Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.175
      1  1.175  christos /*	$NetBSD: kern_time.c,v 1.175 2012/10/02 01:44:28 christos Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8  1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  *
     19   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30   1.42       cgd  */
     31    1.9       cgd 
     32    1.1       cgd /*
     33    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37    1.1       cgd  * modification, are permitted provided that the following conditions
     38    1.1       cgd  * are met:
     39    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45    1.1       cgd  *    may be used to endorse or promote products derived from this software
     46    1.1       cgd  *    without specific prior written permission.
     47    1.1       cgd  *
     48    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58    1.1       cgd  * SUCH DAMAGE.
     59    1.1       cgd  *
     60   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61    1.1       cgd  */
     62   1.58     lukem 
     63   1.58     lukem #include <sys/cdefs.h>
     64  1.175  christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.175 2012/10/02 01:44:28 christos Exp $");
     65    1.1       cgd 
     66    1.5   mycroft #include <sys/param.h>
     67    1.5   mycroft #include <sys/resourcevar.h>
     68    1.5   mycroft #include <sys/kernel.h>
     69    1.8       cgd #include <sys/systm.h>
     70    1.5   mycroft #include <sys/proc.h>
     71    1.8       cgd #include <sys/vnode.h>
     72   1.17  christos #include <sys/signalvar.h>
     73   1.25     perry #include <sys/syslog.h>
     74  1.101    kardel #include <sys/timetc.h>
     75  1.143        ad #include <sys/timex.h>
     76   1.99      elad #include <sys/kauth.h>
     77   1.11       cgd #include <sys/mount.h>
     78   1.11       cgd #include <sys/syscallargs.h>
     79  1.143        ad #include <sys/cpu.h>
     80   1.19  christos 
     81  1.142        ad static void	timer_intr(void *);
     82  1.142        ad static void	itimerfire(struct ptimer *);
     83  1.142        ad static void	itimerfree(struct ptimers *, int);
     84  1.142        ad 
     85  1.142        ad kmutex_t	timer_lock;
     86  1.142        ad 
     87  1.142        ad static void	*timer_sih;
     88  1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89  1.131        ad 
     90  1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91   1.97    simonb 
     92  1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93  1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94  1.168      yamt 
     95  1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96  1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97  1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98  1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99  1.168      yamt 
    100  1.131        ad /*
    101  1.131        ad  * Initialize timekeeping.
    102  1.131        ad  */
    103  1.131        ad void
    104  1.131        ad time_init(void)
    105  1.131        ad {
    106  1.131        ad 
    107  1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108  1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109  1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110  1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111  1.131        ad }
    112  1.131        ad 
    113  1.142        ad void
    114  1.142        ad time_init2(void)
    115  1.142        ad {
    116  1.142        ad 
    117  1.142        ad 	TAILQ_INIT(&timer_queue);
    118  1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119  1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120  1.142        ad 	    timer_intr, NULL);
    121  1.142        ad }
    122  1.142        ad 
    123   1.63   thorpej /* Time of day and interval timer support.
    124    1.1       cgd  *
    125    1.1       cgd  * These routines provide the kernel entry points to get and set
    126    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    127    1.1       cgd  * here provide support for adding and subtracting timeval structures
    128    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    129    1.1       cgd  * timers when they expire.
    130    1.1       cgd  */
    131    1.1       cgd 
    132   1.22       jtc /* This function is used by clock_settime and settimeofday */
    133  1.132      elad static int
    134  1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135   1.22       jtc {
    136  1.156  christos 	struct timespec delta, now;
    137  1.129        ad 	int s;
    138   1.22       jtc 
    139   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140  1.129        ad 	s = splclock();
    141  1.156  christos 	nanotime(&now);
    142  1.156  christos 	timespecsub(ts, &now, &delta);
    143  1.132      elad 
    144  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145  1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146  1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147  1.129        ad 		splx(s);
    148   1.29       tls 		return (EPERM);
    149   1.55      tron 	}
    150  1.132      elad 
    151   1.29       tls #ifdef notyet
    152  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153  1.129        ad 		splx(s);
    154   1.29       tls 		return (EPERM);
    155   1.55      tron 	}
    156   1.29       tls #endif
    157  1.103    kardel 
    158  1.156  christos 	tc_setclock(ts);
    159  1.103    kardel 
    160  1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161  1.103    kardel 
    162   1.22       jtc 	resettodr();
    163  1.129        ad 	splx(s);
    164  1.129        ad 
    165   1.29       tls 	return (0);
    166   1.22       jtc }
    167   1.22       jtc 
    168  1.132      elad int
    169  1.132      elad settime(struct proc *p, struct timespec *ts)
    170  1.132      elad {
    171  1.132      elad 	return (settime1(p, ts, true));
    172  1.132      elad }
    173  1.132      elad 
    174   1.22       jtc /* ARGSUSED */
    175   1.22       jtc int
    176  1.156  christos sys___clock_gettime50(struct lwp *l,
    177  1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178   1.22       jtc {
    179  1.135       dsl 	/* {
    180   1.22       jtc 		syscallarg(clockid_t) clock_id;
    181   1.23       cgd 		syscallarg(struct timespec *) tp;
    182  1.135       dsl 	} */
    183  1.165     njoly 	int error;
    184   1.22       jtc 	struct timespec ats;
    185   1.22       jtc 
    186  1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187  1.165     njoly 	if (error != 0)
    188  1.165     njoly 		return error;
    189  1.165     njoly 
    190  1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191  1.165     njoly }
    192  1.165     njoly 
    193  1.165     njoly int
    194  1.165     njoly clock_gettime1(clockid_t clock_id, struct timespec *ts)
    195  1.165     njoly {
    196  1.165     njoly 
    197   1.61    simonb 	switch (clock_id) {
    198   1.61    simonb 	case CLOCK_REALTIME:
    199  1.165     njoly 		nanotime(ts);
    200   1.61    simonb 		break;
    201   1.61    simonb 	case CLOCK_MONOTONIC:
    202  1.165     njoly 		nanouptime(ts);
    203   1.61    simonb 		break;
    204   1.61    simonb 	default:
    205  1.165     njoly 		return EINVAL;
    206   1.61    simonb 	}
    207   1.22       jtc 
    208  1.165     njoly 	return 0;
    209   1.22       jtc }
    210   1.22       jtc 
    211   1.22       jtc /* ARGSUSED */
    212   1.22       jtc int
    213  1.156  christos sys___clock_settime50(struct lwp *l,
    214  1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    215   1.22       jtc {
    216  1.135       dsl 	/* {
    217   1.22       jtc 		syscallarg(clockid_t) clock_id;
    218   1.23       cgd 		syscallarg(const struct timespec *) tp;
    219  1.135       dsl 	} */
    220  1.156  christos 	int error;
    221  1.156  christos 	struct timespec ats;
    222   1.22       jtc 
    223  1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    224  1.156  christos 		return error;
    225  1.156  christos 
    226  1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    227   1.56      manu }
    228   1.56      manu 
    229   1.56      manu 
    230   1.56      manu int
    231  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    232  1.132      elad     bool check_kauth)
    233   1.56      manu {
    234   1.56      manu 	int error;
    235   1.56      manu 
    236   1.61    simonb 	switch (clock_id) {
    237   1.61    simonb 	case CLOCK_REALTIME:
    238  1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    239   1.61    simonb 			return (error);
    240   1.61    simonb 		break;
    241   1.61    simonb 	case CLOCK_MONOTONIC:
    242   1.61    simonb 		return (EINVAL);	/* read-only clock */
    243   1.61    simonb 	default:
    244   1.56      manu 		return (EINVAL);
    245   1.61    simonb 	}
    246   1.22       jtc 
    247   1.22       jtc 	return 0;
    248   1.22       jtc }
    249   1.22       jtc 
    250   1.22       jtc int
    251  1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    252  1.140      yamt     register_t *retval)
    253   1.22       jtc {
    254  1.135       dsl 	/* {
    255   1.22       jtc 		syscallarg(clockid_t) clock_id;
    256   1.23       cgd 		syscallarg(struct timespec *) tp;
    257  1.135       dsl 	} */
    258   1.22       jtc 	struct timespec ts;
    259   1.22       jtc 	int error = 0;
    260   1.22       jtc 
    261  1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    262  1.164     njoly 		return error;
    263  1.164     njoly 
    264  1.164     njoly 	if (SCARG(uap, tp))
    265  1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    266  1.164     njoly 
    267  1.164     njoly 	return error;
    268  1.164     njoly }
    269  1.164     njoly 
    270  1.164     njoly int
    271  1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    272  1.164     njoly {
    273  1.164     njoly 
    274   1.61    simonb 	switch (clock_id) {
    275   1.61    simonb 	case CLOCK_REALTIME:
    276   1.61    simonb 	case CLOCK_MONOTONIC:
    277  1.164     njoly 		ts->tv_sec = 0;
    278  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    279  1.164     njoly 			ts->tv_nsec = 1;
    280  1.102    kardel 		else
    281  1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    282   1.61    simonb 		break;
    283   1.61    simonb 	default:
    284  1.164     njoly 		return EINVAL;
    285   1.61    simonb 	}
    286   1.22       jtc 
    287  1.164     njoly 	return 0;
    288   1.22       jtc }
    289   1.22       jtc 
    290   1.27       jtc /* ARGSUSED */
    291   1.27       jtc int
    292  1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    293  1.140      yamt     register_t *retval)
    294   1.27       jtc {
    295  1.135       dsl 	/* {
    296  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    297  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    298  1.135       dsl 	} */
    299  1.101    kardel 	struct timespec rmt, rqt;
    300  1.120       dsl 	int error, error1;
    301  1.101    kardel 
    302  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    303  1.101    kardel 	if (error)
    304  1.101    kardel 		return (error);
    305  1.101    kardel 
    306  1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    307  1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    308  1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    309  1.175  christos 		return error;
    310  1.175  christos 
    311  1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    312  1.175  christos 	return error1 ? error1 : error;
    313  1.175  christos }
    314  1.175  christos 
    315  1.175  christos /* ARGSUSED */
    316  1.175  christos int
    317  1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    318  1.175  christos     register_t *retval)
    319  1.175  christos {
    320  1.175  christos 	/* {
    321  1.175  christos 		syscallarg(clockid_t) clock_id;
    322  1.175  christos 		syscallarg(int) flags;
    323  1.175  christos 		syscallarg(struct timespec *) rqtp;
    324  1.175  christos 		syscallarg(struct timespec *) rmtp;
    325  1.175  christos 	} */
    326  1.175  christos 	struct timespec rmt, rqt;
    327  1.175  christos 	int error, error1;
    328  1.175  christos 
    329  1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    330  1.175  christos 	if (error)
    331  1.175  christos 		return (error);
    332  1.175  christos 
    333  1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    334  1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    335  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    336  1.120       dsl 		return error;
    337  1.120       dsl 
    338  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    339  1.120       dsl 	return error1 ? error1 : error;
    340  1.120       dsl }
    341  1.120       dsl 
    342  1.120       dsl int
    343  1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    344  1.175  christos     struct timespec *rmt)
    345  1.120       dsl {
    346  1.141      yamt 	struct timespec rmtstart;
    347  1.120       dsl 	int error, timo;
    348  1.120       dsl 
    349  1.175  christos 	if ((error = clock_gettime1(clock_id, &rmtstart)) != 0)
    350  1.175  christos 		return ENOTSUP;
    351  1.175  christos 
    352  1.175  christos 	if (flags & TIMER_ABSTIME)
    353  1.175  christos 		timespecsub(rqt, &rmtstart, rqt);
    354  1.175  christos 
    355  1.160  christos 	if ((error = itimespecfix(rqt)) != 0)
    356  1.160  christos 		return error;
    357  1.101    kardel 
    358  1.120       dsl 	timo = tstohz(rqt);
    359  1.101    kardel 	/*
    360  1.175  christos 	 * Avoid inadvertently sleeping forever
    361  1.101    kardel 	 */
    362  1.101    kardel 	if (timo == 0)
    363  1.101    kardel 		timo = 1;
    364  1.141      yamt again:
    365  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    366  1.141      yamt 	if (rmt != NULL || error == 0) {
    367  1.141      yamt 		struct timespec rmtend;
    368  1.141      yamt 		struct timespec t0;
    369  1.141      yamt 		struct timespec *t;
    370  1.101    kardel 
    371  1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    372  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    373  1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    374  1.141      yamt 		timespecsub(rqt, t, t);
    375  1.141      yamt 		if (t->tv_sec < 0)
    376  1.141      yamt 			timespecclear(t);
    377  1.141      yamt 		if (error == 0) {
    378  1.141      yamt 			timo = tstohz(t);
    379  1.141      yamt 			if (timo > 0)
    380  1.141      yamt 				goto again;
    381  1.141      yamt 		}
    382  1.141      yamt 	}
    383  1.104    kardel 
    384  1.101    kardel 	if (error == ERESTART)
    385  1.101    kardel 		error = EINTR;
    386  1.101    kardel 	if (error == EWOULDBLOCK)
    387  1.101    kardel 		error = 0;
    388  1.101    kardel 
    389  1.101    kardel 	return error;
    390   1.27       jtc }
    391   1.22       jtc 
    392    1.1       cgd /* ARGSUSED */
    393    1.3    andrew int
    394  1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    395  1.140      yamt     register_t *retval)
    396   1.15   thorpej {
    397  1.135       dsl 	/* {
    398   1.11       cgd 		syscallarg(struct timeval *) tp;
    399  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    400  1.135       dsl 	} */
    401    1.1       cgd 	struct timeval atv;
    402    1.1       cgd 	int error = 0;
    403   1.25     perry 	struct timezone tzfake;
    404    1.1       cgd 
    405   1.11       cgd 	if (SCARG(uap, tp)) {
    406    1.1       cgd 		microtime(&atv);
    407   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    408   1.17  christos 		if (error)
    409    1.1       cgd 			return (error);
    410    1.1       cgd 	}
    411   1.25     perry 	if (SCARG(uap, tzp)) {
    412   1.25     perry 		/*
    413   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    414   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    415   1.25     perry 		 */
    416   1.25     perry 		tzfake.tz_minuteswest = 0;
    417   1.25     perry 		tzfake.tz_dsttime = 0;
    418   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    419   1.25     perry 	}
    420    1.1       cgd 	return (error);
    421    1.1       cgd }
    422    1.1       cgd 
    423    1.1       cgd /* ARGSUSED */
    424    1.3    andrew int
    425  1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    426  1.140      yamt     register_t *retval)
    427   1.15   thorpej {
    428  1.135       dsl 	/* {
    429   1.24       cgd 		syscallarg(const struct timeval *) tv;
    430  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    431  1.135       dsl 	} */
    432   1.60      manu 
    433  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    434   1.60      manu }
    435   1.60      manu 
    436   1.60      manu int
    437  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    438  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    439   1.60      manu {
    440   1.22       jtc 	struct timeval atv;
    441   1.98  christos 	struct timespec ts;
    442   1.22       jtc 	int error;
    443    1.1       cgd 
    444    1.8       cgd 	/* Verify all parameters before changing time. */
    445  1.119       dsl 
    446   1.25     perry 	/*
    447   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    448   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    449   1.25     perry 	 */
    450   1.98  christos 	if (utzp)
    451   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    452  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    453   1.98  christos 
    454   1.98  christos 	if (utv == NULL)
    455   1.98  christos 		return 0;
    456   1.98  christos 
    457  1.119       dsl 	if (userspace) {
    458  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    459  1.119       dsl 			return error;
    460  1.119       dsl 		utv = &atv;
    461  1.119       dsl 	}
    462  1.119       dsl 
    463  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    464  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    465    1.1       cgd }
    466    1.1       cgd 
    467   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    468    1.1       cgd 
    469    1.1       cgd /* ARGSUSED */
    470    1.3    andrew int
    471  1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    472  1.140      yamt     register_t *retval)
    473   1.15   thorpej {
    474  1.135       dsl 	/* {
    475   1.24       cgd 		syscallarg(const struct timeval *) delta;
    476   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    477  1.135       dsl 	} */
    478  1.156  christos 	int error = 0;
    479  1.156  christos 	struct timeval atv, oldatv;
    480    1.1       cgd 
    481  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    482  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    483  1.156  christos 		return error;
    484   1.17  christos 
    485  1.156  christos 	if (SCARG(uap, delta)) {
    486  1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    487  1.156  christos 		    sizeof(*SCARG(uap, delta)));
    488  1.156  christos 		if (error)
    489  1.156  christos 			return (error);
    490  1.156  christos 	}
    491  1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    492  1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    493  1.156  christos 	if (SCARG(uap, olddelta))
    494  1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    495  1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    496  1.156  christos 	return error;
    497   1.56      manu }
    498   1.56      manu 
    499  1.156  christos void
    500  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    501   1.56      manu {
    502  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    503  1.101    kardel 
    504  1.101    kardel 	if (olddelta) {
    505  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    506  1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    507  1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    508  1.156  christos 		if (olddelta->tv_usec < 0) {
    509  1.156  christos 			olddelta->tv_usec += 1000000;
    510  1.156  christos 			olddelta->tv_sec--;
    511  1.101    kardel 		}
    512  1.157  christos 		mutex_spin_exit(&timecounter_lock);
    513  1.101    kardel 	}
    514  1.101    kardel 
    515  1.101    kardel 	if (delta) {
    516  1.156  christos 		mutex_spin_enter(&timecounter_lock);
    517  1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    518  1.101    kardel 
    519  1.143        ad 		if (time_adjtime) {
    520  1.101    kardel 			/* We need to save the system time during shutdown */
    521  1.101    kardel 			time_adjusted |= 1;
    522  1.143        ad 		}
    523  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    524  1.101    kardel 	}
    525    1.1       cgd }
    526    1.1       cgd 
    527    1.1       cgd /*
    528   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    529   1.63   thorpej  * timer_*() family of routines are supported.
    530    1.1       cgd  *
    531   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    532   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    533   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    534  1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    535  1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    536  1.170  christos  * allocated by the timer_create() syscall.
    537    1.1       cgd  *
    538   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    539   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    540    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    541   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    542   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    543   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    544   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    545   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    546   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    547   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    548   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    549   1.63   thorpej 
    550   1.63   thorpej /* Allocate a POSIX realtime timer. */
    551   1.63   thorpej int
    552  1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    553  1.140      yamt     register_t *retval)
    554   1.63   thorpej {
    555  1.135       dsl 	/* {
    556   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    557   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    558   1.63   thorpej 		syscallarg(timer_t *) timerid;
    559  1.135       dsl 	} */
    560   1.92      cube 
    561   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    562  1.105        ad 	    SCARG(uap, evp), copyin, l);
    563   1.92      cube }
    564   1.92      cube 
    565   1.92      cube int
    566   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    567  1.105        ad     copyin_t fetch_event, struct lwp *l)
    568   1.92      cube {
    569   1.92      cube 	int error;
    570   1.92      cube 	timer_t timerid;
    571  1.142        ad 	struct ptimers *pts;
    572   1.63   thorpej 	struct ptimer *pt;
    573  1.105        ad 	struct proc *p;
    574  1.105        ad 
    575  1.105        ad 	p = l->l_proc;
    576   1.63   thorpej 
    577  1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    578   1.63   thorpej 		return (EINVAL);
    579   1.63   thorpej 
    580  1.142        ad 	if ((pts = p->p_timers) == NULL)
    581  1.142        ad 		pts = timers_alloc(p);
    582   1.63   thorpej 
    583   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    584  1.142        ad 	if (evp != NULL) {
    585   1.63   thorpej 		if (((error =
    586   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    587   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    588  1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    589  1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    590  1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    591  1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    592   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    593   1.63   thorpej 			return (error ? error : EINVAL);
    594   1.63   thorpej 		}
    595  1.142        ad 	}
    596  1.142        ad 
    597  1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    598  1.142        ad 	mutex_spin_enter(&timer_lock);
    599  1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    600  1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    601  1.142        ad 			break;
    602  1.142        ad 	if (timerid == TIMER_MAX) {
    603  1.142        ad 		mutex_spin_exit(&timer_lock);
    604  1.142        ad 		pool_put(&ptimer_pool, pt);
    605  1.142        ad 		return EAGAIN;
    606  1.142        ad 	}
    607  1.142        ad 	if (evp == NULL) {
    608   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    609   1.63   thorpej 		switch (id) {
    610   1.63   thorpej 		case CLOCK_REALTIME:
    611  1.168      yamt 		case CLOCK_MONOTONIC:
    612   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    613   1.63   thorpej 			break;
    614   1.63   thorpej 		case CLOCK_VIRTUAL:
    615   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    616   1.63   thorpej 			break;
    617   1.63   thorpej 		case CLOCK_PROF:
    618   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    619   1.63   thorpej 			break;
    620   1.63   thorpej 		}
    621   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    622   1.63   thorpej 	}
    623   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    624   1.73  christos 	pt->pt_info.ksi_errno = 0;
    625   1.73  christos 	pt->pt_info.ksi_code = 0;
    626   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    627  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    628  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    629   1.63   thorpej 	pt->pt_type = id;
    630   1.63   thorpej 	pt->pt_proc = p;
    631   1.63   thorpej 	pt->pt_overruns = 0;
    632   1.63   thorpej 	pt->pt_poverruns = 0;
    633   1.64   nathanw 	pt->pt_entry = timerid;
    634  1.142        ad 	pt->pt_queued = false;
    635  1.150  christos 	timespecclear(&pt->pt_time.it_value);
    636  1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    637  1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    638  1.149  christos 	else
    639  1.149  christos 		pt->pt_active = 0;
    640  1.149  christos 
    641  1.142        ad 	pts->pts_timers[timerid] = pt;
    642  1.142        ad 	mutex_spin_exit(&timer_lock);
    643   1.63   thorpej 
    644   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    645   1.63   thorpej }
    646   1.63   thorpej 
    647   1.63   thorpej /* Delete a POSIX realtime timer */
    648    1.3    andrew int
    649  1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    650  1.140      yamt     register_t *retval)
    651   1.15   thorpej {
    652  1.135       dsl 	/* {
    653   1.63   thorpej 		syscallarg(timer_t) timerid;
    654  1.135       dsl 	} */
    655   1.63   thorpej 	struct proc *p = l->l_proc;
    656   1.65  jdolecek 	timer_t timerid;
    657  1.142        ad 	struct ptimers *pts;
    658   1.63   thorpej 	struct ptimer *pt, *ptn;
    659    1.1       cgd 
    660   1.63   thorpej 	timerid = SCARG(uap, timerid);
    661  1.142        ad 	pts = p->p_timers;
    662  1.142        ad 
    663  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    664  1.142        ad 		return (EINVAL);
    665   1.63   thorpej 
    666  1.142        ad 	mutex_spin_enter(&timer_lock);
    667  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    668  1.142        ad 		mutex_spin_exit(&timer_lock);
    669    1.1       cgd 		return (EINVAL);
    670  1.142        ad 	}
    671  1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    672  1.149  christos 		if (pt->pt_active) {
    673  1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    674  1.149  christos 			LIST_REMOVE(pt, pt_list);
    675  1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    676  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    677  1.149  christos 				    &ptn->pt_time.it_value,
    678  1.149  christos 				    &ptn->pt_time.it_value);
    679  1.149  christos 			pt->pt_active = 0;
    680  1.149  christos 		}
    681   1.63   thorpej 	}
    682  1.142        ad 	itimerfree(pts, timerid);
    683   1.63   thorpej 
    684   1.63   thorpej 	return (0);
    685   1.63   thorpej }
    686   1.63   thorpej 
    687   1.63   thorpej /*
    688   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    689  1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    690  1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    691   1.63   thorpej  */
    692   1.63   thorpej void
    693   1.63   thorpej timer_settime(struct ptimer *pt)
    694   1.63   thorpej {
    695   1.63   thorpej 	struct ptimer *ptn, *pptn;
    696   1.63   thorpej 	struct ptlist *ptl;
    697   1.63   thorpej 
    698  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    699  1.142        ad 
    700  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    701  1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    702  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    703   1.63   thorpej 			/*
    704  1.150  christos 			 * Don't need to check tshzto() return value, here.
    705   1.63   thorpej 			 * callout_reset() does it for us.
    706   1.63   thorpej 			 */
    707  1.171  christos 			callout_reset(&pt->pt_ch,
    708  1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    709  1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    710  1.171  christos 			    tshzto(&pt->pt_time.it_value),
    711   1.63   thorpej 			    realtimerexpire, pt);
    712   1.63   thorpej 		}
    713   1.63   thorpej 	} else {
    714   1.63   thorpej 		if (pt->pt_active) {
    715   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    716   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    717   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    718  1.150  christos 				timespecadd(&pt->pt_time.it_value,
    719   1.63   thorpej 				    &ptn->pt_time.it_value,
    720   1.63   thorpej 				    &ptn->pt_time.it_value);
    721   1.63   thorpej 		}
    722  1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    723   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    724   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    725   1.63   thorpej 			else
    726   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    727   1.63   thorpej 
    728   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    729  1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    730   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    731   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    732  1.150  christos 				timespecsub(&pt->pt_time.it_value,
    733   1.63   thorpej 				    &ptn->pt_time.it_value,
    734   1.63   thorpej 				    &pt->pt_time.it_value);
    735   1.63   thorpej 
    736   1.63   thorpej 			if (pptn)
    737   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    738   1.63   thorpej 			else
    739   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    740   1.63   thorpej 
    741   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    742  1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    743   1.63   thorpej 				    &pt->pt_time.it_value,
    744   1.63   thorpej 				    &ptn->pt_time.it_value);
    745   1.63   thorpej 
    746   1.63   thorpej 			pt->pt_active = 1;
    747   1.63   thorpej 		} else
    748   1.63   thorpej 			pt->pt_active = 0;
    749   1.63   thorpej 	}
    750   1.63   thorpej }
    751   1.63   thorpej 
    752   1.63   thorpej void
    753  1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    754   1.63   thorpej {
    755  1.150  christos 	struct timespec now;
    756   1.63   thorpej 	struct ptimer *ptn;
    757   1.63   thorpej 
    758  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    759  1.142        ad 
    760  1.150  christos 	*aits = pt->pt_time;
    761  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    762    1.1       cgd 		/*
    763   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    764   1.63   thorpej 		 * part of real time timer.  If time for real time
    765   1.63   thorpej 		 * timer has passed return 0, else return difference
    766   1.63   thorpej 		 * between current time and time for the timer to go
    767   1.63   thorpej 		 * off.
    768    1.1       cgd 		 */
    769  1.150  christos 		if (timespecisset(&aits->it_value)) {
    770  1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    771  1.168      yamt 				getnanotime(&now);
    772  1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    773  1.168      yamt 				getnanouptime(&now);
    774  1.168      yamt 			}
    775  1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    776  1.150  christos 				timespecclear(&aits->it_value);
    777  1.101    kardel 			else
    778  1.150  christos 				timespecsub(&aits->it_value, &now,
    779  1.150  christos 				    &aits->it_value);
    780   1.36   thorpej 		}
    781   1.63   thorpej 	} else if (pt->pt_active) {
    782   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    783   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    784   1.63   thorpej 		else
    785   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    786   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    787  1.150  christos 			timespecadd(&aits->it_value,
    788  1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    789   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    790    1.1       cgd 	} else
    791  1.150  christos 		timespecclear(&aits->it_value);
    792   1.63   thorpej }
    793   1.63   thorpej 
    794   1.63   thorpej 
    795   1.63   thorpej 
    796   1.63   thorpej /* Set and arm a POSIX realtime timer */
    797   1.63   thorpej int
    798  1.156  christos sys___timer_settime50(struct lwp *l,
    799  1.156  christos     const struct sys___timer_settime50_args *uap,
    800  1.140      yamt     register_t *retval)
    801   1.63   thorpej {
    802  1.135       dsl 	/* {
    803   1.63   thorpej 		syscallarg(timer_t) timerid;
    804   1.63   thorpej 		syscallarg(int) flags;
    805   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    806   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    807  1.135       dsl 	} */
    808   1.92      cube 	int error;
    809   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    810   1.92      cube 
    811   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    812   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    813   1.92      cube 		return (error);
    814   1.92      cube 
    815   1.92      cube 	if (SCARG(uap, ovalue))
    816   1.92      cube 		ovp = &ovalue;
    817   1.92      cube 
    818   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    819   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    820   1.92      cube 		return error;
    821   1.92      cube 
    822   1.92      cube 	if (ovp)
    823   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    824   1.92      cube 		    sizeof(struct itimerspec));
    825   1.92      cube 	return 0;
    826   1.92      cube }
    827   1.92      cube 
    828   1.92      cube int
    829   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    830   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    831   1.92      cube {
    832  1.150  christos 	struct timespec now;
    833  1.150  christos 	struct itimerspec val, oval;
    834  1.142        ad 	struct ptimers *pts;
    835   1.63   thorpej 	struct ptimer *pt;
    836  1.160  christos 	int error;
    837   1.63   thorpej 
    838  1.142        ad 	pts = p->p_timers;
    839   1.63   thorpej 
    840  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    841  1.142        ad 		return EINVAL;
    842  1.150  christos 	val = *value;
    843  1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    844  1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    845  1.160  christos 		return error;
    846   1.63   thorpej 
    847  1.142        ad 	mutex_spin_enter(&timer_lock);
    848  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    849  1.142        ad 		mutex_spin_exit(&timer_lock);
    850  1.150  christos 		return EINVAL;
    851  1.142        ad 	}
    852  1.142        ad 
    853   1.63   thorpej 	oval = pt->pt_time;
    854   1.63   thorpej 	pt->pt_time = val;
    855   1.63   thorpej 
    856   1.67   nathanw 	/*
    857   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    858   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    859   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    860   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    861   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    862   1.67   nathanw 	 */
    863  1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    864  1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    865  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    866  1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    867  1.168      yamt 					getnanotime(&now);
    868  1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    869  1.168      yamt 					getnanouptime(&now);
    870  1.168      yamt 				}
    871  1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    872  1.101    kardel 				    &pt->pt_time.it_value);
    873  1.101    kardel 			}
    874   1.67   nathanw 		} else {
    875   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    876  1.150  christos 				getnanotime(&now);
    877  1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    878  1.101    kardel 				    &pt->pt_time.it_value);
    879  1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    880   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    881   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    882  1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    883   1.67   nathanw 				}
    884   1.67   nathanw 			}
    885   1.67   nathanw 		}
    886   1.67   nathanw 	}
    887   1.67   nathanw 
    888   1.63   thorpej 	timer_settime(pt);
    889  1.142        ad 	mutex_spin_exit(&timer_lock);
    890   1.63   thorpej 
    891  1.150  christos 	if (ovalue)
    892  1.150  christos 		*ovalue = oval;
    893   1.63   thorpej 
    894   1.63   thorpej 	return (0);
    895   1.63   thorpej }
    896   1.63   thorpej 
    897   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    898   1.63   thorpej int
    899  1.156  christos sys___timer_gettime50(struct lwp *l,
    900  1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    901   1.63   thorpej {
    902  1.135       dsl 	/* {
    903   1.63   thorpej 		syscallarg(timer_t) timerid;
    904   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    905  1.135       dsl 	} */
    906   1.63   thorpej 	struct itimerspec its;
    907   1.92      cube 	int error;
    908   1.92      cube 
    909   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    910   1.92      cube 	    &its)) != 0)
    911   1.92      cube 		return error;
    912   1.92      cube 
    913   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    914   1.92      cube }
    915   1.92      cube 
    916   1.92      cube int
    917   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    918   1.92      cube {
    919   1.63   thorpej 	struct ptimer *pt;
    920  1.142        ad 	struct ptimers *pts;
    921   1.63   thorpej 
    922  1.142        ad 	pts = p->p_timers;
    923  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    924   1.63   thorpej 		return (EINVAL);
    925  1.142        ad 	mutex_spin_enter(&timer_lock);
    926  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    927  1.142        ad 		mutex_spin_exit(&timer_lock);
    928  1.142        ad 		return (EINVAL);
    929  1.142        ad 	}
    930  1.150  christos 	timer_gettime(pt, its);
    931  1.142        ad 	mutex_spin_exit(&timer_lock);
    932   1.63   thorpej 
    933   1.92      cube 	return 0;
    934   1.63   thorpej }
    935   1.63   thorpej 
    936   1.63   thorpej /*
    937   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    938   1.63   thorpej  * while a notification was already pending. The counter is reset when
    939   1.63   thorpej  * a timer expires and a notification can be posted.
    940   1.63   thorpej  */
    941   1.63   thorpej int
    942  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    943  1.140      yamt     register_t *retval)
    944   1.63   thorpej {
    945  1.135       dsl 	/* {
    946   1.63   thorpej 		syscallarg(timer_t) timerid;
    947  1.135       dsl 	} */
    948   1.63   thorpej 	struct proc *p = l->l_proc;
    949  1.142        ad 	struct ptimers *pts;
    950   1.63   thorpej 	int timerid;
    951   1.63   thorpej 	struct ptimer *pt;
    952   1.63   thorpej 
    953   1.63   thorpej 	timerid = SCARG(uap, timerid);
    954   1.63   thorpej 
    955  1.142        ad 	pts = p->p_timers;
    956  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    957  1.142        ad 		return (EINVAL);
    958  1.142        ad 	mutex_spin_enter(&timer_lock);
    959  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    960  1.142        ad 		mutex_spin_exit(&timer_lock);
    961   1.63   thorpej 		return (EINVAL);
    962  1.142        ad 	}
    963   1.63   thorpej 	*retval = pt->pt_poverruns;
    964  1.142        ad 	mutex_spin_exit(&timer_lock);
    965   1.63   thorpej 
    966   1.63   thorpej 	return (0);
    967   1.63   thorpej }
    968   1.63   thorpej 
    969   1.63   thorpej /*
    970   1.63   thorpej  * Real interval timer expired:
    971   1.63   thorpej  * send process whose timer expired an alarm signal.
    972   1.63   thorpej  * If time is not set up to reload, then just return.
    973   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    974   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    975   1.63   thorpej  * SIGALRM calls to be compressed into one.
    976   1.63   thorpej  */
    977   1.63   thorpej void
    978   1.63   thorpej realtimerexpire(void *arg)
    979   1.63   thorpej {
    980  1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    981  1.150  christos 	struct timespec now, next;
    982   1.63   thorpej 	struct ptimer *pt;
    983  1.148     joerg 	int backwards;
    984   1.63   thorpej 
    985  1.142        ad 	pt = arg;
    986   1.63   thorpej 
    987  1.142        ad 	mutex_spin_enter(&timer_lock);
    988   1.63   thorpej 	itimerfire(pt);
    989   1.63   thorpej 
    990  1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    991  1.150  christos 		timespecclear(&pt->pt_time.it_value);
    992  1.142        ad 		mutex_spin_exit(&timer_lock);
    993   1.63   thorpej 		return;
    994   1.63   thorpej 	}
    995  1.148     joerg 
    996  1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
    997  1.171  christos 		getnanouptime(&now);
    998  1.171  christos 	} else {
    999  1.171  christos 		getnanotime(&now);
   1000  1.171  christos 	}
   1001  1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1002  1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1003  1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1004  1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1005  1.148     joerg 		pt->pt_time.it_value = next;
   1006  1.148     joerg 	} else {
   1007  1.166      yamt 		now_ns = timespec2ns(&now);
   1008  1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1009  1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1010  1.148     joerg 
   1011  1.166      yamt 		next_val = now_ns +
   1012  1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1013  1.148     joerg 
   1014  1.148     joerg 		if (backwards)
   1015  1.148     joerg 			next_val += interval;
   1016  1.148     joerg 		else
   1017  1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1018  1.148     joerg 
   1019  1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1020  1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1021  1.101    kardel 	}
   1022  1.148     joerg 
   1023  1.148     joerg 	/*
   1024  1.150  christos 	 * Don't need to check tshzto() return value, here.
   1025  1.148     joerg 	 * callout_reset() does it for us.
   1026  1.148     joerg 	 */
   1027  1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1028  1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1029  1.148     joerg 	    realtimerexpire, pt);
   1030  1.148     joerg 	mutex_spin_exit(&timer_lock);
   1031   1.63   thorpej }
   1032   1.63   thorpej 
   1033   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1034   1.63   thorpej /* ARGSUSED */
   1035   1.63   thorpej int
   1036  1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1037  1.140      yamt     register_t *retval)
   1038   1.63   thorpej {
   1039  1.135       dsl 	/* {
   1040   1.63   thorpej 		syscallarg(int) which;
   1041   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1042  1.135       dsl 	} */
   1043   1.63   thorpej 	struct proc *p = l->l_proc;
   1044   1.63   thorpej 	struct itimerval aitv;
   1045   1.91      cube 	int error;
   1046   1.91      cube 
   1047   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1048   1.91      cube 	if (error)
   1049   1.91      cube 		return error;
   1050   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1051   1.91      cube }
   1052   1.63   thorpej 
   1053   1.91      cube int
   1054   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1055   1.91      cube {
   1056  1.142        ad 	struct ptimers *pts;
   1057  1.142        ad 	struct ptimer *pt;
   1058  1.150  christos 	struct itimerspec its;
   1059   1.63   thorpej 
   1060  1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1061   1.63   thorpej 		return (EINVAL);
   1062   1.63   thorpej 
   1063  1.142        ad 	mutex_spin_enter(&timer_lock);
   1064  1.142        ad 	pts = p->p_timers;
   1065  1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1066   1.91      cube 		timerclear(&itvp->it_value);
   1067   1.91      cube 		timerclear(&itvp->it_interval);
   1068  1.150  christos 	} else {
   1069  1.150  christos 		timer_gettime(pt, &its);
   1070  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1071  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1072  1.150  christos 	}
   1073  1.142        ad 	mutex_spin_exit(&timer_lock);
   1074   1.63   thorpej 
   1075   1.91      cube 	return 0;
   1076    1.1       cgd }
   1077    1.1       cgd 
   1078   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1079    1.1       cgd /* ARGSUSED */
   1080    1.3    andrew int
   1081  1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1082  1.140      yamt     register_t *retval)
   1083   1.15   thorpej {
   1084  1.135       dsl 	/* {
   1085   1.30   mycroft 		syscallarg(int) which;
   1086   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1087   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1088  1.135       dsl 	} */
   1089   1.63   thorpej 	struct proc *p = l->l_proc;
   1090   1.30   mycroft 	int which = SCARG(uap, which);
   1091  1.156  christos 	struct sys___getitimer50_args getargs;
   1092   1.91      cube 	const struct itimerval *itvp;
   1093    1.1       cgd 	struct itimerval aitv;
   1094   1.91      cube 	int error;
   1095    1.1       cgd 
   1096  1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1097    1.1       cgd 		return (EINVAL);
   1098   1.11       cgd 	itvp = SCARG(uap, itv);
   1099   1.63   thorpej 	if (itvp &&
   1100  1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1101    1.1       cgd 		return (error);
   1102   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1103   1.30   mycroft 		SCARG(&getargs, which) = which;
   1104   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1105  1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1106   1.21       cgd 			return (error);
   1107   1.21       cgd 	}
   1108    1.1       cgd 	if (itvp == 0)
   1109    1.1       cgd 		return (0);
   1110   1.91      cube 
   1111   1.91      cube 	return dosetitimer(p, which, &aitv);
   1112   1.91      cube }
   1113   1.91      cube 
   1114   1.91      cube int
   1115   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1116   1.91      cube {
   1117  1.150  christos 	struct timespec now;
   1118  1.142        ad 	struct ptimers *pts;
   1119  1.142        ad 	struct ptimer *pt, *spare;
   1120   1.91      cube 
   1121  1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1122   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1123    1.1       cgd 		return (EINVAL);
   1124   1.63   thorpej 
   1125   1.63   thorpej 	/*
   1126   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1127   1.63   thorpej 	 * wants to clear the timer.
   1128   1.63   thorpej 	 */
   1129  1.142        ad 	spare = NULL;
   1130  1.142        ad 	pts = p->p_timers;
   1131  1.142        ad  retry:
   1132  1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1133  1.142        ad 	    pts->pts_timers[which] == NULL))
   1134   1.63   thorpej 		return (0);
   1135  1.142        ad 	if (pts == NULL)
   1136  1.142        ad 		pts = timers_alloc(p);
   1137  1.142        ad 	mutex_spin_enter(&timer_lock);
   1138  1.142        ad 	pt = pts->pts_timers[which];
   1139  1.142        ad 	if (pt == NULL) {
   1140  1.142        ad 		if (spare == NULL) {
   1141  1.142        ad 			mutex_spin_exit(&timer_lock);
   1142  1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1143  1.142        ad 			goto retry;
   1144  1.142        ad 		}
   1145  1.142        ad 		pt = spare;
   1146  1.142        ad 		spare = NULL;
   1147   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1148   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1149   1.63   thorpej 		pt->pt_overruns = 0;
   1150   1.63   thorpej 		pt->pt_proc = p;
   1151   1.63   thorpej 		pt->pt_type = which;
   1152   1.64   nathanw 		pt->pt_entry = which;
   1153  1.142        ad 		pt->pt_queued = false;
   1154  1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1155  1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1156  1.149  christos 		else
   1157  1.149  christos 			pt->pt_active = 0;
   1158  1.149  christos 
   1159   1.63   thorpej 		switch (which) {
   1160   1.63   thorpej 		case ITIMER_REAL:
   1161  1.170  christos 		case ITIMER_MONOTONIC:
   1162   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1163   1.63   thorpej 			break;
   1164   1.63   thorpej 		case ITIMER_VIRTUAL:
   1165   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1166   1.63   thorpej 			break;
   1167   1.63   thorpej 		case ITIMER_PROF:
   1168   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1169   1.63   thorpej 			break;
   1170    1.1       cgd 		}
   1171  1.142        ad 		pts->pts_timers[which] = pt;
   1172  1.142        ad 	}
   1173   1.63   thorpej 
   1174  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1175  1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1176  1.150  christos 
   1177  1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1178   1.67   nathanw 		/* Convert to absolute time */
   1179  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1180  1.170  christos 		switch (which) {
   1181  1.170  christos 		case ITIMER_REAL:
   1182  1.170  christos 			getnanotime(&now);
   1183  1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1184  1.170  christos 			    &pt->pt_time.it_value);
   1185  1.170  christos 			break;
   1186  1.170  christos 		case ITIMER_MONOTONIC:
   1187  1.170  christos 			getnanouptime(&now);
   1188  1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1189  1.170  christos 			    &pt->pt_time.it_value);
   1190  1.170  christos 			break;
   1191  1.170  christos 		default:
   1192  1.170  christos 			break;
   1193  1.170  christos 		}
   1194   1.67   nathanw 	}
   1195   1.63   thorpej 	timer_settime(pt);
   1196  1.142        ad 	mutex_spin_exit(&timer_lock);
   1197  1.142        ad 	if (spare != NULL)
   1198  1.142        ad 		pool_put(&ptimer_pool, spare);
   1199   1.63   thorpej 
   1200    1.1       cgd 	return (0);
   1201    1.1       cgd }
   1202    1.1       cgd 
   1203   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1204  1.142        ad struct ptimers *
   1205   1.63   thorpej timers_alloc(struct proc *p)
   1206   1.63   thorpej {
   1207  1.142        ad 	struct ptimers *pts;
   1208   1.63   thorpej 	int i;
   1209   1.63   thorpej 
   1210  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1211   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1212   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1213   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1214   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1215   1.64   nathanw 	pts->pts_fired = 0;
   1216  1.142        ad 	mutex_spin_enter(&timer_lock);
   1217  1.142        ad 	if (p->p_timers == NULL) {
   1218  1.142        ad 		p->p_timers = pts;
   1219  1.142        ad 		mutex_spin_exit(&timer_lock);
   1220  1.142        ad 		return pts;
   1221  1.142        ad 	}
   1222  1.142        ad 	mutex_spin_exit(&timer_lock);
   1223  1.142        ad 	pool_put(&ptimers_pool, pts);
   1224  1.142        ad 	return p->p_timers;
   1225   1.63   thorpej }
   1226   1.63   thorpej 
   1227    1.1       cgd /*
   1228   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1229   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1230   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1231   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1232   1.63   thorpej  * structure if none of those remain.
   1233    1.1       cgd  */
   1234    1.3    andrew void
   1235   1.63   thorpej timers_free(struct proc *p, int which)
   1236    1.6       cgd {
   1237   1.63   thorpej 	struct ptimers *pts;
   1238  1.142        ad 	struct ptimer *ptn;
   1239  1.150  christos 	struct timespec ts;
   1240  1.142        ad 	int i;
   1241   1.63   thorpej 
   1242  1.142        ad 	if (p->p_timers == NULL)
   1243  1.142        ad 		return;
   1244   1.63   thorpej 
   1245  1.142        ad 	pts = p->p_timers;
   1246  1.142        ad 	mutex_spin_enter(&timer_lock);
   1247  1.142        ad 	if (which == TIMERS_ALL) {
   1248  1.142        ad 		p->p_timers = NULL;
   1249  1.142        ad 		i = 0;
   1250  1.142        ad 	} else {
   1251  1.150  christos 		timespecclear(&ts);
   1252  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1253  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1254  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1255  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1256  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1257  1.149  christos 		}
   1258  1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1259  1.142        ad 		if (ptn) {
   1260  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1261  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1262  1.142        ad 			    &ptn->pt_time.it_value);
   1263  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1264  1.142        ad 		}
   1265  1.150  christos 		timespecclear(&ts);
   1266  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1267  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1268  1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1269  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1270  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1271  1.149  christos 		}
   1272  1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1273  1.142        ad 		if (ptn) {
   1274  1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1275  1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1276  1.142        ad 			    &ptn->pt_time.it_value);
   1277  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1278   1.63   thorpej 		}
   1279  1.142        ad 		i = 3;
   1280  1.142        ad 	}
   1281  1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1282  1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1283  1.142        ad 			itimerfree(pts, i);
   1284  1.142        ad 			mutex_spin_enter(&timer_lock);
   1285    1.1       cgd 		}
   1286    1.1       cgd 	}
   1287  1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1288  1.142        ad 	    pts->pts_timers[2] == NULL) {
   1289  1.142        ad 		p->p_timers = NULL;
   1290  1.142        ad 		mutex_spin_exit(&timer_lock);
   1291  1.142        ad 		pool_put(&ptimers_pool, pts);
   1292  1.142        ad 	} else
   1293  1.142        ad 		mutex_spin_exit(&timer_lock);
   1294  1.142        ad }
   1295  1.142        ad 
   1296  1.142        ad static void
   1297  1.142        ad itimerfree(struct ptimers *pts, int index)
   1298  1.142        ad {
   1299  1.142        ad 	struct ptimer *pt;
   1300  1.142        ad 
   1301  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1302  1.142        ad 
   1303  1.142        ad 	pt = pts->pts_timers[index];
   1304  1.142        ad 	pts->pts_timers[index] = NULL;
   1305  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1306  1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1307  1.167      yamt 	if (pt->pt_queued)
   1308  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1309  1.144        ad 	mutex_spin_exit(&timer_lock);
   1310  1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1311  1.149  christos 		callout_destroy(&pt->pt_ch);
   1312  1.142        ad 	pool_put(&ptimer_pool, pt);
   1313    1.1       cgd }
   1314    1.1       cgd 
   1315    1.1       cgd /*
   1316    1.1       cgd  * Decrement an interval timer by a specified number
   1317  1.152  christos  * of nanoseconds, which must be less than a second,
   1318  1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1319  1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1320    1.8       cgd  * reduce the value reloaded into the timer so that
   1321    1.1       cgd  * the timer does not drift.  This routine assumes
   1322    1.1       cgd  * that it is called in a context where the timers
   1323    1.1       cgd  * on which it is operating cannot change in value.
   1324    1.1       cgd  */
   1325  1.142        ad static int
   1326  1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1327   1.63   thorpej {
   1328  1.150  christos 	struct itimerspec *itp;
   1329    1.1       cgd 
   1330  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1331  1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1332  1.142        ad 
   1333   1.63   thorpej 	itp = &pt->pt_time;
   1334  1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1335    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1336    1.1       cgd 			/* expired, and already in next interval */
   1337  1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1338    1.1       cgd 			goto expire;
   1339    1.1       cgd 		}
   1340  1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1341    1.1       cgd 		itp->it_value.tv_sec--;
   1342    1.1       cgd 	}
   1343  1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1344  1.152  christos 	nsec = 0;
   1345  1.150  christos 	if (timespecisset(&itp->it_value))
   1346    1.1       cgd 		return (1);
   1347    1.1       cgd 	/* expired, exactly at end of interval */
   1348    1.1       cgd expire:
   1349  1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1350    1.1       cgd 		itp->it_value = itp->it_interval;
   1351  1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1352  1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1353  1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1354    1.1       cgd 			itp->it_value.tv_sec--;
   1355    1.1       cgd 		}
   1356   1.63   thorpej 		timer_settime(pt);
   1357    1.1       cgd 	} else
   1358  1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1359    1.1       cgd 	return (0);
   1360   1.42       cgd }
   1361   1.42       cgd 
   1362  1.142        ad static void
   1363   1.63   thorpej itimerfire(struct ptimer *pt)
   1364   1.63   thorpej {
   1365   1.78        cl 
   1366  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1367  1.142        ad 
   1368  1.142        ad 	/*
   1369  1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1370  1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1371  1.142        ad 	 */
   1372  1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1373  1.142        ad 		return;
   1374  1.172     rmind 	}
   1375  1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1376  1.142        ad 	pt->pt_queued = true;
   1377  1.142        ad 	softint_schedule(timer_sih);
   1378  1.142        ad }
   1379  1.142        ad 
   1380  1.142        ad void
   1381  1.142        ad timer_tick(lwp_t *l, bool user)
   1382  1.142        ad {
   1383  1.142        ad 	struct ptimers *pts;
   1384  1.142        ad 	struct ptimer *pt;
   1385  1.142        ad 	proc_t *p;
   1386  1.142        ad 
   1387  1.142        ad 	p = l->l_proc;
   1388  1.142        ad 	if (p->p_timers == NULL)
   1389  1.142        ad 		return;
   1390  1.142        ad 
   1391  1.142        ad 	mutex_spin_enter(&timer_lock);
   1392  1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1393   1.63   thorpej 		/*
   1394  1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1395   1.63   thorpej 		 */
   1396  1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1397  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1398  1.142        ad 				itimerfire(pt);
   1399  1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1400  1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1401  1.142        ad 				itimerfire(pt);
   1402  1.142        ad 	}
   1403  1.142        ad 	mutex_spin_exit(&timer_lock);
   1404  1.142        ad }
   1405  1.142        ad 
   1406  1.142        ad static void
   1407  1.142        ad timer_intr(void *cookie)
   1408  1.142        ad {
   1409  1.142        ad 	ksiginfo_t ksi;
   1410  1.142        ad 	struct ptimer *pt;
   1411  1.142        ad 	proc_t *p;
   1412  1.142        ad 
   1413  1.158        ad 	mutex_enter(proc_lock);
   1414  1.142        ad 	mutex_spin_enter(&timer_lock);
   1415  1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1416  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1417  1.142        ad 		KASSERT(pt->pt_queued);
   1418  1.142        ad 		pt->pt_queued = false;
   1419  1.142        ad 
   1420  1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1421  1.154  wrstuden 			/* Process is dying. */
   1422  1.142        ad 			continue;
   1423  1.154  wrstuden 		}
   1424  1.142        ad 		p = pt->pt_proc;
   1425  1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1426  1.142        ad 			continue;
   1427  1.142        ad 		}
   1428  1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1429   1.63   thorpej 			pt->pt_overruns++;
   1430  1.142        ad 			continue;
   1431   1.64   nathanw 		}
   1432  1.142        ad 
   1433  1.142        ad 		KSI_INIT(&ksi);
   1434  1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1435  1.142        ad 		ksi.ksi_code = SI_TIMER;
   1436  1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1437  1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1438  1.142        ad 		pt->pt_overruns = 0;
   1439  1.142        ad 		mutex_spin_exit(&timer_lock);
   1440  1.142        ad 		kpsignal(p, &ksi, NULL);
   1441  1.142        ad 		mutex_spin_enter(&timer_lock);
   1442   1.63   thorpej 	}
   1443  1.142        ad 	mutex_spin_exit(&timer_lock);
   1444  1.158        ad 	mutex_exit(proc_lock);
   1445   1.63   thorpej }
   1446  1.162      elad 
   1447  1.162      elad /*
   1448  1.162      elad  * Check if the time will wrap if set to ts.
   1449  1.162      elad  *
   1450  1.162      elad  * ts - timespec describing the new time
   1451  1.162      elad  * delta - the delta between the current time and ts
   1452  1.162      elad  */
   1453  1.162      elad bool
   1454  1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1455  1.162      elad {
   1456  1.162      elad 
   1457  1.162      elad 	/*
   1458  1.162      elad 	 * Don't allow the time to be set forward so far it
   1459  1.162      elad 	 * will wrap and become negative, thus allowing an
   1460  1.162      elad 	 * attacker to bypass the next check below.  The
   1461  1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1462  1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1463  1.162      elad 	 * past the cutoff, it will take a very long time
   1464  1.162      elad 	 * to get to the wrap point.
   1465  1.162      elad 	 */
   1466  1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1467  1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1468  1.162      elad 		return true;
   1469  1.162      elad 
   1470  1.162      elad 	return false;
   1471  1.162      elad }
   1472