Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.189.8.3
      1  1.189.8.3    martin /*	$NetBSD: kern_time.c,v 1.189.8.3 2018/12/27 12:19:45 martin Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.189.8.3    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.8.3 2018/12/27 12:19:45 martin Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78       1.11       cgd #include <sys/syscallargs.h>
     79      1.143        ad #include <sys/cpu.h>
     80       1.19  christos 
     81      1.142        ad static void	timer_intr(void *);
     82      1.142        ad static void	itimerfire(struct ptimer *);
     83      1.142        ad static void	itimerfree(struct ptimers *, int);
     84      1.142        ad 
     85      1.142        ad kmutex_t	timer_lock;
     86      1.142        ad 
     87      1.142        ad static void	*timer_sih;
     88      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89      1.131        ad 
     90      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91       1.97    simonb 
     92      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94      1.168      yamt 
     95      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99      1.168      yamt 
    100      1.187  christos #define	DELAYTIMER_MAX	32
    101      1.186  christos 
    102      1.131        ad /*
    103      1.131        ad  * Initialize timekeeping.
    104      1.131        ad  */
    105      1.131        ad void
    106      1.131        ad time_init(void)
    107      1.131        ad {
    108      1.131        ad 
    109      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    113      1.131        ad }
    114      1.131        ad 
    115      1.142        ad void
    116      1.142        ad time_init2(void)
    117      1.142        ad {
    118      1.142        ad 
    119      1.142        ad 	TAILQ_INIT(&timer_queue);
    120      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122      1.142        ad 	    timer_intr, NULL);
    123      1.142        ad }
    124      1.142        ad 
    125       1.63   thorpej /* Time of day and interval timer support.
    126        1.1       cgd  *
    127        1.1       cgd  * These routines provide the kernel entry points to get and set
    128        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    129        1.1       cgd  * here provide support for adding and subtracting timeval structures
    130        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    131        1.1       cgd  * timers when they expire.
    132        1.1       cgd  */
    133        1.1       cgd 
    134       1.22       jtc /* This function is used by clock_settime and settimeofday */
    135      1.132      elad static int
    136      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137       1.22       jtc {
    138      1.156  christos 	struct timespec delta, now;
    139      1.129        ad 	int s;
    140       1.22       jtc 
    141       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142      1.129        ad 	s = splclock();
    143      1.156  christos 	nanotime(&now);
    144      1.156  christos 	timespecsub(ts, &now, &delta);
    145      1.132      elad 
    146      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    148      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149      1.129        ad 		splx(s);
    150       1.29       tls 		return (EPERM);
    151       1.55      tron 	}
    152      1.132      elad 
    153       1.29       tls #ifdef notyet
    154      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155      1.129        ad 		splx(s);
    156       1.29       tls 		return (EPERM);
    157       1.55      tron 	}
    158       1.29       tls #endif
    159      1.103    kardel 
    160      1.156  christos 	tc_setclock(ts);
    161      1.103    kardel 
    162      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    163      1.103    kardel 
    164       1.22       jtc 	resettodr();
    165      1.129        ad 	splx(s);
    166      1.129        ad 
    167       1.29       tls 	return (0);
    168       1.22       jtc }
    169       1.22       jtc 
    170      1.132      elad int
    171      1.132      elad settime(struct proc *p, struct timespec *ts)
    172      1.132      elad {
    173      1.132      elad 	return (settime1(p, ts, true));
    174      1.132      elad }
    175      1.132      elad 
    176       1.22       jtc /* ARGSUSED */
    177       1.22       jtc int
    178      1.156  christos sys___clock_gettime50(struct lwp *l,
    179      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    180       1.22       jtc {
    181      1.135       dsl 	/* {
    182       1.22       jtc 		syscallarg(clockid_t) clock_id;
    183       1.23       cgd 		syscallarg(struct timespec *) tp;
    184      1.135       dsl 	} */
    185      1.165     njoly 	int error;
    186       1.22       jtc 	struct timespec ats;
    187       1.22       jtc 
    188      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    189      1.165     njoly 	if (error != 0)
    190      1.165     njoly 		return error;
    191      1.165     njoly 
    192      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    193      1.165     njoly }
    194      1.165     njoly 
    195       1.22       jtc /* ARGSUSED */
    196       1.22       jtc int
    197      1.156  christos sys___clock_settime50(struct lwp *l,
    198      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    199       1.22       jtc {
    200      1.135       dsl 	/* {
    201       1.22       jtc 		syscallarg(clockid_t) clock_id;
    202       1.23       cgd 		syscallarg(const struct timespec *) tp;
    203      1.135       dsl 	} */
    204      1.156  christos 	int error;
    205      1.156  christos 	struct timespec ats;
    206       1.22       jtc 
    207      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    208      1.156  christos 		return error;
    209      1.156  christos 
    210      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    211       1.56      manu }
    212       1.56      manu 
    213       1.56      manu 
    214       1.56      manu int
    215      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    216      1.132      elad     bool check_kauth)
    217       1.56      manu {
    218       1.56      manu 	int error;
    219       1.56      manu 
    220       1.61    simonb 	switch (clock_id) {
    221       1.61    simonb 	case CLOCK_REALTIME:
    222      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    223       1.61    simonb 			return (error);
    224       1.61    simonb 		break;
    225       1.61    simonb 	case CLOCK_MONOTONIC:
    226       1.61    simonb 		return (EINVAL);	/* read-only clock */
    227       1.61    simonb 	default:
    228       1.56      manu 		return (EINVAL);
    229       1.61    simonb 	}
    230       1.22       jtc 
    231       1.22       jtc 	return 0;
    232       1.22       jtc }
    233       1.22       jtc 
    234       1.22       jtc int
    235      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    236      1.140      yamt     register_t *retval)
    237       1.22       jtc {
    238      1.135       dsl 	/* {
    239       1.22       jtc 		syscallarg(clockid_t) clock_id;
    240       1.23       cgd 		syscallarg(struct timespec *) tp;
    241      1.135       dsl 	} */
    242       1.22       jtc 	struct timespec ts;
    243      1.180      maxv 	int error;
    244       1.22       jtc 
    245      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    246      1.164     njoly 		return error;
    247      1.164     njoly 
    248      1.164     njoly 	if (SCARG(uap, tp))
    249      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    250      1.164     njoly 
    251      1.164     njoly 	return error;
    252      1.164     njoly }
    253      1.164     njoly 
    254      1.164     njoly int
    255      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    256      1.164     njoly {
    257      1.164     njoly 
    258       1.61    simonb 	switch (clock_id) {
    259       1.61    simonb 	case CLOCK_REALTIME:
    260       1.61    simonb 	case CLOCK_MONOTONIC:
    261      1.164     njoly 		ts->tv_sec = 0;
    262      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    263      1.164     njoly 			ts->tv_nsec = 1;
    264      1.102    kardel 		else
    265      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    266       1.61    simonb 		break;
    267       1.61    simonb 	default:
    268      1.164     njoly 		return EINVAL;
    269       1.61    simonb 	}
    270       1.22       jtc 
    271      1.164     njoly 	return 0;
    272       1.22       jtc }
    273       1.22       jtc 
    274       1.27       jtc /* ARGSUSED */
    275       1.27       jtc int
    276      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    277      1.140      yamt     register_t *retval)
    278       1.27       jtc {
    279      1.135       dsl 	/* {
    280      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    281      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    282      1.135       dsl 	} */
    283      1.101    kardel 	struct timespec rmt, rqt;
    284      1.120       dsl 	int error, error1;
    285      1.101    kardel 
    286      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    287      1.101    kardel 	if (error)
    288      1.101    kardel 		return (error);
    289      1.101    kardel 
    290      1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    291      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    292      1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    293      1.175  christos 		return error;
    294      1.175  christos 
    295      1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    296      1.175  christos 	return error1 ? error1 : error;
    297      1.175  christos }
    298      1.175  christos 
    299      1.175  christos /* ARGSUSED */
    300      1.175  christos int
    301      1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    302      1.175  christos     register_t *retval)
    303      1.175  christos {
    304      1.175  christos 	/* {
    305      1.175  christos 		syscallarg(clockid_t) clock_id;
    306      1.175  christos 		syscallarg(int) flags;
    307      1.175  christos 		syscallarg(struct timespec *) rqtp;
    308      1.175  christos 		syscallarg(struct timespec *) rmtp;
    309      1.175  christos 	} */
    310      1.175  christos 	struct timespec rmt, rqt;
    311      1.175  christos 	int error, error1;
    312      1.175  christos 
    313      1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    314      1.175  christos 	if (error)
    315      1.181  christos 		goto out;
    316      1.175  christos 
    317      1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    318      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    319      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    320      1.181  christos 		goto out;
    321      1.120       dsl 
    322      1.189     njoly 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    323      1.189     njoly 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    324      1.181  christos 		error = error1;
    325      1.181  christos out:
    326      1.181  christos 	*retval = error;
    327      1.181  christos 	return 0;
    328      1.120       dsl }
    329      1.120       dsl 
    330      1.120       dsl int
    331      1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    332      1.175  christos     struct timespec *rmt)
    333      1.120       dsl {
    334      1.141      yamt 	struct timespec rmtstart;
    335      1.120       dsl 	int error, timo;
    336      1.120       dsl 
    337      1.184       uwe 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    338      1.184       uwe 		if (error == ETIMEDOUT) {
    339      1.184       uwe 			error = 0;
    340      1.184       uwe 			if (rmt != NULL)
    341      1.184       uwe 				rmt->tv_sec = rmt->tv_nsec = 0;
    342      1.184       uwe 		}
    343      1.184       uwe 		return error;
    344      1.184       uwe 	}
    345      1.101    kardel 
    346      1.101    kardel 	/*
    347      1.175  christos 	 * Avoid inadvertently sleeping forever
    348      1.101    kardel 	 */
    349      1.101    kardel 	if (timo == 0)
    350      1.101    kardel 		timo = 1;
    351      1.141      yamt again:
    352      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    353      1.141      yamt 	if (rmt != NULL || error == 0) {
    354      1.141      yamt 		struct timespec rmtend;
    355      1.141      yamt 		struct timespec t0;
    356      1.141      yamt 		struct timespec *t;
    357      1.101    kardel 
    358      1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    359      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    360      1.179  christos 		if (flags & TIMER_ABSTIME) {
    361      1.179  christos 			timespecsub(rqt, &rmtend, t);
    362      1.179  christos 		} else {
    363      1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    364      1.179  christos 			timespecsub(rqt, t, t);
    365      1.179  christos 		}
    366      1.141      yamt 		if (t->tv_sec < 0)
    367      1.141      yamt 			timespecclear(t);
    368      1.141      yamt 		if (error == 0) {
    369      1.141      yamt 			timo = tstohz(t);
    370      1.141      yamt 			if (timo > 0)
    371      1.141      yamt 				goto again;
    372      1.141      yamt 		}
    373      1.141      yamt 	}
    374      1.104    kardel 
    375      1.101    kardel 	if (error == ERESTART)
    376      1.101    kardel 		error = EINTR;
    377      1.101    kardel 	if (error == EWOULDBLOCK)
    378      1.101    kardel 		error = 0;
    379      1.101    kardel 
    380      1.101    kardel 	return error;
    381       1.27       jtc }
    382       1.22       jtc 
    383      1.186  christos int
    384      1.186  christos sys_clock_getcpuclockid2(struct lwp *l,
    385      1.186  christos     const struct sys_clock_getcpuclockid2_args *uap,
    386      1.186  christos     register_t *retval)
    387      1.186  christos {
    388      1.186  christos 	/* {
    389      1.186  christos 		syscallarg(idtype_t idtype;
    390      1.186  christos 		syscallarg(id_t id);
    391      1.186  christos 		syscallarg(clockid_t *)clock_id;
    392      1.186  christos 	} */
    393      1.186  christos 	pid_t pid;
    394      1.186  christos 	lwpid_t lid;
    395      1.186  christos 	clockid_t clock_id;
    396      1.186  christos 	id_t id = SCARG(uap, id);
    397      1.186  christos 
    398      1.186  christos 	switch (SCARG(uap, idtype)) {
    399      1.186  christos 	case P_PID:
    400      1.188   msaitoh 		pid = id == 0 ? l->l_proc->p_pid : id;
    401      1.186  christos 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    402      1.186  christos 		break;
    403      1.186  christos 	case P_LWPID:
    404      1.186  christos 		lid = id == 0 ? l->l_lid : id;
    405      1.186  christos 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    406      1.186  christos 		break;
    407      1.186  christos 	default:
    408      1.186  christos 		return EINVAL;
    409      1.186  christos 	}
    410      1.186  christos 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    411      1.186  christos }
    412      1.186  christos 
    413        1.1       cgd /* ARGSUSED */
    414        1.3    andrew int
    415      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    416      1.140      yamt     register_t *retval)
    417       1.15   thorpej {
    418      1.135       dsl 	/* {
    419       1.11       cgd 		syscallarg(struct timeval *) tp;
    420      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    421      1.135       dsl 	} */
    422        1.1       cgd 	struct timeval atv;
    423        1.1       cgd 	int error = 0;
    424       1.25     perry 	struct timezone tzfake;
    425        1.1       cgd 
    426       1.11       cgd 	if (SCARG(uap, tp)) {
    427        1.1       cgd 		microtime(&atv);
    428       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    429       1.17  christos 		if (error)
    430        1.1       cgd 			return (error);
    431        1.1       cgd 	}
    432       1.25     perry 	if (SCARG(uap, tzp)) {
    433       1.25     perry 		/*
    434       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    435       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    436       1.25     perry 		 */
    437       1.25     perry 		tzfake.tz_minuteswest = 0;
    438       1.25     perry 		tzfake.tz_dsttime = 0;
    439       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    440       1.25     perry 	}
    441        1.1       cgd 	return (error);
    442        1.1       cgd }
    443        1.1       cgd 
    444        1.1       cgd /* ARGSUSED */
    445        1.3    andrew int
    446      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    447      1.140      yamt     register_t *retval)
    448       1.15   thorpej {
    449      1.135       dsl 	/* {
    450       1.24       cgd 		syscallarg(const struct timeval *) tv;
    451      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    452      1.135       dsl 	} */
    453       1.60      manu 
    454      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    455       1.60      manu }
    456       1.60      manu 
    457       1.60      manu int
    458      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    459      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    460       1.60      manu {
    461       1.22       jtc 	struct timeval atv;
    462       1.98  christos 	struct timespec ts;
    463       1.22       jtc 	int error;
    464        1.1       cgd 
    465        1.8       cgd 	/* Verify all parameters before changing time. */
    466      1.119       dsl 
    467       1.25     perry 	/*
    468       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    469       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    470       1.25     perry 	 */
    471       1.98  christos 	if (utzp)
    472       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    473      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    474       1.98  christos 
    475       1.98  christos 	if (utv == NULL)
    476       1.98  christos 		return 0;
    477       1.98  christos 
    478      1.119       dsl 	if (userspace) {
    479      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    480      1.119       dsl 			return error;
    481      1.119       dsl 		utv = &atv;
    482      1.119       dsl 	}
    483      1.119       dsl 
    484      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    485      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    486        1.1       cgd }
    487        1.1       cgd 
    488       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    489        1.1       cgd 
    490        1.1       cgd /* ARGSUSED */
    491        1.3    andrew int
    492      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    493      1.140      yamt     register_t *retval)
    494       1.15   thorpej {
    495      1.135       dsl 	/* {
    496       1.24       cgd 		syscallarg(const struct timeval *) delta;
    497       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    498      1.135       dsl 	} */
    499      1.180      maxv 	int error;
    500      1.156  christos 	struct timeval atv, oldatv;
    501        1.1       cgd 
    502      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    503      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    504      1.156  christos 		return error;
    505       1.17  christos 
    506      1.156  christos 	if (SCARG(uap, delta)) {
    507      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    508      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    509      1.156  christos 		if (error)
    510      1.156  christos 			return (error);
    511      1.156  christos 	}
    512      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    513      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    514      1.156  christos 	if (SCARG(uap, olddelta))
    515      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    516      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    517      1.156  christos 	return error;
    518       1.56      manu }
    519       1.56      manu 
    520      1.156  christos void
    521      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    522       1.56      manu {
    523      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    524      1.101    kardel 
    525      1.101    kardel 	if (olddelta) {
    526      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    527      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    528      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    529      1.156  christos 		if (olddelta->tv_usec < 0) {
    530      1.156  christos 			olddelta->tv_usec += 1000000;
    531      1.156  christos 			olddelta->tv_sec--;
    532      1.101    kardel 		}
    533      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    534      1.101    kardel 	}
    535      1.101    kardel 
    536      1.101    kardel 	if (delta) {
    537      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    538      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    539      1.101    kardel 
    540      1.143        ad 		if (time_adjtime) {
    541      1.101    kardel 			/* We need to save the system time during shutdown */
    542      1.101    kardel 			time_adjusted |= 1;
    543      1.143        ad 		}
    544      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    545      1.101    kardel 	}
    546        1.1       cgd }
    547        1.1       cgd 
    548        1.1       cgd /*
    549       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    550       1.63   thorpej  * timer_*() family of routines are supported.
    551        1.1       cgd  *
    552       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    553       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    554      1.183  christos  * first four elements in this array are reserved for the BSD timers:
    555      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    556      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    557      1.170  christos  * allocated by the timer_create() syscall.
    558        1.1       cgd  *
    559       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    560       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    561        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    562       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    563       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    564       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    565       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    566       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    567       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    568       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    569       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    570       1.63   thorpej 
    571       1.63   thorpej /* Allocate a POSIX realtime timer. */
    572       1.63   thorpej int
    573      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    574      1.140      yamt     register_t *retval)
    575       1.63   thorpej {
    576      1.135       dsl 	/* {
    577       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    578       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    579       1.63   thorpej 		syscallarg(timer_t *) timerid;
    580      1.135       dsl 	} */
    581       1.92      cube 
    582       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    583      1.105        ad 	    SCARG(uap, evp), copyin, l);
    584       1.92      cube }
    585       1.92      cube 
    586       1.92      cube int
    587       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    588      1.105        ad     copyin_t fetch_event, struct lwp *l)
    589       1.92      cube {
    590       1.92      cube 	int error;
    591       1.92      cube 	timer_t timerid;
    592      1.142        ad 	struct ptimers *pts;
    593       1.63   thorpej 	struct ptimer *pt;
    594      1.105        ad 	struct proc *p;
    595      1.105        ad 
    596      1.105        ad 	p = l->l_proc;
    597       1.63   thorpej 
    598      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    599       1.63   thorpej 		return (EINVAL);
    600       1.63   thorpej 
    601      1.142        ad 	if ((pts = p->p_timers) == NULL)
    602      1.142        ad 		pts = timers_alloc(p);
    603       1.63   thorpej 
    604       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    605  1.189.8.1    martin 	memset(pt, 0, sizeof(*pt));
    606      1.142        ad 	if (evp != NULL) {
    607       1.63   thorpej 		if (((error =
    608       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    609       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    610      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    611      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    612      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    613      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    614       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    615       1.63   thorpej 			return (error ? error : EINVAL);
    616       1.63   thorpej 		}
    617      1.142        ad 	}
    618      1.142        ad 
    619      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    620      1.142        ad 	mutex_spin_enter(&timer_lock);
    621      1.183  christos 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    622      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    623      1.142        ad 			break;
    624      1.142        ad 	if (timerid == TIMER_MAX) {
    625      1.142        ad 		mutex_spin_exit(&timer_lock);
    626      1.142        ad 		pool_put(&ptimer_pool, pt);
    627      1.142        ad 		return EAGAIN;
    628      1.142        ad 	}
    629      1.142        ad 	if (evp == NULL) {
    630       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    631       1.63   thorpej 		switch (id) {
    632       1.63   thorpej 		case CLOCK_REALTIME:
    633      1.168      yamt 		case CLOCK_MONOTONIC:
    634       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    635       1.63   thorpej 			break;
    636       1.63   thorpej 		case CLOCK_VIRTUAL:
    637       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    638       1.63   thorpej 			break;
    639       1.63   thorpej 		case CLOCK_PROF:
    640       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    641       1.63   thorpej 			break;
    642       1.63   thorpej 		}
    643       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    644       1.63   thorpej 	}
    645       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    646       1.73  christos 	pt->pt_info.ksi_errno = 0;
    647       1.73  christos 	pt->pt_info.ksi_code = 0;
    648       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    649      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    650      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    651       1.63   thorpej 	pt->pt_type = id;
    652       1.63   thorpej 	pt->pt_proc = p;
    653       1.63   thorpej 	pt->pt_overruns = 0;
    654       1.63   thorpej 	pt->pt_poverruns = 0;
    655       1.64   nathanw 	pt->pt_entry = timerid;
    656      1.142        ad 	pt->pt_queued = false;
    657      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    658      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    659      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    660      1.149  christos 	else
    661      1.149  christos 		pt->pt_active = 0;
    662      1.149  christos 
    663      1.142        ad 	pts->pts_timers[timerid] = pt;
    664      1.142        ad 	mutex_spin_exit(&timer_lock);
    665       1.63   thorpej 
    666       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    667       1.63   thorpej }
    668       1.63   thorpej 
    669       1.63   thorpej /* Delete a POSIX realtime timer */
    670        1.3    andrew int
    671      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    672      1.140      yamt     register_t *retval)
    673       1.15   thorpej {
    674      1.135       dsl 	/* {
    675       1.63   thorpej 		syscallarg(timer_t) timerid;
    676      1.135       dsl 	} */
    677       1.63   thorpej 	struct proc *p = l->l_proc;
    678       1.65  jdolecek 	timer_t timerid;
    679      1.142        ad 	struct ptimers *pts;
    680       1.63   thorpej 	struct ptimer *pt, *ptn;
    681        1.1       cgd 
    682       1.63   thorpej 	timerid = SCARG(uap, timerid);
    683      1.142        ad 	pts = p->p_timers;
    684      1.142        ad 
    685      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    686      1.142        ad 		return (EINVAL);
    687       1.63   thorpej 
    688      1.142        ad 	mutex_spin_enter(&timer_lock);
    689      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    690      1.142        ad 		mutex_spin_exit(&timer_lock);
    691        1.1       cgd 		return (EINVAL);
    692      1.142        ad 	}
    693      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    694      1.149  christos 		if (pt->pt_active) {
    695      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    696      1.149  christos 			LIST_REMOVE(pt, pt_list);
    697      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    698      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    699      1.149  christos 				    &ptn->pt_time.it_value,
    700      1.149  christos 				    &ptn->pt_time.it_value);
    701      1.149  christos 			pt->pt_active = 0;
    702      1.149  christos 		}
    703       1.63   thorpej 	}
    704      1.142        ad 	itimerfree(pts, timerid);
    705       1.63   thorpej 
    706       1.63   thorpej 	return (0);
    707       1.63   thorpej }
    708       1.63   thorpej 
    709       1.63   thorpej /*
    710       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    711      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    712      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    713       1.63   thorpej  */
    714       1.63   thorpej void
    715       1.63   thorpej timer_settime(struct ptimer *pt)
    716       1.63   thorpej {
    717       1.63   thorpej 	struct ptimer *ptn, *pptn;
    718       1.63   thorpej 	struct ptlist *ptl;
    719       1.63   thorpej 
    720      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    721      1.142        ad 
    722      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    723      1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    724      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    725       1.63   thorpej 			/*
    726      1.150  christos 			 * Don't need to check tshzto() return value, here.
    727       1.63   thorpej 			 * callout_reset() does it for us.
    728       1.63   thorpej 			 */
    729      1.171  christos 			callout_reset(&pt->pt_ch,
    730      1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    731      1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    732      1.171  christos 			    tshzto(&pt->pt_time.it_value),
    733       1.63   thorpej 			    realtimerexpire, pt);
    734       1.63   thorpej 		}
    735       1.63   thorpej 	} else {
    736       1.63   thorpej 		if (pt->pt_active) {
    737       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    738       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    739       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    740      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    741       1.63   thorpej 				    &ptn->pt_time.it_value,
    742       1.63   thorpej 				    &ptn->pt_time.it_value);
    743       1.63   thorpej 		}
    744      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    745       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    746       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    747       1.63   thorpej 			else
    748       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    749       1.63   thorpej 
    750       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    751      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    752       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    753       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    754      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    755       1.63   thorpej 				    &ptn->pt_time.it_value,
    756       1.63   thorpej 				    &pt->pt_time.it_value);
    757       1.63   thorpej 
    758       1.63   thorpej 			if (pptn)
    759       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    760       1.63   thorpej 			else
    761       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    762       1.63   thorpej 
    763       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    764      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    765       1.63   thorpej 				    &pt->pt_time.it_value,
    766       1.63   thorpej 				    &ptn->pt_time.it_value);
    767       1.63   thorpej 
    768       1.63   thorpej 			pt->pt_active = 1;
    769       1.63   thorpej 		} else
    770       1.63   thorpej 			pt->pt_active = 0;
    771       1.63   thorpej 	}
    772       1.63   thorpej }
    773       1.63   thorpej 
    774       1.63   thorpej void
    775      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    776       1.63   thorpej {
    777      1.150  christos 	struct timespec now;
    778       1.63   thorpej 	struct ptimer *ptn;
    779       1.63   thorpej 
    780      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    781      1.142        ad 
    782      1.150  christos 	*aits = pt->pt_time;
    783      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    784        1.1       cgd 		/*
    785       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    786       1.63   thorpej 		 * part of real time timer.  If time for real time
    787       1.63   thorpej 		 * timer has passed return 0, else return difference
    788       1.63   thorpej 		 * between current time and time for the timer to go
    789       1.63   thorpej 		 * off.
    790        1.1       cgd 		 */
    791      1.150  christos 		if (timespecisset(&aits->it_value)) {
    792      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    793      1.168      yamt 				getnanotime(&now);
    794      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    795      1.168      yamt 				getnanouptime(&now);
    796      1.168      yamt 			}
    797      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    798      1.150  christos 				timespecclear(&aits->it_value);
    799      1.101    kardel 			else
    800      1.150  christos 				timespecsub(&aits->it_value, &now,
    801      1.150  christos 				    &aits->it_value);
    802       1.36   thorpej 		}
    803       1.63   thorpej 	} else if (pt->pt_active) {
    804       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    805       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    806       1.63   thorpej 		else
    807       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    808       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    809      1.150  christos 			timespecadd(&aits->it_value,
    810      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    811       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    812        1.1       cgd 	} else
    813      1.150  christos 		timespecclear(&aits->it_value);
    814       1.63   thorpej }
    815       1.63   thorpej 
    816       1.63   thorpej 
    817       1.63   thorpej 
    818       1.63   thorpej /* Set and arm a POSIX realtime timer */
    819       1.63   thorpej int
    820      1.156  christos sys___timer_settime50(struct lwp *l,
    821      1.156  christos     const struct sys___timer_settime50_args *uap,
    822      1.140      yamt     register_t *retval)
    823       1.63   thorpej {
    824      1.135       dsl 	/* {
    825       1.63   thorpej 		syscallarg(timer_t) timerid;
    826       1.63   thorpej 		syscallarg(int) flags;
    827       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    828       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    829      1.135       dsl 	} */
    830       1.92      cube 	int error;
    831       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    832       1.92      cube 
    833       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    834       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    835       1.92      cube 		return (error);
    836       1.92      cube 
    837       1.92      cube 	if (SCARG(uap, ovalue))
    838       1.92      cube 		ovp = &ovalue;
    839       1.92      cube 
    840       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    841       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    842       1.92      cube 		return error;
    843       1.92      cube 
    844       1.92      cube 	if (ovp)
    845       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    846       1.92      cube 		    sizeof(struct itimerspec));
    847       1.92      cube 	return 0;
    848       1.92      cube }
    849       1.92      cube 
    850       1.92      cube int
    851       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    852       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    853       1.92      cube {
    854      1.150  christos 	struct timespec now;
    855      1.150  christos 	struct itimerspec val, oval;
    856      1.142        ad 	struct ptimers *pts;
    857       1.63   thorpej 	struct ptimer *pt;
    858      1.160  christos 	int error;
    859       1.63   thorpej 
    860      1.142        ad 	pts = p->p_timers;
    861       1.63   thorpej 
    862      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    863      1.142        ad 		return EINVAL;
    864      1.150  christos 	val = *value;
    865      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    866      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    867      1.160  christos 		return error;
    868       1.63   thorpej 
    869      1.142        ad 	mutex_spin_enter(&timer_lock);
    870      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    871      1.142        ad 		mutex_spin_exit(&timer_lock);
    872      1.150  christos 		return EINVAL;
    873      1.142        ad 	}
    874      1.142        ad 
    875       1.63   thorpej 	oval = pt->pt_time;
    876       1.63   thorpej 	pt->pt_time = val;
    877       1.63   thorpej 
    878       1.67   nathanw 	/*
    879       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    880       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    881       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    882       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    883       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    884       1.67   nathanw 	 */
    885      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    886      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    887      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    888      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    889      1.168      yamt 					getnanotime(&now);
    890      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    891      1.168      yamt 					getnanouptime(&now);
    892      1.168      yamt 				}
    893      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    894      1.101    kardel 				    &pt->pt_time.it_value);
    895      1.101    kardel 			}
    896       1.67   nathanw 		} else {
    897       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    898      1.150  christos 				getnanotime(&now);
    899      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    900      1.101    kardel 				    &pt->pt_time.it_value);
    901      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    902       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    903       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    904      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    905       1.67   nathanw 				}
    906       1.67   nathanw 			}
    907       1.67   nathanw 		}
    908       1.67   nathanw 	}
    909       1.67   nathanw 
    910       1.63   thorpej 	timer_settime(pt);
    911      1.142        ad 	mutex_spin_exit(&timer_lock);
    912       1.63   thorpej 
    913      1.150  christos 	if (ovalue)
    914      1.150  christos 		*ovalue = oval;
    915       1.63   thorpej 
    916       1.63   thorpej 	return (0);
    917       1.63   thorpej }
    918       1.63   thorpej 
    919       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    920       1.63   thorpej int
    921      1.156  christos sys___timer_gettime50(struct lwp *l,
    922      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    923       1.63   thorpej {
    924      1.135       dsl 	/* {
    925       1.63   thorpej 		syscallarg(timer_t) timerid;
    926       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    927      1.135       dsl 	} */
    928       1.63   thorpej 	struct itimerspec its;
    929       1.92      cube 	int error;
    930       1.92      cube 
    931       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    932       1.92      cube 	    &its)) != 0)
    933       1.92      cube 		return error;
    934       1.92      cube 
    935       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    936       1.92      cube }
    937       1.92      cube 
    938       1.92      cube int
    939       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    940       1.92      cube {
    941       1.63   thorpej 	struct ptimer *pt;
    942      1.142        ad 	struct ptimers *pts;
    943       1.63   thorpej 
    944      1.142        ad 	pts = p->p_timers;
    945      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    946       1.63   thorpej 		return (EINVAL);
    947      1.142        ad 	mutex_spin_enter(&timer_lock);
    948      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    949      1.142        ad 		mutex_spin_exit(&timer_lock);
    950      1.142        ad 		return (EINVAL);
    951      1.142        ad 	}
    952      1.150  christos 	timer_gettime(pt, its);
    953      1.142        ad 	mutex_spin_exit(&timer_lock);
    954       1.63   thorpej 
    955       1.92      cube 	return 0;
    956       1.63   thorpej }
    957       1.63   thorpej 
    958       1.63   thorpej /*
    959       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    960       1.63   thorpej  * while a notification was already pending. The counter is reset when
    961       1.63   thorpej  * a timer expires and a notification can be posted.
    962       1.63   thorpej  */
    963       1.63   thorpej int
    964      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    965      1.140      yamt     register_t *retval)
    966       1.63   thorpej {
    967      1.135       dsl 	/* {
    968       1.63   thorpej 		syscallarg(timer_t) timerid;
    969      1.135       dsl 	} */
    970       1.63   thorpej 	struct proc *p = l->l_proc;
    971      1.142        ad 	struct ptimers *pts;
    972       1.63   thorpej 	int timerid;
    973       1.63   thorpej 	struct ptimer *pt;
    974       1.63   thorpej 
    975       1.63   thorpej 	timerid = SCARG(uap, timerid);
    976       1.63   thorpej 
    977      1.142        ad 	pts = p->p_timers;
    978      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    979      1.142        ad 		return (EINVAL);
    980      1.142        ad 	mutex_spin_enter(&timer_lock);
    981      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    982      1.142        ad 		mutex_spin_exit(&timer_lock);
    983       1.63   thorpej 		return (EINVAL);
    984      1.142        ad 	}
    985       1.63   thorpej 	*retval = pt->pt_poverruns;
    986      1.187  christos 	if (*retval >= DELAYTIMER_MAX)
    987      1.187  christos 		*retval = DELAYTIMER_MAX;
    988      1.142        ad 	mutex_spin_exit(&timer_lock);
    989       1.63   thorpej 
    990       1.63   thorpej 	return (0);
    991       1.63   thorpej }
    992       1.63   thorpej 
    993       1.63   thorpej /*
    994       1.63   thorpej  * Real interval timer expired:
    995       1.63   thorpej  * send process whose timer expired an alarm signal.
    996       1.63   thorpej  * If time is not set up to reload, then just return.
    997       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    998       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    999       1.63   thorpej  * SIGALRM calls to be compressed into one.
   1000       1.63   thorpej  */
   1001       1.63   thorpej void
   1002       1.63   thorpej realtimerexpire(void *arg)
   1003       1.63   thorpej {
   1004      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
   1005      1.150  christos 	struct timespec now, next;
   1006       1.63   thorpej 	struct ptimer *pt;
   1007      1.148     joerg 	int backwards;
   1008       1.63   thorpej 
   1009      1.142        ad 	pt = arg;
   1010       1.63   thorpej 
   1011      1.142        ad 	mutex_spin_enter(&timer_lock);
   1012       1.63   thorpej 	itimerfire(pt);
   1013       1.63   thorpej 
   1014      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1015      1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1016      1.142        ad 		mutex_spin_exit(&timer_lock);
   1017       1.63   thorpej 		return;
   1018       1.63   thorpej 	}
   1019      1.148     joerg 
   1020      1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1021      1.171  christos 		getnanouptime(&now);
   1022      1.171  christos 	} else {
   1023      1.171  christos 		getnanotime(&now);
   1024      1.171  christos 	}
   1025      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1026      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1027      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1028      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1029      1.148     joerg 		pt->pt_time.it_value = next;
   1030      1.148     joerg 	} else {
   1031      1.166      yamt 		now_ns = timespec2ns(&now);
   1032      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1033      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1034      1.148     joerg 
   1035      1.166      yamt 		next_val = now_ns +
   1036      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1037      1.148     joerg 
   1038      1.148     joerg 		if (backwards)
   1039      1.148     joerg 			next_val += interval;
   1040      1.148     joerg 		else
   1041      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1042      1.148     joerg 
   1043      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1044      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1045      1.101    kardel 	}
   1046      1.148     joerg 
   1047      1.148     joerg 	/*
   1048      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1049      1.148     joerg 	 * callout_reset() does it for us.
   1050      1.148     joerg 	 */
   1051      1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1052      1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1053      1.148     joerg 	    realtimerexpire, pt);
   1054      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1055       1.63   thorpej }
   1056       1.63   thorpej 
   1057       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1058       1.63   thorpej /* ARGSUSED */
   1059       1.63   thorpej int
   1060      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1061      1.140      yamt     register_t *retval)
   1062       1.63   thorpej {
   1063      1.135       dsl 	/* {
   1064       1.63   thorpej 		syscallarg(int) which;
   1065       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1066      1.135       dsl 	} */
   1067       1.63   thorpej 	struct proc *p = l->l_proc;
   1068       1.63   thorpej 	struct itimerval aitv;
   1069       1.91      cube 	int error;
   1070       1.91      cube 
   1071  1.189.8.3    martin 	memset(&aitv, 0, sizeof(aitv));
   1072       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1073       1.91      cube 	if (error)
   1074       1.91      cube 		return error;
   1075       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1076       1.91      cube }
   1077       1.63   thorpej 
   1078       1.91      cube int
   1079       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1080       1.91      cube {
   1081      1.142        ad 	struct ptimers *pts;
   1082      1.142        ad 	struct ptimer *pt;
   1083      1.150  christos 	struct itimerspec its;
   1084       1.63   thorpej 
   1085      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1086       1.63   thorpej 		return (EINVAL);
   1087       1.63   thorpej 
   1088      1.142        ad 	mutex_spin_enter(&timer_lock);
   1089      1.142        ad 	pts = p->p_timers;
   1090      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1091       1.91      cube 		timerclear(&itvp->it_value);
   1092       1.91      cube 		timerclear(&itvp->it_interval);
   1093      1.150  christos 	} else {
   1094      1.150  christos 		timer_gettime(pt, &its);
   1095      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1096      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1097      1.150  christos 	}
   1098      1.188   msaitoh 	mutex_spin_exit(&timer_lock);
   1099       1.63   thorpej 
   1100       1.91      cube 	return 0;
   1101        1.1       cgd }
   1102        1.1       cgd 
   1103       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1104        1.1       cgd /* ARGSUSED */
   1105        1.3    andrew int
   1106      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1107      1.140      yamt     register_t *retval)
   1108       1.15   thorpej {
   1109      1.135       dsl 	/* {
   1110       1.30   mycroft 		syscallarg(int) which;
   1111       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1112       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1113      1.135       dsl 	} */
   1114       1.63   thorpej 	struct proc *p = l->l_proc;
   1115       1.30   mycroft 	int which = SCARG(uap, which);
   1116      1.156  christos 	struct sys___getitimer50_args getargs;
   1117       1.91      cube 	const struct itimerval *itvp;
   1118        1.1       cgd 	struct itimerval aitv;
   1119       1.91      cube 	int error;
   1120        1.1       cgd 
   1121      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1122        1.1       cgd 		return (EINVAL);
   1123       1.11       cgd 	itvp = SCARG(uap, itv);
   1124       1.63   thorpej 	if (itvp &&
   1125      1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1126        1.1       cgd 		return (error);
   1127       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1128       1.30   mycroft 		SCARG(&getargs, which) = which;
   1129       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1130      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1131       1.21       cgd 			return (error);
   1132       1.21       cgd 	}
   1133        1.1       cgd 	if (itvp == 0)
   1134        1.1       cgd 		return (0);
   1135       1.91      cube 
   1136       1.91      cube 	return dosetitimer(p, which, &aitv);
   1137       1.91      cube }
   1138       1.91      cube 
   1139       1.91      cube int
   1140       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1141       1.91      cube {
   1142      1.150  christos 	struct timespec now;
   1143      1.142        ad 	struct ptimers *pts;
   1144      1.142        ad 	struct ptimer *pt, *spare;
   1145       1.91      cube 
   1146      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1147       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1148        1.1       cgd 		return (EINVAL);
   1149       1.63   thorpej 
   1150       1.63   thorpej 	/*
   1151       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1152       1.63   thorpej 	 * wants to clear the timer.
   1153       1.63   thorpej 	 */
   1154      1.142        ad 	spare = NULL;
   1155      1.142        ad 	pts = p->p_timers;
   1156      1.142        ad  retry:
   1157      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1158      1.142        ad 	    pts->pts_timers[which] == NULL))
   1159       1.63   thorpej 		return (0);
   1160      1.142        ad 	if (pts == NULL)
   1161      1.142        ad 		pts = timers_alloc(p);
   1162      1.142        ad 	mutex_spin_enter(&timer_lock);
   1163      1.142        ad 	pt = pts->pts_timers[which];
   1164      1.142        ad 	if (pt == NULL) {
   1165      1.142        ad 		if (spare == NULL) {
   1166      1.142        ad 			mutex_spin_exit(&timer_lock);
   1167      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1168  1.189.8.2    martin 			memset(spare, 0, sizeof(*spare));
   1169      1.142        ad 			goto retry;
   1170      1.142        ad 		}
   1171      1.142        ad 		pt = spare;
   1172      1.142        ad 		spare = NULL;
   1173       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1174       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1175       1.63   thorpej 		pt->pt_overruns = 0;
   1176       1.63   thorpej 		pt->pt_proc = p;
   1177       1.63   thorpej 		pt->pt_type = which;
   1178       1.64   nathanw 		pt->pt_entry = which;
   1179      1.142        ad 		pt->pt_queued = false;
   1180      1.149  christos 		if (pt->pt_type == CLOCK_REALTIME)
   1181      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1182      1.149  christos 		else
   1183      1.149  christos 			pt->pt_active = 0;
   1184      1.149  christos 
   1185       1.63   thorpej 		switch (which) {
   1186       1.63   thorpej 		case ITIMER_REAL:
   1187      1.170  christos 		case ITIMER_MONOTONIC:
   1188       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1189       1.63   thorpej 			break;
   1190       1.63   thorpej 		case ITIMER_VIRTUAL:
   1191       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1192       1.63   thorpej 			break;
   1193       1.63   thorpej 		case ITIMER_PROF:
   1194       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1195       1.63   thorpej 			break;
   1196        1.1       cgd 		}
   1197      1.142        ad 		pts->pts_timers[which] = pt;
   1198      1.142        ad 	}
   1199       1.63   thorpej 
   1200      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1201      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1202      1.150  christos 
   1203      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1204       1.67   nathanw 		/* Convert to absolute time */
   1205      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1206      1.170  christos 		switch (which) {
   1207      1.170  christos 		case ITIMER_REAL:
   1208      1.170  christos 			getnanotime(&now);
   1209      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1210      1.170  christos 			    &pt->pt_time.it_value);
   1211      1.170  christos 			break;
   1212      1.170  christos 		case ITIMER_MONOTONIC:
   1213      1.170  christos 			getnanouptime(&now);
   1214      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1215      1.170  christos 			    &pt->pt_time.it_value);
   1216      1.170  christos 			break;
   1217      1.170  christos 		default:
   1218      1.170  christos 			break;
   1219      1.170  christos 		}
   1220       1.67   nathanw 	}
   1221       1.63   thorpej 	timer_settime(pt);
   1222      1.142        ad 	mutex_spin_exit(&timer_lock);
   1223      1.142        ad 	if (spare != NULL)
   1224      1.142        ad 		pool_put(&ptimer_pool, spare);
   1225       1.63   thorpej 
   1226        1.1       cgd 	return (0);
   1227        1.1       cgd }
   1228        1.1       cgd 
   1229       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1230      1.142        ad struct ptimers *
   1231       1.63   thorpej timers_alloc(struct proc *p)
   1232       1.63   thorpej {
   1233      1.142        ad 	struct ptimers *pts;
   1234       1.63   thorpej 	int i;
   1235       1.63   thorpej 
   1236      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1237       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1238       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1239       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1240       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1241      1.142        ad 	mutex_spin_enter(&timer_lock);
   1242      1.142        ad 	if (p->p_timers == NULL) {
   1243      1.142        ad 		p->p_timers = pts;
   1244      1.142        ad 		mutex_spin_exit(&timer_lock);
   1245      1.142        ad 		return pts;
   1246      1.142        ad 	}
   1247      1.142        ad 	mutex_spin_exit(&timer_lock);
   1248      1.142        ad 	pool_put(&ptimers_pool, pts);
   1249      1.142        ad 	return p->p_timers;
   1250       1.63   thorpej }
   1251       1.63   thorpej 
   1252        1.1       cgd /*
   1253       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1254       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1255       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1256       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1257       1.63   thorpej  * structure if none of those remain.
   1258        1.1       cgd  */
   1259        1.3    andrew void
   1260       1.63   thorpej timers_free(struct proc *p, int which)
   1261        1.6       cgd {
   1262       1.63   thorpej 	struct ptimers *pts;
   1263      1.142        ad 	struct ptimer *ptn;
   1264      1.150  christos 	struct timespec ts;
   1265      1.142        ad 	int i;
   1266       1.63   thorpej 
   1267      1.142        ad 	if (p->p_timers == NULL)
   1268      1.142        ad 		return;
   1269       1.63   thorpej 
   1270      1.142        ad 	pts = p->p_timers;
   1271      1.142        ad 	mutex_spin_enter(&timer_lock);
   1272      1.142        ad 	if (which == TIMERS_ALL) {
   1273      1.142        ad 		p->p_timers = NULL;
   1274      1.142        ad 		i = 0;
   1275      1.142        ad 	} else {
   1276      1.150  christos 		timespecclear(&ts);
   1277      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1278      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1279      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1280      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1281      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1282      1.149  christos 		}
   1283      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1284      1.142        ad 		if (ptn) {
   1285      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1286      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1287      1.142        ad 			    &ptn->pt_time.it_value);
   1288      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1289      1.142        ad 		}
   1290      1.150  christos 		timespecclear(&ts);
   1291      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1292      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1293      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1294      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1295      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1296      1.149  christos 		}
   1297      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1298      1.142        ad 		if (ptn) {
   1299      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1300      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1301      1.142        ad 			    &ptn->pt_time.it_value);
   1302      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1303       1.63   thorpej 		}
   1304      1.183  christos 		i = TIMER_MIN;
   1305      1.142        ad 	}
   1306      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1307      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1308      1.142        ad 			itimerfree(pts, i);
   1309      1.142        ad 			mutex_spin_enter(&timer_lock);
   1310        1.1       cgd 		}
   1311        1.1       cgd 	}
   1312      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1313      1.183  christos 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1314      1.142        ad 		p->p_timers = NULL;
   1315      1.142        ad 		mutex_spin_exit(&timer_lock);
   1316      1.142        ad 		pool_put(&ptimers_pool, pts);
   1317      1.142        ad 	} else
   1318      1.142        ad 		mutex_spin_exit(&timer_lock);
   1319      1.142        ad }
   1320      1.142        ad 
   1321      1.142        ad static void
   1322      1.142        ad itimerfree(struct ptimers *pts, int index)
   1323      1.142        ad {
   1324      1.142        ad 	struct ptimer *pt;
   1325      1.142        ad 
   1326      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1327      1.142        ad 
   1328      1.142        ad 	pt = pts->pts_timers[index];
   1329      1.142        ad 	pts->pts_timers[index] = NULL;
   1330      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1331      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1332      1.167      yamt 	if (pt->pt_queued)
   1333      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1334      1.144        ad 	mutex_spin_exit(&timer_lock);
   1335      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1336      1.149  christos 		callout_destroy(&pt->pt_ch);
   1337      1.142        ad 	pool_put(&ptimer_pool, pt);
   1338        1.1       cgd }
   1339        1.1       cgd 
   1340        1.1       cgd /*
   1341        1.1       cgd  * Decrement an interval timer by a specified number
   1342      1.152  christos  * of nanoseconds, which must be less than a second,
   1343      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1344      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1345        1.8       cgd  * reduce the value reloaded into the timer so that
   1346        1.1       cgd  * the timer does not drift.  This routine assumes
   1347        1.1       cgd  * that it is called in a context where the timers
   1348        1.1       cgd  * on which it is operating cannot change in value.
   1349        1.1       cgd  */
   1350      1.142        ad static int
   1351      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1352       1.63   thorpej {
   1353      1.150  christos 	struct itimerspec *itp;
   1354        1.1       cgd 
   1355      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1356      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1357      1.142        ad 
   1358       1.63   thorpej 	itp = &pt->pt_time;
   1359      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1360        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1361        1.1       cgd 			/* expired, and already in next interval */
   1362      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1363        1.1       cgd 			goto expire;
   1364        1.1       cgd 		}
   1365      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1366        1.1       cgd 		itp->it_value.tv_sec--;
   1367        1.1       cgd 	}
   1368      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1369      1.152  christos 	nsec = 0;
   1370      1.150  christos 	if (timespecisset(&itp->it_value))
   1371        1.1       cgd 		return (1);
   1372        1.1       cgd 	/* expired, exactly at end of interval */
   1373        1.1       cgd expire:
   1374      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1375        1.1       cgd 		itp->it_value = itp->it_interval;
   1376      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1377      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1378      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1379        1.1       cgd 			itp->it_value.tv_sec--;
   1380        1.1       cgd 		}
   1381       1.63   thorpej 		timer_settime(pt);
   1382        1.1       cgd 	} else
   1383      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1384        1.1       cgd 	return (0);
   1385       1.42       cgd }
   1386       1.42       cgd 
   1387      1.142        ad static void
   1388       1.63   thorpej itimerfire(struct ptimer *pt)
   1389       1.63   thorpej {
   1390       1.78        cl 
   1391      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1392      1.142        ad 
   1393      1.142        ad 	/*
   1394      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1395      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1396      1.142        ad 	 */
   1397      1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1398      1.142        ad 		return;
   1399      1.172     rmind 	}
   1400      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1401      1.142        ad 	pt->pt_queued = true;
   1402      1.142        ad 	softint_schedule(timer_sih);
   1403      1.142        ad }
   1404      1.142        ad 
   1405      1.142        ad void
   1406      1.142        ad timer_tick(lwp_t *l, bool user)
   1407      1.142        ad {
   1408      1.142        ad 	struct ptimers *pts;
   1409      1.142        ad 	struct ptimer *pt;
   1410      1.142        ad 	proc_t *p;
   1411      1.142        ad 
   1412      1.142        ad 	p = l->l_proc;
   1413      1.142        ad 	if (p->p_timers == NULL)
   1414      1.142        ad 		return;
   1415      1.142        ad 
   1416      1.142        ad 	mutex_spin_enter(&timer_lock);
   1417      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1418       1.63   thorpej 		/*
   1419      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1420       1.63   thorpej 		 */
   1421      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1422      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1423      1.142        ad 				itimerfire(pt);
   1424      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1425      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1426      1.142        ad 				itimerfire(pt);
   1427      1.142        ad 	}
   1428      1.142        ad 	mutex_spin_exit(&timer_lock);
   1429      1.142        ad }
   1430      1.142        ad 
   1431      1.142        ad static void
   1432      1.142        ad timer_intr(void *cookie)
   1433      1.142        ad {
   1434      1.142        ad 	ksiginfo_t ksi;
   1435      1.142        ad 	struct ptimer *pt;
   1436      1.142        ad 	proc_t *p;
   1437      1.142        ad 
   1438      1.158        ad 	mutex_enter(proc_lock);
   1439      1.142        ad 	mutex_spin_enter(&timer_lock);
   1440      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1441      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1442      1.142        ad 		KASSERT(pt->pt_queued);
   1443      1.142        ad 		pt->pt_queued = false;
   1444      1.142        ad 
   1445      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1446      1.154  wrstuden 			/* Process is dying. */
   1447      1.142        ad 			continue;
   1448      1.154  wrstuden 		}
   1449      1.142        ad 		p = pt->pt_proc;
   1450      1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1451      1.142        ad 			continue;
   1452      1.142        ad 		}
   1453      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1454       1.63   thorpej 			pt->pt_overruns++;
   1455      1.142        ad 			continue;
   1456       1.64   nathanw 		}
   1457      1.142        ad 
   1458      1.142        ad 		KSI_INIT(&ksi);
   1459      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1460      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1461      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1462      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1463      1.142        ad 		pt->pt_overruns = 0;
   1464      1.142        ad 		mutex_spin_exit(&timer_lock);
   1465      1.142        ad 		kpsignal(p, &ksi, NULL);
   1466      1.142        ad 		mutex_spin_enter(&timer_lock);
   1467       1.63   thorpej 	}
   1468      1.142        ad 	mutex_spin_exit(&timer_lock);
   1469      1.158        ad 	mutex_exit(proc_lock);
   1470       1.63   thorpej }
   1471      1.162      elad 
   1472      1.162      elad /*
   1473      1.162      elad  * Check if the time will wrap if set to ts.
   1474      1.162      elad  *
   1475      1.162      elad  * ts - timespec describing the new time
   1476      1.162      elad  * delta - the delta between the current time and ts
   1477      1.162      elad  */
   1478      1.162      elad bool
   1479      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1480      1.162      elad {
   1481      1.162      elad 
   1482      1.162      elad 	/*
   1483      1.162      elad 	 * Don't allow the time to be set forward so far it
   1484      1.162      elad 	 * will wrap and become negative, thus allowing an
   1485      1.162      elad 	 * attacker to bypass the next check below.  The
   1486      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1487      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1488      1.162      elad 	 * past the cutoff, it will take a very long time
   1489      1.162      elad 	 * to get to the wrap point.
   1490      1.162      elad 	 */
   1491      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1492      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1493      1.162      elad 		return true;
   1494      1.162      elad 
   1495      1.162      elad 	return false;
   1496      1.162      elad }
   1497