408       1.63   thorpej 			pt->pt_overruns++;
   1409      1.142        ad 			continue;
   1410       1.64   nathanw 		}
   1411      1.142        ad 
   1412      1.142        ad 		KSI_INIT(&ksi);
   1413      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1414      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1415      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1416      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1417      1.142        ad 		pt->pt_overruns = 0;
   1418      1.142        ad 		mutex_spin_exit(&timer_lock);
   1419      1.142        ad 		kpsignal(p, &ksi, NULL);
   1420      1.142        ad 		mutex_spin_enter(&timer_lock);
   1421       1.63   thorpej 	}
   1422      1.142        ad 	mutex_spin_exit(&timer_lock);
   1423      1.158        ad 	mutex_exit(proc_lock);
   1424       1.63   thorpej }
   1425      1.162      elad 
   1426      1.162      elad /*
   1427      1.162      elad  * Check if the time will wrap if set to ts.
   1428      1.162      elad  *
   1429      1.162      elad  * ts - timespec describing the new time
   1430      1.162      elad  * delta - the delta between the current time and ts
   1431      1.162      elad  */
   1432      1.162      elad bool
   1433      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1434      1.162      elad {
   1435      1.162      elad 
   1436      1.162      elad 	/*
   1437      1.162      elad 	 * Don't allow the time to be set forward so far it
   1438      1.162      elad 	 * will wrap and become negative, thus allowing an
   1439      1.162      elad 	 * attacker to bypass the next check below.  The
   1440      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1441      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1442      1.162      elad 	 * past the cutoff, it will take a very long time
   1443      1.162      elad 	 * to get to the wrap point.
   1444      1.162      elad 	 */
   1445      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1446      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1447      1.162      elad 		return true;
   1448      1.162      elad 
   1449      1.162      elad 	return false;
   1450      1.162      elad }
   1451