Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.179.8.2
      1  1.179.8.2    martin /*	$NetBSD: kern_time.c,v 1.179.8.2 2018/11/29 08:56:45 martin Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.179.8.2    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179.8.2 2018/11/29 08:56:45 martin Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78       1.11       cgd #include <sys/syscallargs.h>
     79      1.143        ad #include <sys/cpu.h>
     80       1.19  christos 
     81      1.142        ad static void	timer_intr(void *);
     82      1.142        ad static void	itimerfire(struct ptimer *);
     83      1.142        ad static void	itimerfree(struct ptimers *, int);
     84      1.142        ad 
     85      1.142        ad kmutex_t	timer_lock;
     86      1.142        ad 
     87      1.142        ad static void	*timer_sih;
     88      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89      1.131        ad 
     90      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91       1.97    simonb 
     92      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94      1.168      yamt 
     95      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99      1.168      yamt 
    100      1.131        ad /*
    101      1.131        ad  * Initialize timekeeping.
    102      1.131        ad  */
    103      1.131        ad void
    104      1.131        ad time_init(void)
    105      1.131        ad {
    106      1.131        ad 
    107      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    108      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    109      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    110      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111      1.131        ad }
    112      1.131        ad 
    113      1.142        ad void
    114      1.142        ad time_init2(void)
    115      1.142        ad {
    116      1.142        ad 
    117      1.142        ad 	TAILQ_INIT(&timer_queue);
    118      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    119      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    120      1.142        ad 	    timer_intr, NULL);
    121      1.142        ad }
    122      1.142        ad 
    123       1.63   thorpej /* Time of day and interval timer support.
    124        1.1       cgd  *
    125        1.1       cgd  * These routines provide the kernel entry points to get and set
    126        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    127        1.1       cgd  * here provide support for adding and subtracting timeval structures
    128        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    129        1.1       cgd  * timers when they expire.
    130        1.1       cgd  */
    131        1.1       cgd 
    132       1.22       jtc /* This function is used by clock_settime and settimeofday */
    133      1.132      elad static int
    134      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    135       1.22       jtc {
    136      1.156  christos 	struct timespec delta, now;
    137      1.129        ad 	int s;
    138       1.22       jtc 
    139       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    140      1.129        ad 	s = splclock();
    141      1.156  christos 	nanotime(&now);
    142      1.156  christos 	timespecsub(ts, &now, &delta);
    143      1.132      elad 
    144      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147      1.129        ad 		splx(s);
    148       1.29       tls 		return (EPERM);
    149       1.55      tron 	}
    150      1.132      elad 
    151       1.29       tls #ifdef notyet
    152      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    153      1.129        ad 		splx(s);
    154       1.29       tls 		return (EPERM);
    155       1.55      tron 	}
    156       1.29       tls #endif
    157      1.103    kardel 
    158      1.156  christos 	tc_setclock(ts);
    159      1.103    kardel 
    160      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    161      1.103    kardel 
    162       1.22       jtc 	resettodr();
    163      1.129        ad 	splx(s);
    164      1.129        ad 
    165       1.29       tls 	return (0);
    166       1.22       jtc }
    167       1.22       jtc 
    168      1.132      elad int
    169      1.132      elad settime(struct proc *p, struct timespec *ts)
    170      1.132      elad {
    171      1.132      elad 	return (settime1(p, ts, true));
    172      1.132      elad }
    173      1.132      elad 
    174       1.22       jtc /* ARGSUSED */
    175       1.22       jtc int
    176      1.156  christos sys___clock_gettime50(struct lwp *l,
    177      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178       1.22       jtc {
    179      1.135       dsl 	/* {
    180       1.22       jtc 		syscallarg(clockid_t) clock_id;
    181       1.23       cgd 		syscallarg(struct timespec *) tp;
    182      1.135       dsl 	} */
    183      1.165     njoly 	int error;
    184       1.22       jtc 	struct timespec ats;
    185       1.22       jtc 
    186      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    187      1.165     njoly 	if (error != 0)
    188      1.165     njoly 		return error;
    189      1.165     njoly 
    190      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    191      1.165     njoly }
    192      1.165     njoly 
    193       1.22       jtc /* ARGSUSED */
    194       1.22       jtc int
    195      1.156  christos sys___clock_settime50(struct lwp *l,
    196      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    197       1.22       jtc {
    198      1.135       dsl 	/* {
    199       1.22       jtc 		syscallarg(clockid_t) clock_id;
    200       1.23       cgd 		syscallarg(const struct timespec *) tp;
    201      1.135       dsl 	} */
    202      1.156  christos 	int error;
    203      1.156  christos 	struct timespec ats;
    204       1.22       jtc 
    205      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    206      1.156  christos 		return error;
    207      1.156  christos 
    208      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    209       1.56      manu }
    210       1.56      manu 
    211       1.56      manu 
    212       1.56      manu int
    213      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    214      1.132      elad     bool check_kauth)
    215       1.56      manu {
    216       1.56      manu 	int error;
    217       1.56      manu 
    218       1.61    simonb 	switch (clock_id) {
    219       1.61    simonb 	case CLOCK_REALTIME:
    220      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    221       1.61    simonb 			return (error);
    222       1.61    simonb 		break;
    223       1.61    simonb 	case CLOCK_MONOTONIC:
    224       1.61    simonb 		return (EINVAL);	/* read-only clock */
    225       1.61    simonb 	default:
    226       1.56      manu 		return (EINVAL);
    227       1.61    simonb 	}
    228       1.22       jtc 
    229       1.22       jtc 	return 0;
    230       1.22       jtc }
    231       1.22       jtc 
    232       1.22       jtc int
    233      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    234      1.140      yamt     register_t *retval)
    235       1.22       jtc {
    236      1.135       dsl 	/* {
    237       1.22       jtc 		syscallarg(clockid_t) clock_id;
    238       1.23       cgd 		syscallarg(struct timespec *) tp;
    239      1.135       dsl 	} */
    240       1.22       jtc 	struct timespec ts;
    241       1.22       jtc 	int error = 0;
    242       1.22       jtc 
    243      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    244      1.164     njoly 		return error;
    245      1.164     njoly 
    246      1.164     njoly 	if (SCARG(uap, tp))
    247      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    248      1.164     njoly 
    249      1.164     njoly 	return error;
    250      1.164     njoly }
    251      1.164     njoly 
    252      1.164     njoly int
    253      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    254      1.164     njoly {
    255      1.164     njoly 
    256       1.61    simonb 	switch (clock_id) {
    257       1.61    simonb 	case CLOCK_REALTIME:
    258       1.61    simonb 	case CLOCK_MONOTONIC:
    259      1.164     njoly 		ts->tv_sec = 0;
    260      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    261      1.164     njoly 			ts->tv_nsec = 1;
    262      1.102    kardel 		else
    263      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    264       1.61    simonb 		break;
    265       1.61    simonb 	default:
    266      1.164     njoly 		return EINVAL;
    267       1.61    simonb 	}
    268       1.22       jtc 
    269      1.164     njoly 	return 0;
    270       1.22       jtc }
    271       1.22       jtc 
    272       1.27       jtc /* ARGSUSED */
    273       1.27       jtc int
    274      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    275      1.140      yamt     register_t *retval)
    276       1.27       jtc {
    277      1.135       dsl 	/* {
    278      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    279      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    280      1.135       dsl 	} */
    281      1.101    kardel 	struct timespec rmt, rqt;
    282      1.120       dsl 	int error, error1;
    283      1.101    kardel 
    284      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    285      1.101    kardel 	if (error)
    286      1.101    kardel 		return (error);
    287      1.101    kardel 
    288      1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    289      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    290      1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291      1.175  christos 		return error;
    292      1.175  christos 
    293      1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294      1.175  christos 	return error1 ? error1 : error;
    295      1.175  christos }
    296      1.175  christos 
    297      1.175  christos /* ARGSUSED */
    298      1.175  christos int
    299      1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    300      1.175  christos     register_t *retval)
    301      1.175  christos {
    302      1.175  christos 	/* {
    303      1.175  christos 		syscallarg(clockid_t) clock_id;
    304      1.175  christos 		syscallarg(int) flags;
    305      1.175  christos 		syscallarg(struct timespec *) rqtp;
    306      1.175  christos 		syscallarg(struct timespec *) rmtp;
    307      1.175  christos 	} */
    308      1.175  christos 	struct timespec rmt, rqt;
    309      1.175  christos 	int error, error1;
    310      1.175  christos 
    311      1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    312      1.175  christos 	if (error)
    313      1.175  christos 		return (error);
    314      1.175  christos 
    315      1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    316      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    317      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    318      1.120       dsl 		return error;
    319      1.120       dsl 
    320      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    321      1.120       dsl 	return error1 ? error1 : error;
    322      1.120       dsl }
    323      1.120       dsl 
    324      1.120       dsl int
    325      1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    326      1.175  christos     struct timespec *rmt)
    327      1.120       dsl {
    328      1.141      yamt 	struct timespec rmtstart;
    329      1.120       dsl 	int error, timo;
    330      1.120       dsl 
    331  1.179.8.1    martin 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    332  1.179.8.1    martin 		if (error == ETIMEDOUT) {
    333  1.179.8.1    martin 			error = 0;
    334  1.179.8.1    martin 			if (rmt != NULL)
    335  1.179.8.1    martin 				rmt->tv_sec = rmt->tv_nsec = 0;
    336  1.179.8.1    martin 		}
    337  1.179.8.1    martin 		return error;
    338  1.179.8.1    martin 	}
    339      1.101    kardel 
    340      1.101    kardel 	/*
    341      1.175  christos 	 * Avoid inadvertently sleeping forever
    342      1.101    kardel 	 */
    343      1.101    kardel 	if (timo == 0)
    344      1.101    kardel 		timo = 1;
    345      1.141      yamt again:
    346      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    347      1.141      yamt 	if (rmt != NULL || error == 0) {
    348      1.141      yamt 		struct timespec rmtend;
    349      1.141      yamt 		struct timespec t0;
    350      1.141      yamt 		struct timespec *t;
    351      1.101    kardel 
    352      1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    353      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    354      1.179  christos 		if (flags & TIMER_ABSTIME) {
    355      1.179  christos 			timespecsub(rqt, &rmtend, t);
    356      1.179  christos 		} else {
    357      1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    358      1.179  christos 			timespecsub(rqt, t, t);
    359      1.179  christos 		}
    360      1.141      yamt 		if (t->tv_sec < 0)
    361      1.141      yamt 			timespecclear(t);
    362      1.141      yamt 		if (error == 0) {
    363      1.141      yamt 			timo = tstohz(t);
    364      1.141      yamt 			if (timo > 0)
    365      1.141      yamt 				goto again;
    366      1.141      yamt 		}
    367      1.141      yamt 	}
    368      1.104    kardel 
    369      1.101    kardel 	if (error == ERESTART)
    370      1.101    kardel 		error = EINTR;
    371      1.101    kardel 	if (error == EWOULDBLOCK)
    372      1.101    kardel 		error = 0;
    373      1.101    kardel 
    374      1.101    kardel 	return error;
    375       1.27       jtc }
    376       1.22       jtc 
    377        1.1       cgd /* ARGSUSED */
    378        1.3    andrew int
    379      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    380      1.140      yamt     register_t *retval)
    381       1.15   thorpej {
    382      1.135       dsl 	/* {
    383       1.11       cgd 		syscallarg(struct timeval *) tp;
    384      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    385      1.135       dsl 	} */
    386        1.1       cgd 	struct timeval atv;
    387        1.1       cgd 	int error = 0;
    388       1.25     perry 	struct timezone tzfake;
    389        1.1       cgd 
    390       1.11       cgd 	if (SCARG(uap, tp)) {
    391        1.1       cgd 		microtime(&atv);
    392       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    393       1.17  christos 		if (error)
    394        1.1       cgd 			return (error);
    395        1.1       cgd 	}
    396       1.25     perry 	if (SCARG(uap, tzp)) {
    397       1.25     perry 		/*
    398       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    399       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    400       1.25     perry 		 */
    401       1.25     perry 		tzfake.tz_minuteswest = 0;
    402       1.25     perry 		tzfake.tz_dsttime = 0;
    403       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    404       1.25     perry 	}
    405        1.1       cgd 	return (error);
    406        1.1       cgd }
    407        1.1       cgd 
    408        1.1       cgd /* ARGSUSED */
    409        1.3    andrew int
    410      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    411      1.140      yamt     register_t *retval)
    412       1.15   thorpej {
    413      1.135       dsl 	/* {
    414       1.24       cgd 		syscallarg(const struct timeval *) tv;
    415      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    416      1.135       dsl 	} */
    417       1.60      manu 
    418      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    419       1.60      manu }
    420       1.60      manu 
    421       1.60      manu int
    422      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    423      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    424       1.60      manu {
    425       1.22       jtc 	struct timeval atv;
    426       1.98  christos 	struct timespec ts;
    427       1.22       jtc 	int error;
    428        1.1       cgd 
    429        1.8       cgd 	/* Verify all parameters before changing time. */
    430      1.119       dsl 
    431       1.25     perry 	/*
    432       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    433       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    434       1.25     perry 	 */
    435       1.98  christos 	if (utzp)
    436       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    437      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    438       1.98  christos 
    439       1.98  christos 	if (utv == NULL)
    440       1.98  christos 		return 0;
    441       1.98  christos 
    442      1.119       dsl 	if (userspace) {
    443      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    444      1.119       dsl 			return error;
    445      1.119       dsl 		utv = &atv;
    446      1.119       dsl 	}
    447      1.119       dsl 
    448      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    449      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    450        1.1       cgd }
    451        1.1       cgd 
    452       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    453        1.1       cgd 
    454        1.1       cgd /* ARGSUSED */
    455        1.3    andrew int
    456      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    457      1.140      yamt     register_t *retval)
    458       1.15   thorpej {
    459      1.135       dsl 	/* {
    460       1.24       cgd 		syscallarg(const struct timeval *) delta;
    461       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    462      1.135       dsl 	} */
    463      1.156  christos 	int error = 0;
    464      1.156  christos 	struct timeval atv, oldatv;
    465        1.1       cgd 
    466      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    467      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    468      1.156  christos 		return error;
    469       1.17  christos 
    470      1.156  christos 	if (SCARG(uap, delta)) {
    471      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    472      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    473      1.156  christos 		if (error)
    474      1.156  christos 			return (error);
    475      1.156  christos 	}
    476      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    477      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    478      1.156  christos 	if (SCARG(uap, olddelta))
    479      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    480      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    481      1.156  christos 	return error;
    482       1.56      manu }
    483       1.56      manu 
    484      1.156  christos void
    485      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    486       1.56      manu {
    487      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    488      1.101    kardel 
    489      1.101    kardel 	if (olddelta) {
    490      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    491      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    492      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    493      1.156  christos 		if (olddelta->tv_usec < 0) {
    494      1.156  christos 			olddelta->tv_usec += 1000000;
    495      1.156  christos 			olddelta->tv_sec--;
    496      1.101    kardel 		}
    497      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    498      1.101    kardel 	}
    499      1.101    kardel 
    500      1.101    kardel 	if (delta) {
    501      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    502      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    503      1.101    kardel 
    504      1.143        ad 		if (time_adjtime) {
    505      1.101    kardel 			/* We need to save the system time during shutdown */
    506      1.101    kardel 			time_adjusted |= 1;
    507      1.143        ad 		}
    508      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    509      1.101    kardel 	}
    510        1.1       cgd }
    511        1.1       cgd 
    512        1.1       cgd /*
    513       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    514       1.63   thorpej  * timer_*() family of routines are supported.
    515        1.1       cgd  *
    516       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    517       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    518       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    519      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    520      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    521      1.170  christos  * allocated by the timer_create() syscall.
    522        1.1       cgd  *
    523       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    524       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    525        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    526       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    527       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    528       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    529       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    530       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    531       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    532       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    533       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    534       1.63   thorpej 
    535       1.63   thorpej /* Allocate a POSIX realtime timer. */
    536       1.63   thorpej int
    537      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    538      1.140      yamt     register_t *retval)
    539       1.63   thorpej {
    540      1.135       dsl 	/* {
    541       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    542       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    543       1.63   thorpej 		syscallarg(timer_t *) timerid;
    544      1.135       dsl 	} */
    545       1.92      cube 
    546       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    547      1.105        ad 	    SCARG(uap, evp), copyin, l);
    548       1.92      cube }
    549       1.92      cube 
    550       1.92      cube int
    551       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    552      1.105        ad     copyin_t fetch_event, struct lwp *l)
    553       1.92      cube {
    554       1.92      cube 	int error;
    555       1.92      cube 	timer_t timerid;
    556      1.142        ad 	struct ptimers *pts;
    557       1.63   thorpej 	struct ptimer *pt;
    558      1.105        ad 	struct proc *p;
    559      1.105        ad 
    560      1.105        ad 	p = l->l_proc;
    561       1.63   thorpej 
    562      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    563       1.63   thorpej 		return (EINVAL);
    564       1.63   thorpej 
    565      1.142        ad 	if ((pts = p->p_timers) == NULL)
    566      1.142        ad 		pts = timers_alloc(p);
    567       1.63   thorpej 
    568       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    569  1.179.8.2    martin 	memset(pt, 0, sizeof(*pt));
    570      1.142        ad 	if (evp != NULL) {
    571       1.63   thorpej 		if (((error =
    572       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    573       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    574      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    575      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    576      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    577      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    578       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    579       1.63   thorpej 			return (error ? error : EINVAL);
    580       1.63   thorpej 		}
    581      1.142        ad 	}
    582      1.142        ad 
    583      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    584      1.142        ad 	mutex_spin_enter(&timer_lock);
    585      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    586      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    587      1.142        ad 			break;
    588      1.142        ad 	if (timerid == TIMER_MAX) {
    589      1.142        ad 		mutex_spin_exit(&timer_lock);
    590      1.142        ad 		pool_put(&ptimer_pool, pt);
    591      1.142        ad 		return EAGAIN;
    592      1.142        ad 	}
    593      1.142        ad 	if (evp == NULL) {
    594       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    595       1.63   thorpej 		switch (id) {
    596       1.63   thorpej 		case CLOCK_REALTIME:
    597      1.168      yamt 		case CLOCK_MONOTONIC:
    598       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    599       1.63   thorpej 			break;
    600       1.63   thorpej 		case CLOCK_VIRTUAL:
    601       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    602       1.63   thorpej 			break;
    603       1.63   thorpej 		case CLOCK_PROF:
    604       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    605       1.63   thorpej 			break;
    606       1.63   thorpej 		}
    607       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    608       1.63   thorpej 	}
    609       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    610       1.73  christos 	pt->pt_info.ksi_errno = 0;
    611       1.73  christos 	pt->pt_info.ksi_code = 0;
    612       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    613      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    614      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    615       1.63   thorpej 	pt->pt_type = id;
    616       1.63   thorpej 	pt->pt_proc = p;
    617       1.63   thorpej 	pt->pt_overruns = 0;
    618       1.63   thorpej 	pt->pt_poverruns = 0;
    619       1.64   nathanw 	pt->pt_entry = timerid;
    620      1.142        ad 	pt->pt_queued = false;
    621      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    622      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    623      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    624      1.149  christos 	else
    625      1.149  christos 		pt->pt_active = 0;
    626      1.149  christos 
    627      1.142        ad 	pts->pts_timers[timerid] = pt;
    628      1.142        ad 	mutex_spin_exit(&timer_lock);
    629       1.63   thorpej 
    630       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    631       1.63   thorpej }
    632       1.63   thorpej 
    633       1.63   thorpej /* Delete a POSIX realtime timer */
    634        1.3    andrew int
    635      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    636      1.140      yamt     register_t *retval)
    637       1.15   thorpej {
    638      1.135       dsl 	/* {
    639       1.63   thorpej 		syscallarg(timer_t) timerid;
    640      1.135       dsl 	} */
    641       1.63   thorpej 	struct proc *p = l->l_proc;
    642       1.65  jdolecek 	timer_t timerid;
    643      1.142        ad 	struct ptimers *pts;
    644       1.63   thorpej 	struct ptimer *pt, *ptn;
    645        1.1       cgd 
    646       1.63   thorpej 	timerid = SCARG(uap, timerid);
    647      1.142        ad 	pts = p->p_timers;
    648      1.142        ad 
    649      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    650      1.142        ad 		return (EINVAL);
    651       1.63   thorpej 
    652      1.142        ad 	mutex_spin_enter(&timer_lock);
    653      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    654      1.142        ad 		mutex_spin_exit(&timer_lock);
    655        1.1       cgd 		return (EINVAL);
    656      1.142        ad 	}
    657      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    658      1.149  christos 		if (pt->pt_active) {
    659      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    660      1.149  christos 			LIST_REMOVE(pt, pt_list);
    661      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    662      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    663      1.149  christos 				    &ptn->pt_time.it_value,
    664      1.149  christos 				    &ptn->pt_time.it_value);
    665      1.149  christos 			pt->pt_active = 0;
    666      1.149  christos 		}
    667       1.63   thorpej 	}
    668      1.142        ad 	itimerfree(pts, timerid);
    669       1.63   thorpej 
    670       1.63   thorpej 	return (0);
    671       1.63   thorpej }
    672       1.63   thorpej 
    673       1.63   thorpej /*
    674       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    675      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    676      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    677       1.63   thorpej  */
    678       1.63   thorpej void
    679       1.63   thorpej timer_settime(struct ptimer *pt)
    680       1.63   thorpej {
    681       1.63   thorpej 	struct ptimer *ptn, *pptn;
    682       1.63   thorpej 	struct ptlist *ptl;
    683       1.63   thorpej 
    684      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    685      1.142        ad 
    686      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    687      1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    688      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    689       1.63   thorpej 			/*
    690      1.150  christos 			 * Don't need to check tshzto() return value, here.
    691       1.63   thorpej 			 * callout_reset() does it for us.
    692       1.63   thorpej 			 */
    693      1.171  christos 			callout_reset(&pt->pt_ch,
    694      1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    695      1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    696      1.171  christos 			    tshzto(&pt->pt_time.it_value),
    697       1.63   thorpej 			    realtimerexpire, pt);
    698       1.63   thorpej 		}
    699       1.63   thorpej 	} else {
    700       1.63   thorpej 		if (pt->pt_active) {
    701       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    702       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    703       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    704      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    705       1.63   thorpej 				    &ptn->pt_time.it_value,
    706       1.63   thorpej 				    &ptn->pt_time.it_value);
    707       1.63   thorpej 		}
    708      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    709       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    710       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    711       1.63   thorpej 			else
    712       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    713       1.63   thorpej 
    714       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    715      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    716       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    717       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    718      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    719       1.63   thorpej 				    &ptn->pt_time.it_value,
    720       1.63   thorpej 				    &pt->pt_time.it_value);
    721       1.63   thorpej 
    722       1.63   thorpej 			if (pptn)
    723       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    724       1.63   thorpej 			else
    725       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    726       1.63   thorpej 
    727       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    728      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    729       1.63   thorpej 				    &pt->pt_time.it_value,
    730       1.63   thorpej 				    &ptn->pt_time.it_value);
    731       1.63   thorpej 
    732       1.63   thorpej 			pt->pt_active = 1;
    733       1.63   thorpej 		} else
    734       1.63   thorpej 			pt->pt_active = 0;
    735       1.63   thorpej 	}
    736       1.63   thorpej }
    737       1.63   thorpej 
    738       1.63   thorpej void
    739      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    740       1.63   thorpej {
    741      1.150  christos 	struct timespec now;
    742       1.63   thorpej 	struct ptimer *ptn;
    743       1.63   thorpej 
    744      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    745      1.142        ad 
    746      1.150  christos 	*aits = pt->pt_time;
    747      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    748        1.1       cgd 		/*
    749       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    750       1.63   thorpej 		 * part of real time timer.  If time for real time
    751       1.63   thorpej 		 * timer has passed return 0, else return difference
    752       1.63   thorpej 		 * between current time and time for the timer to go
    753       1.63   thorpej 		 * off.
    754        1.1       cgd 		 */
    755      1.150  christos 		if (timespecisset(&aits->it_value)) {
    756      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    757      1.168      yamt 				getnanotime(&now);
    758      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    759      1.168      yamt 				getnanouptime(&now);
    760      1.168      yamt 			}
    761      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    762      1.150  christos 				timespecclear(&aits->it_value);
    763      1.101    kardel 			else
    764      1.150  christos 				timespecsub(&aits->it_value, &now,
    765      1.150  christos 				    &aits->it_value);
    766       1.36   thorpej 		}
    767       1.63   thorpej 	} else if (pt->pt_active) {
    768       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    769       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    770       1.63   thorpej 		else
    771       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    772       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    773      1.150  christos 			timespecadd(&aits->it_value,
    774      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    775       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    776        1.1       cgd 	} else
    777      1.150  christos 		timespecclear(&aits->it_value);
    778       1.63   thorpej }
    779       1.63   thorpej 
    780       1.63   thorpej 
    781       1.63   thorpej 
    782       1.63   thorpej /* Set and arm a POSIX realtime timer */
    783       1.63   thorpej int
    784      1.156  christos sys___timer_settime50(struct lwp *l,
    785      1.156  christos     const struct sys___timer_settime50_args *uap,
    786      1.140      yamt     register_t *retval)
    787       1.63   thorpej {
    788      1.135       dsl 	/* {
    789       1.63   thorpej 		syscallarg(timer_t) timerid;
    790       1.63   thorpej 		syscallarg(int) flags;
    791       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    792       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    793      1.135       dsl 	} */
    794       1.92      cube 	int error;
    795       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    796       1.92      cube 
    797       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    798       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    799       1.92      cube 		return (error);
    800       1.92      cube 
    801       1.92      cube 	if (SCARG(uap, ovalue))
    802       1.92      cube 		ovp = &ovalue;
    803       1.92      cube 
    804       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    805       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    806       1.92      cube 		return error;
    807       1.92      cube 
    808       1.92      cube 	if (ovp)
    809       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    810       1.92      cube 		    sizeof(struct itimerspec));
    811       1.92      cube 	return 0;
    812       1.92      cube }
    813       1.92      cube 
    814       1.92      cube int
    815       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    816       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    817       1.92      cube {
    818      1.150  christos 	struct timespec now;
    819      1.150  christos 	struct itimerspec val, oval;
    820      1.142        ad 	struct ptimers *pts;
    821       1.63   thorpej 	struct ptimer *pt;
    822      1.160  christos 	int error;
    823       1.63   thorpej 
    824      1.142        ad 	pts = p->p_timers;
    825       1.63   thorpej 
    826      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    827      1.142        ad 		return EINVAL;
    828      1.150  christos 	val = *value;
    829      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    830      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    831      1.160  christos 		return error;
    832       1.63   thorpej 
    833      1.142        ad 	mutex_spin_enter(&timer_lock);
    834      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    835      1.142        ad 		mutex_spin_exit(&timer_lock);
    836      1.150  christos 		return EINVAL;
    837      1.142        ad 	}
    838      1.142        ad 
    839       1.63   thorpej 	oval = pt->pt_time;
    840       1.63   thorpej 	pt->pt_time = val;
    841       1.63   thorpej 
    842       1.67   nathanw 	/*
    843       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    844       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    845       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    846       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    847       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    848       1.67   nathanw 	 */
    849      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    850      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    851      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    852      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    853      1.168      yamt 					getnanotime(&now);
    854      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    855      1.168      yamt 					getnanouptime(&now);
    856      1.168      yamt 				}
    857      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    858      1.101    kardel 				    &pt->pt_time.it_value);
    859      1.101    kardel 			}
    860       1.67   nathanw 		} else {
    861       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    862      1.150  christos 				getnanotime(&now);
    863      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    864      1.101    kardel 				    &pt->pt_time.it_value);
    865      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    866       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    867       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    868      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    869       1.67   nathanw 				}
    870       1.67   nathanw 			}
    871       1.67   nathanw 		}
    872       1.67   nathanw 	}
    873       1.67   nathanw 
    874       1.63   thorpej 	timer_settime(pt);
    875      1.142        ad 	mutex_spin_exit(&timer_lock);
    876       1.63   thorpej 
    877      1.150  christos 	if (ovalue)
    878      1.150  christos 		*ovalue = oval;
    879       1.63   thorpej 
    880       1.63   thorpej 	return (0);
    881       1.63   thorpej }
    882       1.63   thorpej 
    883       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    884       1.63   thorpej int
    885      1.156  christos sys___timer_gettime50(struct lwp *l,
    886      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    887       1.63   thorpej {
    888      1.135       dsl 	/* {
    889       1.63   thorpej 		syscallarg(timer_t) timerid;
    890       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    891      1.135       dsl 	} */
    892       1.63   thorpej 	struct itimerspec its;
    893       1.92      cube 	int error;
    894       1.92      cube 
    895       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    896       1.92      cube 	    &its)) != 0)
    897       1.92      cube 		return error;
    898       1.92      cube 
    899       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    900       1.92      cube }
    901       1.92      cube 
    902       1.92      cube int
    903       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    904       1.92      cube {
    905       1.63   thorpej 	struct ptimer *pt;
    906      1.142        ad 	struct ptimers *pts;
    907       1.63   thorpej 
    908      1.142        ad 	pts = p->p_timers;
    909      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    910       1.63   thorpej 		return (EINVAL);
    911      1.142        ad 	mutex_spin_enter(&timer_lock);
    912      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    913      1.142        ad 		mutex_spin_exit(&timer_lock);
    914      1.142        ad 		return (EINVAL);
    915      1.142        ad 	}
    916      1.150  christos 	timer_gettime(pt, its);
    917      1.142        ad 	mutex_spin_exit(&timer_lock);
    918       1.63   thorpej 
    919       1.92      cube 	return 0;
    920       1.63   thorpej }
    921       1.63   thorpej 
    922       1.63   thorpej /*
    923       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    924       1.63   thorpej  * while a notification was already pending. The counter is reset when
    925       1.63   thorpej  * a timer expires and a notification can be posted.
    926       1.63   thorpej  */
    927       1.63   thorpej int
    928      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    929      1.140      yamt     register_t *retval)
    930       1.63   thorpej {
    931      1.135       dsl 	/* {
    932       1.63   thorpej 		syscallarg(timer_t) timerid;
    933      1.135       dsl 	} */
    934       1.63   thorpej 	struct proc *p = l->l_proc;
    935      1.142        ad 	struct ptimers *pts;
    936       1.63   thorpej 	int timerid;
    937       1.63   thorpej 	struct ptimer *pt;
    938       1.63   thorpej 
    939       1.63   thorpej 	timerid = SCARG(uap, timerid);
    940       1.63   thorpej 
    941      1.142        ad 	pts = p->p_timers;
    942      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    943      1.142        ad 		return (EINVAL);
    944      1.142        ad 	mutex_spin_enter(&timer_lock);
    945      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    946      1.142        ad 		mutex_spin_exit(&timer_lock);
    947       1.63   thorpej 		return (EINVAL);
    948      1.142        ad 	}
    949       1.63   thorpej 	*retval = pt->pt_poverruns;
    950      1.142        ad 	mutex_spin_exit(&timer_lock);
    951       1.63   thorpej 
    952       1.63   thorpej 	return (0);
    953       1.63   thorpej }
    954       1.63   thorpej 
    955       1.63   thorpej /*
    956       1.63   thorpej  * Real interval timer expired:
    957       1.63   thorpej  * send process whose timer expired an alarm signal.
    958       1.63   thorpej  * If time is not set up to reload, then just return.
    959       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    960       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    961       1.63   thorpej  * SIGALRM calls to be compressed into one.
    962       1.63   thorpej  */
    963       1.63   thorpej void
    964       1.63   thorpej realtimerexpire(void *arg)
    965       1.63   thorpej {
    966      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    967      1.150  christos 	struct timespec now, next;
    968       1.63   thorpej 	struct ptimer *pt;
    969      1.148     joerg 	int backwards;
    970       1.63   thorpej 
    971      1.142        ad 	pt = arg;
    972       1.63   thorpej 
    973      1.142        ad 	mutex_spin_enter(&timer_lock);
    974       1.63   thorpej 	itimerfire(pt);
    975       1.63   thorpej 
    976      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
    977      1.150  christos 		timespecclear(&pt->pt_time.it_value);
    978      1.142        ad 		mutex_spin_exit(&timer_lock);
    979       1.63   thorpej 		return;
    980       1.63   thorpej 	}
    981      1.148     joerg 
    982      1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
    983      1.171  christos 		getnanouptime(&now);
    984      1.171  christos 	} else {
    985      1.171  christos 		getnanotime(&now);
    986      1.171  christos 	}
    987      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    988      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    989      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
    990      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
    991      1.148     joerg 		pt->pt_time.it_value = next;
    992      1.148     joerg 	} else {
    993      1.166      yamt 		now_ns = timespec2ns(&now);
    994      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
    995      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
    996      1.148     joerg 
    997      1.166      yamt 		next_val = now_ns +
    998      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
    999      1.148     joerg 
   1000      1.148     joerg 		if (backwards)
   1001      1.148     joerg 			next_val += interval;
   1002      1.148     joerg 		else
   1003      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1004      1.148     joerg 
   1005      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1006      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1007      1.101    kardel 	}
   1008      1.148     joerg 
   1009      1.148     joerg 	/*
   1010      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1011      1.148     joerg 	 * callout_reset() does it for us.
   1012      1.148     joerg 	 */
   1013      1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1014      1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1015      1.148     joerg 	    realtimerexpire, pt);
   1016      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1017       1.63   thorpej }
   1018       1.63   thorpej 
   1019       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1020       1.63   thorpej /* ARGSUSED */
   1021       1.63   thorpej int
   1022      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1023      1.140      yamt     register_t *retval)
   1024       1.63   thorpej {
   1025      1.135       dsl 	/* {
   1026       1.63   thorpej 		syscallarg(int) which;
   1027       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1028      1.135       dsl 	} */
   1029       1.63   thorpej 	struct proc *p = l->l_proc;
   1030       1.63   thorpej 	struct itimerval aitv;
   1031       1.91      cube 	int error;
   1032       1.91      cube 
   1033       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1034       1.91      cube 	if (error)
   1035       1.91      cube 		return error;
   1036       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1037       1.91      cube }
   1038       1.63   thorpej 
   1039       1.91      cube int
   1040       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1041       1.91      cube {
   1042      1.142        ad 	struct ptimers *pts;
   1043      1.142        ad 	struct ptimer *pt;
   1044      1.150  christos 	struct itimerspec its;
   1045       1.63   thorpej 
   1046      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1047       1.63   thorpej 		return (EINVAL);
   1048       1.63   thorpej 
   1049      1.142        ad 	mutex_spin_enter(&timer_lock);
   1050      1.142        ad 	pts = p->p_timers;
   1051      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1052       1.91      cube 		timerclear(&itvp->it_value);
   1053       1.91      cube 		timerclear(&itvp->it_interval);
   1054      1.150  christos 	} else {
   1055      1.150  christos 		timer_gettime(pt, &its);
   1056      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1057      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1058      1.150  christos 	}
   1059      1.142        ad 	mutex_spin_exit(&timer_lock);
   1060       1.63   thorpej 
   1061       1.91      cube 	return 0;
   1062        1.1       cgd }
   1063        1.1       cgd 
   1064       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1065        1.1       cgd /* ARGSUSED */
   1066        1.3    andrew int
   1067      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1068      1.140      yamt     register_t *retval)
   1069       1.15   thorpej {
   1070      1.135       dsl 	/* {
   1071       1.30   mycroft 		syscallarg(int) which;
   1072       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1073       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1074      1.135       dsl 	} */
   1075       1.63   thorpej 	struct proc *p = l->l_proc;
   1076       1.30   mycroft 	int which = SCARG(uap, which);
   1077      1.156  christos 	struct sys___getitimer50_args getargs;
   1078       1.91      cube 	const struct itimerval *itvp;
   1079        1.1       cgd 	struct itimerval aitv;
   1080       1.91      cube 	int error;
   1081        1.1       cgd 
   1082      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1083        1.1       cgd 		return (EINVAL);
   1084       1.11       cgd 	itvp = SCARG(uap, itv);
   1085       1.63   thorpej 	if (itvp &&
   1086      1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1087        1.1       cgd 		return (error);
   1088       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1089       1.30   mycroft 		SCARG(&getargs, which) = which;
   1090       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1091      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1092       1.21       cgd 			return (error);
   1093       1.21       cgd 	}
   1094        1.1       cgd 	if (itvp == 0)
   1095        1.1       cgd 		return (0);
   1096       1.91      cube 
   1097       1.91      cube 	return dosetitimer(p, which, &aitv);
   1098       1.91      cube }
   1099       1.91      cube 
   1100       1.91      cube int
   1101       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1102       1.91      cube {
   1103      1.150  christos 	struct timespec now;
   1104      1.142        ad 	struct ptimers *pts;
   1105      1.142        ad 	struct ptimer *pt, *spare;
   1106       1.91      cube 
   1107      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1108       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1109        1.1       cgd 		return (EINVAL);
   1110       1.63   thorpej 
   1111       1.63   thorpej 	/*
   1112       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1113       1.63   thorpej 	 * wants to clear the timer.
   1114       1.63   thorpej 	 */
   1115      1.142        ad 	spare = NULL;
   1116      1.142        ad 	pts = p->p_timers;
   1117      1.142        ad  retry:
   1118      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1119      1.142        ad 	    pts->pts_timers[which] == NULL))
   1120       1.63   thorpej 		return (0);
   1121      1.142        ad 	if (pts == NULL)
   1122      1.142        ad 		pts = timers_alloc(p);
   1123      1.142        ad 	mutex_spin_enter(&timer_lock);
   1124      1.142        ad 	pt = pts->pts_timers[which];
   1125      1.142        ad 	if (pt == NULL) {
   1126      1.142        ad 		if (spare == NULL) {
   1127      1.142        ad 			mutex_spin_exit(&timer_lock);
   1128      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1129      1.142        ad 			goto retry;
   1130      1.142        ad 		}
   1131      1.142        ad 		pt = spare;
   1132      1.142        ad 		spare = NULL;
   1133       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1134       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1135       1.63   thorpej 		pt->pt_overruns = 0;
   1136       1.63   thorpej 		pt->pt_proc = p;
   1137       1.63   thorpej 		pt->pt_type = which;
   1138       1.64   nathanw 		pt->pt_entry = which;
   1139      1.142        ad 		pt->pt_queued = false;
   1140      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1141      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1142      1.149  christos 		else
   1143      1.149  christos 			pt->pt_active = 0;
   1144      1.149  christos 
   1145       1.63   thorpej 		switch (which) {
   1146       1.63   thorpej 		case ITIMER_REAL:
   1147      1.170  christos 		case ITIMER_MONOTONIC:
   1148       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1149       1.63   thorpej 			break;
   1150       1.63   thorpej 		case ITIMER_VIRTUAL:
   1151       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1152       1.63   thorpej 			break;
   1153       1.63   thorpej 		case ITIMER_PROF:
   1154       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1155       1.63   thorpej 			break;
   1156        1.1       cgd 		}
   1157      1.142        ad 		pts->pts_timers[which] = pt;
   1158      1.142        ad 	}
   1159       1.63   thorpej 
   1160      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1161      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1162      1.150  christos 
   1163      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1164       1.67   nathanw 		/* Convert to absolute time */
   1165      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1166      1.170  christos 		switch (which) {
   1167      1.170  christos 		case ITIMER_REAL:
   1168      1.170  christos 			getnanotime(&now);
   1169      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1170      1.170  christos 			    &pt->pt_time.it_value);
   1171      1.170  christos 			break;
   1172      1.170  christos 		case ITIMER_MONOTONIC:
   1173      1.170  christos 			getnanouptime(&now);
   1174      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1175      1.170  christos 			    &pt->pt_time.it_value);
   1176      1.170  christos 			break;
   1177      1.170  christos 		default:
   1178      1.170  christos 			break;
   1179      1.170  christos 		}
   1180       1.67   nathanw 	}
   1181       1.63   thorpej 	timer_settime(pt);
   1182      1.142        ad 	mutex_spin_exit(&timer_lock);
   1183      1.142        ad 	if (spare != NULL)
   1184      1.142        ad 		pool_put(&ptimer_pool, spare);
   1185       1.63   thorpej 
   1186        1.1       cgd 	return (0);
   1187        1.1       cgd }
   1188        1.1       cgd 
   1189       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1190      1.142        ad struct ptimers *
   1191       1.63   thorpej timers_alloc(struct proc *p)
   1192       1.63   thorpej {
   1193      1.142        ad 	struct ptimers *pts;
   1194       1.63   thorpej 	int i;
   1195       1.63   thorpej 
   1196      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1197       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1198       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1199       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1200       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1201       1.64   nathanw 	pts->pts_fired = 0;
   1202      1.142        ad 	mutex_spin_enter(&timer_lock);
   1203      1.142        ad 	if (p->p_timers == NULL) {
   1204      1.142        ad 		p->p_timers = pts;
   1205      1.142        ad 		mutex_spin_exit(&timer_lock);
   1206      1.142        ad 		return pts;
   1207      1.142        ad 	}
   1208      1.142        ad 	mutex_spin_exit(&timer_lock);
   1209      1.142        ad 	pool_put(&ptimers_pool, pts);
   1210      1.142        ad 	return p->p_timers;
   1211       1.63   thorpej }
   1212       1.63   thorpej 
   1213        1.1       cgd /*
   1214       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1215       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1216       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1217       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1218       1.63   thorpej  * structure if none of those remain.
   1219        1.1       cgd  */
   1220        1.3    andrew void
   1221       1.63   thorpej timers_free(struct proc *p, int which)
   1222        1.6       cgd {
   1223       1.63   thorpej 	struct ptimers *pts;
   1224      1.142        ad 	struct ptimer *ptn;
   1225      1.150  christos 	struct timespec ts;
   1226      1.142        ad 	int i;
   1227       1.63   thorpej 
   1228      1.142        ad 	if (p->p_timers == NULL)
   1229      1.142        ad 		return;
   1230       1.63   thorpej 
   1231      1.142        ad 	pts = p->p_timers;
   1232      1.142        ad 	mutex_spin_enter(&timer_lock);
   1233      1.142        ad 	if (which == TIMERS_ALL) {
   1234      1.142        ad 		p->p_timers = NULL;
   1235      1.142        ad 		i = 0;
   1236      1.142        ad 	} else {
   1237      1.150  christos 		timespecclear(&ts);
   1238      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1239      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1240      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1241      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1242      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1243      1.149  christos 		}
   1244      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1245      1.142        ad 		if (ptn) {
   1246      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1247      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1248      1.142        ad 			    &ptn->pt_time.it_value);
   1249      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1250      1.142        ad 		}
   1251      1.150  christos 		timespecclear(&ts);
   1252      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1253      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1254      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1255      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1256      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1257      1.149  christos 		}
   1258      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1259      1.142        ad 		if (ptn) {
   1260      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1261      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1262      1.142        ad 			    &ptn->pt_time.it_value);
   1263      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1264       1.63   thorpej 		}
   1265      1.142        ad 		i = 3;
   1266      1.142        ad 	}
   1267      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1268      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1269      1.142        ad 			itimerfree(pts, i);
   1270      1.142        ad 			mutex_spin_enter(&timer_lock);
   1271        1.1       cgd 		}
   1272        1.1       cgd 	}
   1273      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1274      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1275      1.142        ad 		p->p_timers = NULL;
   1276      1.142        ad 		mutex_spin_exit(&timer_lock);
   1277      1.142        ad 		pool_put(&ptimers_pool, pts);
   1278      1.142        ad 	} else
   1279      1.142        ad 		mutex_spin_exit(&timer_lock);
   1280      1.142        ad }
   1281      1.142        ad 
   1282      1.142        ad static void
   1283      1.142        ad itimerfree(struct ptimers *pts, int index)
   1284      1.142        ad {
   1285      1.142        ad 	struct ptimer *pt;
   1286      1.142        ad 
   1287      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1288      1.142        ad 
   1289      1.142        ad 	pt = pts->pts_timers[index];
   1290      1.142        ad 	pts->pts_timers[index] = NULL;
   1291      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1292      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1293      1.167      yamt 	if (pt->pt_queued)
   1294      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1295      1.144        ad 	mutex_spin_exit(&timer_lock);
   1296      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1297      1.149  christos 		callout_destroy(&pt->pt_ch);
   1298      1.142        ad 	pool_put(&ptimer_pool, pt);
   1299        1.1       cgd }
   1300        1.1       cgd 
   1301        1.1       cgd /*
   1302        1.1       cgd  * Decrement an interval timer by a specified number
   1303      1.152  christos  * of nanoseconds, which must be less than a second,
   1304      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1305      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1306        1.8       cgd  * reduce the value reloaded into the timer so that
   1307        1.1       cgd  * the timer does not drift.  This routine assumes
   1308        1.1       cgd  * that it is called in a context where the timers
   1309        1.1       cgd  * on which it is operating cannot change in value.
   1310        1.1       cgd  */
   1311      1.142        ad static int
   1312      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1313       1.63   thorpej {
   1314      1.150  christos 	struct itimerspec *itp;
   1315        1.1       cgd 
   1316      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1317      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1318      1.142        ad 
   1319       1.63   thorpej 	itp = &pt->pt_time;
   1320      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1321        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1322        1.1       cgd 			/* expired, and already in next interval */
   1323      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1324        1.1       cgd 			goto expire;
   1325        1.1       cgd 		}
   1326      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1327        1.1       cgd 		itp->it_value.tv_sec--;
   1328        1.1       cgd 	}
   1329      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1330      1.152  christos 	nsec = 0;
   1331      1.150  christos 	if (timespecisset(&itp->it_value))
   1332        1.1       cgd 		return (1);
   1333        1.1       cgd 	/* expired, exactly at end of interval */
   1334        1.1       cgd expire:
   1335      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1336        1.1       cgd 		itp->it_value = itp->it_interval;
   1337      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1338      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1339      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1340        1.1       cgd 			itp->it_value.tv_sec--;
   1341        1.1       cgd 		}
   1342       1.63   thorpej 		timer_settime(pt);
   1343        1.1       cgd 	} else
   1344      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1345        1.1       cgd 	return (0);
   1346       1.42       cgd }
   1347       1.42       cgd 
   1348      1.142        ad static void
   1349       1.63   thorpej itimerfire(struct ptimer *pt)
   1350       1.63   thorpej {
   1351       1.78        cl 
   1352      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1353      1.142        ad 
   1354      1.142        ad 	/*
   1355      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1356      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1357      1.142        ad 	 */
   1358      1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1359      1.142        ad 		return;
   1360      1.172     rmind 	}
   1361      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1362      1.142        ad 	pt->pt_queued = true;
   1363      1.142        ad 	softint_schedule(timer_sih);
   1364      1.142        ad }
   1365      1.142        ad 
   1366      1.142        ad void
   1367      1.142        ad timer_tick(lwp_t *l, bool user)
   1368      1.142        ad {
   1369      1.142        ad 	struct ptimers *pts;
   1370      1.142        ad 	struct ptimer *pt;
   1371      1.142        ad 	proc_t *p;
   1372      1.142        ad 
   1373      1.142        ad 	p = l->l_proc;
   1374      1.142        ad 	if (p->p_timers == NULL)
   1375      1.142        ad 		return;
   1376      1.142        ad 
   1377      1.142        ad 	mutex_spin_enter(&timer_lock);
   1378      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1379       1.63   thorpej 		/*
   1380      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1381       1.63   thorpej 		 */
   1382      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1383      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1384      1.142        ad 				itimerfire(pt);
   1385      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1386      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1387      1.142        ad 				itimerfire(pt);
   1388      1.142        ad 	}
   1389      1.142        ad 	mutex_spin_exit(&timer_lock);
   1390      1.142        ad }
   1391      1.142        ad 
   1392      1.142        ad static void
   1393      1.142        ad timer_intr(void *cookie)
   1394      1.142        ad {
   1395      1.142        ad 	ksiginfo_t ksi;
   1396      1.142        ad 	struct ptimer *pt;
   1397      1.142        ad 	proc_t *p;
   1398      1.142        ad 
   1399      1.158        ad 	mutex_enter(proc_lock);
   1400      1.142        ad 	mutex_spin_enter(&timer_lock);
   1401      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1402      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1403      1.142        ad 		KASSERT(pt->pt_queued);
   1404      1.142        ad 		pt->pt_queued = false;
   1405      1.142        ad 
   1406      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1407      1.154  wrstuden 			/* Process is dying. */
   1408      1.142        ad 			continue;
   1409      1.154  wrstuden 		}
   1410      1.142        ad 		p = pt->pt_proc;
   1411      1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1412      1.142        ad 			continue;
   1413      1.142        ad 		}
   1414      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1415       1.63   thorpej 			pt->pt_overruns++;
   1416      1.142        ad 			continue;
   1417       1.64   nathanw 		}
   1418      1.142        ad 
   1419      1.142        ad 		KSI_INIT(&ksi);
   1420      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1421      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1422      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1423      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1424      1.142        ad 		pt->pt_overruns = 0;
   1425      1.142        ad 		mutex_spin_exit(&timer_lock);
   1426      1.142        ad 		kpsignal(p, &ksi, NULL);
   1427      1.142        ad 		mutex_spin_enter(&timer_lock);
   1428       1.63   thorpej 	}
   1429      1.142        ad 	mutex_spin_exit(&timer_lock);
   1430      1.158        ad 	mutex_exit(proc_lock);
   1431       1.63   thorpej }
   1432      1.162      elad 
   1433      1.162      elad /*
   1434      1.162      elad  * Check if the time will wrap if set to ts.
   1435      1.162      elad  *
   1436      1.162      elad  * ts - timespec describing the new time
   1437      1.162      elad  * delta - the delta between the current time and ts
   1438      1.162      elad  */
   1439      1.162      elad bool
   1440      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1441      1.162      elad {
   1442      1.162      elad 
   1443      1.162      elad 	/*
   1444      1.162      elad 	 * Don't allow the time to be set forward so far it
   1445      1.162      elad 	 * will wrap and become negative, thus allowing an
   1446      1.162      elad 	 * attacker to bypass the next check below.  The
   1447      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1448      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1449      1.162      elad 	 * past the cutoff, it will take a very long time
   1450      1.162      elad 	 * to get to the wrap point.
   1451      1.162      elad 	 */
   1452      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1453      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1454      1.162      elad 		return true;
   1455      1.162      elad 
   1456      1.162      elad 	return false;
   1457      1.162      elad }
   1458