Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.189.16.3
      1  1.189.16.2    martin /*	$NetBSD: kern_time.c,v 1.189.16.3 2020/04/13 08:05:04 martin Exp $	*/
      2        1.42       cgd 
      3        1.42       cgd /*-
      4       1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5        1.42       cgd  * All rights reserved.
      6        1.42       cgd  *
      7        1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9        1.42       cgd  *
     10        1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11        1.42       cgd  * modification, are permitted provided that the following conditions
     12        1.42       cgd  * are met:
     13        1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14        1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15        1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17        1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18        1.42       cgd  *
     19        1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30        1.42       cgd  */
     31         1.9       cgd 
     32         1.1       cgd /*
     33         1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34         1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35         1.1       cgd  *
     36         1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37         1.1       cgd  * modification, are permitted provided that the following conditions
     38         1.1       cgd  * are met:
     39         1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40         1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41         1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42         1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43         1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44        1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45         1.1       cgd  *    may be used to endorse or promote products derived from this software
     46         1.1       cgd  *    without specific prior written permission.
     47         1.1       cgd  *
     48         1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49         1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50         1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51         1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52         1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53         1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54         1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55         1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56         1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57         1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58         1.1       cgd  * SUCH DAMAGE.
     59         1.1       cgd  *
     60        1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61         1.1       cgd  */
     62        1.58     lukem 
     63        1.58     lukem #include <sys/cdefs.h>
     64  1.189.16.2    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.16.3 2020/04/13 08:05:04 martin Exp $");
     65         1.1       cgd 
     66         1.5   mycroft #include <sys/param.h>
     67         1.5   mycroft #include <sys/resourcevar.h>
     68         1.5   mycroft #include <sys/kernel.h>
     69         1.8       cgd #include <sys/systm.h>
     70         1.5   mycroft #include <sys/proc.h>
     71         1.8       cgd #include <sys/vnode.h>
     72        1.17  christos #include <sys/signalvar.h>
     73        1.25     perry #include <sys/syslog.h>
     74       1.101    kardel #include <sys/timetc.h>
     75       1.143        ad #include <sys/timex.h>
     76        1.99      elad #include <sys/kauth.h>
     77        1.11       cgd #include <sys/mount.h>
     78        1.11       cgd #include <sys/syscallargs.h>
     79       1.143        ad #include <sys/cpu.h>
     80        1.19  christos 
     81       1.142        ad static void	timer_intr(void *);
     82       1.142        ad static void	itimerfire(struct ptimer *);
     83       1.142        ad static void	itimerfree(struct ptimers *, int);
     84       1.142        ad 
     85       1.142        ad kmutex_t	timer_lock;
     86       1.142        ad 
     87       1.142        ad static void	*timer_sih;
     88       1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89       1.131        ad 
     90       1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91        1.97    simonb 
     92       1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93       1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94       1.168      yamt 
     95       1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96       1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97       1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98       1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99       1.168      yamt 
    100       1.187  christos #define	DELAYTIMER_MAX	32
    101       1.186  christos 
    102       1.131        ad /*
    103       1.131        ad  * Initialize timekeeping.
    104       1.131        ad  */
    105       1.131        ad void
    106       1.131        ad time_init(void)
    107       1.131        ad {
    108       1.131        ad 
    109       1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110       1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111       1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112       1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    113       1.131        ad }
    114       1.131        ad 
    115       1.142        ad void
    116       1.142        ad time_init2(void)
    117       1.142        ad {
    118       1.142        ad 
    119       1.142        ad 	TAILQ_INIT(&timer_queue);
    120       1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121       1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122       1.142        ad 	    timer_intr, NULL);
    123       1.142        ad }
    124       1.142        ad 
    125        1.63   thorpej /* Time of day and interval timer support.
    126         1.1       cgd  *
    127         1.1       cgd  * These routines provide the kernel entry points to get and set
    128         1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    129         1.1       cgd  * here provide support for adding and subtracting timeval structures
    130         1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    131         1.1       cgd  * timers when they expire.
    132         1.1       cgd  */
    133         1.1       cgd 
    134        1.22       jtc /* This function is used by clock_settime and settimeofday */
    135       1.132      elad static int
    136       1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137        1.22       jtc {
    138       1.156  christos 	struct timespec delta, now;
    139        1.22       jtc 
    140        1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    141       1.156  christos 	nanotime(&now);
    142       1.156  christos 	timespecsub(ts, &now, &delta);
    143       1.132      elad 
    144       1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    145       1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    146       1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    147        1.29       tls 		return (EPERM);
    148        1.55      tron 	}
    149       1.132      elad 
    150        1.29       tls #ifdef notyet
    151       1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    152        1.29       tls 		return (EPERM);
    153        1.55      tron 	}
    154        1.29       tls #endif
    155       1.103    kardel 
    156       1.156  christos 	tc_setclock(ts);
    157       1.103    kardel 
    158        1.22       jtc 	resettodr();
    159       1.129        ad 
    160        1.29       tls 	return (0);
    161        1.22       jtc }
    162        1.22       jtc 
    163       1.132      elad int
    164       1.132      elad settime(struct proc *p, struct timespec *ts)
    165       1.132      elad {
    166       1.132      elad 	return (settime1(p, ts, true));
    167       1.132      elad }
    168       1.132      elad 
    169        1.22       jtc /* ARGSUSED */
    170        1.22       jtc int
    171       1.156  christos sys___clock_gettime50(struct lwp *l,
    172       1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    173        1.22       jtc {
    174       1.135       dsl 	/* {
    175        1.22       jtc 		syscallarg(clockid_t) clock_id;
    176        1.23       cgd 		syscallarg(struct timespec *) tp;
    177       1.135       dsl 	} */
    178       1.165     njoly 	int error;
    179        1.22       jtc 	struct timespec ats;
    180        1.22       jtc 
    181       1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    182       1.165     njoly 	if (error != 0)
    183       1.165     njoly 		return error;
    184       1.165     njoly 
    185       1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    186       1.165     njoly }
    187       1.165     njoly 
    188        1.22       jtc /* ARGSUSED */
    189        1.22       jtc int
    190       1.156  christos sys___clock_settime50(struct lwp *l,
    191       1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    192        1.22       jtc {
    193       1.135       dsl 	/* {
    194        1.22       jtc 		syscallarg(clockid_t) clock_id;
    195        1.23       cgd 		syscallarg(const struct timespec *) tp;
    196       1.135       dsl 	} */
    197       1.156  christos 	int error;
    198       1.156  christos 	struct timespec ats;
    199        1.22       jtc 
    200       1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    201       1.156  christos 		return error;
    202       1.156  christos 
    203       1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    204        1.56      manu }
    205        1.56      manu 
    206        1.56      manu 
    207        1.56      manu int
    208       1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    209       1.132      elad     bool check_kauth)
    210        1.56      manu {
    211        1.56      manu 	int error;
    212        1.56      manu 
    213  1.189.16.3    martin 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
    214  1.189.16.3    martin 		return EINVAL;
    215  1.189.16.3    martin 
    216        1.61    simonb 	switch (clock_id) {
    217        1.61    simonb 	case CLOCK_REALTIME:
    218       1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    219        1.61    simonb 			return (error);
    220        1.61    simonb 		break;
    221        1.61    simonb 	case CLOCK_MONOTONIC:
    222        1.61    simonb 		return (EINVAL);	/* read-only clock */
    223        1.61    simonb 	default:
    224        1.56      manu 		return (EINVAL);
    225        1.61    simonb 	}
    226        1.22       jtc 
    227        1.22       jtc 	return 0;
    228        1.22       jtc }
    229        1.22       jtc 
    230        1.22       jtc int
    231       1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    232       1.140      yamt     register_t *retval)
    233        1.22       jtc {
    234       1.135       dsl 	/* {
    235        1.22       jtc 		syscallarg(clockid_t) clock_id;
    236        1.23       cgd 		syscallarg(struct timespec *) tp;
    237       1.135       dsl 	} */
    238        1.22       jtc 	struct timespec ts;
    239       1.180      maxv 	int error;
    240        1.22       jtc 
    241       1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    242       1.164     njoly 		return error;
    243       1.164     njoly 
    244       1.164     njoly 	if (SCARG(uap, tp))
    245       1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    246       1.164     njoly 
    247       1.164     njoly 	return error;
    248       1.164     njoly }
    249       1.164     njoly 
    250       1.164     njoly int
    251       1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    252       1.164     njoly {
    253       1.164     njoly 
    254        1.61    simonb 	switch (clock_id) {
    255        1.61    simonb 	case CLOCK_REALTIME:
    256        1.61    simonb 	case CLOCK_MONOTONIC:
    257       1.164     njoly 		ts->tv_sec = 0;
    258       1.102    kardel 		if (tc_getfrequency() > 1000000000)
    259       1.164     njoly 			ts->tv_nsec = 1;
    260       1.102    kardel 		else
    261       1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    262        1.61    simonb 		break;
    263        1.61    simonb 	default:
    264       1.164     njoly 		return EINVAL;
    265        1.61    simonb 	}
    266        1.22       jtc 
    267       1.164     njoly 	return 0;
    268        1.22       jtc }
    269        1.22       jtc 
    270        1.27       jtc /* ARGSUSED */
    271        1.27       jtc int
    272       1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    273       1.140      yamt     register_t *retval)
    274        1.27       jtc {
    275       1.135       dsl 	/* {
    276       1.101    kardel 		syscallarg(struct timespec *) rqtp;
    277       1.101    kardel 		syscallarg(struct timespec *) rmtp;
    278       1.135       dsl 	} */
    279       1.101    kardel 	struct timespec rmt, rqt;
    280       1.120       dsl 	int error, error1;
    281       1.101    kardel 
    282       1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    283       1.101    kardel 	if (error)
    284       1.101    kardel 		return (error);
    285       1.101    kardel 
    286       1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    287       1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    288       1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    289       1.175  christos 		return error;
    290       1.175  christos 
    291       1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    292       1.175  christos 	return error1 ? error1 : error;
    293       1.175  christos }
    294       1.175  christos 
    295       1.175  christos /* ARGSUSED */
    296       1.175  christos int
    297       1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    298       1.175  christos     register_t *retval)
    299       1.175  christos {
    300       1.175  christos 	/* {
    301       1.175  christos 		syscallarg(clockid_t) clock_id;
    302       1.175  christos 		syscallarg(int) flags;
    303       1.175  christos 		syscallarg(struct timespec *) rqtp;
    304       1.175  christos 		syscallarg(struct timespec *) rmtp;
    305       1.175  christos 	} */
    306       1.175  christos 	struct timespec rmt, rqt;
    307       1.175  christos 	int error, error1;
    308       1.175  christos 
    309       1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    310       1.175  christos 	if (error)
    311       1.181  christos 		goto out;
    312       1.175  christos 
    313       1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    314       1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    315       1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    316       1.181  christos 		goto out;
    317       1.120       dsl 
    318       1.189     njoly 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    319       1.189     njoly 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    320       1.181  christos 		error = error1;
    321       1.181  christos out:
    322       1.181  christos 	*retval = error;
    323       1.181  christos 	return 0;
    324       1.120       dsl }
    325       1.120       dsl 
    326       1.120       dsl int
    327       1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    328       1.175  christos     struct timespec *rmt)
    329       1.120       dsl {
    330       1.141      yamt 	struct timespec rmtstart;
    331       1.120       dsl 	int error, timo;
    332       1.120       dsl 
    333       1.184       uwe 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    334       1.184       uwe 		if (error == ETIMEDOUT) {
    335       1.184       uwe 			error = 0;
    336       1.184       uwe 			if (rmt != NULL)
    337       1.184       uwe 				rmt->tv_sec = rmt->tv_nsec = 0;
    338       1.184       uwe 		}
    339       1.184       uwe 		return error;
    340       1.184       uwe 	}
    341       1.101    kardel 
    342       1.101    kardel 	/*
    343       1.175  christos 	 * Avoid inadvertently sleeping forever
    344       1.101    kardel 	 */
    345       1.101    kardel 	if (timo == 0)
    346       1.101    kardel 		timo = 1;
    347       1.141      yamt again:
    348       1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    349  1.189.16.1  christos 	if (error == EWOULDBLOCK)
    350  1.189.16.1  christos 		error = 0;
    351       1.141      yamt 	if (rmt != NULL || error == 0) {
    352       1.141      yamt 		struct timespec rmtend;
    353       1.141      yamt 		struct timespec t0;
    354       1.141      yamt 		struct timespec *t;
    355       1.101    kardel 
    356       1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    357       1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    358       1.179  christos 		if (flags & TIMER_ABSTIME) {
    359       1.179  christos 			timespecsub(rqt, &rmtend, t);
    360       1.179  christos 		} else {
    361       1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    362       1.179  christos 			timespecsub(rqt, t, t);
    363       1.179  christos 		}
    364       1.141      yamt 		if (t->tv_sec < 0)
    365       1.141      yamt 			timespecclear(t);
    366       1.141      yamt 		if (error == 0) {
    367       1.141      yamt 			timo = tstohz(t);
    368       1.141      yamt 			if (timo > 0)
    369       1.141      yamt 				goto again;
    370       1.141      yamt 		}
    371       1.141      yamt 	}
    372       1.104    kardel 
    373       1.101    kardel 	if (error == ERESTART)
    374       1.101    kardel 		error = EINTR;
    375       1.101    kardel 
    376       1.101    kardel 	return error;
    377        1.27       jtc }
    378        1.22       jtc 
    379       1.186  christos int
    380       1.186  christos sys_clock_getcpuclockid2(struct lwp *l,
    381       1.186  christos     const struct sys_clock_getcpuclockid2_args *uap,
    382       1.186  christos     register_t *retval)
    383       1.186  christos {
    384       1.186  christos 	/* {
    385       1.186  christos 		syscallarg(idtype_t idtype;
    386       1.186  christos 		syscallarg(id_t id);
    387       1.186  christos 		syscallarg(clockid_t *)clock_id;
    388       1.186  christos 	} */
    389       1.186  christos 	pid_t pid;
    390       1.186  christos 	lwpid_t lid;
    391       1.186  christos 	clockid_t clock_id;
    392       1.186  christos 	id_t id = SCARG(uap, id);
    393       1.186  christos 
    394       1.186  christos 	switch (SCARG(uap, idtype)) {
    395       1.186  christos 	case P_PID:
    396       1.188   msaitoh 		pid = id == 0 ? l->l_proc->p_pid : id;
    397       1.186  christos 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    398       1.186  christos 		break;
    399       1.186  christos 	case P_LWPID:
    400       1.186  christos 		lid = id == 0 ? l->l_lid : id;
    401       1.186  christos 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    402       1.186  christos 		break;
    403       1.186  christos 	default:
    404       1.186  christos 		return EINVAL;
    405       1.186  christos 	}
    406       1.186  christos 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    407       1.186  christos }
    408       1.186  christos 
    409         1.1       cgd /* ARGSUSED */
    410         1.3    andrew int
    411       1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    412       1.140      yamt     register_t *retval)
    413        1.15   thorpej {
    414       1.135       dsl 	/* {
    415        1.11       cgd 		syscallarg(struct timeval *) tp;
    416       1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    417       1.135       dsl 	} */
    418         1.1       cgd 	struct timeval atv;
    419         1.1       cgd 	int error = 0;
    420        1.25     perry 	struct timezone tzfake;
    421         1.1       cgd 
    422        1.11       cgd 	if (SCARG(uap, tp)) {
    423  1.189.16.1  christos 		memset(&atv, 0, sizeof(atv));
    424         1.1       cgd 		microtime(&atv);
    425        1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    426        1.17  christos 		if (error)
    427         1.1       cgd 			return (error);
    428         1.1       cgd 	}
    429        1.25     perry 	if (SCARG(uap, tzp)) {
    430        1.25     perry 		/*
    431        1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    432        1.25     perry 		 * fake up a timezone struct and return it if demanded.
    433        1.25     perry 		 */
    434        1.25     perry 		tzfake.tz_minuteswest = 0;
    435        1.25     perry 		tzfake.tz_dsttime = 0;
    436        1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    437        1.25     perry 	}
    438         1.1       cgd 	return (error);
    439         1.1       cgd }
    440         1.1       cgd 
    441         1.1       cgd /* ARGSUSED */
    442         1.3    andrew int
    443       1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    444       1.140      yamt     register_t *retval)
    445        1.15   thorpej {
    446       1.135       dsl 	/* {
    447        1.24       cgd 		syscallarg(const struct timeval *) tv;
    448       1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    449       1.135       dsl 	} */
    450        1.60      manu 
    451       1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    452        1.60      manu }
    453        1.60      manu 
    454        1.60      manu int
    455       1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    456       1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    457        1.60      manu {
    458        1.22       jtc 	struct timeval atv;
    459        1.98  christos 	struct timespec ts;
    460        1.22       jtc 	int error;
    461         1.1       cgd 
    462         1.8       cgd 	/* Verify all parameters before changing time. */
    463       1.119       dsl 
    464        1.25     perry 	/*
    465        1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    466        1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    467        1.25     perry 	 */
    468        1.98  christos 	if (utzp)
    469        1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    470       1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    471        1.98  christos 
    472        1.98  christos 	if (utv == NULL)
    473        1.98  christos 		return 0;
    474        1.98  christos 
    475       1.119       dsl 	if (userspace) {
    476       1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    477       1.119       dsl 			return error;
    478       1.119       dsl 		utv = &atv;
    479       1.119       dsl 	}
    480       1.119       dsl 
    481  1.189.16.3    martin 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
    482  1.189.16.3    martin 		return EINVAL;
    483  1.189.16.3    martin 
    484       1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    485       1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    486         1.1       cgd }
    487         1.1       cgd 
    488        1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    489         1.1       cgd 
    490         1.1       cgd /* ARGSUSED */
    491         1.3    andrew int
    492       1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    493       1.140      yamt     register_t *retval)
    494        1.15   thorpej {
    495       1.135       dsl 	/* {
    496        1.24       cgd 		syscallarg(const struct timeval *) delta;
    497        1.11       cgd 		syscallarg(struct timeval *) olddelta;
    498       1.135       dsl 	} */
    499       1.180      maxv 	int error;
    500       1.156  christos 	struct timeval atv, oldatv;
    501         1.1       cgd 
    502       1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    503       1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    504       1.156  christos 		return error;
    505        1.17  christos 
    506       1.156  christos 	if (SCARG(uap, delta)) {
    507       1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    508       1.156  christos 		    sizeof(*SCARG(uap, delta)));
    509       1.156  christos 		if (error)
    510       1.156  christos 			return (error);
    511       1.156  christos 	}
    512       1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    513       1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    514       1.156  christos 	if (SCARG(uap, olddelta))
    515       1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    516       1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    517       1.156  christos 	return error;
    518        1.56      manu }
    519        1.56      manu 
    520       1.156  christos void
    521       1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    522        1.56      manu {
    523       1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    524       1.101    kardel 
    525       1.101    kardel 	if (olddelta) {
    526  1.189.16.1  christos 		memset(olddelta, 0, sizeof(*olddelta));
    527       1.143        ad 		mutex_spin_enter(&timecounter_lock);
    528       1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    529       1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    530       1.156  christos 		if (olddelta->tv_usec < 0) {
    531       1.156  christos 			olddelta->tv_usec += 1000000;
    532       1.156  christos 			olddelta->tv_sec--;
    533       1.101    kardel 		}
    534       1.157  christos 		mutex_spin_exit(&timecounter_lock);
    535       1.101    kardel 	}
    536       1.101    kardel 
    537       1.101    kardel 	if (delta) {
    538       1.156  christos 		mutex_spin_enter(&timecounter_lock);
    539       1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    540       1.101    kardel 
    541       1.143        ad 		if (time_adjtime) {
    542       1.101    kardel 			/* We need to save the system time during shutdown */
    543       1.101    kardel 			time_adjusted |= 1;
    544       1.143        ad 		}
    545       1.143        ad 		mutex_spin_exit(&timecounter_lock);
    546       1.101    kardel 	}
    547         1.1       cgd }
    548         1.1       cgd 
    549         1.1       cgd /*
    550        1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    551        1.63   thorpej  * timer_*() family of routines are supported.
    552         1.1       cgd  *
    553        1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    554        1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    555       1.183  christos  * first four elements in this array are reserved for the BSD timers:
    556       1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    557       1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    558       1.170  christos  * allocated by the timer_create() syscall.
    559         1.1       cgd  *
    560        1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    561        1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    562         1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    563        1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    564        1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    565        1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    566        1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    567        1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    568        1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    569        1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    570        1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    571        1.63   thorpej 
    572        1.63   thorpej /* Allocate a POSIX realtime timer. */
    573        1.63   thorpej int
    574       1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    575       1.140      yamt     register_t *retval)
    576        1.63   thorpej {
    577       1.135       dsl 	/* {
    578        1.63   thorpej 		syscallarg(clockid_t) clock_id;
    579        1.63   thorpej 		syscallarg(struct sigevent *) evp;
    580        1.63   thorpej 		syscallarg(timer_t *) timerid;
    581       1.135       dsl 	} */
    582        1.92      cube 
    583        1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    584       1.105        ad 	    SCARG(uap, evp), copyin, l);
    585        1.92      cube }
    586        1.92      cube 
    587        1.92      cube int
    588        1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    589       1.105        ad     copyin_t fetch_event, struct lwp *l)
    590        1.92      cube {
    591        1.92      cube 	int error;
    592        1.92      cube 	timer_t timerid;
    593       1.142        ad 	struct ptimers *pts;
    594        1.63   thorpej 	struct ptimer *pt;
    595       1.105        ad 	struct proc *p;
    596       1.105        ad 
    597       1.105        ad 	p = l->l_proc;
    598        1.63   thorpej 
    599       1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    600        1.63   thorpej 		return (EINVAL);
    601        1.63   thorpej 
    602       1.142        ad 	if ((pts = p->p_timers) == NULL)
    603       1.142        ad 		pts = timers_alloc(p);
    604        1.63   thorpej 
    605  1.189.16.1  christos 	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
    606       1.142        ad 	if (evp != NULL) {
    607        1.63   thorpej 		if (((error =
    608        1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    609        1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    610       1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    611       1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    612       1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    613       1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    614        1.63   thorpej 			pool_put(&ptimer_pool, pt);
    615        1.63   thorpej 			return (error ? error : EINVAL);
    616        1.63   thorpej 		}
    617       1.142        ad 	}
    618       1.142        ad 
    619       1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    620       1.142        ad 	mutex_spin_enter(&timer_lock);
    621       1.183  christos 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    622       1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    623       1.142        ad 			break;
    624       1.142        ad 	if (timerid == TIMER_MAX) {
    625       1.142        ad 		mutex_spin_exit(&timer_lock);
    626       1.142        ad 		pool_put(&ptimer_pool, pt);
    627       1.142        ad 		return EAGAIN;
    628       1.142        ad 	}
    629       1.142        ad 	if (evp == NULL) {
    630        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    631        1.63   thorpej 		switch (id) {
    632        1.63   thorpej 		case CLOCK_REALTIME:
    633       1.168      yamt 		case CLOCK_MONOTONIC:
    634        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    635        1.63   thorpej 			break;
    636        1.63   thorpej 		case CLOCK_VIRTUAL:
    637        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    638        1.63   thorpej 			break;
    639        1.63   thorpej 		case CLOCK_PROF:
    640        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    641        1.63   thorpej 			break;
    642        1.63   thorpej 		}
    643        1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    644        1.63   thorpej 	}
    645        1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    646        1.73  christos 	pt->pt_info.ksi_errno = 0;
    647        1.73  christos 	pt->pt_info.ksi_code = 0;
    648        1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    649       1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    650       1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    651        1.63   thorpej 	pt->pt_type = id;
    652        1.63   thorpej 	pt->pt_proc = p;
    653        1.63   thorpej 	pt->pt_overruns = 0;
    654        1.63   thorpej 	pt->pt_poverruns = 0;
    655        1.64   nathanw 	pt->pt_entry = timerid;
    656       1.142        ad 	pt->pt_queued = false;
    657       1.150  christos 	timespecclear(&pt->pt_time.it_value);
    658       1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    659       1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    660       1.149  christos 	else
    661       1.149  christos 		pt->pt_active = 0;
    662       1.149  christos 
    663       1.142        ad 	pts->pts_timers[timerid] = pt;
    664       1.142        ad 	mutex_spin_exit(&timer_lock);
    665        1.63   thorpej 
    666        1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    667        1.63   thorpej }
    668        1.63   thorpej 
    669        1.63   thorpej /* Delete a POSIX realtime timer */
    670         1.3    andrew int
    671       1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    672       1.140      yamt     register_t *retval)
    673        1.15   thorpej {
    674       1.135       dsl 	/* {
    675        1.63   thorpej 		syscallarg(timer_t) timerid;
    676       1.135       dsl 	} */
    677        1.63   thorpej 	struct proc *p = l->l_proc;
    678        1.65  jdolecek 	timer_t timerid;
    679       1.142        ad 	struct ptimers *pts;
    680        1.63   thorpej 	struct ptimer *pt, *ptn;
    681         1.1       cgd 
    682        1.63   thorpej 	timerid = SCARG(uap, timerid);
    683       1.142        ad 	pts = p->p_timers;
    684       1.142        ad 
    685       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    686       1.142        ad 		return (EINVAL);
    687        1.63   thorpej 
    688       1.142        ad 	mutex_spin_enter(&timer_lock);
    689       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    690       1.142        ad 		mutex_spin_exit(&timer_lock);
    691         1.1       cgd 		return (EINVAL);
    692       1.142        ad 	}
    693       1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    694       1.149  christos 		if (pt->pt_active) {
    695       1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    696       1.149  christos 			LIST_REMOVE(pt, pt_list);
    697       1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    698       1.150  christos 				timespecadd(&pt->pt_time.it_value,
    699       1.149  christos 				    &ptn->pt_time.it_value,
    700       1.149  christos 				    &ptn->pt_time.it_value);
    701       1.149  christos 			pt->pt_active = 0;
    702       1.149  christos 		}
    703        1.63   thorpej 	}
    704  1.189.16.3    martin 
    705  1.189.16.3    martin 	/* Free the timer and release the lock.  */
    706       1.142        ad 	itimerfree(pts, timerid);
    707        1.63   thorpej 
    708        1.63   thorpej 	return (0);
    709        1.63   thorpej }
    710        1.63   thorpej 
    711        1.63   thorpej /*
    712        1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    713       1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    714       1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    715  1.189.16.3    martin  *
    716  1.189.16.3    martin  * If the callout had already fired but not yet run, fails with
    717  1.189.16.3    martin  * ERESTART -- caller must restart from the top to look up a timer.
    718        1.63   thorpej  */
    719  1.189.16.3    martin int
    720        1.63   thorpej timer_settime(struct ptimer *pt)
    721        1.63   thorpej {
    722        1.63   thorpej 	struct ptimer *ptn, *pptn;
    723        1.63   thorpej 	struct ptlist *ptl;
    724        1.63   thorpej 
    725       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    726       1.142        ad 
    727       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    728  1.189.16.3    martin 		/*
    729  1.189.16.3    martin 		 * Try to stop the callout.  However, if it had already
    730  1.189.16.3    martin 		 * fired, we have to drop the lock to wait for it, so
    731  1.189.16.3    martin 		 * the world may have changed and pt may not be there
    732  1.189.16.3    martin 		 * any more.  In that case, tell the caller to start
    733  1.189.16.3    martin 		 * over from the top.
    734  1.189.16.3    martin 		 */
    735  1.189.16.3    martin 		if (callout_halt(&pt->pt_ch, &timer_lock))
    736  1.189.16.3    martin 			return ERESTART;
    737  1.189.16.3    martin 
    738  1.189.16.3    martin 		/* Now we can touch pt and start it up again.  */
    739       1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    740        1.63   thorpej 			/*
    741       1.150  christos 			 * Don't need to check tshzto() return value, here.
    742        1.63   thorpej 			 * callout_reset() does it for us.
    743        1.63   thorpej 			 */
    744       1.171  christos 			callout_reset(&pt->pt_ch,
    745       1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    746       1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    747       1.171  christos 			    tshzto(&pt->pt_time.it_value),
    748        1.63   thorpej 			    realtimerexpire, pt);
    749        1.63   thorpej 		}
    750        1.63   thorpej 	} else {
    751        1.63   thorpej 		if (pt->pt_active) {
    752        1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    753        1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    754        1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    755       1.150  christos 				timespecadd(&pt->pt_time.it_value,
    756        1.63   thorpej 				    &ptn->pt_time.it_value,
    757        1.63   thorpej 				    &ptn->pt_time.it_value);
    758        1.63   thorpej 		}
    759       1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    760        1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    761        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    762        1.63   thorpej 			else
    763        1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    764        1.63   thorpej 
    765        1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    766       1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    767        1.63   thorpej 				 &ptn->pt_time.it_value, >);
    768        1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    769       1.150  christos 				timespecsub(&pt->pt_time.it_value,
    770        1.63   thorpej 				    &ptn->pt_time.it_value,
    771        1.63   thorpej 				    &pt->pt_time.it_value);
    772        1.63   thorpej 
    773        1.63   thorpej 			if (pptn)
    774        1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    775        1.63   thorpej 			else
    776        1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    777        1.63   thorpej 
    778        1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    779       1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    780        1.63   thorpej 				    &pt->pt_time.it_value,
    781        1.63   thorpej 				    &ptn->pt_time.it_value);
    782        1.63   thorpej 
    783        1.63   thorpej 			pt->pt_active = 1;
    784        1.63   thorpej 		} else
    785        1.63   thorpej 			pt->pt_active = 0;
    786        1.63   thorpej 	}
    787  1.189.16.3    martin 
    788  1.189.16.3    martin 	/* Success!  */
    789  1.189.16.3    martin 	return 0;
    790        1.63   thorpej }
    791        1.63   thorpej 
    792        1.63   thorpej void
    793       1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    794        1.63   thorpej {
    795       1.150  christos 	struct timespec now;
    796        1.63   thorpej 	struct ptimer *ptn;
    797        1.63   thorpej 
    798       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    799       1.142        ad 
    800       1.150  christos 	*aits = pt->pt_time;
    801       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    802         1.1       cgd 		/*
    803        1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    804        1.63   thorpej 		 * part of real time timer.  If time for real time
    805        1.63   thorpej 		 * timer has passed return 0, else return difference
    806        1.63   thorpej 		 * between current time and time for the timer to go
    807        1.63   thorpej 		 * off.
    808         1.1       cgd 		 */
    809       1.150  christos 		if (timespecisset(&aits->it_value)) {
    810       1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    811       1.168      yamt 				getnanotime(&now);
    812       1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    813       1.168      yamt 				getnanouptime(&now);
    814       1.168      yamt 			}
    815       1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    816       1.150  christos 				timespecclear(&aits->it_value);
    817       1.101    kardel 			else
    818       1.150  christos 				timespecsub(&aits->it_value, &now,
    819       1.150  christos 				    &aits->it_value);
    820        1.36   thorpej 		}
    821        1.63   thorpej 	} else if (pt->pt_active) {
    822        1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    823        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    824        1.63   thorpej 		else
    825        1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    826        1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    827       1.150  christos 			timespecadd(&aits->it_value,
    828       1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    829        1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    830         1.1       cgd 	} else
    831       1.150  christos 		timespecclear(&aits->it_value);
    832        1.63   thorpej }
    833        1.63   thorpej 
    834        1.63   thorpej 
    835        1.63   thorpej 
    836        1.63   thorpej /* Set and arm a POSIX realtime timer */
    837        1.63   thorpej int
    838       1.156  christos sys___timer_settime50(struct lwp *l,
    839       1.156  christos     const struct sys___timer_settime50_args *uap,
    840       1.140      yamt     register_t *retval)
    841        1.63   thorpej {
    842       1.135       dsl 	/* {
    843        1.63   thorpej 		syscallarg(timer_t) timerid;
    844        1.63   thorpej 		syscallarg(int) flags;
    845        1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    846        1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    847       1.135       dsl 	} */
    848        1.92      cube 	int error;
    849        1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    850        1.92      cube 
    851        1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    852        1.92      cube 	    sizeof(struct itimerspec))) != 0)
    853        1.92      cube 		return (error);
    854        1.92      cube 
    855        1.92      cube 	if (SCARG(uap, ovalue))
    856        1.92      cube 		ovp = &ovalue;
    857        1.92      cube 
    858        1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    859        1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    860        1.92      cube 		return error;
    861        1.92      cube 
    862        1.92      cube 	if (ovp)
    863        1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    864        1.92      cube 		    sizeof(struct itimerspec));
    865        1.92      cube 	return 0;
    866        1.92      cube }
    867        1.92      cube 
    868        1.92      cube int
    869        1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    870        1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    871        1.92      cube {
    872       1.150  christos 	struct timespec now;
    873       1.150  christos 	struct itimerspec val, oval;
    874       1.142        ad 	struct ptimers *pts;
    875        1.63   thorpej 	struct ptimer *pt;
    876       1.160  christos 	int error;
    877        1.63   thorpej 
    878       1.142        ad 	pts = p->p_timers;
    879        1.63   thorpej 
    880       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    881       1.142        ad 		return EINVAL;
    882       1.150  christos 	val = *value;
    883       1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    884       1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    885       1.160  christos 		return error;
    886        1.63   thorpej 
    887       1.142        ad 	mutex_spin_enter(&timer_lock);
    888  1.189.16.3    martin restart:
    889       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    890       1.142        ad 		mutex_spin_exit(&timer_lock);
    891       1.150  christos 		return EINVAL;
    892       1.142        ad 	}
    893       1.142        ad 
    894        1.63   thorpej 	oval = pt->pt_time;
    895        1.63   thorpej 	pt->pt_time = val;
    896        1.63   thorpej 
    897        1.67   nathanw 	/*
    898        1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    899        1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    900        1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    901        1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    902        1.67   nathanw 	 * negative, which would confuse the comparison tests.
    903        1.67   nathanw 	 */
    904       1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    905       1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    906       1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    907       1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    908       1.168      yamt 					getnanotime(&now);
    909       1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    910       1.168      yamt 					getnanouptime(&now);
    911       1.168      yamt 				}
    912       1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    913       1.101    kardel 				    &pt->pt_time.it_value);
    914       1.101    kardel 			}
    915        1.67   nathanw 		} else {
    916        1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    917       1.150  christos 				getnanotime(&now);
    918       1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    919       1.101    kardel 				    &pt->pt_time.it_value);
    920       1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    921        1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    922        1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    923       1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    924        1.67   nathanw 				}
    925        1.67   nathanw 			}
    926        1.67   nathanw 		}
    927        1.67   nathanw 	}
    928        1.67   nathanw 
    929  1.189.16.3    martin 	error = timer_settime(pt);
    930  1.189.16.3    martin 	if (error == ERESTART) {
    931  1.189.16.3    martin 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
    932  1.189.16.3    martin 		goto restart;
    933  1.189.16.3    martin 	}
    934  1.189.16.3    martin 	KASSERT(error == 0);
    935       1.142        ad 	mutex_spin_exit(&timer_lock);
    936        1.63   thorpej 
    937       1.150  christos 	if (ovalue)
    938       1.150  christos 		*ovalue = oval;
    939        1.63   thorpej 
    940        1.63   thorpej 	return (0);
    941        1.63   thorpej }
    942        1.63   thorpej 
    943        1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    944        1.63   thorpej int
    945       1.156  christos sys___timer_gettime50(struct lwp *l,
    946       1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    947        1.63   thorpej {
    948       1.135       dsl 	/* {
    949        1.63   thorpej 		syscallarg(timer_t) timerid;
    950        1.63   thorpej 		syscallarg(struct itimerspec *) value;
    951       1.135       dsl 	} */
    952        1.63   thorpej 	struct itimerspec its;
    953        1.92      cube 	int error;
    954        1.92      cube 
    955        1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    956        1.92      cube 	    &its)) != 0)
    957        1.92      cube 		return error;
    958        1.92      cube 
    959        1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    960        1.92      cube }
    961        1.92      cube 
    962        1.92      cube int
    963        1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    964        1.92      cube {
    965        1.63   thorpej 	struct ptimer *pt;
    966       1.142        ad 	struct ptimers *pts;
    967        1.63   thorpej 
    968       1.142        ad 	pts = p->p_timers;
    969       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    970        1.63   thorpej 		return (EINVAL);
    971       1.142        ad 	mutex_spin_enter(&timer_lock);
    972       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    973       1.142        ad 		mutex_spin_exit(&timer_lock);
    974       1.142        ad 		return (EINVAL);
    975       1.142        ad 	}
    976       1.150  christos 	timer_gettime(pt, its);
    977       1.142        ad 	mutex_spin_exit(&timer_lock);
    978        1.63   thorpej 
    979        1.92      cube 	return 0;
    980        1.63   thorpej }
    981        1.63   thorpej 
    982        1.63   thorpej /*
    983        1.63   thorpej  * Return the count of the number of times a periodic timer expired
    984        1.63   thorpej  * while a notification was already pending. The counter is reset when
    985        1.63   thorpej  * a timer expires and a notification can be posted.
    986        1.63   thorpej  */
    987        1.63   thorpej int
    988       1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    989       1.140      yamt     register_t *retval)
    990        1.63   thorpej {
    991       1.135       dsl 	/* {
    992        1.63   thorpej 		syscallarg(timer_t) timerid;
    993       1.135       dsl 	} */
    994        1.63   thorpej 	struct proc *p = l->l_proc;
    995       1.142        ad 	struct ptimers *pts;
    996        1.63   thorpej 	int timerid;
    997        1.63   thorpej 	struct ptimer *pt;
    998        1.63   thorpej 
    999        1.63   thorpej 	timerid = SCARG(uap, timerid);
   1000        1.63   thorpej 
   1001       1.142        ad 	pts = p->p_timers;
   1002       1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1003       1.142        ad 		return (EINVAL);
   1004       1.142        ad 	mutex_spin_enter(&timer_lock);
   1005       1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
   1006       1.142        ad 		mutex_spin_exit(&timer_lock);
   1007        1.63   thorpej 		return (EINVAL);
   1008       1.142        ad 	}
   1009        1.63   thorpej 	*retval = pt->pt_poverruns;
   1010       1.187  christos 	if (*retval >= DELAYTIMER_MAX)
   1011       1.187  christos 		*retval = DELAYTIMER_MAX;
   1012       1.142        ad 	mutex_spin_exit(&timer_lock);
   1013        1.63   thorpej 
   1014        1.63   thorpej 	return (0);
   1015        1.63   thorpej }
   1016        1.63   thorpej 
   1017        1.63   thorpej /*
   1018        1.63   thorpej  * Real interval timer expired:
   1019        1.63   thorpej  * send process whose timer expired an alarm signal.
   1020        1.63   thorpej  * If time is not set up to reload, then just return.
   1021        1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1022        1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1023        1.63   thorpej  * SIGALRM calls to be compressed into one.
   1024        1.63   thorpej  */
   1025        1.63   thorpej void
   1026        1.63   thorpej realtimerexpire(void *arg)
   1027        1.63   thorpej {
   1028       1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
   1029       1.150  christos 	struct timespec now, next;
   1030        1.63   thorpej 	struct ptimer *pt;
   1031       1.148     joerg 	int backwards;
   1032        1.63   thorpej 
   1033       1.142        ad 	pt = arg;
   1034        1.63   thorpej 
   1035       1.142        ad 	mutex_spin_enter(&timer_lock);
   1036        1.63   thorpej 	itimerfire(pt);
   1037        1.63   thorpej 
   1038       1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1039       1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1040       1.142        ad 		mutex_spin_exit(&timer_lock);
   1041        1.63   thorpej 		return;
   1042        1.63   thorpej 	}
   1043       1.148     joerg 
   1044       1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1045       1.171  christos 		getnanouptime(&now);
   1046       1.171  christos 	} else {
   1047       1.171  christos 		getnanotime(&now);
   1048       1.171  christos 	}
   1049       1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1050       1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1051       1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1052       1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1053       1.148     joerg 		pt->pt_time.it_value = next;
   1054       1.148     joerg 	} else {
   1055       1.166      yamt 		now_ns = timespec2ns(&now);
   1056       1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1057       1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1058       1.148     joerg 
   1059       1.166      yamt 		next_val = now_ns +
   1060       1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1061       1.148     joerg 
   1062       1.148     joerg 		if (backwards)
   1063       1.148     joerg 			next_val += interval;
   1064       1.148     joerg 		else
   1065       1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1066       1.148     joerg 
   1067       1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1068       1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1069       1.101    kardel 	}
   1070       1.148     joerg 
   1071       1.148     joerg 	/*
   1072  1.189.16.3    martin 	 * Reset the callout, if it's not going away.
   1073  1.189.16.3    martin 	 *
   1074       1.150  christos 	 * Don't need to check tshzto() return value, here.
   1075       1.148     joerg 	 * callout_reset() does it for us.
   1076       1.148     joerg 	 */
   1077  1.189.16.3    martin 	if (!pt->pt_dying)
   1078  1.189.16.3    martin 		callout_reset(&pt->pt_ch,
   1079  1.189.16.3    martin 		    (pt->pt_type == CLOCK_MONOTONIC
   1080  1.189.16.3    martin 			? tshztoup(&pt->pt_time.it_value)
   1081  1.189.16.3    martin 			: tshzto(&pt->pt_time.it_value)),
   1082  1.189.16.3    martin 		    realtimerexpire, pt);
   1083       1.148     joerg 	mutex_spin_exit(&timer_lock);
   1084        1.63   thorpej }
   1085        1.63   thorpej 
   1086        1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1087        1.63   thorpej /* ARGSUSED */
   1088        1.63   thorpej int
   1089       1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1090       1.140      yamt     register_t *retval)
   1091        1.63   thorpej {
   1092       1.135       dsl 	/* {
   1093        1.63   thorpej 		syscallarg(int) which;
   1094        1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1095       1.135       dsl 	} */
   1096        1.63   thorpej 	struct proc *p = l->l_proc;
   1097        1.63   thorpej 	struct itimerval aitv;
   1098        1.91      cube 	int error;
   1099        1.91      cube 
   1100  1.189.16.1  christos 	memset(&aitv, 0, sizeof(aitv));
   1101        1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1102        1.91      cube 	if (error)
   1103        1.91      cube 		return error;
   1104        1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1105        1.91      cube }
   1106        1.63   thorpej 
   1107        1.91      cube int
   1108        1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1109        1.91      cube {
   1110       1.142        ad 	struct ptimers *pts;
   1111       1.142        ad 	struct ptimer *pt;
   1112       1.150  christos 	struct itimerspec its;
   1113        1.63   thorpej 
   1114       1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1115        1.63   thorpej 		return (EINVAL);
   1116        1.63   thorpej 
   1117       1.142        ad 	mutex_spin_enter(&timer_lock);
   1118       1.142        ad 	pts = p->p_timers;
   1119       1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1120        1.91      cube 		timerclear(&itvp->it_value);
   1121        1.91      cube 		timerclear(&itvp->it_interval);
   1122       1.150  christos 	} else {
   1123       1.150  christos 		timer_gettime(pt, &its);
   1124       1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1125       1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1126       1.150  christos 	}
   1127       1.188   msaitoh 	mutex_spin_exit(&timer_lock);
   1128        1.63   thorpej 
   1129        1.91      cube 	return 0;
   1130         1.1       cgd }
   1131         1.1       cgd 
   1132        1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1133         1.1       cgd /* ARGSUSED */
   1134         1.3    andrew int
   1135       1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1136       1.140      yamt     register_t *retval)
   1137        1.15   thorpej {
   1138       1.135       dsl 	/* {
   1139        1.30   mycroft 		syscallarg(int) which;
   1140        1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1141        1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1142       1.135       dsl 	} */
   1143        1.63   thorpej 	struct proc *p = l->l_proc;
   1144        1.30   mycroft 	int which = SCARG(uap, which);
   1145       1.156  christos 	struct sys___getitimer50_args getargs;
   1146        1.91      cube 	const struct itimerval *itvp;
   1147         1.1       cgd 	struct itimerval aitv;
   1148        1.91      cube 	int error;
   1149         1.1       cgd 
   1150       1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1151         1.1       cgd 		return (EINVAL);
   1152        1.11       cgd 	itvp = SCARG(uap, itv);
   1153        1.63   thorpej 	if (itvp &&
   1154       1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1155         1.1       cgd 		return (error);
   1156        1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1157        1.30   mycroft 		SCARG(&getargs, which) = which;
   1158        1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1159       1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1160        1.21       cgd 			return (error);
   1161        1.21       cgd 	}
   1162         1.1       cgd 	if (itvp == 0)
   1163         1.1       cgd 		return (0);
   1164        1.91      cube 
   1165        1.91      cube 	return dosetitimer(p, which, &aitv);
   1166        1.91      cube }
   1167        1.91      cube 
   1168        1.91      cube int
   1169        1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1170        1.91      cube {
   1171       1.150  christos 	struct timespec now;
   1172       1.142        ad 	struct ptimers *pts;
   1173       1.142        ad 	struct ptimer *pt, *spare;
   1174  1.189.16.3    martin 	int error;
   1175        1.91      cube 
   1176       1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1177        1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1178         1.1       cgd 		return (EINVAL);
   1179        1.63   thorpej 
   1180        1.63   thorpej 	/*
   1181        1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1182        1.63   thorpej 	 * wants to clear the timer.
   1183        1.63   thorpej 	 */
   1184       1.142        ad 	spare = NULL;
   1185       1.142        ad 	pts = p->p_timers;
   1186       1.142        ad  retry:
   1187       1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1188       1.142        ad 	    pts->pts_timers[which] == NULL))
   1189        1.63   thorpej 		return (0);
   1190       1.142        ad 	if (pts == NULL)
   1191       1.142        ad 		pts = timers_alloc(p);
   1192       1.142        ad 	mutex_spin_enter(&timer_lock);
   1193  1.189.16.3    martin restart:
   1194       1.142        ad 	pt = pts->pts_timers[which];
   1195       1.142        ad 	if (pt == NULL) {
   1196       1.142        ad 		if (spare == NULL) {
   1197       1.142        ad 			mutex_spin_exit(&timer_lock);
   1198  1.189.16.1  christos 			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
   1199       1.142        ad 			goto retry;
   1200       1.142        ad 		}
   1201       1.142        ad 		pt = spare;
   1202       1.142        ad 		spare = NULL;
   1203        1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1204        1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1205        1.63   thorpej 		pt->pt_overruns = 0;
   1206        1.63   thorpej 		pt->pt_proc = p;
   1207        1.63   thorpej 		pt->pt_type = which;
   1208        1.64   nathanw 		pt->pt_entry = which;
   1209       1.142        ad 		pt->pt_queued = false;
   1210  1.189.16.1  christos 		if (!CLOCK_VIRTUAL_P(which))
   1211       1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1212       1.149  christos 		else
   1213       1.149  christos 			pt->pt_active = 0;
   1214       1.149  christos 
   1215        1.63   thorpej 		switch (which) {
   1216        1.63   thorpej 		case ITIMER_REAL:
   1217       1.170  christos 		case ITIMER_MONOTONIC:
   1218        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1219        1.63   thorpej 			break;
   1220        1.63   thorpej 		case ITIMER_VIRTUAL:
   1221        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1222        1.63   thorpej 			break;
   1223        1.63   thorpej 		case ITIMER_PROF:
   1224        1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1225        1.63   thorpej 			break;
   1226         1.1       cgd 		}
   1227       1.142        ad 		pts->pts_timers[which] = pt;
   1228       1.142        ad 	}
   1229        1.63   thorpej 
   1230       1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1231       1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1232       1.150  christos 
   1233       1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1234        1.67   nathanw 		/* Convert to absolute time */
   1235       1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1236       1.170  christos 		switch (which) {
   1237       1.170  christos 		case ITIMER_REAL:
   1238       1.170  christos 			getnanotime(&now);
   1239       1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1240       1.170  christos 			    &pt->pt_time.it_value);
   1241       1.170  christos 			break;
   1242       1.170  christos 		case ITIMER_MONOTONIC:
   1243       1.170  christos 			getnanouptime(&now);
   1244       1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1245       1.170  christos 			    &pt->pt_time.it_value);
   1246       1.170  christos 			break;
   1247       1.170  christos 		default:
   1248       1.170  christos 			break;
   1249       1.170  christos 		}
   1250        1.67   nathanw 	}
   1251  1.189.16.3    martin 	error = timer_settime(pt);
   1252  1.189.16.3    martin 	if (error == ERESTART) {
   1253  1.189.16.3    martin 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
   1254  1.189.16.3    martin 		goto restart;
   1255  1.189.16.3    martin 	}
   1256  1.189.16.3    martin 	KASSERT(error == 0);
   1257       1.142        ad 	mutex_spin_exit(&timer_lock);
   1258       1.142        ad 	if (spare != NULL)
   1259       1.142        ad 		pool_put(&ptimer_pool, spare);
   1260        1.63   thorpej 
   1261         1.1       cgd 	return (0);
   1262         1.1       cgd }
   1263         1.1       cgd 
   1264        1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1265       1.142        ad struct ptimers *
   1266        1.63   thorpej timers_alloc(struct proc *p)
   1267        1.63   thorpej {
   1268       1.142        ad 	struct ptimers *pts;
   1269        1.63   thorpej 	int i;
   1270        1.63   thorpej 
   1271       1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1272        1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1273        1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1274        1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1275        1.63   thorpej 		pts->pts_timers[i] = NULL;
   1276       1.142        ad 	mutex_spin_enter(&timer_lock);
   1277       1.142        ad 	if (p->p_timers == NULL) {
   1278       1.142        ad 		p->p_timers = pts;
   1279       1.142        ad 		mutex_spin_exit(&timer_lock);
   1280       1.142        ad 		return pts;
   1281       1.142        ad 	}
   1282       1.142        ad 	mutex_spin_exit(&timer_lock);
   1283       1.142        ad 	pool_put(&ptimers_pool, pts);
   1284       1.142        ad 	return p->p_timers;
   1285        1.63   thorpej }
   1286        1.63   thorpej 
   1287         1.1       cgd /*
   1288        1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1289        1.63   thorpej  * then clean up all timers and free all the data structures. If
   1290        1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1291        1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1292        1.63   thorpej  * structure if none of those remain.
   1293         1.1       cgd  */
   1294         1.3    andrew void
   1295        1.63   thorpej timers_free(struct proc *p, int which)
   1296         1.6       cgd {
   1297        1.63   thorpej 	struct ptimers *pts;
   1298       1.142        ad 	struct ptimer *ptn;
   1299       1.150  christos 	struct timespec ts;
   1300       1.142        ad 	int i;
   1301        1.63   thorpej 
   1302       1.142        ad 	if (p->p_timers == NULL)
   1303       1.142        ad 		return;
   1304        1.63   thorpej 
   1305       1.142        ad 	pts = p->p_timers;
   1306       1.142        ad 	mutex_spin_enter(&timer_lock);
   1307       1.142        ad 	if (which == TIMERS_ALL) {
   1308       1.142        ad 		p->p_timers = NULL;
   1309       1.142        ad 		i = 0;
   1310       1.142        ad 	} else {
   1311       1.150  christos 		timespecclear(&ts);
   1312       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1313       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1314       1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1315       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1316       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1317       1.149  christos 		}
   1318       1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1319       1.142        ad 		if (ptn) {
   1320       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1321       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1322       1.142        ad 			    &ptn->pt_time.it_value);
   1323       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1324       1.142        ad 		}
   1325       1.150  christos 		timespecclear(&ts);
   1326       1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1327       1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1328       1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1329       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1330       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1331       1.149  christos 		}
   1332       1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1333       1.142        ad 		if (ptn) {
   1334       1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1335       1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1336       1.142        ad 			    &ptn->pt_time.it_value);
   1337       1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1338        1.63   thorpej 		}
   1339       1.183  christos 		i = TIMER_MIN;
   1340       1.142        ad 	}
   1341       1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1342       1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1343  1.189.16.3    martin 			/* Free the timer and release the lock.  */
   1344       1.142        ad 			itimerfree(pts, i);
   1345  1.189.16.3    martin 			/* Reacquire the lock for the next one.  */
   1346       1.142        ad 			mutex_spin_enter(&timer_lock);
   1347         1.1       cgd 		}
   1348         1.1       cgd 	}
   1349       1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1350       1.183  christos 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1351       1.142        ad 		p->p_timers = NULL;
   1352       1.142        ad 		mutex_spin_exit(&timer_lock);
   1353       1.142        ad 		pool_put(&ptimers_pool, pts);
   1354       1.142        ad 	} else
   1355       1.142        ad 		mutex_spin_exit(&timer_lock);
   1356       1.142        ad }
   1357       1.142        ad 
   1358       1.142        ad static void
   1359       1.142        ad itimerfree(struct ptimers *pts, int index)
   1360       1.142        ad {
   1361       1.142        ad 	struct ptimer *pt;
   1362       1.142        ad 
   1363       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1364       1.142        ad 
   1365       1.142        ad 	pt = pts->pts_timers[index];
   1366  1.189.16.3    martin 
   1367  1.189.16.3    martin 	/*
   1368  1.189.16.3    martin 	 * Prevent new references, and notify the callout not to
   1369  1.189.16.3    martin 	 * restart itself.
   1370  1.189.16.3    martin 	 */
   1371       1.142        ad 	pts->pts_timers[index] = NULL;
   1372  1.189.16.3    martin 	pt->pt_dying = true;
   1373  1.189.16.3    martin 
   1374  1.189.16.3    martin 	/*
   1375  1.189.16.3    martin 	 * For non-virtual timers, stop the callout, or wait for it to
   1376  1.189.16.3    martin 	 * run if it has already fired.  It cannot restart again after
   1377  1.189.16.3    martin 	 * this point: the callout won't restart itself when dying, no
   1378  1.189.16.3    martin 	 * other users holding the lock can restart it, and any other
   1379  1.189.16.3    martin 	 * users waiting for callout_halt concurrently (timer_settime)
   1380  1.189.16.3    martin 	 * will restart from the top.
   1381  1.189.16.3    martin 	 */
   1382       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1383       1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1384  1.189.16.3    martin 
   1385  1.189.16.3    martin 	/* Remove it from the queue to be signalled.  */
   1386       1.167      yamt 	if (pt->pt_queued)
   1387       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1388  1.189.16.3    martin 
   1389  1.189.16.3    martin 	/* All done with the global state.  */
   1390       1.144        ad 	mutex_spin_exit(&timer_lock);
   1391  1.189.16.3    martin 
   1392  1.189.16.3    martin 	/* Destroy the callout, if needed, and free the ptimer.  */
   1393       1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1394       1.149  christos 		callout_destroy(&pt->pt_ch);
   1395       1.142        ad 	pool_put(&ptimer_pool, pt);
   1396         1.1       cgd }
   1397         1.1       cgd 
   1398         1.1       cgd /*
   1399         1.1       cgd  * Decrement an interval timer by a specified number
   1400       1.152  christos  * of nanoseconds, which must be less than a second,
   1401       1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1402       1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1403         1.8       cgd  * reduce the value reloaded into the timer so that
   1404         1.1       cgd  * the timer does not drift.  This routine assumes
   1405         1.1       cgd  * that it is called in a context where the timers
   1406         1.1       cgd  * on which it is operating cannot change in value.
   1407         1.1       cgd  */
   1408       1.142        ad static int
   1409       1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1410        1.63   thorpej {
   1411       1.150  christos 	struct itimerspec *itp;
   1412  1.189.16.3    martin 	int error __diagused;
   1413         1.1       cgd 
   1414       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1415       1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1416       1.142        ad 
   1417        1.63   thorpej 	itp = &pt->pt_time;
   1418       1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1419         1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1420         1.1       cgd 			/* expired, and already in next interval */
   1421       1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1422         1.1       cgd 			goto expire;
   1423         1.1       cgd 		}
   1424       1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1425         1.1       cgd 		itp->it_value.tv_sec--;
   1426         1.1       cgd 	}
   1427       1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1428       1.152  christos 	nsec = 0;
   1429       1.150  christos 	if (timespecisset(&itp->it_value))
   1430         1.1       cgd 		return (1);
   1431         1.1       cgd 	/* expired, exactly at end of interval */
   1432         1.1       cgd expire:
   1433       1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1434         1.1       cgd 		itp->it_value = itp->it_interval;
   1435       1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1436       1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1437       1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1438         1.1       cgd 			itp->it_value.tv_sec--;
   1439         1.1       cgd 		}
   1440  1.189.16.3    martin 		error = timer_settime(pt);
   1441  1.189.16.3    martin 		KASSERT(error == 0); /* virtual, never fails */
   1442         1.1       cgd 	} else
   1443       1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1444         1.1       cgd 	return (0);
   1445        1.42       cgd }
   1446        1.42       cgd 
   1447       1.142        ad static void
   1448        1.63   thorpej itimerfire(struct ptimer *pt)
   1449        1.63   thorpej {
   1450        1.78        cl 
   1451       1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1452       1.142        ad 
   1453       1.142        ad 	/*
   1454       1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1455       1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1456       1.142        ad 	 */
   1457       1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1458       1.142        ad 		return;
   1459       1.172     rmind 	}
   1460       1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1461       1.142        ad 	pt->pt_queued = true;
   1462       1.142        ad 	softint_schedule(timer_sih);
   1463       1.142        ad }
   1464       1.142        ad 
   1465       1.142        ad void
   1466       1.142        ad timer_tick(lwp_t *l, bool user)
   1467       1.142        ad {
   1468       1.142        ad 	struct ptimers *pts;
   1469       1.142        ad 	struct ptimer *pt;
   1470       1.142        ad 	proc_t *p;
   1471       1.142        ad 
   1472       1.142        ad 	p = l->l_proc;
   1473       1.142        ad 	if (p->p_timers == NULL)
   1474       1.142        ad 		return;
   1475       1.142        ad 
   1476       1.142        ad 	mutex_spin_enter(&timer_lock);
   1477       1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1478        1.63   thorpej 		/*
   1479       1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1480        1.63   thorpej 		 */
   1481       1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1482       1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1483       1.142        ad 				itimerfire(pt);
   1484       1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1485       1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1486       1.142        ad 				itimerfire(pt);
   1487       1.142        ad 	}
   1488       1.142        ad 	mutex_spin_exit(&timer_lock);
   1489       1.142        ad }
   1490       1.142        ad 
   1491       1.142        ad static void
   1492       1.142        ad timer_intr(void *cookie)
   1493       1.142        ad {
   1494       1.142        ad 	ksiginfo_t ksi;
   1495       1.142        ad 	struct ptimer *pt;
   1496       1.142        ad 	proc_t *p;
   1497       1.142        ad 
   1498       1.158        ad 	mutex_enter(proc_lock);
   1499       1.142        ad 	mutex_spin_enter(&timer_lock);
   1500       1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1501       1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1502       1.142        ad 		KASSERT(pt->pt_queued);
   1503       1.142        ad 		pt->pt_queued = false;
   1504       1.142        ad 
   1505       1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1506       1.154  wrstuden 			/* Process is dying. */
   1507       1.142        ad 			continue;
   1508       1.154  wrstuden 		}
   1509       1.142        ad 		p = pt->pt_proc;
   1510       1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1511       1.142        ad 			continue;
   1512       1.142        ad 		}
   1513       1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1514        1.63   thorpej 			pt->pt_overruns++;
   1515       1.142        ad 			continue;
   1516        1.64   nathanw 		}
   1517       1.142        ad 
   1518       1.142        ad 		KSI_INIT(&ksi);
   1519       1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1520       1.142        ad 		ksi.ksi_code = SI_TIMER;
   1521       1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1522       1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1523       1.142        ad 		pt->pt_overruns = 0;
   1524       1.142        ad 		mutex_spin_exit(&timer_lock);
   1525       1.142        ad 		kpsignal(p, &ksi, NULL);
   1526       1.142        ad 		mutex_spin_enter(&timer_lock);
   1527        1.63   thorpej 	}
   1528       1.142        ad 	mutex_spin_exit(&timer_lock);
   1529       1.158        ad 	mutex_exit(proc_lock);
   1530        1.63   thorpej }
   1531       1.162      elad 
   1532       1.162      elad /*
   1533       1.162      elad  * Check if the time will wrap if set to ts.
   1534       1.162      elad  *
   1535       1.162      elad  * ts - timespec describing the new time
   1536       1.162      elad  * delta - the delta between the current time and ts
   1537       1.162      elad  */
   1538       1.162      elad bool
   1539       1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1540       1.162      elad {
   1541       1.162      elad 
   1542       1.162      elad 	/*
   1543       1.162      elad 	 * Don't allow the time to be set forward so far it
   1544       1.162      elad 	 * will wrap and become negative, thus allowing an
   1545       1.162      elad 	 * attacker to bypass the next check below.  The
   1546       1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1547       1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1548       1.162      elad 	 * past the cutoff, it will take a very long time
   1549       1.162      elad 	 * to get to the wrap point.
   1550       1.162      elad 	 */
   1551       1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1552       1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1553       1.162      elad 		return true;
   1554       1.162      elad 
   1555       1.162      elad 	return false;
   1556       1.162      elad }
   1557