Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.179.8.1.4.1
      1  1.179.8.1.4.1    martin /*	$NetBSD: kern_time.c,v 1.179.8.1.4.1 2018/11/29 08:59:26 martin Exp $	*/
      2           1.42       cgd 
      3           1.42       cgd /*-
      4          1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5           1.42       cgd  * All rights reserved.
      6           1.42       cgd  *
      7           1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8          1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9           1.42       cgd  *
     10           1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11           1.42       cgd  * modification, are permitted provided that the following conditions
     12           1.42       cgd  * are met:
     13           1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14           1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15           1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16           1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17           1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18           1.42       cgd  *
     19           1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20           1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21           1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22           1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23           1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24           1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25           1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26           1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27           1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28           1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29           1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30           1.42       cgd  */
     31            1.9       cgd 
     32            1.1       cgd /*
     33            1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34            1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35            1.1       cgd  *
     36            1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37            1.1       cgd  * modification, are permitted provided that the following conditions
     38            1.1       cgd  * are met:
     39            1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40            1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41            1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42            1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43            1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44           1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45            1.1       cgd  *    may be used to endorse or promote products derived from this software
     46            1.1       cgd  *    without specific prior written permission.
     47            1.1       cgd  *
     48            1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49            1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50            1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51            1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52            1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53            1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54            1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55            1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56            1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57            1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58            1.1       cgd  * SUCH DAMAGE.
     59            1.1       cgd  *
     60           1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61            1.1       cgd  */
     62           1.58     lukem 
     63           1.58     lukem #include <sys/cdefs.h>
     64  1.179.8.1.4.1    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179.8.1.4.1 2018/11/29 08:59:26 martin Exp $");
     65            1.1       cgd 
     66            1.5   mycroft #include <sys/param.h>
     67            1.5   mycroft #include <sys/resourcevar.h>
     68            1.5   mycroft #include <sys/kernel.h>
     69            1.8       cgd #include <sys/systm.h>
     70            1.5   mycroft #include <sys/proc.h>
     71            1.8       cgd #include <sys/vnode.h>
     72           1.17  christos #include <sys/signalvar.h>
     73           1.25     perry #include <sys/syslog.h>
     74          1.101    kardel #include <sys/timetc.h>
     75          1.143        ad #include <sys/timex.h>
     76           1.99      elad #include <sys/kauth.h>
     77           1.11       cgd #include <sys/mount.h>
     78           1.11       cgd #include <sys/syscallargs.h>
     79          1.143        ad #include <sys/cpu.h>
     80           1.19  christos 
     81          1.142        ad static void	timer_intr(void *);
     82          1.142        ad static void	itimerfire(struct ptimer *);
     83          1.142        ad static void	itimerfree(struct ptimers *, int);
     84          1.142        ad 
     85          1.142        ad kmutex_t	timer_lock;
     86          1.142        ad 
     87          1.142        ad static void	*timer_sih;
     88          1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89          1.131        ad 
     90          1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91           1.97    simonb 
     92          1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93          1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94          1.168      yamt 
     95          1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96          1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97          1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98          1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99          1.168      yamt 
    100          1.131        ad /*
    101          1.131        ad  * Initialize timekeeping.
    102          1.131        ad  */
    103          1.131        ad void
    104          1.131        ad time_init(void)
    105          1.131        ad {
    106          1.131        ad 
    107          1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108          1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109          1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110          1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111          1.131        ad }
    112          1.131        ad 
    113          1.142        ad void
    114          1.142        ad time_init2(void)
    115          1.142        ad {
    116          1.142        ad 
    117          1.142        ad 	TAILQ_INIT(&timer_queue);
    118          1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119          1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120          1.142        ad 	    timer_intr, NULL);
    121          1.142        ad }
    122          1.142        ad 
    123           1.63   thorpej /* Time of day and interval timer support.
    124            1.1       cgd  *
    125            1.1       cgd  * These routines provide the kernel entry points to get and set
    126            1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    127            1.1       cgd  * here provide support for adding and subtracting timeval structures
    128            1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    129            1.1       cgd  * timers when they expire.
    130            1.1       cgd  */
    131            1.1       cgd 
    132           1.22       jtc /* This function is used by clock_settime and settimeofday */
    133          1.132      elad static int
    134          1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135           1.22       jtc {
    136          1.156  christos 	struct timespec delta, now;
    137          1.129        ad 	int s;
    138           1.22       jtc 
    139           1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140          1.129        ad 	s = splclock();
    141          1.156  christos 	nanotime(&now);
    142          1.156  christos 	timespecsub(ts, &now, &delta);
    143          1.132      elad 
    144          1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145          1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146          1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147          1.129        ad 		splx(s);
    148           1.29       tls 		return (EPERM);
    149           1.55      tron 	}
    150          1.132      elad 
    151           1.29       tls #ifdef notyet
    152          1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153          1.129        ad 		splx(s);
    154           1.29       tls 		return (EPERM);
    155           1.55      tron 	}
    156           1.29       tls #endif
    157          1.103    kardel 
    158          1.156  christos 	tc_setclock(ts);
    159          1.103    kardel 
    160          1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161          1.103    kardel 
    162           1.22       jtc 	resettodr();
    163          1.129        ad 	splx(s);
    164          1.129        ad 
    165           1.29       tls 	return (0);
    166           1.22       jtc }
    167           1.22       jtc 
    168          1.132      elad int
    169          1.132      elad settime(struct proc *p, struct timespec *ts)
    170          1.132      elad {
    171          1.132      elad 	return (settime1(p, ts, true));
    172          1.132      elad }
    173          1.132      elad 
    174           1.22       jtc /* ARGSUSED */
    175           1.22       jtc int
    176          1.156  christos sys___clock_gettime50(struct lwp *l,
    177          1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178           1.22       jtc {
    179          1.135       dsl 	/* {
    180           1.22       jtc 		syscallarg(clockid_t) clock_id;
    181           1.23       cgd 		syscallarg(struct timespec *) tp;
    182          1.135       dsl 	} */
    183          1.165     njoly 	int error;
    184           1.22       jtc 	struct timespec ats;
    185           1.22       jtc 
    186          1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187          1.165     njoly 	if (error != 0)
    188          1.165     njoly 		return error;
    189          1.165     njoly 
    190          1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191          1.165     njoly }
    192          1.165     njoly 
    193           1.22       jtc /* ARGSUSED */
    194           1.22       jtc int
    195          1.156  christos sys___clock_settime50(struct lwp *l,
    196          1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    197           1.22       jtc {
    198          1.135       dsl 	/* {
    199           1.22       jtc 		syscallarg(clockid_t) clock_id;
    200           1.23       cgd 		syscallarg(const struct timespec *) tp;
    201          1.135       dsl 	} */
    202          1.156  christos 	int error;
    203          1.156  christos 	struct timespec ats;
    204           1.22       jtc 
    205          1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    206          1.156  christos 		return error;
    207          1.156  christos 
    208          1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    209           1.56      manu }
    210           1.56      manu 
    211           1.56      manu 
    212           1.56      manu int
    213          1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    214          1.132      elad     bool check_kauth)
    215           1.56      manu {
    216           1.56      manu 	int error;
    217           1.56      manu 
    218           1.61    simonb 	switch (clock_id) {
    219           1.61    simonb 	case CLOCK_REALTIME:
    220          1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    221           1.61    simonb 			return (error);
    222           1.61    simonb 		break;
    223           1.61    simonb 	case CLOCK_MONOTONIC:
    224           1.61    simonb 		return (EINVAL);	/* read-only clock */
    225           1.61    simonb 	default:
    226           1.56      manu 		return (EINVAL);
    227           1.61    simonb 	}
    228           1.22       jtc 
    229           1.22       jtc 	return 0;
    230           1.22       jtc }
    231           1.22       jtc 
    232           1.22       jtc int
    233          1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    234          1.140      yamt     register_t *retval)
    235           1.22       jtc {
    236          1.135       dsl 	/* {
    237           1.22       jtc 		syscallarg(clockid_t) clock_id;
    238           1.23       cgd 		syscallarg(struct timespec *) tp;
    239          1.135       dsl 	} */
    240           1.22       jtc 	struct timespec ts;
    241           1.22       jtc 	int error = 0;
    242           1.22       jtc 
    243          1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    244          1.164     njoly 		return error;
    245          1.164     njoly 
    246          1.164     njoly 	if (SCARG(uap, tp))
    247          1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    248          1.164     njoly 
    249          1.164     njoly 	return error;
    250          1.164     njoly }
    251          1.164     njoly 
    252          1.164     njoly int
    253          1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    254          1.164     njoly {
    255          1.164     njoly 
    256           1.61    simonb 	switch (clock_id) {
    257           1.61    simonb 	case CLOCK_REALTIME:
    258           1.61    simonb 	case CLOCK_MONOTONIC:
    259          1.164     njoly 		ts->tv_sec = 0;
    260          1.102    kardel 		if (tc_getfrequency() > 1000000000)
    261          1.164     njoly 			ts->tv_nsec = 1;
    262          1.102    kardel 		else
    263          1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    264           1.61    simonb 		break;
    265           1.61    simonb 	default:
    266          1.164     njoly 		return EINVAL;
    267           1.61    simonb 	}
    268           1.22       jtc 
    269          1.164     njoly 	return 0;
    270           1.22       jtc }
    271           1.22       jtc 
    272           1.27       jtc /* ARGSUSED */
    273           1.27       jtc int
    274          1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    275          1.140      yamt     register_t *retval)
    276           1.27       jtc {
    277          1.135       dsl 	/* {
    278          1.101    kardel 		syscallarg(struct timespec *) rqtp;
    279          1.101    kardel 		syscallarg(struct timespec *) rmtp;
    280          1.135       dsl 	} */
    281          1.101    kardel 	struct timespec rmt, rqt;
    282          1.120       dsl 	int error, error1;
    283          1.101    kardel 
    284          1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    285          1.101    kardel 	if (error)
    286          1.101    kardel 		return (error);
    287          1.101    kardel 
    288          1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    289          1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    290          1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291          1.175  christos 		return error;
    292          1.175  christos 
    293          1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294          1.175  christos 	return error1 ? error1 : error;
    295          1.175  christos }
    296          1.175  christos 
    297          1.175  christos /* ARGSUSED */
    298          1.175  christos int
    299          1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    300          1.175  christos     register_t *retval)
    301          1.175  christos {
    302          1.175  christos 	/* {
    303          1.175  christos 		syscallarg(clockid_t) clock_id;
    304          1.175  christos 		syscallarg(int) flags;
    305          1.175  christos 		syscallarg(struct timespec *) rqtp;
    306          1.175  christos 		syscallarg(struct timespec *) rmtp;
    307          1.175  christos 	} */
    308          1.175  christos 	struct timespec rmt, rqt;
    309          1.175  christos 	int error, error1;
    310          1.175  christos 
    311          1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    312          1.175  christos 	if (error)
    313          1.175  christos 		return (error);
    314          1.175  christos 
    315          1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    316          1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    317          1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    318          1.120       dsl 		return error;
    319          1.120       dsl 
    320          1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    321          1.120       dsl 	return error1 ? error1 : error;
    322          1.120       dsl }
    323          1.120       dsl 
    324          1.120       dsl int
    325          1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    326          1.175  christos     struct timespec *rmt)
    327          1.120       dsl {
    328          1.141      yamt 	struct timespec rmtstart;
    329          1.120       dsl 	int error, timo;
    330          1.120       dsl 
    331      1.179.8.1    martin 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    332      1.179.8.1    martin 		if (error == ETIMEDOUT) {
    333      1.179.8.1    martin 			error = 0;
    334      1.179.8.1    martin 			if (rmt != NULL)
    335      1.179.8.1    martin 				rmt->tv_sec = rmt->tv_nsec = 0;
    336      1.179.8.1    martin 		}
    337      1.179.8.1    martin 		return error;
    338      1.179.8.1    martin 	}
    339          1.101    kardel 
    340          1.101    kardel 	/*
    341          1.175  christos 	 * Avoid inadvertently sleeping forever
    342          1.101    kardel 	 */
    343          1.101    kardel 	if (timo == 0)
    344          1.101    kardel 		timo = 1;
    345          1.141      yamt again:
    346          1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    347          1.141      yamt 	if (rmt != NULL || error == 0) {
    348          1.141      yamt 		struct timespec rmtend;
    349          1.141      yamt 		struct timespec t0;
    350          1.141      yamt 		struct timespec *t;
    351          1.101    kardel 
    352          1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    353          1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    354          1.179  christos 		if (flags & TIMER_ABSTIME) {
    355          1.179  christos 			timespecsub(rqt, &rmtend, t);
    356          1.179  christos 		} else {
    357          1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    358          1.179  christos 			timespecsub(rqt, t, t);
    359          1.179  christos 		}
    360          1.141      yamt 		if (t->tv_sec < 0)
    361          1.141      yamt 			timespecclear(t);
    362          1.141      yamt 		if (error == 0) {
    363          1.141      yamt 			timo = tstohz(t);
    364          1.141      yamt 			if (timo > 0)
    365          1.141      yamt 				goto again;
    366          1.141      yamt 		}
    367          1.141      yamt 	}
    368          1.104    kardel 
    369          1.101    kardel 	if (error == ERESTART)
    370          1.101    kardel 		error = EINTR;
    371          1.101    kardel 	if (error == EWOULDBLOCK)
    372          1.101    kardel 		error = 0;
    373          1.101    kardel 
    374          1.101    kardel 	return error;
    375           1.27       jtc }
    376           1.22       jtc 
    377            1.1       cgd /* ARGSUSED */
    378            1.3    andrew int
    379          1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    380          1.140      yamt     register_t *retval)
    381           1.15   thorpej {
    382          1.135       dsl 	/* {
    383           1.11       cgd 		syscallarg(struct timeval *) tp;
    384          1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    385          1.135       dsl 	} */
    386            1.1       cgd 	struct timeval atv;
    387            1.1       cgd 	int error = 0;
    388           1.25     perry 	struct timezone tzfake;
    389            1.1       cgd 
    390           1.11       cgd 	if (SCARG(uap, tp)) {
    391            1.1       cgd 		microtime(&atv);
    392           1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    393           1.17  christos 		if (error)
    394            1.1       cgd 			return (error);
    395            1.1       cgd 	}
    396           1.25     perry 	if (SCARG(uap, tzp)) {
    397           1.25     perry 		/*
    398           1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    399           1.25     perry 		 * fake up a timezone struct and return it if demanded.
    400           1.25     perry 		 */
    401           1.25     perry 		tzfake.tz_minuteswest = 0;
    402           1.25     perry 		tzfake.tz_dsttime = 0;
    403           1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    404           1.25     perry 	}
    405            1.1       cgd 	return (error);
    406            1.1       cgd }
    407            1.1       cgd 
    408            1.1       cgd /* ARGSUSED */
    409            1.3    andrew int
    410          1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    411          1.140      yamt     register_t *retval)
    412           1.15   thorpej {
    413          1.135       dsl 	/* {
    414           1.24       cgd 		syscallarg(const struct timeval *) tv;
    415          1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    416          1.135       dsl 	} */
    417           1.60      manu 
    418          1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    419           1.60      manu }
    420           1.60      manu 
    421           1.60      manu int
    422          1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    423          1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    424           1.60      manu {
    425           1.22       jtc 	struct timeval atv;
    426           1.98  christos 	struct timespec ts;
    427           1.22       jtc 	int error;
    428            1.1       cgd 
    429            1.8       cgd 	/* Verify all parameters before changing time. */
    430          1.119       dsl 
    431           1.25     perry 	/*
    432           1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    433           1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    434           1.25     perry 	 */
    435           1.98  christos 	if (utzp)
    436           1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    437          1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    438           1.98  christos 
    439           1.98  christos 	if (utv == NULL)
    440           1.98  christos 		return 0;
    441           1.98  christos 
    442          1.119       dsl 	if (userspace) {
    443          1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    444          1.119       dsl 			return error;
    445          1.119       dsl 		utv = &atv;
    446          1.119       dsl 	}
    447          1.119       dsl 
    448          1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    449          1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    450            1.1       cgd }
    451            1.1       cgd 
    452           1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    453            1.1       cgd 
    454            1.1       cgd /* ARGSUSED */
    455            1.3    andrew int
    456          1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    457          1.140      yamt     register_t *retval)
    458           1.15   thorpej {
    459          1.135       dsl 	/* {
    460           1.24       cgd 		syscallarg(const struct timeval *) delta;
    461           1.11       cgd 		syscallarg(struct timeval *) olddelta;
    462          1.135       dsl 	} */
    463          1.156  christos 	int error = 0;
    464          1.156  christos 	struct timeval atv, oldatv;
    465            1.1       cgd 
    466          1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    467          1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    468          1.156  christos 		return error;
    469           1.17  christos 
    470          1.156  christos 	if (SCARG(uap, delta)) {
    471          1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    472          1.156  christos 		    sizeof(*SCARG(uap, delta)));
    473          1.156  christos 		if (error)
    474          1.156  christos 			return (error);
    475          1.156  christos 	}
    476          1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    477          1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    478          1.156  christos 	if (SCARG(uap, olddelta))
    479          1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    480          1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    481          1.156  christos 	return error;
    482           1.56      manu }
    483           1.56      manu 
    484          1.156  christos void
    485          1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    486           1.56      manu {
    487          1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    488          1.101    kardel 
    489          1.101    kardel 	if (olddelta) {
    490          1.143        ad 		mutex_spin_enter(&timecounter_lock);
    491          1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    492          1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    493          1.156  christos 		if (olddelta->tv_usec < 0) {
    494          1.156  christos 			olddelta->tv_usec += 1000000;
    495          1.156  christos 			olddelta->tv_sec--;
    496          1.101    kardel 		}
    497          1.157  christos 		mutex_spin_exit(&timecounter_lock);
    498          1.101    kardel 	}
    499          1.101    kardel 
    500          1.101    kardel 	if (delta) {
    501          1.156  christos 		mutex_spin_enter(&timecounter_lock);
    502          1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    503          1.101    kardel 
    504          1.143        ad 		if (time_adjtime) {
    505          1.101    kardel 			/* We need to save the system time during shutdown */
    506          1.101    kardel 			time_adjusted |= 1;
    507          1.143        ad 		}
    508          1.143        ad 		mutex_spin_exit(&timecounter_lock);
    509          1.101    kardel 	}
    510            1.1       cgd }
    511            1.1       cgd 
    512            1.1       cgd /*
    513           1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    514           1.63   thorpej  * timer_*() family of routines are supported.
    515            1.1       cgd  *
    516           1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    517           1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    518           1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    519          1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    520          1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    521          1.170  christos  * allocated by the timer_create() syscall.
    522            1.1       cgd  *
    523           1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    524           1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    525            1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    526           1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    527           1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    528           1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    529           1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    530           1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    531           1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    532           1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    533           1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    534           1.63   thorpej 
    535           1.63   thorpej /* Allocate a POSIX realtime timer. */
    536           1.63   thorpej int
    537          1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    538          1.140      yamt     register_t *retval)
    539           1.63   thorpej {
    540          1.135       dsl 	/* {
    541           1.63   thorpej 		syscallarg(clockid_t) clock_id;
    542           1.63   thorpej 		syscallarg(struct sigevent *) evp;
    543           1.63   thorpej 		syscallarg(timer_t *) timerid;
    544          1.135       dsl 	} */
    545           1.92      cube 
    546           1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    547          1.105        ad 	    SCARG(uap, evp), copyin, l);
    548           1.92      cube }
    549           1.92      cube 
    550           1.92      cube int
    551           1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    552          1.105        ad     copyin_t fetch_event, struct lwp *l)
    553           1.92      cube {
    554           1.92      cube 	int error;
    555           1.92      cube 	timer_t timerid;
    556          1.142        ad 	struct ptimers *pts;
    557           1.63   thorpej 	struct ptimer *pt;
    558          1.105        ad 	struct proc *p;
    559          1.105        ad 
    560          1.105        ad 	p = l->l_proc;
    561           1.63   thorpej 
    562          1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    563           1.63   thorpej 		return (EINVAL);
    564           1.63   thorpej 
    565          1.142        ad 	if ((pts = p->p_timers) == NULL)
    566          1.142        ad 		pts = timers_alloc(p);
    567           1.63   thorpej 
    568           1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    569  1.179.8.1.4.1    martin 	memset(pt, 0, sizeof(*pt));
    570          1.142        ad 	if (evp != NULL) {
    571           1.63   thorpej 		if (((error =
    572           1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    573           1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    574          1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    575          1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    576          1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    577          1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    578           1.63   thorpej 			pool_put(&ptimer_pool, pt);
    579           1.63   thorpej 			return (error ? error : EINVAL);
    580           1.63   thorpej 		}
    581          1.142        ad 	}
    582          1.142        ad 
    583          1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    584          1.142        ad 	mutex_spin_enter(&timer_lock);
    585          1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    586          1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    587          1.142        ad 			break;
    588          1.142        ad 	if (timerid == TIMER_MAX) {
    589          1.142        ad 		mutex_spin_exit(&timer_lock);
    590          1.142        ad 		pool_put(&ptimer_pool, pt);
    591          1.142        ad 		return EAGAIN;
    592          1.142        ad 	}
    593          1.142        ad 	if (evp == NULL) {
    594           1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    595           1.63   thorpej 		switch (id) {
    596           1.63   thorpej 		case CLOCK_REALTIME:
    597          1.168      yamt 		case CLOCK_MONOTONIC:
    598           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    599           1.63   thorpej 			break;
    600           1.63   thorpej 		case CLOCK_VIRTUAL:
    601           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    602           1.63   thorpej 			break;
    603           1.63   thorpej 		case CLOCK_PROF:
    604           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    605           1.63   thorpej 			break;
    606           1.63   thorpej 		}
    607           1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    608           1.63   thorpej 	}
    609           1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    610           1.73  christos 	pt->pt_info.ksi_errno = 0;
    611           1.73  christos 	pt->pt_info.ksi_code = 0;
    612           1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    613          1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    614          1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    615           1.63   thorpej 	pt->pt_type = id;
    616           1.63   thorpej 	pt->pt_proc = p;
    617           1.63   thorpej 	pt->pt_overruns = 0;
    618           1.63   thorpej 	pt->pt_poverruns = 0;
    619           1.64   nathanw 	pt->pt_entry = timerid;
    620          1.142        ad 	pt->pt_queued = false;
    621          1.150  christos 	timespecclear(&pt->pt_time.it_value);
    622          1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    623          1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    624          1.149  christos 	else
    625          1.149  christos 		pt->pt_active = 0;
    626          1.149  christos 
    627          1.142        ad 	pts->pts_timers[timerid] = pt;
    628          1.142        ad 	mutex_spin_exit(&timer_lock);
    629           1.63   thorpej 
    630           1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    631           1.63   thorpej }
    632           1.63   thorpej 
    633           1.63   thorpej /* Delete a POSIX realtime timer */
    634            1.3    andrew int
    635          1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    636          1.140      yamt     register_t *retval)
    637           1.15   thorpej {
    638          1.135       dsl 	/* {
    639           1.63   thorpej 		syscallarg(timer_t) timerid;
    640          1.135       dsl 	} */
    641           1.63   thorpej 	struct proc *p = l->l_proc;
    642           1.65  jdolecek 	timer_t timerid;
    643          1.142        ad 	struct ptimers *pts;
    644           1.63   thorpej 	struct ptimer *pt, *ptn;
    645            1.1       cgd 
    646           1.63   thorpej 	timerid = SCARG(uap, timerid);
    647          1.142        ad 	pts = p->p_timers;
    648          1.142        ad 
    649          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    650          1.142        ad 		return (EINVAL);
    651           1.63   thorpej 
    652          1.142        ad 	mutex_spin_enter(&timer_lock);
    653          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    654          1.142        ad 		mutex_spin_exit(&timer_lock);
    655            1.1       cgd 		return (EINVAL);
    656          1.142        ad 	}
    657          1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    658          1.149  christos 		if (pt->pt_active) {
    659          1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    660          1.149  christos 			LIST_REMOVE(pt, pt_list);
    661          1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    662          1.150  christos 				timespecadd(&pt->pt_time.it_value,
    663          1.149  christos 				    &ptn->pt_time.it_value,
    664          1.149  christos 				    &ptn->pt_time.it_value);
    665          1.149  christos 			pt->pt_active = 0;
    666          1.149  christos 		}
    667           1.63   thorpej 	}
    668          1.142        ad 	itimerfree(pts, timerid);
    669           1.63   thorpej 
    670           1.63   thorpej 	return (0);
    671           1.63   thorpej }
    672           1.63   thorpej 
    673           1.63   thorpej /*
    674           1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    675          1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    676          1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    677           1.63   thorpej  */
    678           1.63   thorpej void
    679           1.63   thorpej timer_settime(struct ptimer *pt)
    680           1.63   thorpej {
    681           1.63   thorpej 	struct ptimer *ptn, *pptn;
    682           1.63   thorpej 	struct ptlist *ptl;
    683           1.63   thorpej 
    684          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    685          1.142        ad 
    686          1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    687          1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    688          1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    689           1.63   thorpej 			/*
    690          1.150  christos 			 * Don't need to check tshzto() return value, here.
    691           1.63   thorpej 			 * callout_reset() does it for us.
    692           1.63   thorpej 			 */
    693          1.171  christos 			callout_reset(&pt->pt_ch,
    694          1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    695          1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    696          1.171  christos 			    tshzto(&pt->pt_time.it_value),
    697           1.63   thorpej 			    realtimerexpire, pt);
    698           1.63   thorpej 		}
    699           1.63   thorpej 	} else {
    700           1.63   thorpej 		if (pt->pt_active) {
    701           1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    702           1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    703           1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    704          1.150  christos 				timespecadd(&pt->pt_time.it_value,
    705           1.63   thorpej 				    &ptn->pt_time.it_value,
    706           1.63   thorpej 				    &ptn->pt_time.it_value);
    707           1.63   thorpej 		}
    708          1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    709           1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    710           1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    711           1.63   thorpej 			else
    712           1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    713           1.63   thorpej 
    714           1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    715          1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    716           1.63   thorpej 				 &ptn->pt_time.it_value, >);
    717           1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    718          1.150  christos 				timespecsub(&pt->pt_time.it_value,
    719           1.63   thorpej 				    &ptn->pt_time.it_value,
    720           1.63   thorpej 				    &pt->pt_time.it_value);
    721           1.63   thorpej 
    722           1.63   thorpej 			if (pptn)
    723           1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    724           1.63   thorpej 			else
    725           1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    726           1.63   thorpej 
    727           1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    728          1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    729           1.63   thorpej 				    &pt->pt_time.it_value,
    730           1.63   thorpej 				    &ptn->pt_time.it_value);
    731           1.63   thorpej 
    732           1.63   thorpej 			pt->pt_active = 1;
    733           1.63   thorpej 		} else
    734           1.63   thorpej 			pt->pt_active = 0;
    735           1.63   thorpej 	}
    736           1.63   thorpej }
    737           1.63   thorpej 
    738           1.63   thorpej void
    739          1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    740           1.63   thorpej {
    741          1.150  christos 	struct timespec now;
    742           1.63   thorpej 	struct ptimer *ptn;
    743           1.63   thorpej 
    744          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    745          1.142        ad 
    746          1.150  christos 	*aits = pt->pt_time;
    747          1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    748            1.1       cgd 		/*
    749           1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    750           1.63   thorpej 		 * part of real time timer.  If time for real time
    751           1.63   thorpej 		 * timer has passed return 0, else return difference
    752           1.63   thorpej 		 * between current time and time for the timer to go
    753           1.63   thorpej 		 * off.
    754            1.1       cgd 		 */
    755          1.150  christos 		if (timespecisset(&aits->it_value)) {
    756          1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    757          1.168      yamt 				getnanotime(&now);
    758          1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    759          1.168      yamt 				getnanouptime(&now);
    760          1.168      yamt 			}
    761          1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    762          1.150  christos 				timespecclear(&aits->it_value);
    763          1.101    kardel 			else
    764          1.150  christos 				timespecsub(&aits->it_value, &now,
    765          1.150  christos 				    &aits->it_value);
    766           1.36   thorpej 		}
    767           1.63   thorpej 	} else if (pt->pt_active) {
    768           1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    769           1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    770           1.63   thorpej 		else
    771           1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    772           1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    773          1.150  christos 			timespecadd(&aits->it_value,
    774          1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    775           1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    776            1.1       cgd 	} else
    777          1.150  christos 		timespecclear(&aits->it_value);
    778           1.63   thorpej }
    779           1.63   thorpej 
    780           1.63   thorpej 
    781           1.63   thorpej 
    782           1.63   thorpej /* Set and arm a POSIX realtime timer */
    783           1.63   thorpej int
    784          1.156  christos sys___timer_settime50(struct lwp *l,
    785          1.156  christos     const struct sys___timer_settime50_args *uap,
    786          1.140      yamt     register_t *retval)
    787           1.63   thorpej {
    788          1.135       dsl 	/* {
    789           1.63   thorpej 		syscallarg(timer_t) timerid;
    790           1.63   thorpej 		syscallarg(int) flags;
    791           1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    792           1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    793          1.135       dsl 	} */
    794           1.92      cube 	int error;
    795           1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    796           1.92      cube 
    797           1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    798           1.92      cube 	    sizeof(struct itimerspec))) != 0)
    799           1.92      cube 		return (error);
    800           1.92      cube 
    801           1.92      cube 	if (SCARG(uap, ovalue))
    802           1.92      cube 		ovp = &ovalue;
    803           1.92      cube 
    804           1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    805           1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    806           1.92      cube 		return error;
    807           1.92      cube 
    808           1.92      cube 	if (ovp)
    809           1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    810           1.92      cube 		    sizeof(struct itimerspec));
    811           1.92      cube 	return 0;
    812           1.92      cube }
    813           1.92      cube 
    814           1.92      cube int
    815           1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    816           1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    817           1.92      cube {
    818          1.150  christos 	struct timespec now;
    819          1.150  christos 	struct itimerspec val, oval;
    820          1.142        ad 	struct ptimers *pts;
    821           1.63   thorpej 	struct ptimer *pt;
    822          1.160  christos 	int error;
    823           1.63   thorpej 
    824          1.142        ad 	pts = p->p_timers;
    825           1.63   thorpej 
    826          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    827          1.142        ad 		return EINVAL;
    828          1.150  christos 	val = *value;
    829          1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    830          1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    831          1.160  christos 		return error;
    832           1.63   thorpej 
    833          1.142        ad 	mutex_spin_enter(&timer_lock);
    834          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    835          1.142        ad 		mutex_spin_exit(&timer_lock);
    836          1.150  christos 		return EINVAL;
    837          1.142        ad 	}
    838          1.142        ad 
    839           1.63   thorpej 	oval = pt->pt_time;
    840           1.63   thorpej 	pt->pt_time = val;
    841           1.63   thorpej 
    842           1.67   nathanw 	/*
    843           1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    844           1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    845           1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    846           1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    847           1.67   nathanw 	 * negative, which would confuse the comparison tests.
    848           1.67   nathanw 	 */
    849          1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    850          1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    851          1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    852          1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    853          1.168      yamt 					getnanotime(&now);
    854          1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    855          1.168      yamt 					getnanouptime(&now);
    856          1.168      yamt 				}
    857          1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    858          1.101    kardel 				    &pt->pt_time.it_value);
    859          1.101    kardel 			}
    860           1.67   nathanw 		} else {
    861           1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    862          1.150  christos 				getnanotime(&now);
    863          1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    864          1.101    kardel 				    &pt->pt_time.it_value);
    865          1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    866           1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    867           1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    868          1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    869           1.67   nathanw 				}
    870           1.67   nathanw 			}
    871           1.67   nathanw 		}
    872           1.67   nathanw 	}
    873           1.67   nathanw 
    874           1.63   thorpej 	timer_settime(pt);
    875          1.142        ad 	mutex_spin_exit(&timer_lock);
    876           1.63   thorpej 
    877          1.150  christos 	if (ovalue)
    878          1.150  christos 		*ovalue = oval;
    879           1.63   thorpej 
    880           1.63   thorpej 	return (0);
    881           1.63   thorpej }
    882           1.63   thorpej 
    883           1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    884           1.63   thorpej int
    885          1.156  christos sys___timer_gettime50(struct lwp *l,
    886          1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    887           1.63   thorpej {
    888          1.135       dsl 	/* {
    889           1.63   thorpej 		syscallarg(timer_t) timerid;
    890           1.63   thorpej 		syscallarg(struct itimerspec *) value;
    891          1.135       dsl 	} */
    892           1.63   thorpej 	struct itimerspec its;
    893           1.92      cube 	int error;
    894           1.92      cube 
    895           1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    896           1.92      cube 	    &its)) != 0)
    897           1.92      cube 		return error;
    898           1.92      cube 
    899           1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    900           1.92      cube }
    901           1.92      cube 
    902           1.92      cube int
    903           1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    904           1.92      cube {
    905           1.63   thorpej 	struct ptimer *pt;
    906          1.142        ad 	struct ptimers *pts;
    907           1.63   thorpej 
    908          1.142        ad 	pts = p->p_timers;
    909          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    910           1.63   thorpej 		return (EINVAL);
    911          1.142        ad 	mutex_spin_enter(&timer_lock);
    912          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    913          1.142        ad 		mutex_spin_exit(&timer_lock);
    914          1.142        ad 		return (EINVAL);
    915          1.142        ad 	}
    916          1.150  christos 	timer_gettime(pt, its);
    917          1.142        ad 	mutex_spin_exit(&timer_lock);
    918           1.63   thorpej 
    919           1.92      cube 	return 0;
    920           1.63   thorpej }
    921           1.63   thorpej 
    922           1.63   thorpej /*
    923           1.63   thorpej  * Return the count of the number of times a periodic timer expired
    924           1.63   thorpej  * while a notification was already pending. The counter is reset when
    925           1.63   thorpej  * a timer expires and a notification can be posted.
    926           1.63   thorpej  */
    927           1.63   thorpej int
    928          1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    929          1.140      yamt     register_t *retval)
    930           1.63   thorpej {
    931          1.135       dsl 	/* {
    932           1.63   thorpej 		syscallarg(timer_t) timerid;
    933          1.135       dsl 	} */
    934           1.63   thorpej 	struct proc *p = l->l_proc;
    935          1.142        ad 	struct ptimers *pts;
    936           1.63   thorpej 	int timerid;
    937           1.63   thorpej 	struct ptimer *pt;
    938           1.63   thorpej 
    939           1.63   thorpej 	timerid = SCARG(uap, timerid);
    940           1.63   thorpej 
    941          1.142        ad 	pts = p->p_timers;
    942          1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    943          1.142        ad 		return (EINVAL);
    944          1.142        ad 	mutex_spin_enter(&timer_lock);
    945          1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    946          1.142        ad 		mutex_spin_exit(&timer_lock);
    947           1.63   thorpej 		return (EINVAL);
    948          1.142        ad 	}
    949           1.63   thorpej 	*retval = pt->pt_poverruns;
    950          1.142        ad 	mutex_spin_exit(&timer_lock);
    951           1.63   thorpej 
    952           1.63   thorpej 	return (0);
    953           1.63   thorpej }
    954           1.63   thorpej 
    955           1.63   thorpej /*
    956           1.63   thorpej  * Real interval timer expired:
    957           1.63   thorpej  * send process whose timer expired an alarm signal.
    958           1.63   thorpej  * If time is not set up to reload, then just return.
    959           1.63   thorpej  * Else compute next time timer should go off which is > current time.
    960           1.63   thorpej  * This is where delay in processing this timeout causes multiple
    961           1.63   thorpej  * SIGALRM calls to be compressed into one.
    962           1.63   thorpej  */
    963           1.63   thorpej void
    964           1.63   thorpej realtimerexpire(void *arg)
    965           1.63   thorpej {
    966          1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    967          1.150  christos 	struct timespec now, next;
    968           1.63   thorpej 	struct ptimer *pt;
    969          1.148     joerg 	int backwards;
    970           1.63   thorpej 
    971          1.142        ad 	pt = arg;
    972           1.63   thorpej 
    973          1.142        ad 	mutex_spin_enter(&timer_lock);
    974           1.63   thorpej 	itimerfire(pt);
    975           1.63   thorpej 
    976          1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    977          1.150  christos 		timespecclear(&pt->pt_time.it_value);
    978          1.142        ad 		mutex_spin_exit(&timer_lock);
    979           1.63   thorpej 		return;
    980           1.63   thorpej 	}
    981          1.148     joerg 
    982          1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
    983          1.171  christos 		getnanouptime(&now);
    984          1.171  christos 	} else {
    985          1.171  christos 		getnanotime(&now);
    986          1.171  christos 	}
    987          1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    988          1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    989          1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    990          1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    991          1.148     joerg 		pt->pt_time.it_value = next;
    992          1.148     joerg 	} else {
    993          1.166      yamt 		now_ns = timespec2ns(&now);
    994          1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    995          1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    996          1.148     joerg 
    997          1.166      yamt 		next_val = now_ns +
    998          1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
    999          1.148     joerg 
   1000          1.148     joerg 		if (backwards)
   1001          1.148     joerg 			next_val += interval;
   1002          1.148     joerg 		else
   1003          1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1004          1.148     joerg 
   1005          1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1006          1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1007          1.101    kardel 	}
   1008          1.148     joerg 
   1009          1.148     joerg 	/*
   1010          1.150  christos 	 * Don't need to check tshzto() return value, here.
   1011          1.148     joerg 	 * callout_reset() does it for us.
   1012          1.148     joerg 	 */
   1013          1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1014          1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1015          1.148     joerg 	    realtimerexpire, pt);
   1016          1.148     joerg 	mutex_spin_exit(&timer_lock);
   1017           1.63   thorpej }
   1018           1.63   thorpej 
   1019           1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1020           1.63   thorpej /* ARGSUSED */
   1021           1.63   thorpej int
   1022          1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1023          1.140      yamt     register_t *retval)
   1024           1.63   thorpej {
   1025          1.135       dsl 	/* {
   1026           1.63   thorpej 		syscallarg(int) which;
   1027           1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1028          1.135       dsl 	} */
   1029           1.63   thorpej 	struct proc *p = l->l_proc;
   1030           1.63   thorpej 	struct itimerval aitv;
   1031           1.91      cube 	int error;
   1032           1.91      cube 
   1033           1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1034           1.91      cube 	if (error)
   1035           1.91      cube 		return error;
   1036           1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1037           1.91      cube }
   1038           1.63   thorpej 
   1039           1.91      cube int
   1040           1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1041           1.91      cube {
   1042          1.142        ad 	struct ptimers *pts;
   1043          1.142        ad 	struct ptimer *pt;
   1044          1.150  christos 	struct itimerspec its;
   1045           1.63   thorpej 
   1046          1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1047           1.63   thorpej 		return (EINVAL);
   1048           1.63   thorpej 
   1049          1.142        ad 	mutex_spin_enter(&timer_lock);
   1050          1.142        ad 	pts = p->p_timers;
   1051          1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1052           1.91      cube 		timerclear(&itvp->it_value);
   1053           1.91      cube 		timerclear(&itvp->it_interval);
   1054          1.150  christos 	} else {
   1055          1.150  christos 		timer_gettime(pt, &its);
   1056          1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1057          1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1058          1.150  christos 	}
   1059          1.142        ad 	mutex_spin_exit(&timer_lock);
   1060           1.63   thorpej 
   1061           1.91      cube 	return 0;
   1062            1.1       cgd }
   1063            1.1       cgd 
   1064           1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1065            1.1       cgd /* ARGSUSED */
   1066            1.3    andrew int
   1067          1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1068          1.140      yamt     register_t *retval)
   1069           1.15   thorpej {
   1070          1.135       dsl 	/* {
   1071           1.30   mycroft 		syscallarg(int) which;
   1072           1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1073           1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1074          1.135       dsl 	} */
   1075           1.63   thorpej 	struct proc *p = l->l_proc;
   1076           1.30   mycroft 	int which = SCARG(uap, which);
   1077          1.156  christos 	struct sys___getitimer50_args getargs;
   1078           1.91      cube 	const struct itimerval *itvp;
   1079            1.1       cgd 	struct itimerval aitv;
   1080           1.91      cube 	int error;
   1081            1.1       cgd 
   1082          1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1083            1.1       cgd 		return (EINVAL);
   1084           1.11       cgd 	itvp = SCARG(uap, itv);
   1085           1.63   thorpej 	if (itvp &&
   1086          1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1087            1.1       cgd 		return (error);
   1088           1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1089           1.30   mycroft 		SCARG(&getargs, which) = which;
   1090           1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1091          1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1092           1.21       cgd 			return (error);
   1093           1.21       cgd 	}
   1094            1.1       cgd 	if (itvp == 0)
   1095            1.1       cgd 		return (0);
   1096           1.91      cube 
   1097           1.91      cube 	return dosetitimer(p, which, &aitv);
   1098           1.91      cube }
   1099           1.91      cube 
   1100           1.91      cube int
   1101           1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1102           1.91      cube {
   1103          1.150  christos 	struct timespec now;
   1104          1.142        ad 	struct ptimers *pts;
   1105          1.142        ad 	struct ptimer *pt, *spare;
   1106           1.91      cube 
   1107          1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1108           1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1109            1.1       cgd 		return (EINVAL);
   1110           1.63   thorpej 
   1111           1.63   thorpej 	/*
   1112           1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1113           1.63   thorpej 	 * wants to clear the timer.
   1114           1.63   thorpej 	 */
   1115          1.142        ad 	spare = NULL;
   1116          1.142        ad 	pts = p->p_timers;
   1117          1.142        ad  retry:
   1118          1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1119          1.142        ad 	    pts->pts_timers[which] == NULL))
   1120           1.63   thorpej 		return (0);
   1121          1.142        ad 	if (pts == NULL)
   1122          1.142        ad 		pts = timers_alloc(p);
   1123          1.142        ad 	mutex_spin_enter(&timer_lock);
   1124          1.142        ad 	pt = pts->pts_timers[which];
   1125          1.142        ad 	if (pt == NULL) {
   1126          1.142        ad 		if (spare == NULL) {
   1127          1.142        ad 			mutex_spin_exit(&timer_lock);
   1128          1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1129          1.142        ad 			goto retry;
   1130          1.142        ad 		}
   1131          1.142        ad 		pt = spare;
   1132          1.142        ad 		spare = NULL;
   1133           1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1134           1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1135           1.63   thorpej 		pt->pt_overruns = 0;
   1136           1.63   thorpej 		pt->pt_proc = p;
   1137           1.63   thorpej 		pt->pt_type = which;
   1138           1.64   nathanw 		pt->pt_entry = which;
   1139          1.142        ad 		pt->pt_queued = false;
   1140          1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1141          1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1142          1.149  christos 		else
   1143          1.149  christos 			pt->pt_active = 0;
   1144          1.149  christos 
   1145           1.63   thorpej 		switch (which) {
   1146           1.63   thorpej 		case ITIMER_REAL:
   1147          1.170  christos 		case ITIMER_MONOTONIC:
   1148           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1149           1.63   thorpej 			break;
   1150           1.63   thorpej 		case ITIMER_VIRTUAL:
   1151           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1152           1.63   thorpej 			break;
   1153           1.63   thorpej 		case ITIMER_PROF:
   1154           1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1155           1.63   thorpej 			break;
   1156            1.1       cgd 		}
   1157          1.142        ad 		pts->pts_timers[which] = pt;
   1158          1.142        ad 	}
   1159           1.63   thorpej 
   1160          1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1161          1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1162          1.150  christos 
   1163          1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1164           1.67   nathanw 		/* Convert to absolute time */
   1165          1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1166          1.170  christos 		switch (which) {
   1167          1.170  christos 		case ITIMER_REAL:
   1168          1.170  christos 			getnanotime(&now);
   1169          1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1170          1.170  christos 			    &pt->pt_time.it_value);
   1171          1.170  christos 			break;
   1172          1.170  christos 		case ITIMER_MONOTONIC:
   1173          1.170  christos 			getnanouptime(&now);
   1174          1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1175          1.170  christos 			    &pt->pt_time.it_value);
   1176          1.170  christos 			break;
   1177          1.170  christos 		default:
   1178          1.170  christos 			break;
   1179          1.170  christos 		}
   1180           1.67   nathanw 	}
   1181           1.63   thorpej 	timer_settime(pt);
   1182          1.142        ad 	mutex_spin_exit(&timer_lock);
   1183          1.142        ad 	if (spare != NULL)
   1184          1.142        ad 		pool_put(&ptimer_pool, spare);
   1185           1.63   thorpej 
   1186            1.1       cgd 	return (0);
   1187            1.1       cgd }
   1188            1.1       cgd 
   1189           1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1190          1.142        ad struct ptimers *
   1191           1.63   thorpej timers_alloc(struct proc *p)
   1192           1.63   thorpej {
   1193          1.142        ad 	struct ptimers *pts;
   1194           1.63   thorpej 	int i;
   1195           1.63   thorpej 
   1196          1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1197           1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1198           1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1199           1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1200           1.63   thorpej 		pts->pts_timers[i] = NULL;
   1201           1.64   nathanw 	pts->pts_fired = 0;
   1202          1.142        ad 	mutex_spin_enter(&timer_lock);
   1203          1.142        ad 	if (p->p_timers == NULL) {
   1204          1.142        ad 		p->p_timers = pts;
   1205          1.142        ad 		mutex_spin_exit(&timer_lock);
   1206          1.142        ad 		return pts;
   1207          1.142        ad 	}
   1208          1.142        ad 	mutex_spin_exit(&timer_lock);
   1209          1.142        ad 	pool_put(&ptimers_pool, pts);
   1210          1.142        ad 	return p->p_timers;
   1211           1.63   thorpej }
   1212           1.63   thorpej 
   1213            1.1       cgd /*
   1214           1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1215           1.63   thorpej  * then clean up all timers and free all the data structures. If
   1216           1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1217           1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1218           1.63   thorpej  * structure if none of those remain.
   1219            1.1       cgd  */
   1220            1.3    andrew void
   1221           1.63   thorpej timers_free(struct proc *p, int which)
   1222            1.6       cgd {
   1223           1.63   thorpej 	struct ptimers *pts;
   1224          1.142        ad 	struct ptimer *ptn;
   1225          1.150  christos 	struct timespec ts;
   1226          1.142        ad 	int i;
   1227           1.63   thorpej 
   1228          1.142        ad 	if (p->p_timers == NULL)
   1229          1.142        ad 		return;
   1230           1.63   thorpej 
   1231          1.142        ad 	pts = p->p_timers;
   1232          1.142        ad 	mutex_spin_enter(&timer_lock);
   1233          1.142        ad 	if (which == TIMERS_ALL) {
   1234          1.142        ad 		p->p_timers = NULL;
   1235          1.142        ad 		i = 0;
   1236          1.142        ad 	} else {
   1237          1.150  christos 		timespecclear(&ts);
   1238          1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1239          1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1240          1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1241          1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1242          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1243          1.149  christos 		}
   1244          1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1245          1.142        ad 		if (ptn) {
   1246          1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1247          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1248          1.142        ad 			    &ptn->pt_time.it_value);
   1249          1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1250          1.142        ad 		}
   1251          1.150  christos 		timespecclear(&ts);
   1252          1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1253          1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1254          1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1255          1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1256          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1257          1.149  christos 		}
   1258          1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1259          1.142        ad 		if (ptn) {
   1260          1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1261          1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1262          1.142        ad 			    &ptn->pt_time.it_value);
   1263          1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1264           1.63   thorpej 		}
   1265          1.142        ad 		i = 3;
   1266          1.142        ad 	}
   1267          1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1268          1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1269          1.142        ad 			itimerfree(pts, i);
   1270          1.142        ad 			mutex_spin_enter(&timer_lock);
   1271            1.1       cgd 		}
   1272            1.1       cgd 	}
   1273          1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1274          1.142        ad 	    pts->pts_timers[2] == NULL) {
   1275          1.142        ad 		p->p_timers = NULL;
   1276          1.142        ad 		mutex_spin_exit(&timer_lock);
   1277          1.142        ad 		pool_put(&ptimers_pool, pts);
   1278          1.142        ad 	} else
   1279          1.142        ad 		mutex_spin_exit(&timer_lock);
   1280          1.142        ad }
   1281          1.142        ad 
   1282          1.142        ad static void
   1283          1.142        ad itimerfree(struct ptimers *pts, int index)
   1284          1.142        ad {
   1285          1.142        ad 	struct ptimer *pt;
   1286          1.142        ad 
   1287          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1288          1.142        ad 
   1289          1.142        ad 	pt = pts->pts_timers[index];
   1290          1.142        ad 	pts->pts_timers[index] = NULL;
   1291          1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1292          1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1293          1.167      yamt 	if (pt->pt_queued)
   1294          1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1295          1.144        ad 	mutex_spin_exit(&timer_lock);
   1296          1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1297          1.149  christos 		callout_destroy(&pt->pt_ch);
   1298          1.142        ad 	pool_put(&ptimer_pool, pt);
   1299            1.1       cgd }
   1300            1.1       cgd 
   1301            1.1       cgd /*
   1302            1.1       cgd  * Decrement an interval timer by a specified number
   1303          1.152  christos  * of nanoseconds, which must be less than a second,
   1304          1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1305          1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1306            1.8       cgd  * reduce the value reloaded into the timer so that
   1307            1.1       cgd  * the timer does not drift.  This routine assumes
   1308            1.1       cgd  * that it is called in a context where the timers
   1309            1.1       cgd  * on which it is operating cannot change in value.
   1310            1.1       cgd  */
   1311          1.142        ad static int
   1312          1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1313           1.63   thorpej {
   1314          1.150  christos 	struct itimerspec *itp;
   1315            1.1       cgd 
   1316          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1317          1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1318          1.142        ad 
   1319           1.63   thorpej 	itp = &pt->pt_time;
   1320          1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1321            1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1322            1.1       cgd 			/* expired, and already in next interval */
   1323          1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1324            1.1       cgd 			goto expire;
   1325            1.1       cgd 		}
   1326          1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1327            1.1       cgd 		itp->it_value.tv_sec--;
   1328            1.1       cgd 	}
   1329          1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1330          1.152  christos 	nsec = 0;
   1331          1.150  christos 	if (timespecisset(&itp->it_value))
   1332            1.1       cgd 		return (1);
   1333            1.1       cgd 	/* expired, exactly at end of interval */
   1334            1.1       cgd expire:
   1335          1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1336            1.1       cgd 		itp->it_value = itp->it_interval;
   1337          1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1338          1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1339          1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1340            1.1       cgd 			itp->it_value.tv_sec--;
   1341            1.1       cgd 		}
   1342           1.63   thorpej 		timer_settime(pt);
   1343            1.1       cgd 	} else
   1344          1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1345            1.1       cgd 	return (0);
   1346           1.42       cgd }
   1347           1.42       cgd 
   1348          1.142        ad static void
   1349           1.63   thorpej itimerfire(struct ptimer *pt)
   1350           1.63   thorpej {
   1351           1.78        cl 
   1352          1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1353          1.142        ad 
   1354          1.142        ad 	/*
   1355          1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1356          1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1357          1.142        ad 	 */
   1358          1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1359          1.142        ad 		return;
   1360          1.172     rmind 	}
   1361          1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1362          1.142        ad 	pt->pt_queued = true;
   1363          1.142        ad 	softint_schedule(timer_sih);
   1364          1.142        ad }
   1365          1.142        ad 
   1366          1.142        ad void
   1367          1.142        ad timer_tick(lwp_t *l, bool user)
   1368          1.142        ad {
   1369          1.142        ad 	struct ptimers *pts;
   1370          1.142        ad 	struct ptimer *pt;
   1371          1.142        ad 	proc_t *p;
   1372          1.142        ad 
   1373          1.142        ad 	p = l->l_proc;
   1374          1.142        ad 	if (p->p_timers == NULL)
   1375          1.142        ad 		return;
   1376          1.142        ad 
   1377          1.142        ad 	mutex_spin_enter(&timer_lock);
   1378          1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1379           1.63   thorpej 		/*
   1380          1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1381           1.63   thorpej 		 */
   1382          1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1383          1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1384          1.142        ad 				itimerfire(pt);
   1385          1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1386          1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1387          1.142        ad 				itimerfire(pt);
   1388          1.142        ad 	}
   1389          1.142        ad 	mutex_spin_exit(&timer_lock);
   1390          1.142        ad }
   1391          1.142        ad 
   1392          1.142        ad static void
   1393          1.142        ad timer_intr(void *cookie)
   1394          1.142        ad {
   1395          1.142        ad 	ksiginfo_t ksi;
   1396          1.142        ad 	struct ptimer *pt;
   1397          1.142        ad 	proc_t *p;
   1398          1.142        ad 
   1399          1.158        ad 	mutex_enter(proc_lock);
   1400          1.142        ad 	mutex_spin_enter(&timer_lock);
   1401          1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1402          1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1403          1.142        ad 		KASSERT(pt->pt_queued);
   1404          1.142        ad 		pt->pt_queued = false;
   1405          1.142        ad 
   1406          1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1407          1.154  wrstuden 			/* Process is dying. */
   1408          1.142        ad 			continue;
   1409          1.154  wrstuden 		}
   1410          1.142        ad 		p = pt->pt_proc;
   1411          1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1412          1.142        ad 			continue;
   1413          1.142        ad 		}
   1414          1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1415           1.63   thorpej 			pt->pt_overruns++;
   1416          1.142        ad 			continue;
   1417           1.64   nathanw 		}
   1418          1.142        ad 
   1419          1.142        ad 		KSI_INIT(&ksi);
   1420          1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1421          1.142        ad 		ksi.ksi_code = SI_TIMER;
   1422          1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1423          1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1424          1.142        ad 		pt->pt_overruns = 0;
   1425          1.142        ad 		mutex_spin_exit(&timer_lock);
   1426          1.142        ad 		kpsignal(p, &ksi, NULL);
   1427          1.142        ad 		mutex_spin_enter(&timer_lock);
   1428           1.63   thorpej 	}
   1429          1.142        ad 	mutex_spin_exit(&timer_lock);
   1430          1.158        ad 	mutex_exit(proc_lock);
   1431           1.63   thorpej }
   1432          1.162      elad 
   1433          1.162      elad /*
   1434          1.162      elad  * Check if the time will wrap if set to ts.
   1435          1.162      elad  *
   1436          1.162      elad  * ts - timespec describing the new time
   1437          1.162      elad  * delta - the delta between the current time and ts
   1438          1.162      elad  */
   1439          1.162      elad bool
   1440          1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1441          1.162      elad {
   1442          1.162      elad 
   1443          1.162      elad 	/*
   1444          1.162      elad 	 * Don't allow the time to be set forward so far it
   1445          1.162      elad 	 * will wrap and become negative, thus allowing an
   1446          1.162      elad 	 * attacker to bypass the next check below.  The
   1447          1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1448          1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1449          1.162      elad 	 * past the cutoff, it will take a very long time
   1450          1.162      elad 	 * to get to the wrap point.
   1451          1.162      elad 	 */
   1452          1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1453          1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1454          1.162      elad 		return true;
   1455          1.162      elad 
   1456          1.162      elad 	return false;
   1457          1.162      elad }
   1458