Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.179.12.5
      1  1.179.12.5    martin /*	$NetBSD: kern_time.c,v 1.179.12.5 2019/02/01 11:12:03 martin Exp $	*/
      2        1.42       cgd 
      3        1.42       cgd /*-
      4       1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5        1.42       cgd  * All rights reserved.
      6        1.42       cgd  *
      7        1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9        1.42       cgd  *
     10        1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11        1.42       cgd  * modification, are permitted provided that the following conditions
     12        1.42       cgd  * are met:
     13        1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14        1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15        1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17        1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18        1.42       cgd  *
     19        1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30        1.42       cgd  */
     31         1.9       cgd 
     32         1.1       cgd /*
     33         1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34         1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35         1.1       cgd  *
     36         1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37         1.1       cgd  * modification, are permitted provided that the following conditions
     38         1.1       cgd  * are met:
     39         1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40         1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41         1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42         1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43         1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44        1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45         1.1       cgd  *    may be used to endorse or promote products derived from this software
     46         1.1       cgd  *    without specific prior written permission.
     47         1.1       cgd  *
     48         1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49         1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50         1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51         1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52         1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53         1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54         1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55         1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56         1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57         1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58         1.1       cgd  * SUCH DAMAGE.
     59         1.1       cgd  *
     60        1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61         1.1       cgd  */
     62        1.58     lukem 
     63        1.58     lukem #include <sys/cdefs.h>
     64  1.179.12.5    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179.12.5 2019/02/01 11:12:03 martin Exp $");
     65         1.1       cgd 
     66         1.5   mycroft #include <sys/param.h>
     67         1.5   mycroft #include <sys/resourcevar.h>
     68         1.5   mycroft #include <sys/kernel.h>
     69         1.8       cgd #include <sys/systm.h>
     70         1.5   mycroft #include <sys/proc.h>
     71         1.8       cgd #include <sys/vnode.h>
     72        1.17  christos #include <sys/signalvar.h>
     73        1.25     perry #include <sys/syslog.h>
     74       1.101    kardel #include <sys/timetc.h>
     75       1.143        ad #include <sys/timex.h>
     76        1.99      elad #include <sys/kauth.h>
     77        1.11       cgd #include <sys/mount.h>
     78        1.11       cgd #include <sys/syscallargs.h>
     79       1.143        ad #include <sys/cpu.h>
     80        1.19  christos 
     81       1.142        ad static void	timer_intr(void *);
     82       1.142        ad static void	itimerfire(struct ptimer *);
     83       1.142        ad static void	itimerfree(struct ptimers *, int);
     84       1.142        ad 
     85       1.142        ad kmutex_t	timer_lock;
     86       1.142        ad 
     87       1.142        ad static void	*timer_sih;
     88       1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89       1.131        ad 
     90       1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91        1.97    simonb 
     92       1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93       1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94       1.168      yamt 
     95       1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96       1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97       1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98       1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99       1.168      yamt 
    100       1.131        ad /*
    101       1.131        ad  * Initialize timekeeping.
    102       1.131        ad  */
    103       1.131        ad void
    104       1.131        ad time_init(void)
    105       1.131        ad {
    106       1.131        ad 
    107       1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108       1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109       1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110       1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111       1.131        ad }
    112       1.131        ad 
    113       1.142        ad void
    114       1.142        ad time_init2(void)
    115       1.142        ad {
    116       1.142        ad 
    117       1.142        ad 	TAILQ_INIT(&timer_queue);
    118       1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119       1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120       1.142        ad 	    timer_intr, NULL);
    121       1.142        ad }
    122       1.142        ad 
    123        1.63   thorpej /* Time of day and interval timer support.
    124         1.1       cgd  *
    125         1.1       cgd  * These routines provide the kernel entry points to get and set
    126         1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    127         1.1       cgd  * here provide support for adding and subtracting timeval structures
    128         1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    129         1.1       cgd  * timers when they expire.
    130         1.1       cgd  */
    131         1.1       cgd 
    132        1.22       jtc /* This function is used by clock_settime and settimeofday */
    133       1.132      elad static int
    134       1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135        1.22       jtc {
    136       1.156  christos 	struct timespec delta, now;
    137       1.129        ad 	int s;
    138        1.22       jtc 
    139        1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140       1.129        ad 	s = splclock();
    141       1.156  christos 	nanotime(&now);
    142       1.156  christos 	timespecsub(ts, &now, &delta);
    143       1.132      elad 
    144       1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145       1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146       1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147       1.129        ad 		splx(s);
    148        1.29       tls 		return (EPERM);
    149        1.55      tron 	}
    150       1.132      elad 
    151        1.29       tls #ifdef notyet
    152       1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153       1.129        ad 		splx(s);
    154        1.29       tls 		return (EPERM);
    155        1.55      tron 	}
    156        1.29       tls #endif
    157       1.103    kardel 
    158       1.156  christos 	tc_setclock(ts);
    159       1.103    kardel 
    160       1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161       1.103    kardel 
    162        1.22       jtc 	resettodr();
    163       1.129        ad 	splx(s);
    164       1.129        ad 
    165        1.29       tls 	return (0);
    166        1.22       jtc }
    167        1.22       jtc 
    168       1.132      elad int
    169       1.132      elad settime(struct proc *p, struct timespec *ts)
    170       1.132      elad {
    171       1.132      elad 	return (settime1(p, ts, true));
    172       1.132      elad }
    173       1.132      elad 
    174        1.22       jtc /* ARGSUSED */
    175        1.22       jtc int
    176       1.156  christos sys___clock_gettime50(struct lwp *l,
    177       1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178        1.22       jtc {
    179       1.135       dsl 	/* {
    180        1.22       jtc 		syscallarg(clockid_t) clock_id;
    181        1.23       cgd 		syscallarg(struct timespec *) tp;
    182       1.135       dsl 	} */
    183       1.165     njoly 	int error;
    184        1.22       jtc 	struct timespec ats;
    185        1.22       jtc 
    186       1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187       1.165     njoly 	if (error != 0)
    188       1.165     njoly 		return error;
    189       1.165     njoly 
    190       1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191       1.165     njoly }
    192       1.165     njoly 
    193        1.22       jtc /* ARGSUSED */
    194        1.22       jtc int
    195       1.156  christos sys___clock_settime50(struct lwp *l,
    196       1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    197        1.22       jtc {
    198       1.135       dsl 	/* {
    199        1.22       jtc 		syscallarg(clockid_t) clock_id;
    200        1.23       cgd 		syscallarg(const struct timespec *) tp;
    201       1.135       dsl 	} */
    202       1.156  christos 	int error;
    203       1.156  christos 	struct timespec ats;
    204        1.22       jtc 
    205       1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    206       1.156  christos 		return error;
    207       1.156  christos 
    208       1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    209        1.56      manu }
    210        1.56      manu 
    211        1.56      manu 
    212        1.56      manu int
    213       1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    214       1.132      elad     bool check_kauth)
    215        1.56      manu {
    216        1.56      manu 	int error;
    217        1.56      manu 
    218        1.61    simonb 	switch (clock_id) {
    219        1.61    simonb 	case CLOCK_REALTIME:
    220       1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    221        1.61    simonb 			return (error);
    222        1.61    simonb 		break;
    223        1.61    simonb 	case CLOCK_MONOTONIC:
    224        1.61    simonb 		return (EINVAL);	/* read-only clock */
    225        1.61    simonb 	default:
    226        1.56      manu 		return (EINVAL);
    227        1.61    simonb 	}
    228        1.22       jtc 
    229        1.22       jtc 	return 0;
    230        1.22       jtc }
    231        1.22       jtc 
    232        1.22       jtc int
    233       1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    234       1.140      yamt     register_t *retval)
    235        1.22       jtc {
    236       1.135       dsl 	/* {
    237        1.22       jtc 		syscallarg(clockid_t) clock_id;
    238        1.23       cgd 		syscallarg(struct timespec *) tp;
    239       1.135       dsl 	} */
    240        1.22       jtc 	struct timespec ts;
    241        1.22       jtc 	int error = 0;
    242        1.22       jtc 
    243       1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    244       1.164     njoly 		return error;
    245       1.164     njoly 
    246       1.164     njoly 	if (SCARG(uap, tp))
    247       1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    248       1.164     njoly 
    249       1.164     njoly 	return error;
    250       1.164     njoly }
    251       1.164     njoly 
    252       1.164     njoly int
    253       1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    254       1.164     njoly {
    255       1.164     njoly 
    256        1.61    simonb 	switch (clock_id) {
    257        1.61    simonb 	case CLOCK_REALTIME:
    258        1.61    simonb 	case CLOCK_MONOTONIC:
    259       1.164     njoly 		ts->tv_sec = 0;
    260       1.102    kardel 		if (tc_getfrequency() > 1000000000)
    261       1.164     njoly 			ts->tv_nsec = 1;
    262       1.102    kardel 		else
    263       1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    264        1.61    simonb 		break;
    265        1.61    simonb 	default:
    266       1.164     njoly 		return EINVAL;
    267        1.61    simonb 	}
    268        1.22       jtc 
    269       1.164     njoly 	return 0;
    270        1.22       jtc }
    271        1.22       jtc 
    272        1.27       jtc /* ARGSUSED */
    273        1.27       jtc int
    274       1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    275       1.140      yamt     register_t *retval)
    276        1.27       jtc {
    277       1.135       dsl 	/* {
    278       1.101    kardel 		syscallarg(struct timespec *) rqtp;
    279       1.101    kardel 		syscallarg(struct timespec *) rmtp;
    280       1.135       dsl 	} */
    281       1.101    kardel 	struct timespec rmt, rqt;
    282       1.120       dsl 	int error, error1;
    283       1.101    kardel 
    284       1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    285       1.101    kardel 	if (error)
    286       1.101    kardel 		return (error);
    287       1.101    kardel 
    288       1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    289       1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    290       1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291       1.175  christos 		return error;
    292       1.175  christos 
    293       1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294       1.175  christos 	return error1 ? error1 : error;
    295       1.175  christos }
    296       1.175  christos 
    297       1.175  christos /* ARGSUSED */
    298       1.175  christos int
    299       1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    300       1.175  christos     register_t *retval)
    301       1.175  christos {
    302       1.175  christos 	/* {
    303       1.175  christos 		syscallarg(clockid_t) clock_id;
    304       1.175  christos 		syscallarg(int) flags;
    305       1.175  christos 		syscallarg(struct timespec *) rqtp;
    306       1.175  christos 		syscallarg(struct timespec *) rmtp;
    307       1.175  christos 	} */
    308       1.175  christos 	struct timespec rmt, rqt;
    309       1.175  christos 	int error, error1;
    310       1.175  christos 
    311       1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    312       1.175  christos 	if (error)
    313       1.175  christos 		return (error);
    314       1.175  christos 
    315       1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    316       1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    317       1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    318       1.120       dsl 		return error;
    319       1.120       dsl 
    320       1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    321       1.120       dsl 	return error1 ? error1 : error;
    322       1.120       dsl }
    323       1.120       dsl 
    324       1.120       dsl int
    325       1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    326       1.175  christos     struct timespec *rmt)
    327       1.120       dsl {
    328       1.141      yamt 	struct timespec rmtstart;
    329       1.120       dsl 	int error, timo;
    330       1.120       dsl 
    331  1.179.12.1    martin 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    332  1.179.12.1    martin 		if (error == ETIMEDOUT) {
    333  1.179.12.1    martin 			error = 0;
    334  1.179.12.1    martin 			if (rmt != NULL)
    335  1.179.12.1    martin 				rmt->tv_sec = rmt->tv_nsec = 0;
    336  1.179.12.1    martin 		}
    337  1.179.12.1    martin 		return error;
    338  1.179.12.1    martin 	}
    339       1.101    kardel 
    340       1.101    kardel 	/*
    341       1.175  christos 	 * Avoid inadvertently sleeping forever
    342       1.101    kardel 	 */
    343       1.101    kardel 	if (timo == 0)
    344       1.101    kardel 		timo = 1;
    345       1.141      yamt again:
    346       1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    347       1.141      yamt 	if (rmt != NULL || error == 0) {
    348       1.141      yamt 		struct timespec rmtend;
    349       1.141      yamt 		struct timespec t0;
    350       1.141      yamt 		struct timespec *t;
    351       1.101    kardel 
    352       1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    353       1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    354       1.179  christos 		if (flags & TIMER_ABSTIME) {
    355       1.179  christos 			timespecsub(rqt, &rmtend, t);
    356       1.179  christos 		} else {
    357       1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    358       1.179  christos 			timespecsub(rqt, t, t);
    359       1.179  christos 		}
    360       1.141      yamt 		if (t->tv_sec < 0)
    361       1.141      yamt 			timespecclear(t);
    362       1.141      yamt 		if (error == 0) {
    363       1.141      yamt 			timo = tstohz(t);
    364       1.141      yamt 			if (timo > 0)
    365       1.141      yamt 				goto again;
    366       1.141      yamt 		}
    367       1.141      yamt 	}
    368       1.104    kardel 
    369       1.101    kardel 	if (error == ERESTART)
    370       1.101    kardel 		error = EINTR;
    371       1.101    kardel 	if (error == EWOULDBLOCK)
    372       1.101    kardel 		error = 0;
    373       1.101    kardel 
    374       1.101    kardel 	return error;
    375        1.27       jtc }
    376        1.22       jtc 
    377         1.1       cgd /* ARGSUSED */
    378         1.3    andrew int
    379       1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    380       1.140      yamt     register_t *retval)
    381        1.15   thorpej {
    382       1.135       dsl 	/* {
    383        1.11       cgd 		syscallarg(struct timeval *) tp;
    384       1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    385       1.135       dsl 	} */
    386         1.1       cgd 	struct timeval atv;
    387         1.1       cgd 	int error = 0;
    388        1.25     perry 	struct timezone tzfake;
    389         1.1       cgd 
    390        1.11       cgd 	if (SCARG(uap, tp)) {
    391  1.179.12.5    martin 		memset(&atv, 0, sizeof(atv));
    392         1.1       cgd 		microtime(&atv);
    393        1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    394        1.17  christos 		if (error)
    395         1.1       cgd 			return (error);
    396         1.1       cgd 	}
    397        1.25     perry 	if (SCARG(uap, tzp)) {
    398        1.25     perry 		/*
    399        1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    400        1.25     perry 		 * fake up a timezone struct and return it if demanded.
    401        1.25     perry 		 */
    402        1.25     perry 		tzfake.tz_minuteswest = 0;
    403        1.25     perry 		tzfake.tz_dsttime = 0;
    404        1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    405        1.25     perry 	}
    406         1.1       cgd 	return (error);
    407         1.1       cgd }
    408         1.1       cgd 
    409         1.1       cgd /* ARGSUSED */
    410         1.3    andrew int
    411       1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    412       1.140      yamt     register_t *retval)
    413        1.15   thorpej {
    414       1.135       dsl 	/* {
    415        1.24       cgd 		syscallarg(const struct timeval *) tv;
    416       1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    417       1.135       dsl 	} */
    418        1.60      manu 
    419       1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    420        1.60      manu }
    421        1.60      manu 
    422        1.60      manu int
    423       1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    424       1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    425        1.60      manu {
    426        1.22       jtc 	struct timeval atv;
    427        1.98  christos 	struct timespec ts;
    428        1.22       jtc 	int error;
    429         1.1       cgd 
    430         1.8       cgd 	/* Verify all parameters before changing time. */
    431       1.119       dsl 
    432        1.25     perry 	/*
    433        1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    434        1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    435        1.25     perry 	 */
    436        1.98  christos 	if (utzp)
    437        1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    438       1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    439        1.98  christos 
    440        1.98  christos 	if (utv == NULL)
    441        1.98  christos 		return 0;
    442        1.98  christos 
    443       1.119       dsl 	if (userspace) {
    444       1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    445       1.119       dsl 			return error;
    446       1.119       dsl 		utv = &atv;
    447       1.119       dsl 	}
    448       1.119       dsl 
    449       1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    450       1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    451         1.1       cgd }
    452         1.1       cgd 
    453        1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    454         1.1       cgd 
    455         1.1       cgd /* ARGSUSED */
    456         1.3    andrew int
    457       1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    458       1.140      yamt     register_t *retval)
    459        1.15   thorpej {
    460       1.135       dsl 	/* {
    461        1.24       cgd 		syscallarg(const struct timeval *) delta;
    462        1.11       cgd 		syscallarg(struct timeval *) olddelta;
    463       1.135       dsl 	} */
    464       1.156  christos 	int error = 0;
    465       1.156  christos 	struct timeval atv, oldatv;
    466         1.1       cgd 
    467       1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    468       1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    469       1.156  christos 		return error;
    470        1.17  christos 
    471       1.156  christos 	if (SCARG(uap, delta)) {
    472       1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    473       1.156  christos 		    sizeof(*SCARG(uap, delta)));
    474       1.156  christos 		if (error)
    475       1.156  christos 			return (error);
    476       1.156  christos 	}
    477       1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    478       1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    479       1.156  christos 	if (SCARG(uap, olddelta))
    480       1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    481       1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    482       1.156  christos 	return error;
    483        1.56      manu }
    484        1.56      manu 
    485       1.156  christos void
    486       1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    487        1.56      manu {
    488       1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    489       1.101    kardel 
    490       1.101    kardel 	if (olddelta) {
    491  1.179.12.5    martin 		memset(olddelta, 0, sizeof(*olddelta));
    492       1.143        ad 		mutex_spin_enter(&timecounter_lock);
    493       1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    494       1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    495       1.156  christos 		if (olddelta->tv_usec < 0) {
    496       1.156  christos 			olddelta->tv_usec += 1000000;
    497       1.156  christos 			olddelta->tv_sec--;
    498       1.101    kardel 		}
    499       1.157  christos 		mutex_spin_exit(&timecounter_lock);
    500       1.101    kardel 	}
    501       1.101    kardel 
    502       1.101    kardel 	if (delta) {
    503       1.156  christos 		mutex_spin_enter(&timecounter_lock);
    504       1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    505       1.101    kardel 
    506       1.143        ad 		if (time_adjtime) {
    507       1.101    kardel 			/* We need to save the system time during shutdown */
    508       1.101    kardel 			time_adjusted |= 1;
    509       1.143        ad 		}
    510       1.143        ad 		mutex_spin_exit(&timecounter_lock);
    511       1.101    kardel 	}
    512         1.1       cgd }
    513         1.1       cgd 
    514         1.1       cgd /*
    515        1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    516        1.63   thorpej  * timer_*() family of routines are supported.
    517         1.1       cgd  *
    518        1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    519        1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    520        1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    521       1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    522       1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    523       1.170  christos  * allocated by the timer_create() syscall.
    524         1.1       cgd  *
    525        1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    526        1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    527         1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    528        1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    529        1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    530        1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    531        1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    532        1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    533        1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    534        1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    535        1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    536        1.63   thorpej 
    537        1.63   thorpej /* Allocate a POSIX realtime timer. */
    538        1.63   thorpej int
    539       1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    540       1.140      yamt     register_t *retval)
    541        1.63   thorpej {
    542       1.135       dsl 	/* {
    543        1.63   thorpej 		syscallarg(clockid_t) clock_id;
    544        1.63   thorpej 		syscallarg(struct sigevent *) evp;
    545        1.63   thorpej 		syscallarg(timer_t *) timerid;
    546       1.135       dsl 	} */
    547        1.92      cube 
    548        1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    549       1.105        ad 	    SCARG(uap, evp), copyin, l);
    550        1.92      cube }
    551        1.92      cube 
    552        1.92      cube int
    553        1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    554       1.105        ad     copyin_t fetch_event, struct lwp *l)
    555        1.92      cube {
    556        1.92      cube 	int error;
    557        1.92      cube 	timer_t timerid;
    558       1.142        ad 	struct ptimers *pts;
    559        1.63   thorpej 	struct ptimer *pt;
    560       1.105        ad 	struct proc *p;
    561       1.105        ad 
    562       1.105        ad 	p = l->l_proc;
    563        1.63   thorpej 
    564       1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    565        1.63   thorpej 		return (EINVAL);
    566        1.63   thorpej 
    567       1.142        ad 	if ((pts = p->p_timers) == NULL)
    568       1.142        ad 		pts = timers_alloc(p);
    569        1.63   thorpej 
    570        1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    571  1.179.12.2    martin 	memset(pt, 0, sizeof(*pt));
    572       1.142        ad 	if (evp != NULL) {
    573        1.63   thorpej 		if (((error =
    574        1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    575        1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    576       1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    577       1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    578       1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    579       1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    580        1.63   thorpej 			pool_put(&ptimer_pool, pt);
    581        1.63   thorpej 			return (error ? error : EINVAL);
    582        1.63   thorpej 		}
    583       1.142        ad 	}
    584       1.142        ad 
    585       1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    586       1.142        ad 	mutex_spin_enter(&timer_lock);
    587       1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    588       1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    589       1.142        ad 			break;
    590       1.142        ad 	if (timerid == TIMER_MAX) {
    591       1.142        ad 		mutex_spin_exit(&timer_lock);
    592       1.142        ad 		pool_put(&ptimer_pool, pt);
    593       1.142        ad 		return EAGAIN;
    594       1.142        ad 	}
    595       1.142        ad 	if (evp == NULL) {
    596        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    597        1.63   thorpej 		switch (id) {
    598        1.63   thorpej 		case CLOCK_REALTIME:
    599       1.168      yamt 		case CLOCK_MONOTONIC:
    600        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    601        1.63   thorpej 			break;
    602        1.63   thorpej 		case CLOCK_VIRTUAL:
    603        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    604        1.63   thorpej 			break;
    605        1.63   thorpej 		case CLOCK_PROF:
    606        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    607        1.63   thorpej 			break;
    608        1.63   thorpej 		}
    609        1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    610        1.63   thorpej 	}
    611        1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    612        1.73  christos 	pt->pt_info.ksi_errno = 0;
    613        1.73  christos 	pt->pt_info.ksi_code = 0;
    614        1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    615       1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    616       1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    617        1.63   thorpej 	pt->pt_type = id;
    618        1.63   thorpej 	pt->pt_proc = p;
    619        1.63   thorpej 	pt->pt_overruns = 0;
    620        1.63   thorpej 	pt->pt_poverruns = 0;
    621        1.64   nathanw 	pt->pt_entry = timerid;
    622       1.142        ad 	pt->pt_queued = false;
    623       1.150  christos 	timespecclear(&pt->pt_time.it_value);
    624       1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    625       1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    626       1.149  christos 	else
    627       1.149  christos 		pt->pt_active = 0;
    628       1.149  christos 
    629       1.142        ad 	pts->pts_timers[timerid] = pt;
    630       1.142        ad 	mutex_spin_exit(&timer_lock);
    631        1.63   thorpej 
    632        1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    633        1.63   thorpej }
    634        1.63   thorpej 
    635        1.63   thorpej /* Delete a POSIX realtime timer */
    636         1.3    andrew int
    637       1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    638       1.140      yamt     register_t *retval)
    639        1.15   thorpej {
    640       1.135       dsl 	/* {
    641        1.63   thorpej 		syscallarg(timer_t) timerid;
    642       1.135       dsl 	} */
    643        1.63   thorpej 	struct proc *p = l->l_proc;
    644        1.65  jdolecek 	timer_t timerid;
    645       1.142        ad 	struct ptimers *pts;
    646        1.63   thorpej 	struct ptimer *pt, *ptn;
    647         1.1       cgd 
    648        1.63   thorpej 	timerid = SCARG(uap, timerid);
    649       1.142        ad 	pts = p->p_timers;
    650       1.142        ad 
    651       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    652       1.142        ad 		return (EINVAL);
    653        1.63   thorpej 
    654       1.142        ad 	mutex_spin_enter(&timer_lock);
    655       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    656       1.142        ad 		mutex_spin_exit(&timer_lock);
    657         1.1       cgd 		return (EINVAL);
    658       1.142        ad 	}
    659       1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    660       1.149  christos 		if (pt->pt_active) {
    661       1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    662       1.149  christos 			LIST_REMOVE(pt, pt_list);
    663       1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    664       1.150  christos 				timespecadd(&pt->pt_time.it_value,
    665       1.149  christos 				    &ptn->pt_time.it_value,
    666       1.149  christos 				    &ptn->pt_time.it_value);
    667       1.149  christos 			pt->pt_active = 0;
    668       1.149  christos 		}
    669        1.63   thorpej 	}
    670       1.142        ad 	itimerfree(pts, timerid);
    671        1.63   thorpej 
    672        1.63   thorpej 	return (0);
    673        1.63   thorpej }
    674        1.63   thorpej 
    675        1.63   thorpej /*
    676        1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    677       1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    678       1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    679        1.63   thorpej  */
    680        1.63   thorpej void
    681        1.63   thorpej timer_settime(struct ptimer *pt)
    682        1.63   thorpej {
    683        1.63   thorpej 	struct ptimer *ptn, *pptn;
    684        1.63   thorpej 	struct ptlist *ptl;
    685        1.63   thorpej 
    686       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    687       1.142        ad 
    688       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    689       1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    690       1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    691        1.63   thorpej 			/*
    692       1.150  christos 			 * Don't need to check tshzto() return value, here.
    693        1.63   thorpej 			 * callout_reset() does it for us.
    694        1.63   thorpej 			 */
    695       1.171  christos 			callout_reset(&pt->pt_ch,
    696       1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    697       1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    698       1.171  christos 			    tshzto(&pt->pt_time.it_value),
    699        1.63   thorpej 			    realtimerexpire, pt);
    700        1.63   thorpej 		}
    701        1.63   thorpej 	} else {
    702        1.63   thorpej 		if (pt->pt_active) {
    703        1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    704        1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    705        1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    706       1.150  christos 				timespecadd(&pt->pt_time.it_value,
    707        1.63   thorpej 				    &ptn->pt_time.it_value,
    708        1.63   thorpej 				    &ptn->pt_time.it_value);
    709        1.63   thorpej 		}
    710       1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    711        1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    712        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    713        1.63   thorpej 			else
    714        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    715        1.63   thorpej 
    716        1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    717       1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    718        1.63   thorpej 				 &ptn->pt_time.it_value, >);
    719        1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    720       1.150  christos 				timespecsub(&pt->pt_time.it_value,
    721        1.63   thorpej 				    &ptn->pt_time.it_value,
    722        1.63   thorpej 				    &pt->pt_time.it_value);
    723        1.63   thorpej 
    724        1.63   thorpej 			if (pptn)
    725        1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    726        1.63   thorpej 			else
    727        1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    728        1.63   thorpej 
    729        1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    730       1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    731        1.63   thorpej 				    &pt->pt_time.it_value,
    732        1.63   thorpej 				    &ptn->pt_time.it_value);
    733        1.63   thorpej 
    734        1.63   thorpej 			pt->pt_active = 1;
    735        1.63   thorpej 		} else
    736        1.63   thorpej 			pt->pt_active = 0;
    737        1.63   thorpej 	}
    738        1.63   thorpej }
    739        1.63   thorpej 
    740        1.63   thorpej void
    741       1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    742        1.63   thorpej {
    743       1.150  christos 	struct timespec now;
    744        1.63   thorpej 	struct ptimer *ptn;
    745        1.63   thorpej 
    746       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    747       1.142        ad 
    748       1.150  christos 	*aits = pt->pt_time;
    749       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    750         1.1       cgd 		/*
    751        1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    752        1.63   thorpej 		 * part of real time timer.  If time for real time
    753        1.63   thorpej 		 * timer has passed return 0, else return difference
    754        1.63   thorpej 		 * between current time and time for the timer to go
    755        1.63   thorpej 		 * off.
    756         1.1       cgd 		 */
    757       1.150  christos 		if (timespecisset(&aits->it_value)) {
    758       1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    759       1.168      yamt 				getnanotime(&now);
    760       1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    761       1.168      yamt 				getnanouptime(&now);
    762       1.168      yamt 			}
    763       1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    764       1.150  christos 				timespecclear(&aits->it_value);
    765       1.101    kardel 			else
    766       1.150  christos 				timespecsub(&aits->it_value, &now,
    767       1.150  christos 				    &aits->it_value);
    768        1.36   thorpej 		}
    769        1.63   thorpej 	} else if (pt->pt_active) {
    770        1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    771        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    772        1.63   thorpej 		else
    773        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    774        1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    775       1.150  christos 			timespecadd(&aits->it_value,
    776       1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    777        1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    778         1.1       cgd 	} else
    779       1.150  christos 		timespecclear(&aits->it_value);
    780        1.63   thorpej }
    781        1.63   thorpej 
    782        1.63   thorpej 
    783        1.63   thorpej 
    784        1.63   thorpej /* Set and arm a POSIX realtime timer */
    785        1.63   thorpej int
    786       1.156  christos sys___timer_settime50(struct lwp *l,
    787       1.156  christos     const struct sys___timer_settime50_args *uap,
    788       1.140      yamt     register_t *retval)
    789        1.63   thorpej {
    790       1.135       dsl 	/* {
    791        1.63   thorpej 		syscallarg(timer_t) timerid;
    792        1.63   thorpej 		syscallarg(int) flags;
    793        1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    794        1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    795       1.135       dsl 	} */
    796        1.92      cube 	int error;
    797        1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    798        1.92      cube 
    799        1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    800        1.92      cube 	    sizeof(struct itimerspec))) != 0)
    801        1.92      cube 		return (error);
    802        1.92      cube 
    803        1.92      cube 	if (SCARG(uap, ovalue))
    804        1.92      cube 		ovp = &ovalue;
    805        1.92      cube 
    806        1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    807        1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    808        1.92      cube 		return error;
    809        1.92      cube 
    810        1.92      cube 	if (ovp)
    811        1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    812        1.92      cube 		    sizeof(struct itimerspec));
    813        1.92      cube 	return 0;
    814        1.92      cube }
    815        1.92      cube 
    816        1.92      cube int
    817        1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    818        1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    819        1.92      cube {
    820       1.150  christos 	struct timespec now;
    821       1.150  christos 	struct itimerspec val, oval;
    822       1.142        ad 	struct ptimers *pts;
    823        1.63   thorpej 	struct ptimer *pt;
    824       1.160  christos 	int error;
    825        1.63   thorpej 
    826       1.142        ad 	pts = p->p_timers;
    827        1.63   thorpej 
    828       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    829       1.142        ad 		return EINVAL;
    830       1.150  christos 	val = *value;
    831       1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    832       1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    833       1.160  christos 		return error;
    834        1.63   thorpej 
    835       1.142        ad 	mutex_spin_enter(&timer_lock);
    836       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    837       1.142        ad 		mutex_spin_exit(&timer_lock);
    838       1.150  christos 		return EINVAL;
    839       1.142        ad 	}
    840       1.142        ad 
    841        1.63   thorpej 	oval = pt->pt_time;
    842        1.63   thorpej 	pt->pt_time = val;
    843        1.63   thorpej 
    844        1.67   nathanw 	/*
    845        1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    846        1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    847        1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    848        1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    849        1.67   nathanw 	 * negative, which would confuse the comparison tests.
    850        1.67   nathanw 	 */
    851       1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    852       1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    853       1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    854       1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    855       1.168      yamt 					getnanotime(&now);
    856       1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    857       1.168      yamt 					getnanouptime(&now);
    858       1.168      yamt 				}
    859       1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    860       1.101    kardel 				    &pt->pt_time.it_value);
    861       1.101    kardel 			}
    862        1.67   nathanw 		} else {
    863        1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    864       1.150  christos 				getnanotime(&now);
    865       1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    866       1.101    kardel 				    &pt->pt_time.it_value);
    867       1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    868        1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    869        1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    870       1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    871        1.67   nathanw 				}
    872        1.67   nathanw 			}
    873        1.67   nathanw 		}
    874        1.67   nathanw 	}
    875        1.67   nathanw 
    876        1.63   thorpej 	timer_settime(pt);
    877       1.142        ad 	mutex_spin_exit(&timer_lock);
    878        1.63   thorpej 
    879       1.150  christos 	if (ovalue)
    880       1.150  christos 		*ovalue = oval;
    881        1.63   thorpej 
    882        1.63   thorpej 	return (0);
    883        1.63   thorpej }
    884        1.63   thorpej 
    885        1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    886        1.63   thorpej int
    887       1.156  christos sys___timer_gettime50(struct lwp *l,
    888       1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    889        1.63   thorpej {
    890       1.135       dsl 	/* {
    891        1.63   thorpej 		syscallarg(timer_t) timerid;
    892        1.63   thorpej 		syscallarg(struct itimerspec *) value;
    893       1.135       dsl 	} */
    894        1.63   thorpej 	struct itimerspec its;
    895        1.92      cube 	int error;
    896        1.92      cube 
    897        1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    898        1.92      cube 	    &its)) != 0)
    899        1.92      cube 		return error;
    900        1.92      cube 
    901        1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    902        1.92      cube }
    903        1.92      cube 
    904        1.92      cube int
    905        1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    906        1.92      cube {
    907        1.63   thorpej 	struct ptimer *pt;
    908       1.142        ad 	struct ptimers *pts;
    909        1.63   thorpej 
    910       1.142        ad 	pts = p->p_timers;
    911       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    912        1.63   thorpej 		return (EINVAL);
    913       1.142        ad 	mutex_spin_enter(&timer_lock);
    914       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    915       1.142        ad 		mutex_spin_exit(&timer_lock);
    916       1.142        ad 		return (EINVAL);
    917       1.142        ad 	}
    918       1.150  christos 	timer_gettime(pt, its);
    919       1.142        ad 	mutex_spin_exit(&timer_lock);
    920        1.63   thorpej 
    921        1.92      cube 	return 0;
    922        1.63   thorpej }
    923        1.63   thorpej 
    924        1.63   thorpej /*
    925        1.63   thorpej  * Return the count of the number of times a periodic timer expired
    926        1.63   thorpej  * while a notification was already pending. The counter is reset when
    927        1.63   thorpej  * a timer expires and a notification can be posted.
    928        1.63   thorpej  */
    929        1.63   thorpej int
    930       1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    931       1.140      yamt     register_t *retval)
    932        1.63   thorpej {
    933       1.135       dsl 	/* {
    934        1.63   thorpej 		syscallarg(timer_t) timerid;
    935       1.135       dsl 	} */
    936        1.63   thorpej 	struct proc *p = l->l_proc;
    937       1.142        ad 	struct ptimers *pts;
    938        1.63   thorpej 	int timerid;
    939        1.63   thorpej 	struct ptimer *pt;
    940        1.63   thorpej 
    941        1.63   thorpej 	timerid = SCARG(uap, timerid);
    942        1.63   thorpej 
    943       1.142        ad 	pts = p->p_timers;
    944       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    945       1.142        ad 		return (EINVAL);
    946       1.142        ad 	mutex_spin_enter(&timer_lock);
    947       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    948       1.142        ad 		mutex_spin_exit(&timer_lock);
    949        1.63   thorpej 		return (EINVAL);
    950       1.142        ad 	}
    951        1.63   thorpej 	*retval = pt->pt_poverruns;
    952       1.142        ad 	mutex_spin_exit(&timer_lock);
    953        1.63   thorpej 
    954        1.63   thorpej 	return (0);
    955        1.63   thorpej }
    956        1.63   thorpej 
    957        1.63   thorpej /*
    958        1.63   thorpej  * Real interval timer expired:
    959        1.63   thorpej  * send process whose timer expired an alarm signal.
    960        1.63   thorpej  * If time is not set up to reload, then just return.
    961        1.63   thorpej  * Else compute next time timer should go off which is > current time.
    962        1.63   thorpej  * This is where delay in processing this timeout causes multiple
    963        1.63   thorpej  * SIGALRM calls to be compressed into one.
    964        1.63   thorpej  */
    965        1.63   thorpej void
    966        1.63   thorpej realtimerexpire(void *arg)
    967        1.63   thorpej {
    968       1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    969       1.150  christos 	struct timespec now, next;
    970        1.63   thorpej 	struct ptimer *pt;
    971       1.148     joerg 	int backwards;
    972        1.63   thorpej 
    973       1.142        ad 	pt = arg;
    974        1.63   thorpej 
    975       1.142        ad 	mutex_spin_enter(&timer_lock);
    976        1.63   thorpej 	itimerfire(pt);
    977        1.63   thorpej 
    978       1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    979       1.150  christos 		timespecclear(&pt->pt_time.it_value);
    980       1.142        ad 		mutex_spin_exit(&timer_lock);
    981        1.63   thorpej 		return;
    982        1.63   thorpej 	}
    983       1.148     joerg 
    984       1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
    985       1.171  christos 		getnanouptime(&now);
    986       1.171  christos 	} else {
    987       1.171  christos 		getnanotime(&now);
    988       1.171  christos 	}
    989       1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    990       1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    991       1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    992       1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    993       1.148     joerg 		pt->pt_time.it_value = next;
    994       1.148     joerg 	} else {
    995       1.166      yamt 		now_ns = timespec2ns(&now);
    996       1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    997       1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    998       1.148     joerg 
    999       1.166      yamt 		next_val = now_ns +
   1000       1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1001       1.148     joerg 
   1002       1.148     joerg 		if (backwards)
   1003       1.148     joerg 			next_val += interval;
   1004       1.148     joerg 		else
   1005       1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1006       1.148     joerg 
   1007       1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1008       1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1009       1.101    kardel 	}
   1010       1.148     joerg 
   1011       1.148     joerg 	/*
   1012       1.150  christos 	 * Don't need to check tshzto() return value, here.
   1013       1.148     joerg 	 * callout_reset() does it for us.
   1014       1.148     joerg 	 */
   1015       1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1016       1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1017       1.148     joerg 	    realtimerexpire, pt);
   1018       1.148     joerg 	mutex_spin_exit(&timer_lock);
   1019        1.63   thorpej }
   1020        1.63   thorpej 
   1021        1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1022        1.63   thorpej /* ARGSUSED */
   1023        1.63   thorpej int
   1024       1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1025       1.140      yamt     register_t *retval)
   1026        1.63   thorpej {
   1027       1.135       dsl 	/* {
   1028        1.63   thorpej 		syscallarg(int) which;
   1029        1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1030       1.135       dsl 	} */
   1031        1.63   thorpej 	struct proc *p = l->l_proc;
   1032        1.63   thorpej 	struct itimerval aitv;
   1033        1.91      cube 	int error;
   1034        1.91      cube 
   1035  1.179.12.4    martin 	memset(&aitv, 0, sizeof(aitv));
   1036        1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1037        1.91      cube 	if (error)
   1038        1.91      cube 		return error;
   1039        1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1040        1.91      cube }
   1041        1.63   thorpej 
   1042        1.91      cube int
   1043        1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1044        1.91      cube {
   1045       1.142        ad 	struct ptimers *pts;
   1046       1.142        ad 	struct ptimer *pt;
   1047       1.150  christos 	struct itimerspec its;
   1048        1.63   thorpej 
   1049       1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1050        1.63   thorpej 		return (EINVAL);
   1051        1.63   thorpej 
   1052       1.142        ad 	mutex_spin_enter(&timer_lock);
   1053       1.142        ad 	pts = p->p_timers;
   1054       1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1055        1.91      cube 		timerclear(&itvp->it_value);
   1056        1.91      cube 		timerclear(&itvp->it_interval);
   1057       1.150  christos 	} else {
   1058       1.150  christos 		timer_gettime(pt, &its);
   1059       1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1060       1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1061       1.150  christos 	}
   1062       1.142        ad 	mutex_spin_exit(&timer_lock);
   1063        1.63   thorpej 
   1064        1.91      cube 	return 0;
   1065         1.1       cgd }
   1066         1.1       cgd 
   1067        1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1068         1.1       cgd /* ARGSUSED */
   1069         1.3    andrew int
   1070       1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1071       1.140      yamt     register_t *retval)
   1072        1.15   thorpej {
   1073       1.135       dsl 	/* {
   1074        1.30   mycroft 		syscallarg(int) which;
   1075        1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1076        1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1077       1.135       dsl 	} */
   1078        1.63   thorpej 	struct proc *p = l->l_proc;
   1079        1.30   mycroft 	int which = SCARG(uap, which);
   1080       1.156  christos 	struct sys___getitimer50_args getargs;
   1081        1.91      cube 	const struct itimerval *itvp;
   1082         1.1       cgd 	struct itimerval aitv;
   1083        1.91      cube 	int error;
   1084         1.1       cgd 
   1085       1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1086         1.1       cgd 		return (EINVAL);
   1087        1.11       cgd 	itvp = SCARG(uap, itv);
   1088        1.63   thorpej 	if (itvp &&
   1089       1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1090         1.1       cgd 		return (error);
   1091        1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1092        1.30   mycroft 		SCARG(&getargs, which) = which;
   1093        1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1094       1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1095        1.21       cgd 			return (error);
   1096        1.21       cgd 	}
   1097         1.1       cgd 	if (itvp == 0)
   1098         1.1       cgd 		return (0);
   1099        1.91      cube 
   1100        1.91      cube 	return dosetitimer(p, which, &aitv);
   1101        1.91      cube }
   1102        1.91      cube 
   1103        1.91      cube int
   1104        1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1105        1.91      cube {
   1106       1.150  christos 	struct timespec now;
   1107       1.142        ad 	struct ptimers *pts;
   1108       1.142        ad 	struct ptimer *pt, *spare;
   1109        1.91      cube 
   1110       1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1111        1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1112         1.1       cgd 		return (EINVAL);
   1113        1.63   thorpej 
   1114        1.63   thorpej 	/*
   1115        1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1116        1.63   thorpej 	 * wants to clear the timer.
   1117        1.63   thorpej 	 */
   1118       1.142        ad 	spare = NULL;
   1119       1.142        ad 	pts = p->p_timers;
   1120       1.142        ad  retry:
   1121       1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1122       1.142        ad 	    pts->pts_timers[which] == NULL))
   1123        1.63   thorpej 		return (0);
   1124       1.142        ad 	if (pts == NULL)
   1125       1.142        ad 		pts = timers_alloc(p);
   1126       1.142        ad 	mutex_spin_enter(&timer_lock);
   1127       1.142        ad 	pt = pts->pts_timers[which];
   1128       1.142        ad 	if (pt == NULL) {
   1129       1.142        ad 		if (spare == NULL) {
   1130       1.142        ad 			mutex_spin_exit(&timer_lock);
   1131       1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1132  1.179.12.3    martin 			memset(spare, 0, sizeof(*spare));
   1133       1.142        ad 			goto retry;
   1134       1.142        ad 		}
   1135       1.142        ad 		pt = spare;
   1136       1.142        ad 		spare = NULL;
   1137        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1138        1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1139        1.63   thorpej 		pt->pt_overruns = 0;
   1140        1.63   thorpej 		pt->pt_proc = p;
   1141        1.63   thorpej 		pt->pt_type = which;
   1142        1.64   nathanw 		pt->pt_entry = which;
   1143       1.142        ad 		pt->pt_queued = false;
   1144       1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1145       1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1146       1.149  christos 		else
   1147       1.149  christos 			pt->pt_active = 0;
   1148       1.149  christos 
   1149        1.63   thorpej 		switch (which) {
   1150        1.63   thorpej 		case ITIMER_REAL:
   1151       1.170  christos 		case ITIMER_MONOTONIC:
   1152        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1153        1.63   thorpej 			break;
   1154        1.63   thorpej 		case ITIMER_VIRTUAL:
   1155        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1156        1.63   thorpej 			break;
   1157        1.63   thorpej 		case ITIMER_PROF:
   1158        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1159        1.63   thorpej 			break;
   1160         1.1       cgd 		}
   1161       1.142        ad 		pts->pts_timers[which] = pt;
   1162       1.142        ad 	}
   1163        1.63   thorpej 
   1164       1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1165       1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1166       1.150  christos 
   1167       1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1168        1.67   nathanw 		/* Convert to absolute time */
   1169       1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1170       1.170  christos 		switch (which) {
   1171       1.170  christos 		case ITIMER_REAL:
   1172       1.170  christos 			getnanotime(&now);
   1173       1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1174       1.170  christos 			    &pt->pt_time.it_value);
   1175       1.170  christos 			break;
   1176       1.170  christos 		case ITIMER_MONOTONIC:
   1177       1.170  christos 			getnanouptime(&now);
   1178       1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1179       1.170  christos 			    &pt->pt_time.it_value);
   1180       1.170  christos 			break;
   1181       1.170  christos 		default:
   1182       1.170  christos 			break;
   1183       1.170  christos 		}
   1184        1.67   nathanw 	}
   1185        1.63   thorpej 	timer_settime(pt);
   1186       1.142        ad 	mutex_spin_exit(&timer_lock);
   1187       1.142        ad 	if (spare != NULL)
   1188       1.142        ad 		pool_put(&ptimer_pool, spare);
   1189        1.63   thorpej 
   1190         1.1       cgd 	return (0);
   1191         1.1       cgd }
   1192         1.1       cgd 
   1193        1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1194       1.142        ad struct ptimers *
   1195        1.63   thorpej timers_alloc(struct proc *p)
   1196        1.63   thorpej {
   1197       1.142        ad 	struct ptimers *pts;
   1198        1.63   thorpej 	int i;
   1199        1.63   thorpej 
   1200       1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1201        1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1202        1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1203        1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1204        1.63   thorpej 		pts->pts_timers[i] = NULL;
   1205        1.64   nathanw 	pts->pts_fired = 0;
   1206       1.142        ad 	mutex_spin_enter(&timer_lock);
   1207       1.142        ad 	if (p->p_timers == NULL) {
   1208       1.142        ad 		p->p_timers = pts;
   1209       1.142        ad 		mutex_spin_exit(&timer_lock);
   1210       1.142        ad 		return pts;
   1211       1.142        ad 	}
   1212       1.142        ad 	mutex_spin_exit(&timer_lock);
   1213       1.142        ad 	pool_put(&ptimers_pool, pts);
   1214       1.142        ad 	return p->p_timers;
   1215        1.63   thorpej }
   1216        1.63   thorpej 
   1217         1.1       cgd /*
   1218        1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1219        1.63   thorpej  * then clean up all timers and free all the data structures. If
   1220        1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1221        1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1222        1.63   thorpej  * structure if none of those remain.
   1223         1.1       cgd  */
   1224         1.3    andrew void
   1225        1.63   thorpej timers_free(struct proc *p, int which)
   1226         1.6       cgd {
   1227        1.63   thorpej 	struct ptimers *pts;
   1228       1.142        ad 	struct ptimer *ptn;
   1229       1.150  christos 	struct timespec ts;
   1230       1.142        ad 	int i;
   1231        1.63   thorpej 
   1232       1.142        ad 	if (p->p_timers == NULL)
   1233       1.142        ad 		return;
   1234        1.63   thorpej 
   1235       1.142        ad 	pts = p->p_timers;
   1236       1.142        ad 	mutex_spin_enter(&timer_lock);
   1237       1.142        ad 	if (which == TIMERS_ALL) {
   1238       1.142        ad 		p->p_timers = NULL;
   1239       1.142        ad 		i = 0;
   1240       1.142        ad 	} else {
   1241       1.150  christos 		timespecclear(&ts);
   1242       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1243       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1244       1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1245       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1246       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1247       1.149  christos 		}
   1248       1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1249       1.142        ad 		if (ptn) {
   1250       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1251       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1252       1.142        ad 			    &ptn->pt_time.it_value);
   1253       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1254       1.142        ad 		}
   1255       1.150  christos 		timespecclear(&ts);
   1256       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1257       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1258       1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1259       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1260       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1261       1.149  christos 		}
   1262       1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1263       1.142        ad 		if (ptn) {
   1264       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1265       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1266       1.142        ad 			    &ptn->pt_time.it_value);
   1267       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1268        1.63   thorpej 		}
   1269       1.142        ad 		i = 3;
   1270       1.142        ad 	}
   1271       1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1272       1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1273       1.142        ad 			itimerfree(pts, i);
   1274       1.142        ad 			mutex_spin_enter(&timer_lock);
   1275         1.1       cgd 		}
   1276         1.1       cgd 	}
   1277       1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1278       1.142        ad 	    pts->pts_timers[2] == NULL) {
   1279       1.142        ad 		p->p_timers = NULL;
   1280       1.142        ad 		mutex_spin_exit(&timer_lock);
   1281       1.142        ad 		pool_put(&ptimers_pool, pts);
   1282       1.142        ad 	} else
   1283       1.142        ad 		mutex_spin_exit(&timer_lock);
   1284       1.142        ad }
   1285       1.142        ad 
   1286       1.142        ad static void
   1287       1.142        ad itimerfree(struct ptimers *pts, int index)
   1288       1.142        ad {
   1289       1.142        ad 	struct ptimer *pt;
   1290       1.142        ad 
   1291       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1292       1.142        ad 
   1293       1.142        ad 	pt = pts->pts_timers[index];
   1294       1.142        ad 	pts->pts_timers[index] = NULL;
   1295       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1296       1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1297       1.167      yamt 	if (pt->pt_queued)
   1298       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1299       1.144        ad 	mutex_spin_exit(&timer_lock);
   1300       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1301       1.149  christos 		callout_destroy(&pt->pt_ch);
   1302       1.142        ad 	pool_put(&ptimer_pool, pt);
   1303         1.1       cgd }
   1304         1.1       cgd 
   1305         1.1       cgd /*
   1306         1.1       cgd  * Decrement an interval timer by a specified number
   1307       1.152  christos  * of nanoseconds, which must be less than a second,
   1308       1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1309       1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1310         1.8       cgd  * reduce the value reloaded into the timer so that
   1311         1.1       cgd  * the timer does not drift.  This routine assumes
   1312         1.1       cgd  * that it is called in a context where the timers
   1313         1.1       cgd  * on which it is operating cannot change in value.
   1314         1.1       cgd  */
   1315       1.142        ad static int
   1316       1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1317        1.63   thorpej {
   1318       1.150  christos 	struct itimerspec *itp;
   1319         1.1       cgd 
   1320       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1321       1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1322       1.142        ad 
   1323        1.63   thorpej 	itp = &pt->pt_time;
   1324       1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1325         1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1326         1.1       cgd 			/* expired, and already in next interval */
   1327       1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1328         1.1       cgd 			goto expire;
   1329         1.1       cgd 		}
   1330       1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1331         1.1       cgd 		itp->it_value.tv_sec--;
   1332         1.1       cgd 	}
   1333       1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1334       1.152  christos 	nsec = 0;
   1335       1.150  christos 	if (timespecisset(&itp->it_value))
   1336         1.1       cgd 		return (1);
   1337         1.1       cgd 	/* expired, exactly at end of interval */
   1338         1.1       cgd expire:
   1339       1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1340         1.1       cgd 		itp->it_value = itp->it_interval;
   1341       1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1342       1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1343       1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1344         1.1       cgd 			itp->it_value.tv_sec--;
   1345         1.1       cgd 		}
   1346        1.63   thorpej 		timer_settime(pt);
   1347         1.1       cgd 	} else
   1348       1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1349         1.1       cgd 	return (0);
   1350        1.42       cgd }
   1351        1.42       cgd 
   1352       1.142        ad static void
   1353        1.63   thorpej itimerfire(struct ptimer *pt)
   1354        1.63   thorpej {
   1355        1.78        cl 
   1356       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1357       1.142        ad 
   1358       1.142        ad 	/*
   1359       1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1360       1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1361       1.142        ad 	 */
   1362       1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1363       1.142        ad 		return;
   1364       1.172     rmind 	}
   1365       1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1366       1.142        ad 	pt->pt_queued = true;
   1367       1.142        ad 	softint_schedule(timer_sih);
   1368       1.142        ad }
   1369       1.142        ad 
   1370       1.142        ad void
   1371       1.142        ad timer_tick(lwp_t *l, bool user)
   1372       1.142        ad {
   1373       1.142        ad 	struct ptimers *pts;
   1374       1.142        ad 	struct ptimer *pt;
   1375       1.142        ad 	proc_t *p;
   1376       1.142        ad 
   1377       1.142        ad 	p = l->l_proc;
   1378       1.142        ad 	if (p->p_timers == NULL)
   1379       1.142        ad 		return;
   1380       1.142        ad 
   1381       1.142        ad 	mutex_spin_enter(&timer_lock);
   1382       1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1383        1.63   thorpej 		/*
   1384       1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1385        1.63   thorpej 		 */
   1386       1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1387       1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1388       1.142        ad 				itimerfire(pt);
   1389       1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1390       1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1391       1.142        ad 				itimerfire(pt);
   1392       1.142        ad 	}
   1393       1.142        ad 	mutex_spin_exit(&timer_lock);
   1394       1.142        ad }
   1395       1.142        ad 
   1396       1.142        ad static void
   1397       1.142        ad timer_intr(void *cookie)
   1398       1.142        ad {
   1399       1.142        ad 	ksiginfo_t ksi;
   1400       1.142        ad 	struct ptimer *pt;
   1401       1.142        ad 	proc_t *p;
   1402       1.142        ad 
   1403       1.158        ad 	mutex_enter(proc_lock);
   1404       1.142        ad 	mutex_spin_enter(&timer_lock);
   1405       1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1406       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1407       1.142        ad 		KASSERT(pt->pt_queued);
   1408       1.142        ad 		pt->pt_queued = false;
   1409       1.142        ad 
   1410       1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1411       1.154  wrstuden 			/* Process is dying. */
   1412       1.142        ad 			continue;
   1413       1.154  wrstuden 		}
   1414       1.142        ad 		p = pt->pt_proc;
   1415       1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1416       1.142        ad 			continue;
   1417       1.142        ad 		}
   1418       1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1419        1.63   thorpej 			pt->pt_overruns++;
   1420       1.142        ad 			continue;
   1421        1.64   nathanw 		}
   1422       1.142        ad 
   1423       1.142        ad 		KSI_INIT(&ksi);
   1424       1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1425       1.142        ad 		ksi.ksi_code = SI_TIMER;
   1426       1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1427       1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1428       1.142        ad 		pt->pt_overruns = 0;
   1429       1.142        ad 		mutex_spin_exit(&timer_lock);
   1430       1.142        ad 		kpsignal(p, &ksi, NULL);
   1431       1.142        ad 		mutex_spin_enter(&timer_lock);
   1432        1.63   thorpej 	}
   1433       1.142        ad 	mutex_spin_exit(&timer_lock);
   1434       1.158        ad 	mutex_exit(proc_lock);
   1435        1.63   thorpej }
   1436       1.162      elad 
   1437       1.162      elad /*
   1438       1.162      elad  * Check if the time will wrap if set to ts.
   1439       1.162      elad  *
   1440       1.162      elad  * ts - timespec describing the new time
   1441       1.162      elad  * delta - the delta between the current time and ts
   1442       1.162      elad  */
   1443       1.162      elad bool
   1444       1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1445       1.162      elad {
   1446       1.162      elad 
   1447       1.162      elad 	/*
   1448       1.162      elad 	 * Don't allow the time to be set forward so far it
   1449       1.162      elad 	 * will wrap and become negative, thus allowing an
   1450       1.162      elad 	 * attacker to bypass the next check below.  The
   1451       1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1452       1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1453       1.162      elad 	 * past the cutoff, it will take a very long time
   1454       1.162      elad 	 * to get to the wrap point.
   1455       1.162      elad 	 */
   1456       1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1457       1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1458       1.162      elad 		return true;
   1459       1.162      elad 
   1460       1.162      elad 	return false;
   1461       1.162      elad }
   1462