Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.189.16.2
      1  1.189.16.2    martin /*	$NetBSD: kern_time.c,v 1.189.16.2 2020/04/08 14:08:51 martin Exp $	*/
      2        1.42       cgd 
      3        1.42       cgd /*-
      4       1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5        1.42       cgd  * All rights reserved.
      6        1.42       cgd  *
      7        1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9        1.42       cgd  *
     10        1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11        1.42       cgd  * modification, are permitted provided that the following conditions
     12        1.42       cgd  * are met:
     13        1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14        1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15        1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17        1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18        1.42       cgd  *
     19        1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30        1.42       cgd  */
     31         1.9       cgd 
     32         1.1       cgd /*
     33         1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34         1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35         1.1       cgd  *
     36         1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37         1.1       cgd  * modification, are permitted provided that the following conditions
     38         1.1       cgd  * are met:
     39         1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40         1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41         1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42         1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43         1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44        1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45         1.1       cgd  *    may be used to endorse or promote products derived from this software
     46         1.1       cgd  *    without specific prior written permission.
     47         1.1       cgd  *
     48         1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49         1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50         1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51         1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52         1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53         1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54         1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55         1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56         1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57         1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58         1.1       cgd  * SUCH DAMAGE.
     59         1.1       cgd  *
     60        1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61         1.1       cgd  */
     62        1.58     lukem 
     63        1.58     lukem #include <sys/cdefs.h>
     64  1.189.16.2    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.16.2 2020/04/08 14:08:51 martin Exp $");
     65         1.1       cgd 
     66         1.5   mycroft #include <sys/param.h>
     67         1.5   mycroft #include <sys/resourcevar.h>
     68         1.5   mycroft #include <sys/kernel.h>
     69         1.8       cgd #include <sys/systm.h>
     70         1.5   mycroft #include <sys/proc.h>
     71         1.8       cgd #include <sys/vnode.h>
     72        1.17  christos #include <sys/signalvar.h>
     73        1.25     perry #include <sys/syslog.h>
     74       1.101    kardel #include <sys/timetc.h>
     75       1.143        ad #include <sys/timex.h>
     76        1.99      elad #include <sys/kauth.h>
     77        1.11       cgd #include <sys/mount.h>
     78        1.11       cgd #include <sys/syscallargs.h>
     79       1.143        ad #include <sys/cpu.h>
     80        1.19  christos 
     81       1.142        ad static void	timer_intr(void *);
     82       1.142        ad static void	itimerfire(struct ptimer *);
     83       1.142        ad static void	itimerfree(struct ptimers *, int);
     84       1.142        ad 
     85       1.142        ad kmutex_t	timer_lock;
     86       1.142        ad 
     87       1.142        ad static void	*timer_sih;
     88       1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89       1.131        ad 
     90       1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91        1.97    simonb 
     92       1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93       1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94       1.168      yamt 
     95       1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96       1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97       1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98       1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99       1.168      yamt 
    100       1.187  christos #define	DELAYTIMER_MAX	32
    101       1.186  christos 
    102       1.131        ad /*
    103       1.131        ad  * Initialize timekeeping.
    104       1.131        ad  */
    105       1.131        ad void
    106       1.131        ad time_init(void)
    107       1.131        ad {
    108       1.131        ad 
    109       1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110       1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111       1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112       1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    113       1.131        ad }
    114       1.131        ad 
    115       1.142        ad void
    116       1.142        ad time_init2(void)
    117       1.142        ad {
    118       1.142        ad 
    119       1.142        ad 	TAILQ_INIT(&timer_queue);
    120       1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121       1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122       1.142        ad 	    timer_intr, NULL);
    123       1.142        ad }
    124       1.142        ad 
    125        1.63   thorpej /* Time of day and interval timer support.
    126         1.1       cgd  *
    127         1.1       cgd  * These routines provide the kernel entry points to get and set
    128         1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    129         1.1       cgd  * here provide support for adding and subtracting timeval structures
    130         1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    131         1.1       cgd  * timers when they expire.
    132         1.1       cgd  */
    133         1.1       cgd 
    134        1.22       jtc /* This function is used by clock_settime and settimeofday */
    135       1.132      elad static int
    136       1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137        1.22       jtc {
    138       1.156  christos 	struct timespec delta, now;
    139        1.22       jtc 
    140        1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    141       1.156  christos 	nanotime(&now);
    142       1.156  christos 	timespecsub(ts, &now, &delta);
    143       1.132      elad 
    144       1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145       1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146       1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147        1.29       tls 		return (EPERM);
    148        1.55      tron 	}
    149       1.132      elad 
    150        1.29       tls #ifdef notyet
    151       1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    152        1.29       tls 		return (EPERM);
    153        1.55      tron 	}
    154        1.29       tls #endif
    155       1.103    kardel 
    156       1.156  christos 	tc_setclock(ts);
    157       1.103    kardel 
    158        1.22       jtc 	resettodr();
    159       1.129        ad 
    160        1.29       tls 	return (0);
    161        1.22       jtc }
    162        1.22       jtc 
    163       1.132      elad int
    164       1.132      elad settime(struct proc *p, struct timespec *ts)
    165       1.132      elad {
    166       1.132      elad 	return (settime1(p, ts, true));
    167       1.132      elad }
    168       1.132      elad 
    169        1.22       jtc /* ARGSUSED */
    170        1.22       jtc int
    171       1.156  christos sys___clock_gettime50(struct lwp *l,
    172       1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    173        1.22       jtc {
    174       1.135       dsl 	/* {
    175        1.22       jtc 		syscallarg(clockid_t) clock_id;
    176        1.23       cgd 		syscallarg(struct timespec *) tp;
    177       1.135       dsl 	} */
    178       1.165     njoly 	int error;
    179        1.22       jtc 	struct timespec ats;
    180        1.22       jtc 
    181       1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    182       1.165     njoly 	if (error != 0)
    183       1.165     njoly 		return error;
    184       1.165     njoly 
    185       1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    186       1.165     njoly }
    187       1.165     njoly 
    188        1.22       jtc /* ARGSUSED */
    189        1.22       jtc int
    190       1.156  christos sys___clock_settime50(struct lwp *l,
    191       1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    192        1.22       jtc {
    193       1.135       dsl 	/* {
    194        1.22       jtc 		syscallarg(clockid_t) clock_id;
    195        1.23       cgd 		syscallarg(const struct timespec *) tp;
    196       1.135       dsl 	} */
    197       1.156  christos 	int error;
    198       1.156  christos 	struct timespec ats;
    199        1.22       jtc 
    200       1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    201       1.156  christos 		return error;
    202       1.156  christos 
    203       1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    204        1.56      manu }
    205        1.56      manu 
    206        1.56      manu 
    207        1.56      manu int
    208       1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    209       1.132      elad     bool check_kauth)
    210        1.56      manu {
    211        1.56      manu 	int error;
    212        1.56      manu 
    213        1.61    simonb 	switch (clock_id) {
    214        1.61    simonb 	case CLOCK_REALTIME:
    215       1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    216        1.61    simonb 			return (error);
    217        1.61    simonb 		break;
    218        1.61    simonb 	case CLOCK_MONOTONIC:
    219        1.61    simonb 		return (EINVAL);	/* read-only clock */
    220        1.61    simonb 	default:
    221        1.56      manu 		return (EINVAL);
    222        1.61    simonb 	}
    223        1.22       jtc 
    224        1.22       jtc 	return 0;
    225        1.22       jtc }
    226        1.22       jtc 
    227        1.22       jtc int
    228       1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    229       1.140      yamt     register_t *retval)
    230        1.22       jtc {
    231       1.135       dsl 	/* {
    232        1.22       jtc 		syscallarg(clockid_t) clock_id;
    233        1.23       cgd 		syscallarg(struct timespec *) tp;
    234       1.135       dsl 	} */
    235        1.22       jtc 	struct timespec ts;
    236       1.180      maxv 	int error;
    237        1.22       jtc 
    238       1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    239       1.164     njoly 		return error;
    240       1.164     njoly 
    241       1.164     njoly 	if (SCARG(uap, tp))
    242       1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    243       1.164     njoly 
    244       1.164     njoly 	return error;
    245       1.164     njoly }
    246       1.164     njoly 
    247       1.164     njoly int
    248       1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    249       1.164     njoly {
    250       1.164     njoly 
    251        1.61    simonb 	switch (clock_id) {
    252        1.61    simonb 	case CLOCK_REALTIME:
    253        1.61    simonb 	case CLOCK_MONOTONIC:
    254       1.164     njoly 		ts->tv_sec = 0;
    255       1.102    kardel 		if (tc_getfrequency() > 1000000000)
    256       1.164     njoly 			ts->tv_nsec = 1;
    257       1.102    kardel 		else
    258       1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    259        1.61    simonb 		break;
    260        1.61    simonb 	default:
    261       1.164     njoly 		return EINVAL;
    262        1.61    simonb 	}
    263        1.22       jtc 
    264       1.164     njoly 	return 0;
    265        1.22       jtc }
    266        1.22       jtc 
    267        1.27       jtc /* ARGSUSED */
    268        1.27       jtc int
    269       1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    270       1.140      yamt     register_t *retval)
    271        1.27       jtc {
    272       1.135       dsl 	/* {
    273       1.101    kardel 		syscallarg(struct timespec *) rqtp;
    274       1.101    kardel 		syscallarg(struct timespec *) rmtp;
    275       1.135       dsl 	} */
    276       1.101    kardel 	struct timespec rmt, rqt;
    277       1.120       dsl 	int error, error1;
    278       1.101    kardel 
    279       1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    280       1.101    kardel 	if (error)
    281       1.101    kardel 		return (error);
    282       1.101    kardel 
    283       1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    284       1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    285       1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    286       1.175  christos 		return error;
    287       1.175  christos 
    288       1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    289       1.175  christos 	return error1 ? error1 : error;
    290       1.175  christos }
    291       1.175  christos 
    292       1.175  christos /* ARGSUSED */
    293       1.175  christos int
    294       1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    295       1.175  christos     register_t *retval)
    296       1.175  christos {
    297       1.175  christos 	/* {
    298       1.175  christos 		syscallarg(clockid_t) clock_id;
    299       1.175  christos 		syscallarg(int) flags;
    300       1.175  christos 		syscallarg(struct timespec *) rqtp;
    301       1.175  christos 		syscallarg(struct timespec *) rmtp;
    302       1.175  christos 	} */
    303       1.175  christos 	struct timespec rmt, rqt;
    304       1.175  christos 	int error, error1;
    305       1.175  christos 
    306       1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    307       1.175  christos 	if (error)
    308       1.181  christos 		goto out;
    309       1.175  christos 
    310       1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    311       1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    312       1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    313       1.181  christos 		goto out;
    314       1.120       dsl 
    315       1.189     njoly 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    316       1.189     njoly 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    317       1.181  christos 		error = error1;
    318       1.181  christos out:
    319       1.181  christos 	*retval = error;
    320       1.181  christos 	return 0;
    321       1.120       dsl }
    322       1.120       dsl 
    323       1.120       dsl int
    324       1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    325       1.175  christos     struct timespec *rmt)
    326       1.120       dsl {
    327       1.141      yamt 	struct timespec rmtstart;
    328       1.120       dsl 	int error, timo;
    329       1.120       dsl 
    330       1.184       uwe 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    331       1.184       uwe 		if (error == ETIMEDOUT) {
    332       1.184       uwe 			error = 0;
    333       1.184       uwe 			if (rmt != NULL)
    334       1.184       uwe 				rmt->tv_sec = rmt->tv_nsec = 0;
    335       1.184       uwe 		}
    336       1.184       uwe 		return error;
    337       1.184       uwe 	}
    338       1.101    kardel 
    339       1.101    kardel 	/*
    340       1.175  christos 	 * Avoid inadvertently sleeping forever
    341       1.101    kardel 	 */
    342       1.101    kardel 	if (timo == 0)
    343       1.101    kardel 		timo = 1;
    344       1.141      yamt again:
    345       1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    346  1.189.16.1  christos 	if (error == EWOULDBLOCK)
    347  1.189.16.1  christos 		error = 0;
    348       1.141      yamt 	if (rmt != NULL || error == 0) {
    349       1.141      yamt 		struct timespec rmtend;
    350       1.141      yamt 		struct timespec t0;
    351       1.141      yamt 		struct timespec *t;
    352       1.101    kardel 
    353       1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    354       1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    355       1.179  christos 		if (flags & TIMER_ABSTIME) {
    356       1.179  christos 			timespecsub(rqt, &rmtend, t);
    357       1.179  christos 		} else {
    358       1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    359       1.179  christos 			timespecsub(rqt, t, t);
    360       1.179  christos 		}
    361       1.141      yamt 		if (t->tv_sec < 0)
    362       1.141      yamt 			timespecclear(t);
    363       1.141      yamt 		if (error == 0) {
    364       1.141      yamt 			timo = tstohz(t);
    365       1.141      yamt 			if (timo > 0)
    366       1.141      yamt 				goto again;
    367       1.141      yamt 		}
    368       1.141      yamt 	}
    369       1.104    kardel 
    370       1.101    kardel 	if (error == ERESTART)
    371       1.101    kardel 		error = EINTR;
    372       1.101    kardel 
    373       1.101    kardel 	return error;
    374        1.27       jtc }
    375        1.22       jtc 
    376       1.186  christos int
    377       1.186  christos sys_clock_getcpuclockid2(struct lwp *l,
    378       1.186  christos     const struct sys_clock_getcpuclockid2_args *uap,
    379       1.186  christos     register_t *retval)
    380       1.186  christos {
    381       1.186  christos 	/* {
    382       1.186  christos 		syscallarg(idtype_t idtype;
    383       1.186  christos 		syscallarg(id_t id);
    384       1.186  christos 		syscallarg(clockid_t *)clock_id;
    385       1.186  christos 	} */
    386       1.186  christos 	pid_t pid;
    387       1.186  christos 	lwpid_t lid;
    388       1.186  christos 	clockid_t clock_id;
    389       1.186  christos 	id_t id = SCARG(uap, id);
    390       1.186  christos 
    391       1.186  christos 	switch (SCARG(uap, idtype)) {
    392       1.186  christos 	case P_PID:
    393       1.188   msaitoh 		pid = id == 0 ? l->l_proc->p_pid : id;
    394       1.186  christos 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    395       1.186  christos 		break;
    396       1.186  christos 	case P_LWPID:
    397       1.186  christos 		lid = id == 0 ? l->l_lid : id;
    398       1.186  christos 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    399       1.186  christos 		break;
    400       1.186  christos 	default:
    401       1.186  christos 		return EINVAL;
    402       1.186  christos 	}
    403       1.186  christos 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    404       1.186  christos }
    405       1.186  christos 
    406         1.1       cgd /* ARGSUSED */
    407         1.3    andrew int
    408       1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    409       1.140      yamt     register_t *retval)
    410        1.15   thorpej {
    411       1.135       dsl 	/* {
    412        1.11       cgd 		syscallarg(struct timeval *) tp;
    413       1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    414       1.135       dsl 	} */
    415         1.1       cgd 	struct timeval atv;
    416         1.1       cgd 	int error = 0;
    417        1.25     perry 	struct timezone tzfake;
    418         1.1       cgd 
    419        1.11       cgd 	if (SCARG(uap, tp)) {
    420  1.189.16.1  christos 		memset(&atv, 0, sizeof(atv));
    421         1.1       cgd 		microtime(&atv);
    422        1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    423        1.17  christos 		if (error)
    424         1.1       cgd 			return (error);
    425         1.1       cgd 	}
    426        1.25     perry 	if (SCARG(uap, tzp)) {
    427        1.25     perry 		/*
    428        1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    429        1.25     perry 		 * fake up a timezone struct and return it if demanded.
    430        1.25     perry 		 */
    431        1.25     perry 		tzfake.tz_minuteswest = 0;
    432        1.25     perry 		tzfake.tz_dsttime = 0;
    433        1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    434        1.25     perry 	}
    435         1.1       cgd 	return (error);
    436         1.1       cgd }
    437         1.1       cgd 
    438         1.1       cgd /* ARGSUSED */
    439         1.3    andrew int
    440       1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    441       1.140      yamt     register_t *retval)
    442        1.15   thorpej {
    443       1.135       dsl 	/* {
    444        1.24       cgd 		syscallarg(const struct timeval *) tv;
    445       1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    446       1.135       dsl 	} */
    447        1.60      manu 
    448       1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    449        1.60      manu }
    450        1.60      manu 
    451        1.60      manu int
    452       1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    453       1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    454        1.60      manu {
    455        1.22       jtc 	struct timeval atv;
    456        1.98  christos 	struct timespec ts;
    457        1.22       jtc 	int error;
    458         1.1       cgd 
    459         1.8       cgd 	/* Verify all parameters before changing time. */
    460       1.119       dsl 
    461        1.25     perry 	/*
    462        1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    463        1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    464        1.25     perry 	 */
    465        1.98  christos 	if (utzp)
    466        1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    467       1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    468        1.98  christos 
    469        1.98  christos 	if (utv == NULL)
    470        1.98  christos 		return 0;
    471        1.98  christos 
    472       1.119       dsl 	if (userspace) {
    473       1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    474       1.119       dsl 			return error;
    475       1.119       dsl 		utv = &atv;
    476       1.119       dsl 	}
    477       1.119       dsl 
    478       1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    479       1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    480         1.1       cgd }
    481         1.1       cgd 
    482        1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    483         1.1       cgd 
    484         1.1       cgd /* ARGSUSED */
    485         1.3    andrew int
    486       1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    487       1.140      yamt     register_t *retval)
    488        1.15   thorpej {
    489       1.135       dsl 	/* {
    490        1.24       cgd 		syscallarg(const struct timeval *) delta;
    491        1.11       cgd 		syscallarg(struct timeval *) olddelta;
    492       1.135       dsl 	} */
    493       1.180      maxv 	int error;
    494       1.156  christos 	struct timeval atv, oldatv;
    495         1.1       cgd 
    496       1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    497       1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    498       1.156  christos 		return error;
    499        1.17  christos 
    500       1.156  christos 	if (SCARG(uap, delta)) {
    501       1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    502       1.156  christos 		    sizeof(*SCARG(uap, delta)));
    503       1.156  christos 		if (error)
    504       1.156  christos 			return (error);
    505       1.156  christos 	}
    506       1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    507       1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    508       1.156  christos 	if (SCARG(uap, olddelta))
    509       1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    510       1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    511       1.156  christos 	return error;
    512        1.56      manu }
    513        1.56      manu 
    514       1.156  christos void
    515       1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    516        1.56      manu {
    517       1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    518       1.101    kardel 
    519       1.101    kardel 	if (olddelta) {
    520  1.189.16.1  christos 		memset(olddelta, 0, sizeof(*olddelta));
    521       1.143        ad 		mutex_spin_enter(&timecounter_lock);
    522       1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    523       1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    524       1.156  christos 		if (olddelta->tv_usec < 0) {
    525       1.156  christos 			olddelta->tv_usec += 1000000;
    526       1.156  christos 			olddelta->tv_sec--;
    527       1.101    kardel 		}
    528       1.157  christos 		mutex_spin_exit(&timecounter_lock);
    529       1.101    kardel 	}
    530       1.101    kardel 
    531       1.101    kardel 	if (delta) {
    532       1.156  christos 		mutex_spin_enter(&timecounter_lock);
    533       1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    534       1.101    kardel 
    535       1.143        ad 		if (time_adjtime) {
    536       1.101    kardel 			/* We need to save the system time during shutdown */
    537       1.101    kardel 			time_adjusted |= 1;
    538       1.143        ad 		}
    539       1.143        ad 		mutex_spin_exit(&timecounter_lock);
    540       1.101    kardel 	}
    541         1.1       cgd }
    542         1.1       cgd 
    543         1.1       cgd /*
    544        1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    545        1.63   thorpej  * timer_*() family of routines are supported.
    546         1.1       cgd  *
    547        1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    548        1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    549       1.183  christos  * first four elements in this array are reserved for the BSD timers:
    550       1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    551       1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    552       1.170  christos  * allocated by the timer_create() syscall.
    553         1.1       cgd  *
    554        1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    555        1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    556         1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    557        1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    558        1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    559        1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    560        1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    561        1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    562        1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    563        1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    564        1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    565        1.63   thorpej 
    566        1.63   thorpej /* Allocate a POSIX realtime timer. */
    567        1.63   thorpej int
    568       1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    569       1.140      yamt     register_t *retval)
    570        1.63   thorpej {
    571       1.135       dsl 	/* {
    572        1.63   thorpej 		syscallarg(clockid_t) clock_id;
    573        1.63   thorpej 		syscallarg(struct sigevent *) evp;
    574        1.63   thorpej 		syscallarg(timer_t *) timerid;
    575       1.135       dsl 	} */
    576        1.92      cube 
    577        1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    578       1.105        ad 	    SCARG(uap, evp), copyin, l);
    579        1.92      cube }
    580        1.92      cube 
    581        1.92      cube int
    582        1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    583       1.105        ad     copyin_t fetch_event, struct lwp *l)
    584        1.92      cube {
    585        1.92      cube 	int error;
    586        1.92      cube 	timer_t timerid;
    587       1.142        ad 	struct ptimers *pts;
    588        1.63   thorpej 	struct ptimer *pt;
    589       1.105        ad 	struct proc *p;
    590       1.105        ad 
    591       1.105        ad 	p = l->l_proc;
    592        1.63   thorpej 
    593       1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    594        1.63   thorpej 		return (EINVAL);
    595        1.63   thorpej 
    596       1.142        ad 	if ((pts = p->p_timers) == NULL)
    597       1.142        ad 		pts = timers_alloc(p);
    598        1.63   thorpej 
    599  1.189.16.1  christos 	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
    600       1.142        ad 	if (evp != NULL) {
    601        1.63   thorpej 		if (((error =
    602        1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    603        1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    604       1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    605       1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    606       1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    607       1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    608        1.63   thorpej 			pool_put(&ptimer_pool, pt);
    609        1.63   thorpej 			return (error ? error : EINVAL);
    610        1.63   thorpej 		}
    611       1.142        ad 	}
    612       1.142        ad 
    613       1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    614       1.142        ad 	mutex_spin_enter(&timer_lock);
    615       1.183  christos 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    616       1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    617       1.142        ad 			break;
    618       1.142        ad 	if (timerid == TIMER_MAX) {
    619       1.142        ad 		mutex_spin_exit(&timer_lock);
    620       1.142        ad 		pool_put(&ptimer_pool, pt);
    621       1.142        ad 		return EAGAIN;
    622       1.142        ad 	}
    623       1.142        ad 	if (evp == NULL) {
    624        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    625        1.63   thorpej 		switch (id) {
    626        1.63   thorpej 		case CLOCK_REALTIME:
    627       1.168      yamt 		case CLOCK_MONOTONIC:
    628        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    629        1.63   thorpej 			break;
    630        1.63   thorpej 		case CLOCK_VIRTUAL:
    631        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    632        1.63   thorpej 			break;
    633        1.63   thorpej 		case CLOCK_PROF:
    634        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    635        1.63   thorpej 			break;
    636        1.63   thorpej 		}
    637        1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    638        1.63   thorpej 	}
    639        1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    640        1.73  christos 	pt->pt_info.ksi_errno = 0;
    641        1.73  christos 	pt->pt_info.ksi_code = 0;
    642        1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    643       1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    644       1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    645        1.63   thorpej 	pt->pt_type = id;
    646        1.63   thorpej 	pt->pt_proc = p;
    647        1.63   thorpej 	pt->pt_overruns = 0;
    648        1.63   thorpej 	pt->pt_poverruns = 0;
    649        1.64   nathanw 	pt->pt_entry = timerid;
    650       1.142        ad 	pt->pt_queued = false;
    651       1.150  christos 	timespecclear(&pt->pt_time.it_value);
    652       1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    653       1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    654       1.149  christos 	else
    655       1.149  christos 		pt->pt_active = 0;
    656       1.149  christos 
    657       1.142        ad 	pts->pts_timers[timerid] = pt;
    658       1.142        ad 	mutex_spin_exit(&timer_lock);
    659        1.63   thorpej 
    660        1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    661        1.63   thorpej }
    662        1.63   thorpej 
    663        1.63   thorpej /* Delete a POSIX realtime timer */
    664         1.3    andrew int
    665       1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    666       1.140      yamt     register_t *retval)
    667        1.15   thorpej {
    668       1.135       dsl 	/* {
    669        1.63   thorpej 		syscallarg(timer_t) timerid;
    670       1.135       dsl 	} */
    671        1.63   thorpej 	struct proc *p = l->l_proc;
    672        1.65  jdolecek 	timer_t timerid;
    673       1.142        ad 	struct ptimers *pts;
    674        1.63   thorpej 	struct ptimer *pt, *ptn;
    675         1.1       cgd 
    676        1.63   thorpej 	timerid = SCARG(uap, timerid);
    677       1.142        ad 	pts = p->p_timers;
    678       1.142        ad 
    679       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    680       1.142        ad 		return (EINVAL);
    681        1.63   thorpej 
    682       1.142        ad 	mutex_spin_enter(&timer_lock);
    683       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    684       1.142        ad 		mutex_spin_exit(&timer_lock);
    685         1.1       cgd 		return (EINVAL);
    686       1.142        ad 	}
    687       1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    688       1.149  christos 		if (pt->pt_active) {
    689       1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    690       1.149  christos 			LIST_REMOVE(pt, pt_list);
    691       1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    692       1.150  christos 				timespecadd(&pt->pt_time.it_value,
    693       1.149  christos 				    &ptn->pt_time.it_value,
    694       1.149  christos 				    &ptn->pt_time.it_value);
    695       1.149  christos 			pt->pt_active = 0;
    696       1.149  christos 		}
    697        1.63   thorpej 	}
    698       1.142        ad 	itimerfree(pts, timerid);
    699        1.63   thorpej 
    700        1.63   thorpej 	return (0);
    701        1.63   thorpej }
    702        1.63   thorpej 
    703        1.63   thorpej /*
    704        1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    705       1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    706       1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    707        1.63   thorpej  */
    708        1.63   thorpej void
    709        1.63   thorpej timer_settime(struct ptimer *pt)
    710        1.63   thorpej {
    711        1.63   thorpej 	struct ptimer *ptn, *pptn;
    712        1.63   thorpej 	struct ptlist *ptl;
    713        1.63   thorpej 
    714       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    715       1.142        ad 
    716       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    717       1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    718       1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    719        1.63   thorpej 			/*
    720       1.150  christos 			 * Don't need to check tshzto() return value, here.
    721        1.63   thorpej 			 * callout_reset() does it for us.
    722        1.63   thorpej 			 */
    723       1.171  christos 			callout_reset(&pt->pt_ch,
    724       1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    725       1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    726       1.171  christos 			    tshzto(&pt->pt_time.it_value),
    727        1.63   thorpej 			    realtimerexpire, pt);
    728        1.63   thorpej 		}
    729        1.63   thorpej 	} else {
    730        1.63   thorpej 		if (pt->pt_active) {
    731        1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    732        1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    733        1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    734       1.150  christos 				timespecadd(&pt->pt_time.it_value,
    735        1.63   thorpej 				    &ptn->pt_time.it_value,
    736        1.63   thorpej 				    &ptn->pt_time.it_value);
    737        1.63   thorpej 		}
    738       1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    739        1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    740        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    741        1.63   thorpej 			else
    742        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    743        1.63   thorpej 
    744        1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    745       1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    746        1.63   thorpej 				 &ptn->pt_time.it_value, >);
    747        1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    748       1.150  christos 				timespecsub(&pt->pt_time.it_value,
    749        1.63   thorpej 				    &ptn->pt_time.it_value,
    750        1.63   thorpej 				    &pt->pt_time.it_value);
    751        1.63   thorpej 
    752        1.63   thorpej 			if (pptn)
    753        1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    754        1.63   thorpej 			else
    755        1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    756        1.63   thorpej 
    757        1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    758       1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    759        1.63   thorpej 				    &pt->pt_time.it_value,
    760        1.63   thorpej 				    &ptn->pt_time.it_value);
    761        1.63   thorpej 
    762        1.63   thorpej 			pt->pt_active = 1;
    763        1.63   thorpej 		} else
    764        1.63   thorpej 			pt->pt_active = 0;
    765        1.63   thorpej 	}
    766        1.63   thorpej }
    767        1.63   thorpej 
    768        1.63   thorpej void
    769       1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    770        1.63   thorpej {
    771       1.150  christos 	struct timespec now;
    772        1.63   thorpej 	struct ptimer *ptn;
    773        1.63   thorpej 
    774       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    775       1.142        ad 
    776       1.150  christos 	*aits = pt->pt_time;
    777       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    778         1.1       cgd 		/*
    779        1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    780        1.63   thorpej 		 * part of real time timer.  If time for real time
    781        1.63   thorpej 		 * timer has passed return 0, else return difference
    782        1.63   thorpej 		 * between current time and time for the timer to go
    783        1.63   thorpej 		 * off.
    784         1.1       cgd 		 */
    785       1.150  christos 		if (timespecisset(&aits->it_value)) {
    786       1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    787       1.168      yamt 				getnanotime(&now);
    788       1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    789       1.168      yamt 				getnanouptime(&now);
    790       1.168      yamt 			}
    791       1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    792       1.150  christos 				timespecclear(&aits->it_value);
    793       1.101    kardel 			else
    794       1.150  christos 				timespecsub(&aits->it_value, &now,
    795       1.150  christos 				    &aits->it_value);
    796        1.36   thorpej 		}
    797        1.63   thorpej 	} else if (pt->pt_active) {
    798        1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    799        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    800        1.63   thorpej 		else
    801        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    802        1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    803       1.150  christos 			timespecadd(&aits->it_value,
    804       1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    805        1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    806         1.1       cgd 	} else
    807       1.150  christos 		timespecclear(&aits->it_value);
    808        1.63   thorpej }
    809        1.63   thorpej 
    810        1.63   thorpej 
    811        1.63   thorpej 
    812        1.63   thorpej /* Set and arm a POSIX realtime timer */
    813        1.63   thorpej int
    814       1.156  christos sys___timer_settime50(struct lwp *l,
    815       1.156  christos     const struct sys___timer_settime50_args *uap,
    816       1.140      yamt     register_t *retval)
    817        1.63   thorpej {
    818       1.135       dsl 	/* {
    819        1.63   thorpej 		syscallarg(timer_t) timerid;
    820        1.63   thorpej 		syscallarg(int) flags;
    821        1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    822        1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    823       1.135       dsl 	} */
    824        1.92      cube 	int error;
    825        1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    826        1.92      cube 
    827        1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    828        1.92      cube 	    sizeof(struct itimerspec))) != 0)
    829        1.92      cube 		return (error);
    830        1.92      cube 
    831        1.92      cube 	if (SCARG(uap, ovalue))
    832        1.92      cube 		ovp = &ovalue;
    833        1.92      cube 
    834        1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    835        1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    836        1.92      cube 		return error;
    837        1.92      cube 
    838        1.92      cube 	if (ovp)
    839        1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    840        1.92      cube 		    sizeof(struct itimerspec));
    841        1.92      cube 	return 0;
    842        1.92      cube }
    843        1.92      cube 
    844        1.92      cube int
    845        1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    846        1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    847        1.92      cube {
    848       1.150  christos 	struct timespec now;
    849       1.150  christos 	struct itimerspec val, oval;
    850       1.142        ad 	struct ptimers *pts;
    851        1.63   thorpej 	struct ptimer *pt;
    852       1.160  christos 	int error;
    853        1.63   thorpej 
    854       1.142        ad 	pts = p->p_timers;
    855        1.63   thorpej 
    856       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    857       1.142        ad 		return EINVAL;
    858       1.150  christos 	val = *value;
    859       1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    860       1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    861       1.160  christos 		return error;
    862        1.63   thorpej 
    863       1.142        ad 	mutex_spin_enter(&timer_lock);
    864       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    865       1.142        ad 		mutex_spin_exit(&timer_lock);
    866       1.150  christos 		return EINVAL;
    867       1.142        ad 	}
    868       1.142        ad 
    869        1.63   thorpej 	oval = pt->pt_time;
    870        1.63   thorpej 	pt->pt_time = val;
    871        1.63   thorpej 
    872        1.67   nathanw 	/*
    873        1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    874        1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    875        1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    876        1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    877        1.67   nathanw 	 * negative, which would confuse the comparison tests.
    878        1.67   nathanw 	 */
    879       1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    880       1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    881       1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    882       1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    883       1.168      yamt 					getnanotime(&now);
    884       1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    885       1.168      yamt 					getnanouptime(&now);
    886       1.168      yamt 				}
    887       1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    888       1.101    kardel 				    &pt->pt_time.it_value);
    889       1.101    kardel 			}
    890        1.67   nathanw 		} else {
    891        1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    892       1.150  christos 				getnanotime(&now);
    893       1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    894       1.101    kardel 				    &pt->pt_time.it_value);
    895       1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    896        1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    897        1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    898       1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    899        1.67   nathanw 				}
    900        1.67   nathanw 			}
    901        1.67   nathanw 		}
    902        1.67   nathanw 	}
    903        1.67   nathanw 
    904        1.63   thorpej 	timer_settime(pt);
    905       1.142        ad 	mutex_spin_exit(&timer_lock);
    906        1.63   thorpej 
    907       1.150  christos 	if (ovalue)
    908       1.150  christos 		*ovalue = oval;
    909        1.63   thorpej 
    910        1.63   thorpej 	return (0);
    911        1.63   thorpej }
    912        1.63   thorpej 
    913        1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    914        1.63   thorpej int
    915       1.156  christos sys___timer_gettime50(struct lwp *l,
    916       1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    917        1.63   thorpej {
    918       1.135       dsl 	/* {
    919        1.63   thorpej 		syscallarg(timer_t) timerid;
    920        1.63   thorpej 		syscallarg(struct itimerspec *) value;
    921       1.135       dsl 	} */
    922        1.63   thorpej 	struct itimerspec its;
    923        1.92      cube 	int error;
    924        1.92      cube 
    925        1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    926        1.92      cube 	    &its)) != 0)
    927        1.92      cube 		return error;
    928        1.92      cube 
    929        1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    930        1.92      cube }
    931        1.92      cube 
    932        1.92      cube int
    933        1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    934        1.92      cube {
    935        1.63   thorpej 	struct ptimer *pt;
    936       1.142        ad 	struct ptimers *pts;
    937        1.63   thorpej 
    938       1.142        ad 	pts = p->p_timers;
    939       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    940        1.63   thorpej 		return (EINVAL);
    941       1.142        ad 	mutex_spin_enter(&timer_lock);
    942       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    943       1.142        ad 		mutex_spin_exit(&timer_lock);
    944       1.142        ad 		return (EINVAL);
    945       1.142        ad 	}
    946       1.150  christos 	timer_gettime(pt, its);
    947       1.142        ad 	mutex_spin_exit(&timer_lock);
    948        1.63   thorpej 
    949        1.92      cube 	return 0;
    950        1.63   thorpej }
    951        1.63   thorpej 
    952        1.63   thorpej /*
    953        1.63   thorpej  * Return the count of the number of times a periodic timer expired
    954        1.63   thorpej  * while a notification was already pending. The counter is reset when
    955        1.63   thorpej  * a timer expires and a notification can be posted.
    956        1.63   thorpej  */
    957        1.63   thorpej int
    958       1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    959       1.140      yamt     register_t *retval)
    960        1.63   thorpej {
    961       1.135       dsl 	/* {
    962        1.63   thorpej 		syscallarg(timer_t) timerid;
    963       1.135       dsl 	} */
    964        1.63   thorpej 	struct proc *p = l->l_proc;
    965       1.142        ad 	struct ptimers *pts;
    966        1.63   thorpej 	int timerid;
    967        1.63   thorpej 	struct ptimer *pt;
    968        1.63   thorpej 
    969        1.63   thorpej 	timerid = SCARG(uap, timerid);
    970        1.63   thorpej 
    971       1.142        ad 	pts = p->p_timers;
    972       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    973       1.142        ad 		return (EINVAL);
    974       1.142        ad 	mutex_spin_enter(&timer_lock);
    975       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    976       1.142        ad 		mutex_spin_exit(&timer_lock);
    977        1.63   thorpej 		return (EINVAL);
    978       1.142        ad 	}
    979        1.63   thorpej 	*retval = pt->pt_poverruns;
    980       1.187  christos 	if (*retval >= DELAYTIMER_MAX)
    981       1.187  christos 		*retval = DELAYTIMER_MAX;
    982       1.142        ad 	mutex_spin_exit(&timer_lock);
    983        1.63   thorpej 
    984        1.63   thorpej 	return (0);
    985        1.63   thorpej }
    986        1.63   thorpej 
    987        1.63   thorpej /*
    988        1.63   thorpej  * Real interval timer expired:
    989        1.63   thorpej  * send process whose timer expired an alarm signal.
    990        1.63   thorpej  * If time is not set up to reload, then just return.
    991        1.63   thorpej  * Else compute next time timer should go off which is > current time.
    992        1.63   thorpej  * This is where delay in processing this timeout causes multiple
    993        1.63   thorpej  * SIGALRM calls to be compressed into one.
    994        1.63   thorpej  */
    995        1.63   thorpej void
    996        1.63   thorpej realtimerexpire(void *arg)
    997        1.63   thorpej {
    998       1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
    999       1.150  christos 	struct timespec now, next;
   1000        1.63   thorpej 	struct ptimer *pt;
   1001       1.148     joerg 	int backwards;
   1002        1.63   thorpej 
   1003       1.142        ad 	pt = arg;
   1004        1.63   thorpej 
   1005       1.142        ad 	mutex_spin_enter(&timer_lock);
   1006        1.63   thorpej 	itimerfire(pt);
   1007        1.63   thorpej 
   1008       1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1009       1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1010       1.142        ad 		mutex_spin_exit(&timer_lock);
   1011        1.63   thorpej 		return;
   1012        1.63   thorpej 	}
   1013       1.148     joerg 
   1014       1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1015       1.171  christos 		getnanouptime(&now);
   1016       1.171  christos 	} else {
   1017       1.171  christos 		getnanotime(&now);
   1018       1.171  christos 	}
   1019       1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1020       1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1021       1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1022       1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1023       1.148     joerg 		pt->pt_time.it_value = next;
   1024       1.148     joerg 	} else {
   1025       1.166      yamt 		now_ns = timespec2ns(&now);
   1026       1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1027       1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1028       1.148     joerg 
   1029       1.166      yamt 		next_val = now_ns +
   1030       1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1031       1.148     joerg 
   1032       1.148     joerg 		if (backwards)
   1033       1.148     joerg 			next_val += interval;
   1034       1.148     joerg 		else
   1035       1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1036       1.148     joerg 
   1037       1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1038       1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1039       1.101    kardel 	}
   1040       1.148     joerg 
   1041       1.148     joerg 	/*
   1042       1.150  christos 	 * Don't need to check tshzto() return value, here.
   1043       1.148     joerg 	 * callout_reset() does it for us.
   1044       1.148     joerg 	 */
   1045       1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1046       1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1047       1.148     joerg 	    realtimerexpire, pt);
   1048       1.148     joerg 	mutex_spin_exit(&timer_lock);
   1049        1.63   thorpej }
   1050        1.63   thorpej 
   1051        1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1052        1.63   thorpej /* ARGSUSED */
   1053        1.63   thorpej int
   1054       1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1055       1.140      yamt     register_t *retval)
   1056        1.63   thorpej {
   1057       1.135       dsl 	/* {
   1058        1.63   thorpej 		syscallarg(int) which;
   1059        1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1060       1.135       dsl 	} */
   1061        1.63   thorpej 	struct proc *p = l->l_proc;
   1062        1.63   thorpej 	struct itimerval aitv;
   1063        1.91      cube 	int error;
   1064        1.91      cube 
   1065  1.189.16.1  christos 	memset(&aitv, 0, sizeof(aitv));
   1066        1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1067        1.91      cube 	if (error)
   1068        1.91      cube 		return error;
   1069        1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1070        1.91      cube }
   1071        1.63   thorpej 
   1072        1.91      cube int
   1073        1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1074        1.91      cube {
   1075       1.142        ad 	struct ptimers *pts;
   1076       1.142        ad 	struct ptimer *pt;
   1077       1.150  christos 	struct itimerspec its;
   1078        1.63   thorpej 
   1079       1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1080        1.63   thorpej 		return (EINVAL);
   1081        1.63   thorpej 
   1082       1.142        ad 	mutex_spin_enter(&timer_lock);
   1083       1.142        ad 	pts = p->p_timers;
   1084       1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1085        1.91      cube 		timerclear(&itvp->it_value);
   1086        1.91      cube 		timerclear(&itvp->it_interval);
   1087       1.150  christos 	} else {
   1088       1.150  christos 		timer_gettime(pt, &its);
   1089       1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1090       1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1091       1.150  christos 	}
   1092       1.188   msaitoh 	mutex_spin_exit(&timer_lock);
   1093        1.63   thorpej 
   1094        1.91      cube 	return 0;
   1095         1.1       cgd }
   1096         1.1       cgd 
   1097        1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1098         1.1       cgd /* ARGSUSED */
   1099         1.3    andrew int
   1100       1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1101       1.140      yamt     register_t *retval)
   1102        1.15   thorpej {
   1103       1.135       dsl 	/* {
   1104        1.30   mycroft 		syscallarg(int) which;
   1105        1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1106        1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1107       1.135       dsl 	} */
   1108        1.63   thorpej 	struct proc *p = l->l_proc;
   1109        1.30   mycroft 	int which = SCARG(uap, which);
   1110       1.156  christos 	struct sys___getitimer50_args getargs;
   1111        1.91      cube 	const struct itimerval *itvp;
   1112         1.1       cgd 	struct itimerval aitv;
   1113        1.91      cube 	int error;
   1114         1.1       cgd 
   1115       1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1116         1.1       cgd 		return (EINVAL);
   1117        1.11       cgd 	itvp = SCARG(uap, itv);
   1118        1.63   thorpej 	if (itvp &&
   1119       1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1120         1.1       cgd 		return (error);
   1121        1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1122        1.30   mycroft 		SCARG(&getargs, which) = which;
   1123        1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1124       1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1125        1.21       cgd 			return (error);
   1126        1.21       cgd 	}
   1127         1.1       cgd 	if (itvp == 0)
   1128         1.1       cgd 		return (0);
   1129        1.91      cube 
   1130        1.91      cube 	return dosetitimer(p, which, &aitv);
   1131        1.91      cube }
   1132        1.91      cube 
   1133        1.91      cube int
   1134        1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1135        1.91      cube {
   1136       1.150  christos 	struct timespec now;
   1137       1.142        ad 	struct ptimers *pts;
   1138       1.142        ad 	struct ptimer *pt, *spare;
   1139        1.91      cube 
   1140       1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1141        1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1142         1.1       cgd 		return (EINVAL);
   1143        1.63   thorpej 
   1144        1.63   thorpej 	/*
   1145        1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1146        1.63   thorpej 	 * wants to clear the timer.
   1147        1.63   thorpej 	 */
   1148       1.142        ad 	spare = NULL;
   1149       1.142        ad 	pts = p->p_timers;
   1150       1.142        ad  retry:
   1151       1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1152       1.142        ad 	    pts->pts_timers[which] == NULL))
   1153        1.63   thorpej 		return (0);
   1154       1.142        ad 	if (pts == NULL)
   1155       1.142        ad 		pts = timers_alloc(p);
   1156       1.142        ad 	mutex_spin_enter(&timer_lock);
   1157       1.142        ad 	pt = pts->pts_timers[which];
   1158       1.142        ad 	if (pt == NULL) {
   1159       1.142        ad 		if (spare == NULL) {
   1160       1.142        ad 			mutex_spin_exit(&timer_lock);
   1161  1.189.16.1  christos 			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
   1162       1.142        ad 			goto retry;
   1163       1.142        ad 		}
   1164       1.142        ad 		pt = spare;
   1165       1.142        ad 		spare = NULL;
   1166        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1167        1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1168        1.63   thorpej 		pt->pt_overruns = 0;
   1169        1.63   thorpej 		pt->pt_proc = p;
   1170        1.63   thorpej 		pt->pt_type = which;
   1171        1.64   nathanw 		pt->pt_entry = which;
   1172       1.142        ad 		pt->pt_queued = false;
   1173  1.189.16.1  christos 		if (!CLOCK_VIRTUAL_P(which))
   1174       1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1175       1.149  christos 		else
   1176       1.149  christos 			pt->pt_active = 0;
   1177       1.149  christos 
   1178        1.63   thorpej 		switch (which) {
   1179        1.63   thorpej 		case ITIMER_REAL:
   1180       1.170  christos 		case ITIMER_MONOTONIC:
   1181        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1182        1.63   thorpej 			break;
   1183        1.63   thorpej 		case ITIMER_VIRTUAL:
   1184        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1185        1.63   thorpej 			break;
   1186        1.63   thorpej 		case ITIMER_PROF:
   1187        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1188        1.63   thorpej 			break;
   1189         1.1       cgd 		}
   1190       1.142        ad 		pts->pts_timers[which] = pt;
   1191       1.142        ad 	}
   1192        1.63   thorpej 
   1193       1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1194       1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1195       1.150  christos 
   1196       1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1197        1.67   nathanw 		/* Convert to absolute time */
   1198       1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1199       1.170  christos 		switch (which) {
   1200       1.170  christos 		case ITIMER_REAL:
   1201       1.170  christos 			getnanotime(&now);
   1202       1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1203       1.170  christos 			    &pt->pt_time.it_value);
   1204       1.170  christos 			break;
   1205       1.170  christos 		case ITIMER_MONOTONIC:
   1206       1.170  christos 			getnanouptime(&now);
   1207       1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1208       1.170  christos 			    &pt->pt_time.it_value);
   1209       1.170  christos 			break;
   1210       1.170  christos 		default:
   1211       1.170  christos 			break;
   1212       1.170  christos 		}
   1213        1.67   nathanw 	}
   1214        1.63   thorpej 	timer_settime(pt);
   1215       1.142        ad 	mutex_spin_exit(&timer_lock);
   1216       1.142        ad 	if (spare != NULL)
   1217       1.142        ad 		pool_put(&ptimer_pool, spare);
   1218        1.63   thorpej 
   1219         1.1       cgd 	return (0);
   1220         1.1       cgd }
   1221         1.1       cgd 
   1222        1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1223       1.142        ad struct ptimers *
   1224        1.63   thorpej timers_alloc(struct proc *p)
   1225        1.63   thorpej {
   1226       1.142        ad 	struct ptimers *pts;
   1227        1.63   thorpej 	int i;
   1228        1.63   thorpej 
   1229       1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1230        1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1231        1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1232        1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1233        1.63   thorpej 		pts->pts_timers[i] = NULL;
   1234       1.142        ad 	mutex_spin_enter(&timer_lock);
   1235       1.142        ad 	if (p->p_timers == NULL) {
   1236       1.142        ad 		p->p_timers = pts;
   1237       1.142        ad 		mutex_spin_exit(&timer_lock);
   1238       1.142        ad 		return pts;
   1239       1.142        ad 	}
   1240       1.142        ad 	mutex_spin_exit(&timer_lock);
   1241       1.142        ad 	pool_put(&ptimers_pool, pts);
   1242       1.142        ad 	return p->p_timers;
   1243        1.63   thorpej }
   1244        1.63   thorpej 
   1245         1.1       cgd /*
   1246        1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1247        1.63   thorpej  * then clean up all timers and free all the data structures. If
   1248        1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1249        1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1250        1.63   thorpej  * structure if none of those remain.
   1251         1.1       cgd  */
   1252         1.3    andrew void
   1253        1.63   thorpej timers_free(struct proc *p, int which)
   1254         1.6       cgd {
   1255        1.63   thorpej 	struct ptimers *pts;
   1256       1.142        ad 	struct ptimer *ptn;
   1257       1.150  christos 	struct timespec ts;
   1258       1.142        ad 	int i;
   1259        1.63   thorpej 
   1260       1.142        ad 	if (p->p_timers == NULL)
   1261       1.142        ad 		return;
   1262        1.63   thorpej 
   1263       1.142        ad 	pts = p->p_timers;
   1264       1.142        ad 	mutex_spin_enter(&timer_lock);
   1265       1.142        ad 	if (which == TIMERS_ALL) {
   1266       1.142        ad 		p->p_timers = NULL;
   1267       1.142        ad 		i = 0;
   1268       1.142        ad 	} else {
   1269       1.150  christos 		timespecclear(&ts);
   1270       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1271       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1272       1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1273       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1274       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1275       1.149  christos 		}
   1276       1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1277       1.142        ad 		if (ptn) {
   1278       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1279       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1280       1.142        ad 			    &ptn->pt_time.it_value);
   1281       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1282       1.142        ad 		}
   1283       1.150  christos 		timespecclear(&ts);
   1284       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1285       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1286       1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1287       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1288       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1289       1.149  christos 		}
   1290       1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1291       1.142        ad 		if (ptn) {
   1292       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1293       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1294       1.142        ad 			    &ptn->pt_time.it_value);
   1295       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1296        1.63   thorpej 		}
   1297       1.183  christos 		i = TIMER_MIN;
   1298       1.142        ad 	}
   1299       1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1300       1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1301       1.142        ad 			itimerfree(pts, i);
   1302       1.142        ad 			mutex_spin_enter(&timer_lock);
   1303         1.1       cgd 		}
   1304         1.1       cgd 	}
   1305       1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1306       1.183  christos 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1307       1.142        ad 		p->p_timers = NULL;
   1308       1.142        ad 		mutex_spin_exit(&timer_lock);
   1309       1.142        ad 		pool_put(&ptimers_pool, pts);
   1310       1.142        ad 	} else
   1311       1.142        ad 		mutex_spin_exit(&timer_lock);
   1312       1.142        ad }
   1313       1.142        ad 
   1314       1.142        ad static void
   1315       1.142        ad itimerfree(struct ptimers *pts, int index)
   1316       1.142        ad {
   1317       1.142        ad 	struct ptimer *pt;
   1318       1.142        ad 
   1319       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1320       1.142        ad 
   1321       1.142        ad 	pt = pts->pts_timers[index];
   1322       1.142        ad 	pts->pts_timers[index] = NULL;
   1323       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1324       1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1325       1.167      yamt 	if (pt->pt_queued)
   1326       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1327       1.144        ad 	mutex_spin_exit(&timer_lock);
   1328       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1329       1.149  christos 		callout_destroy(&pt->pt_ch);
   1330       1.142        ad 	pool_put(&ptimer_pool, pt);
   1331         1.1       cgd }
   1332         1.1       cgd 
   1333         1.1       cgd /*
   1334         1.1       cgd  * Decrement an interval timer by a specified number
   1335       1.152  christos  * of nanoseconds, which must be less than a second,
   1336       1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1337       1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1338         1.8       cgd  * reduce the value reloaded into the timer so that
   1339         1.1       cgd  * the timer does not drift.  This routine assumes
   1340         1.1       cgd  * that it is called in a context where the timers
   1341         1.1       cgd  * on which it is operating cannot change in value.
   1342         1.1       cgd  */
   1343       1.142        ad static int
   1344       1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1345        1.63   thorpej {
   1346       1.150  christos 	struct itimerspec *itp;
   1347         1.1       cgd 
   1348       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1349       1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1350       1.142        ad 
   1351        1.63   thorpej 	itp = &pt->pt_time;
   1352       1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1353         1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1354         1.1       cgd 			/* expired, and already in next interval */
   1355       1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1356         1.1       cgd 			goto expire;
   1357         1.1       cgd 		}
   1358       1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1359         1.1       cgd 		itp->it_value.tv_sec--;
   1360         1.1       cgd 	}
   1361       1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1362       1.152  christos 	nsec = 0;
   1363       1.150  christos 	if (timespecisset(&itp->it_value))
   1364         1.1       cgd 		return (1);
   1365         1.1       cgd 	/* expired, exactly at end of interval */
   1366         1.1       cgd expire:
   1367       1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1368         1.1       cgd 		itp->it_value = itp->it_interval;
   1369       1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1370       1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1371       1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1372         1.1       cgd 			itp->it_value.tv_sec--;
   1373         1.1       cgd 		}
   1374        1.63   thorpej 		timer_settime(pt);
   1375         1.1       cgd 	} else
   1376       1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1377         1.1       cgd 	return (0);
   1378        1.42       cgd }
   1379        1.42       cgd 
   1380       1.142        ad static void
   1381        1.63   thorpej itimerfire(struct ptimer *pt)
   1382        1.63   thorpej {
   1383        1.78        cl 
   1384       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1385       1.142        ad 
   1386       1.142        ad 	/*
   1387       1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1388       1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1389       1.142        ad 	 */
   1390       1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1391       1.142        ad 		return;
   1392       1.172     rmind 	}
   1393       1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1394       1.142        ad 	pt->pt_queued = true;
   1395       1.142        ad 	softint_schedule(timer_sih);
   1396       1.142        ad }
   1397       1.142        ad 
   1398       1.142        ad void
   1399       1.142        ad timer_tick(lwp_t *l, bool user)
   1400       1.142        ad {
   1401       1.142        ad 	struct ptimers *pts;
   1402       1.142        ad 	struct ptimer *pt;
   1403       1.142        ad 	proc_t *p;
   1404       1.142        ad 
   1405       1.142        ad 	p = l->l_proc;
   1406       1.142        ad 	if (p->p_timers == NULL)
   1407       1.142        ad 		return;
   1408       1.142        ad 
   1409       1.142        ad 	mutex_spin_enter(&timer_lock);
   1410       1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1411        1.63   thorpej 		/*
   1412       1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1413        1.63   thorpej 		 */
   1414       1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1415       1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1416       1.142        ad 				itimerfire(pt);
   1417       1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1418       1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1419       1.142        ad 				itimerfire(pt);
   1420       1.142        ad 	}
   1421       1.142        ad 	mutex_spin_exit(&timer_lock);
   1422       1.142        ad }
   1423       1.142        ad 
   1424       1.142        ad static void
   1425       1.142        ad timer_intr(void *cookie)
   1426       1.142        ad {
   1427       1.142        ad 	ksiginfo_t ksi;
   1428       1.142        ad 	struct ptimer *pt;
   1429       1.142        ad 	proc_t *p;
   1430       1.142        ad 
   1431       1.158        ad 	mutex_enter(proc_lock);
   1432       1.142        ad 	mutex_spin_enter(&timer_lock);
   1433       1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1434       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1435       1.142        ad 		KASSERT(pt->pt_queued);
   1436       1.142        ad 		pt->pt_queued = false;
   1437       1.142        ad 
   1438       1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1439       1.154  wrstuden 			/* Process is dying. */
   1440       1.142        ad 			continue;
   1441       1.154  wrstuden 		}
   1442       1.142        ad 		p = pt->pt_proc;
   1443       1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1444       1.142        ad 			continue;
   1445       1.142        ad 		}
   1446       1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1447        1.63   thorpej 			pt->pt_overruns++;
   1448       1.142        ad 			continue;
   1449        1.64   nathanw 		}
   1450       1.142        ad 
   1451       1.142        ad 		KSI_INIT(&ksi);
   1452       1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1453       1.142        ad 		ksi.ksi_code = SI_TIMER;
   1454       1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1455       1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1456       1.142        ad 		pt->pt_overruns = 0;
   1457       1.142        ad 		mutex_spin_exit(&timer_lock);
   1458       1.142        ad 		kpsignal(p, &ksi, NULL);
   1459       1.142        ad 		mutex_spin_enter(&timer_lock);
   1460        1.63   thorpej 	}
   1461       1.142        ad 	mutex_spin_exit(&timer_lock);
   1462       1.158        ad 	mutex_exit(proc_lock);
   1463        1.63   thorpej }
   1464       1.162      elad 
   1465       1.162      elad /*
   1466       1.162      elad  * Check if the time will wrap if set to ts.
   1467       1.162      elad  *
   1468       1.162      elad  * ts - timespec describing the new time
   1469       1.162      elad  * delta - the delta between the current time and ts
   1470       1.162      elad  */
   1471       1.162      elad bool
   1472       1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1473       1.162      elad {
   1474       1.162      elad 
   1475       1.162      elad 	/*
   1476       1.162      elad 	 * Don't allow the time to be set forward so far it
   1477       1.162      elad 	 * will wrap and become negative, thus allowing an
   1478       1.162      elad 	 * attacker to bypass the next check below.  The
   1479       1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1480       1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1481       1.162      elad 	 * past the cutoff, it will take a very long time
   1482       1.162      elad 	 * to get to the wrap point.
   1483       1.162      elad 	 */
   1484       1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1485       1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1486       1.162      elad 		return true;
   1487       1.162      elad 
   1488       1.162      elad 	return false;
   1489       1.162      elad }
   1490