Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.189.8.5
      1  1.189.8.5    martin /*	$NetBSD: kern_time.c,v 1.189.8.5 2019/02/24 10:49:53 martin Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.189.8.5    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.8.5 2019/02/24 10:49:53 martin Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78       1.11       cgd #include <sys/syscallargs.h>
     79      1.143        ad #include <sys/cpu.h>
     80       1.19  christos 
     81      1.142        ad static void	timer_intr(void *);
     82      1.142        ad static void	itimerfire(struct ptimer *);
     83      1.142        ad static void	itimerfree(struct ptimers *, int);
     84      1.142        ad 
     85      1.142        ad kmutex_t	timer_lock;
     86      1.142        ad 
     87      1.142        ad static void	*timer_sih;
     88      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89      1.131        ad 
     90      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91       1.97    simonb 
     92      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94      1.168      yamt 
     95      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99      1.168      yamt 
    100      1.187  christos #define	DELAYTIMER_MAX	32
    101      1.186  christos 
    102      1.131        ad /*
    103      1.131        ad  * Initialize timekeeping.
    104      1.131        ad  */
    105      1.131        ad void
    106      1.131        ad time_init(void)
    107      1.131        ad {
    108      1.131        ad 
    109      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    113      1.131        ad }
    114      1.131        ad 
    115      1.142        ad void
    116      1.142        ad time_init2(void)
    117      1.142        ad {
    118      1.142        ad 
    119      1.142        ad 	TAILQ_INIT(&timer_queue);
    120      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122      1.142        ad 	    timer_intr, NULL);
    123      1.142        ad }
    124      1.142        ad 
    125       1.63   thorpej /* Time of day and interval timer support.
    126        1.1       cgd  *
    127        1.1       cgd  * These routines provide the kernel entry points to get and set
    128        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    129        1.1       cgd  * here provide support for adding and subtracting timeval structures
    130        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    131        1.1       cgd  * timers when they expire.
    132        1.1       cgd  */
    133        1.1       cgd 
    134       1.22       jtc /* This function is used by clock_settime and settimeofday */
    135      1.132      elad static int
    136      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137       1.22       jtc {
    138      1.156  christos 	struct timespec delta, now;
    139      1.129        ad 	int s;
    140       1.22       jtc 
    141       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142      1.129        ad 	s = splclock();
    143      1.156  christos 	nanotime(&now);
    144      1.156  christos 	timespecsub(ts, &now, &delta);
    145      1.132      elad 
    146      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    148      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149      1.129        ad 		splx(s);
    150       1.29       tls 		return (EPERM);
    151       1.55      tron 	}
    152      1.132      elad 
    153       1.29       tls #ifdef notyet
    154      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155      1.129        ad 		splx(s);
    156       1.29       tls 		return (EPERM);
    157       1.55      tron 	}
    158       1.29       tls #endif
    159      1.103    kardel 
    160      1.156  christos 	tc_setclock(ts);
    161      1.103    kardel 
    162      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    163      1.103    kardel 
    164       1.22       jtc 	resettodr();
    165      1.129        ad 	splx(s);
    166      1.129        ad 
    167       1.29       tls 	return (0);
    168       1.22       jtc }
    169       1.22       jtc 
    170      1.132      elad int
    171      1.132      elad settime(struct proc *p, struct timespec *ts)
    172      1.132      elad {
    173      1.132      elad 	return (settime1(p, ts, true));
    174      1.132      elad }
    175      1.132      elad 
    176       1.22       jtc /* ARGSUSED */
    177       1.22       jtc int
    178      1.156  christos sys___clock_gettime50(struct lwp *l,
    179      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    180       1.22       jtc {
    181      1.135       dsl 	/* {
    182       1.22       jtc 		syscallarg(clockid_t) clock_id;
    183       1.23       cgd 		syscallarg(struct timespec *) tp;
    184      1.135       dsl 	} */
    185      1.165     njoly 	int error;
    186       1.22       jtc 	struct timespec ats;
    187       1.22       jtc 
    188      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    189      1.165     njoly 	if (error != 0)
    190      1.165     njoly 		return error;
    191      1.165     njoly 
    192      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    193      1.165     njoly }
    194      1.165     njoly 
    195       1.22       jtc /* ARGSUSED */
    196       1.22       jtc int
    197      1.156  christos sys___clock_settime50(struct lwp *l,
    198      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    199       1.22       jtc {
    200      1.135       dsl 	/* {
    201       1.22       jtc 		syscallarg(clockid_t) clock_id;
    202       1.23       cgd 		syscallarg(const struct timespec *) tp;
    203      1.135       dsl 	} */
    204      1.156  christos 	int error;
    205      1.156  christos 	struct timespec ats;
    206       1.22       jtc 
    207      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    208      1.156  christos 		return error;
    209      1.156  christos 
    210      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    211       1.56      manu }
    212       1.56      manu 
    213       1.56      manu 
    214       1.56      manu int
    215      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    216      1.132      elad     bool check_kauth)
    217       1.56      manu {
    218       1.56      manu 	int error;
    219       1.56      manu 
    220       1.61    simonb 	switch (clock_id) {
    221       1.61    simonb 	case CLOCK_REALTIME:
    222      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    223       1.61    simonb 			return (error);
    224       1.61    simonb 		break;
    225       1.61    simonb 	case CLOCK_MONOTONIC:
    226       1.61    simonb 		return (EINVAL);	/* read-only clock */
    227       1.61    simonb 	default:
    228       1.56      manu 		return (EINVAL);
    229       1.61    simonb 	}
    230       1.22       jtc 
    231       1.22       jtc 	return 0;
    232       1.22       jtc }
    233       1.22       jtc 
    234       1.22       jtc int
    235      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    236      1.140      yamt     register_t *retval)
    237       1.22       jtc {
    238      1.135       dsl 	/* {
    239       1.22       jtc 		syscallarg(clockid_t) clock_id;
    240       1.23       cgd 		syscallarg(struct timespec *) tp;
    241      1.135       dsl 	} */
    242       1.22       jtc 	struct timespec ts;
    243      1.180      maxv 	int error;
    244       1.22       jtc 
    245      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    246      1.164     njoly 		return error;
    247      1.164     njoly 
    248      1.164     njoly 	if (SCARG(uap, tp))
    249      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    250      1.164     njoly 
    251      1.164     njoly 	return error;
    252      1.164     njoly }
    253      1.164     njoly 
    254      1.164     njoly int
    255      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    256      1.164     njoly {
    257      1.164     njoly 
    258       1.61    simonb 	switch (clock_id) {
    259       1.61    simonb 	case CLOCK_REALTIME:
    260       1.61    simonb 	case CLOCK_MONOTONIC:
    261      1.164     njoly 		ts->tv_sec = 0;
    262      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    263      1.164     njoly 			ts->tv_nsec = 1;
    264      1.102    kardel 		else
    265      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    266       1.61    simonb 		break;
    267       1.61    simonb 	default:
    268      1.164     njoly 		return EINVAL;
    269       1.61    simonb 	}
    270       1.22       jtc 
    271      1.164     njoly 	return 0;
    272       1.22       jtc }
    273       1.22       jtc 
    274       1.27       jtc /* ARGSUSED */
    275       1.27       jtc int
    276      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    277      1.140      yamt     register_t *retval)
    278       1.27       jtc {
    279      1.135       dsl 	/* {
    280      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    281      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    282      1.135       dsl 	} */
    283      1.101    kardel 	struct timespec rmt, rqt;
    284      1.120       dsl 	int error, error1;
    285      1.101    kardel 
    286      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    287      1.101    kardel 	if (error)
    288      1.101    kardel 		return (error);
    289      1.101    kardel 
    290      1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    291      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    292      1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    293      1.175  christos 		return error;
    294      1.175  christos 
    295      1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    296      1.175  christos 	return error1 ? error1 : error;
    297      1.175  christos }
    298      1.175  christos 
    299      1.175  christos /* ARGSUSED */
    300      1.175  christos int
    301      1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    302      1.175  christos     register_t *retval)
    303      1.175  christos {
    304      1.175  christos 	/* {
    305      1.175  christos 		syscallarg(clockid_t) clock_id;
    306      1.175  christos 		syscallarg(int) flags;
    307      1.175  christos 		syscallarg(struct timespec *) rqtp;
    308      1.175  christos 		syscallarg(struct timespec *) rmtp;
    309      1.175  christos 	} */
    310      1.175  christos 	struct timespec rmt, rqt;
    311      1.175  christos 	int error, error1;
    312      1.175  christos 
    313      1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    314      1.175  christos 	if (error)
    315      1.181  christos 		goto out;
    316      1.175  christos 
    317      1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    318      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    319      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    320      1.181  christos 		goto out;
    321      1.120       dsl 
    322      1.189     njoly 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    323      1.189     njoly 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    324      1.181  christos 		error = error1;
    325      1.181  christos out:
    326      1.181  christos 	*retval = error;
    327      1.181  christos 	return 0;
    328      1.120       dsl }
    329      1.120       dsl 
    330      1.120       dsl int
    331      1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    332      1.175  christos     struct timespec *rmt)
    333      1.120       dsl {
    334      1.141      yamt 	struct timespec rmtstart;
    335      1.120       dsl 	int error, timo;
    336      1.120       dsl 
    337      1.184       uwe 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    338      1.184       uwe 		if (error == ETIMEDOUT) {
    339      1.184       uwe 			error = 0;
    340      1.184       uwe 			if (rmt != NULL)
    341      1.184       uwe 				rmt->tv_sec = rmt->tv_nsec = 0;
    342      1.184       uwe 		}
    343      1.184       uwe 		return error;
    344      1.184       uwe 	}
    345      1.101    kardel 
    346      1.101    kardel 	/*
    347      1.175  christos 	 * Avoid inadvertently sleeping forever
    348      1.101    kardel 	 */
    349      1.101    kardel 	if (timo == 0)
    350      1.101    kardel 		timo = 1;
    351      1.141      yamt again:
    352      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    353      1.141      yamt 	if (rmt != NULL || error == 0) {
    354      1.141      yamt 		struct timespec rmtend;
    355      1.141      yamt 		struct timespec t0;
    356      1.141      yamt 		struct timespec *t;
    357      1.101    kardel 
    358      1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    359      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    360      1.179  christos 		if (flags & TIMER_ABSTIME) {
    361      1.179  christos 			timespecsub(rqt, &rmtend, t);
    362      1.179  christos 		} else {
    363      1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    364      1.179  christos 			timespecsub(rqt, t, t);
    365      1.179  christos 		}
    366      1.141      yamt 		if (t->tv_sec < 0)
    367      1.141      yamt 			timespecclear(t);
    368      1.141      yamt 		if (error == 0) {
    369      1.141      yamt 			timo = tstohz(t);
    370      1.141      yamt 			if (timo > 0)
    371      1.141      yamt 				goto again;
    372      1.141      yamt 		}
    373      1.141      yamt 	}
    374      1.104    kardel 
    375      1.101    kardel 	if (error == ERESTART)
    376      1.101    kardel 		error = EINTR;
    377      1.101    kardel 	if (error == EWOULDBLOCK)
    378      1.101    kardel 		error = 0;
    379      1.101    kardel 
    380      1.101    kardel 	return error;
    381       1.27       jtc }
    382       1.22       jtc 
    383      1.186  christos int
    384      1.186  christos sys_clock_getcpuclockid2(struct lwp *l,
    385      1.186  christos     const struct sys_clock_getcpuclockid2_args *uap,
    386      1.186  christos     register_t *retval)
    387      1.186  christos {
    388      1.186  christos 	/* {
    389      1.186  christos 		syscallarg(idtype_t idtype;
    390      1.186  christos 		syscallarg(id_t id);
    391      1.186  christos 		syscallarg(clockid_t *)clock_id;
    392      1.186  christos 	} */
    393      1.186  christos 	pid_t pid;
    394      1.186  christos 	lwpid_t lid;
    395      1.186  christos 	clockid_t clock_id;
    396      1.186  christos 	id_t id = SCARG(uap, id);
    397      1.186  christos 
    398      1.186  christos 	switch (SCARG(uap, idtype)) {
    399      1.186  christos 	case P_PID:
    400      1.188   msaitoh 		pid = id == 0 ? l->l_proc->p_pid : id;
    401      1.186  christos 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    402      1.186  christos 		break;
    403      1.186  christos 	case P_LWPID:
    404      1.186  christos 		lid = id == 0 ? l->l_lid : id;
    405      1.186  christos 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    406      1.186  christos 		break;
    407      1.186  christos 	default:
    408      1.186  christos 		return EINVAL;
    409      1.186  christos 	}
    410      1.186  christos 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    411      1.186  christos }
    412      1.186  christos 
    413        1.1       cgd /* ARGSUSED */
    414        1.3    andrew int
    415      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    416      1.140      yamt     register_t *retval)
    417       1.15   thorpej {
    418      1.135       dsl 	/* {
    419       1.11       cgd 		syscallarg(struct timeval *) tp;
    420      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    421      1.135       dsl 	} */
    422        1.1       cgd 	struct timeval atv;
    423        1.1       cgd 	int error = 0;
    424       1.25     perry 	struct timezone tzfake;
    425        1.1       cgd 
    426       1.11       cgd 	if (SCARG(uap, tp)) {
    427  1.189.8.4    martin 		memset(&atv, 0, sizeof(atv));
    428        1.1       cgd 		microtime(&atv);
    429       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    430       1.17  christos 		if (error)
    431        1.1       cgd 			return (error);
    432        1.1       cgd 	}
    433       1.25     perry 	if (SCARG(uap, tzp)) {
    434       1.25     perry 		/*
    435       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    436       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    437       1.25     perry 		 */
    438       1.25     perry 		tzfake.tz_minuteswest = 0;
    439       1.25     perry 		tzfake.tz_dsttime = 0;
    440       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    441       1.25     perry 	}
    442        1.1       cgd 	return (error);
    443        1.1       cgd }
    444        1.1       cgd 
    445        1.1       cgd /* ARGSUSED */
    446        1.3    andrew int
    447      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    448      1.140      yamt     register_t *retval)
    449       1.15   thorpej {
    450      1.135       dsl 	/* {
    451       1.24       cgd 		syscallarg(const struct timeval *) tv;
    452      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    453      1.135       dsl 	} */
    454       1.60      manu 
    455      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    456       1.60      manu }
    457       1.60      manu 
    458       1.60      manu int
    459      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    460      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    461       1.60      manu {
    462       1.22       jtc 	struct timeval atv;
    463       1.98  christos 	struct timespec ts;
    464       1.22       jtc 	int error;
    465        1.1       cgd 
    466        1.8       cgd 	/* Verify all parameters before changing time. */
    467      1.119       dsl 
    468       1.25     perry 	/*
    469       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    470       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    471       1.25     perry 	 */
    472       1.98  christos 	if (utzp)
    473       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    474      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    475       1.98  christos 
    476       1.98  christos 	if (utv == NULL)
    477       1.98  christos 		return 0;
    478       1.98  christos 
    479      1.119       dsl 	if (userspace) {
    480      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    481      1.119       dsl 			return error;
    482      1.119       dsl 		utv = &atv;
    483      1.119       dsl 	}
    484      1.119       dsl 
    485      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    486      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    487        1.1       cgd }
    488        1.1       cgd 
    489       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    490        1.1       cgd 
    491        1.1       cgd /* ARGSUSED */
    492        1.3    andrew int
    493      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    494      1.140      yamt     register_t *retval)
    495       1.15   thorpej {
    496      1.135       dsl 	/* {
    497       1.24       cgd 		syscallarg(const struct timeval *) delta;
    498       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    499      1.135       dsl 	} */
    500      1.180      maxv 	int error;
    501      1.156  christos 	struct timeval atv, oldatv;
    502        1.1       cgd 
    503      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    504      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    505      1.156  christos 		return error;
    506       1.17  christos 
    507      1.156  christos 	if (SCARG(uap, delta)) {
    508      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    509      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    510      1.156  christos 		if (error)
    511      1.156  christos 			return (error);
    512      1.156  christos 	}
    513      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    514      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    515      1.156  christos 	if (SCARG(uap, olddelta))
    516      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    517      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    518      1.156  christos 	return error;
    519       1.56      manu }
    520       1.56      manu 
    521      1.156  christos void
    522      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    523       1.56      manu {
    524      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    525      1.101    kardel 
    526      1.101    kardel 	if (olddelta) {
    527  1.189.8.4    martin 		memset(olddelta, 0, sizeof(*olddelta));
    528      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    529      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    530      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    531      1.156  christos 		if (olddelta->tv_usec < 0) {
    532      1.156  christos 			olddelta->tv_usec += 1000000;
    533      1.156  christos 			olddelta->tv_sec--;
    534      1.101    kardel 		}
    535      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    536      1.101    kardel 	}
    537      1.101    kardel 
    538      1.101    kardel 	if (delta) {
    539      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    540      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    541      1.101    kardel 
    542      1.143        ad 		if (time_adjtime) {
    543      1.101    kardel 			/* We need to save the system time during shutdown */
    544      1.101    kardel 			time_adjusted |= 1;
    545      1.143        ad 		}
    546      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    547      1.101    kardel 	}
    548        1.1       cgd }
    549        1.1       cgd 
    550        1.1       cgd /*
    551       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    552       1.63   thorpej  * timer_*() family of routines are supported.
    553        1.1       cgd  *
    554       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    555       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    556      1.183  christos  * first four elements in this array are reserved for the BSD timers:
    557      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    558      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    559      1.170  christos  * allocated by the timer_create() syscall.
    560        1.1       cgd  *
    561       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    562       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    563        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    564       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    565       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    566       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    567       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    568       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    569       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    570       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    571       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    572       1.63   thorpej 
    573       1.63   thorpej /* Allocate a POSIX realtime timer. */
    574       1.63   thorpej int
    575      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    576      1.140      yamt     register_t *retval)
    577       1.63   thorpej {
    578      1.135       dsl 	/* {
    579       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    580       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    581       1.63   thorpej 		syscallarg(timer_t *) timerid;
    582      1.135       dsl 	} */
    583       1.92      cube 
    584       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    585      1.105        ad 	    SCARG(uap, evp), copyin, l);
    586       1.92      cube }
    587       1.92      cube 
    588       1.92      cube int
    589       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    590      1.105        ad     copyin_t fetch_event, struct lwp *l)
    591       1.92      cube {
    592       1.92      cube 	int error;
    593       1.92      cube 	timer_t timerid;
    594      1.142        ad 	struct ptimers *pts;
    595       1.63   thorpej 	struct ptimer *pt;
    596      1.105        ad 	struct proc *p;
    597      1.105        ad 
    598      1.105        ad 	p = l->l_proc;
    599       1.63   thorpej 
    600      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    601       1.63   thorpej 		return (EINVAL);
    602       1.63   thorpej 
    603      1.142        ad 	if ((pts = p->p_timers) == NULL)
    604      1.142        ad 		pts = timers_alloc(p);
    605       1.63   thorpej 
    606       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    607  1.189.8.1    martin 	memset(pt, 0, sizeof(*pt));
    608      1.142        ad 	if (evp != NULL) {
    609       1.63   thorpej 		if (((error =
    610       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    611       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    612      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    613      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    614      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    615      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    616       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    617       1.63   thorpej 			return (error ? error : EINVAL);
    618       1.63   thorpej 		}
    619      1.142        ad 	}
    620      1.142        ad 
    621      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    622      1.142        ad 	mutex_spin_enter(&timer_lock);
    623      1.183  christos 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    624      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    625      1.142        ad 			break;
    626      1.142        ad 	if (timerid == TIMER_MAX) {
    627      1.142        ad 		mutex_spin_exit(&timer_lock);
    628      1.142        ad 		pool_put(&ptimer_pool, pt);
    629      1.142        ad 		return EAGAIN;
    630      1.142        ad 	}
    631      1.142        ad 	if (evp == NULL) {
    632       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    633       1.63   thorpej 		switch (id) {
    634       1.63   thorpej 		case CLOCK_REALTIME:
    635      1.168      yamt 		case CLOCK_MONOTONIC:
    636       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    637       1.63   thorpej 			break;
    638       1.63   thorpej 		case CLOCK_VIRTUAL:
    639       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    640       1.63   thorpej 			break;
    641       1.63   thorpej 		case CLOCK_PROF:
    642       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    643       1.63   thorpej 			break;
    644       1.63   thorpej 		}
    645       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    646       1.63   thorpej 	}
    647       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    648       1.73  christos 	pt->pt_info.ksi_errno = 0;
    649       1.73  christos 	pt->pt_info.ksi_code = 0;
    650       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    651      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    652      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    653       1.63   thorpej 	pt->pt_type = id;
    654       1.63   thorpej 	pt->pt_proc = p;
    655       1.63   thorpej 	pt->pt_overruns = 0;
    656       1.63   thorpej 	pt->pt_poverruns = 0;
    657       1.64   nathanw 	pt->pt_entry = timerid;
    658      1.142        ad 	pt->pt_queued = false;
    659      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    660      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    661      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    662      1.149  christos 	else
    663      1.149  christos 		pt->pt_active = 0;
    664      1.149  christos 
    665      1.142        ad 	pts->pts_timers[timerid] = pt;
    666      1.142        ad 	mutex_spin_exit(&timer_lock);
    667       1.63   thorpej 
    668       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    669       1.63   thorpej }
    670       1.63   thorpej 
    671       1.63   thorpej /* Delete a POSIX realtime timer */
    672        1.3    andrew int
    673      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    674      1.140      yamt     register_t *retval)
    675       1.15   thorpej {
    676      1.135       dsl 	/* {
    677       1.63   thorpej 		syscallarg(timer_t) timerid;
    678      1.135       dsl 	} */
    679       1.63   thorpej 	struct proc *p = l->l_proc;
    680       1.65  jdolecek 	timer_t timerid;
    681      1.142        ad 	struct ptimers *pts;
    682       1.63   thorpej 	struct ptimer *pt, *ptn;
    683        1.1       cgd 
    684       1.63   thorpej 	timerid = SCARG(uap, timerid);
    685      1.142        ad 	pts = p->p_timers;
    686      1.142        ad 
    687      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    688      1.142        ad 		return (EINVAL);
    689       1.63   thorpej 
    690      1.142        ad 	mutex_spin_enter(&timer_lock);
    691      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    692      1.142        ad 		mutex_spin_exit(&timer_lock);
    693        1.1       cgd 		return (EINVAL);
    694      1.142        ad 	}
    695      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    696      1.149  christos 		if (pt->pt_active) {
    697      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    698      1.149  christos 			LIST_REMOVE(pt, pt_list);
    699      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    700      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    701      1.149  christos 				    &ptn->pt_time.it_value,
    702      1.149  christos 				    &ptn->pt_time.it_value);
    703      1.149  christos 			pt->pt_active = 0;
    704      1.149  christos 		}
    705       1.63   thorpej 	}
    706      1.142        ad 	itimerfree(pts, timerid);
    707       1.63   thorpej 
    708       1.63   thorpej 	return (0);
    709       1.63   thorpej }
    710       1.63   thorpej 
    711       1.63   thorpej /*
    712       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    713      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    714      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    715       1.63   thorpej  */
    716       1.63   thorpej void
    717       1.63   thorpej timer_settime(struct ptimer *pt)
    718       1.63   thorpej {
    719       1.63   thorpej 	struct ptimer *ptn, *pptn;
    720       1.63   thorpej 	struct ptlist *ptl;
    721       1.63   thorpej 
    722      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    723      1.142        ad 
    724      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    725      1.168      yamt 		callout_halt(&pt->pt_ch, &timer_lock);
    726      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    727       1.63   thorpej 			/*
    728      1.150  christos 			 * Don't need to check tshzto() return value, here.
    729       1.63   thorpej 			 * callout_reset() does it for us.
    730       1.63   thorpej 			 */
    731      1.171  christos 			callout_reset(&pt->pt_ch,
    732      1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    733      1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    734      1.171  christos 			    tshzto(&pt->pt_time.it_value),
    735       1.63   thorpej 			    realtimerexpire, pt);
    736       1.63   thorpej 		}
    737       1.63   thorpej 	} else {
    738       1.63   thorpej 		if (pt->pt_active) {
    739       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    740       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    741       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    742      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    743       1.63   thorpej 				    &ptn->pt_time.it_value,
    744       1.63   thorpej 				    &ptn->pt_time.it_value);
    745       1.63   thorpej 		}
    746      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    747       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    748       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    749       1.63   thorpej 			else
    750       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    751       1.63   thorpej 
    752       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    753      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    754       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    755       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    756      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    757       1.63   thorpej 				    &ptn->pt_time.it_value,
    758       1.63   thorpej 				    &pt->pt_time.it_value);
    759       1.63   thorpej 
    760       1.63   thorpej 			if (pptn)
    761       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    762       1.63   thorpej 			else
    763       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    764       1.63   thorpej 
    765       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    766      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    767       1.63   thorpej 				    &pt->pt_time.it_value,
    768       1.63   thorpej 				    &ptn->pt_time.it_value);
    769       1.63   thorpej 
    770       1.63   thorpej 			pt->pt_active = 1;
    771       1.63   thorpej 		} else
    772       1.63   thorpej 			pt->pt_active = 0;
    773       1.63   thorpej 	}
    774       1.63   thorpej }
    775       1.63   thorpej 
    776       1.63   thorpej void
    777      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    778       1.63   thorpej {
    779      1.150  christos 	struct timespec now;
    780       1.63   thorpej 	struct ptimer *ptn;
    781       1.63   thorpej 
    782      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    783      1.142        ad 
    784      1.150  christos 	*aits = pt->pt_time;
    785      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    786        1.1       cgd 		/*
    787       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    788       1.63   thorpej 		 * part of real time timer.  If time for real time
    789       1.63   thorpej 		 * timer has passed return 0, else return difference
    790       1.63   thorpej 		 * between current time and time for the timer to go
    791       1.63   thorpej 		 * off.
    792        1.1       cgd 		 */
    793      1.150  christos 		if (timespecisset(&aits->it_value)) {
    794      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    795      1.168      yamt 				getnanotime(&now);
    796      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    797      1.168      yamt 				getnanouptime(&now);
    798      1.168      yamt 			}
    799      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    800      1.150  christos 				timespecclear(&aits->it_value);
    801      1.101    kardel 			else
    802      1.150  christos 				timespecsub(&aits->it_value, &now,
    803      1.150  christos 				    &aits->it_value);
    804       1.36   thorpej 		}
    805       1.63   thorpej 	} else if (pt->pt_active) {
    806       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    807       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    808       1.63   thorpej 		else
    809       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    810       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    811      1.150  christos 			timespecadd(&aits->it_value,
    812      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    813       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    814        1.1       cgd 	} else
    815      1.150  christos 		timespecclear(&aits->it_value);
    816       1.63   thorpej }
    817       1.63   thorpej 
    818       1.63   thorpej 
    819       1.63   thorpej 
    820       1.63   thorpej /* Set and arm a POSIX realtime timer */
    821       1.63   thorpej int
    822      1.156  christos sys___timer_settime50(struct lwp *l,
    823      1.156  christos     const struct sys___timer_settime50_args *uap,
    824      1.140      yamt     register_t *retval)
    825       1.63   thorpej {
    826      1.135       dsl 	/* {
    827       1.63   thorpej 		syscallarg(timer_t) timerid;
    828       1.63   thorpej 		syscallarg(int) flags;
    829       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    830       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    831      1.135       dsl 	} */
    832       1.92      cube 	int error;
    833       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    834       1.92      cube 
    835       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    836       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    837       1.92      cube 		return (error);
    838       1.92      cube 
    839       1.92      cube 	if (SCARG(uap, ovalue))
    840       1.92      cube 		ovp = &ovalue;
    841       1.92      cube 
    842       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    843       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    844       1.92      cube 		return error;
    845       1.92      cube 
    846       1.92      cube 	if (ovp)
    847       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    848       1.92      cube 		    sizeof(struct itimerspec));
    849       1.92      cube 	return 0;
    850       1.92      cube }
    851       1.92      cube 
    852       1.92      cube int
    853       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    854       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    855       1.92      cube {
    856      1.150  christos 	struct timespec now;
    857      1.150  christos 	struct itimerspec val, oval;
    858      1.142        ad 	struct ptimers *pts;
    859       1.63   thorpej 	struct ptimer *pt;
    860      1.160  christos 	int error;
    861       1.63   thorpej 
    862      1.142        ad 	pts = p->p_timers;
    863       1.63   thorpej 
    864      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    865      1.142        ad 		return EINVAL;
    866      1.150  christos 	val = *value;
    867      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    868      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    869      1.160  christos 		return error;
    870       1.63   thorpej 
    871      1.142        ad 	mutex_spin_enter(&timer_lock);
    872      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    873      1.142        ad 		mutex_spin_exit(&timer_lock);
    874      1.150  christos 		return EINVAL;
    875      1.142        ad 	}
    876      1.142        ad 
    877       1.63   thorpej 	oval = pt->pt_time;
    878       1.63   thorpej 	pt->pt_time = val;
    879       1.63   thorpej 
    880       1.67   nathanw 	/*
    881       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    882       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    883       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    884       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    885       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    886       1.67   nathanw 	 */
    887      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    888      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    889      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    890      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    891      1.168      yamt 					getnanotime(&now);
    892      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    893      1.168      yamt 					getnanouptime(&now);
    894      1.168      yamt 				}
    895      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    896      1.101    kardel 				    &pt->pt_time.it_value);
    897      1.101    kardel 			}
    898       1.67   nathanw 		} else {
    899       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    900      1.150  christos 				getnanotime(&now);
    901      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    902      1.101    kardel 				    &pt->pt_time.it_value);
    903      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    904       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    905       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    906      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    907       1.67   nathanw 				}
    908       1.67   nathanw 			}
    909       1.67   nathanw 		}
    910       1.67   nathanw 	}
    911       1.67   nathanw 
    912       1.63   thorpej 	timer_settime(pt);
    913      1.142        ad 	mutex_spin_exit(&timer_lock);
    914       1.63   thorpej 
    915      1.150  christos 	if (ovalue)
    916      1.150  christos 		*ovalue = oval;
    917       1.63   thorpej 
    918       1.63   thorpej 	return (0);
    919       1.63   thorpej }
    920       1.63   thorpej 
    921       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    922       1.63   thorpej int
    923      1.156  christos sys___timer_gettime50(struct lwp *l,
    924      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    925       1.63   thorpej {
    926      1.135       dsl 	/* {
    927       1.63   thorpej 		syscallarg(timer_t) timerid;
    928       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    929      1.135       dsl 	} */
    930       1.63   thorpej 	struct itimerspec its;
    931       1.92      cube 	int error;
    932       1.92      cube 
    933       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    934       1.92      cube 	    &its)) != 0)
    935       1.92      cube 		return error;
    936       1.92      cube 
    937       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    938       1.92      cube }
    939       1.92      cube 
    940       1.92      cube int
    941       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    942       1.92      cube {
    943       1.63   thorpej 	struct ptimer *pt;
    944      1.142        ad 	struct ptimers *pts;
    945       1.63   thorpej 
    946      1.142        ad 	pts = p->p_timers;
    947      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    948       1.63   thorpej 		return (EINVAL);
    949      1.142        ad 	mutex_spin_enter(&timer_lock);
    950      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    951      1.142        ad 		mutex_spin_exit(&timer_lock);
    952      1.142        ad 		return (EINVAL);
    953      1.142        ad 	}
    954      1.150  christos 	timer_gettime(pt, its);
    955      1.142        ad 	mutex_spin_exit(&timer_lock);
    956       1.63   thorpej 
    957       1.92      cube 	return 0;
    958       1.63   thorpej }
    959       1.63   thorpej 
    960       1.63   thorpej /*
    961       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    962       1.63   thorpej  * while a notification was already pending. The counter is reset when
    963       1.63   thorpej  * a timer expires and a notification can be posted.
    964       1.63   thorpej  */
    965       1.63   thorpej int
    966      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    967      1.140      yamt     register_t *retval)
    968       1.63   thorpej {
    969      1.135       dsl 	/* {
    970       1.63   thorpej 		syscallarg(timer_t) timerid;
    971      1.135       dsl 	} */
    972       1.63   thorpej 	struct proc *p = l->l_proc;
    973      1.142        ad 	struct ptimers *pts;
    974       1.63   thorpej 	int timerid;
    975       1.63   thorpej 	struct ptimer *pt;
    976       1.63   thorpej 
    977       1.63   thorpej 	timerid = SCARG(uap, timerid);
    978       1.63   thorpej 
    979      1.142        ad 	pts = p->p_timers;
    980      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    981      1.142        ad 		return (EINVAL);
    982      1.142        ad 	mutex_spin_enter(&timer_lock);
    983      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    984      1.142        ad 		mutex_spin_exit(&timer_lock);
    985       1.63   thorpej 		return (EINVAL);
    986      1.142        ad 	}
    987       1.63   thorpej 	*retval = pt->pt_poverruns;
    988      1.187  christos 	if (*retval >= DELAYTIMER_MAX)
    989      1.187  christos 		*retval = DELAYTIMER_MAX;
    990      1.142        ad 	mutex_spin_exit(&timer_lock);
    991       1.63   thorpej 
    992       1.63   thorpej 	return (0);
    993       1.63   thorpej }
    994       1.63   thorpej 
    995       1.63   thorpej /*
    996       1.63   thorpej  * Real interval timer expired:
    997       1.63   thorpej  * send process whose timer expired an alarm signal.
    998       1.63   thorpej  * If time is not set up to reload, then just return.
    999       1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1000       1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1001       1.63   thorpej  * SIGALRM calls to be compressed into one.
   1002       1.63   thorpej  */
   1003       1.63   thorpej void
   1004       1.63   thorpej realtimerexpire(void *arg)
   1005       1.63   thorpej {
   1006      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
   1007      1.150  christos 	struct timespec now, next;
   1008       1.63   thorpej 	struct ptimer *pt;
   1009      1.148     joerg 	int backwards;
   1010       1.63   thorpej 
   1011      1.142        ad 	pt = arg;
   1012       1.63   thorpej 
   1013      1.142        ad 	mutex_spin_enter(&timer_lock);
   1014       1.63   thorpej 	itimerfire(pt);
   1015       1.63   thorpej 
   1016      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1017      1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1018      1.142        ad 		mutex_spin_exit(&timer_lock);
   1019       1.63   thorpej 		return;
   1020       1.63   thorpej 	}
   1021      1.148     joerg 
   1022      1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1023      1.171  christos 		getnanouptime(&now);
   1024      1.171  christos 	} else {
   1025      1.171  christos 		getnanotime(&now);
   1026      1.171  christos 	}
   1027      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1028      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1029      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1030      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1031      1.148     joerg 		pt->pt_time.it_value = next;
   1032      1.148     joerg 	} else {
   1033      1.166      yamt 		now_ns = timespec2ns(&now);
   1034      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1035      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1036      1.148     joerg 
   1037      1.166      yamt 		next_val = now_ns +
   1038      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1039      1.148     joerg 
   1040      1.148     joerg 		if (backwards)
   1041      1.148     joerg 			next_val += interval;
   1042      1.148     joerg 		else
   1043      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1044      1.148     joerg 
   1045      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1046      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1047      1.101    kardel 	}
   1048      1.148     joerg 
   1049      1.148     joerg 	/*
   1050      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1051      1.148     joerg 	 * callout_reset() does it for us.
   1052      1.148     joerg 	 */
   1053      1.171  christos 	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
   1054      1.171  christos 	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
   1055      1.148     joerg 	    realtimerexpire, pt);
   1056      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1057       1.63   thorpej }
   1058       1.63   thorpej 
   1059       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1060       1.63   thorpej /* ARGSUSED */
   1061       1.63   thorpej int
   1062      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1063      1.140      yamt     register_t *retval)
   1064       1.63   thorpej {
   1065      1.135       dsl 	/* {
   1066       1.63   thorpej 		syscallarg(int) which;
   1067       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1068      1.135       dsl 	} */
   1069       1.63   thorpej 	struct proc *p = l->l_proc;
   1070       1.63   thorpej 	struct itimerval aitv;
   1071       1.91      cube 	int error;
   1072       1.91      cube 
   1073  1.189.8.3    martin 	memset(&aitv, 0, sizeof(aitv));
   1074       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1075       1.91      cube 	if (error)
   1076       1.91      cube 		return error;
   1077       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1078       1.91      cube }
   1079       1.63   thorpej 
   1080       1.91      cube int
   1081       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1082       1.91      cube {
   1083      1.142        ad 	struct ptimers *pts;
   1084      1.142        ad 	struct ptimer *pt;
   1085      1.150  christos 	struct itimerspec its;
   1086       1.63   thorpej 
   1087      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1088       1.63   thorpej 		return (EINVAL);
   1089       1.63   thorpej 
   1090      1.142        ad 	mutex_spin_enter(&timer_lock);
   1091      1.142        ad 	pts = p->p_timers;
   1092      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1093       1.91      cube 		timerclear(&itvp->it_value);
   1094       1.91      cube 		timerclear(&itvp->it_interval);
   1095      1.150  christos 	} else {
   1096      1.150  christos 		timer_gettime(pt, &its);
   1097      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1098      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1099      1.150  christos 	}
   1100      1.188   msaitoh 	mutex_spin_exit(&timer_lock);
   1101       1.63   thorpej 
   1102       1.91      cube 	return 0;
   1103        1.1       cgd }
   1104        1.1       cgd 
   1105       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1106        1.1       cgd /* ARGSUSED */
   1107        1.3    andrew int
   1108      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1109      1.140      yamt     register_t *retval)
   1110       1.15   thorpej {
   1111      1.135       dsl 	/* {
   1112       1.30   mycroft 		syscallarg(int) which;
   1113       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1114       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1115      1.135       dsl 	} */
   1116       1.63   thorpej 	struct proc *p = l->l_proc;
   1117       1.30   mycroft 	int which = SCARG(uap, which);
   1118      1.156  christos 	struct sys___getitimer50_args getargs;
   1119       1.91      cube 	const struct itimerval *itvp;
   1120        1.1       cgd 	struct itimerval aitv;
   1121       1.91      cube 	int error;
   1122        1.1       cgd 
   1123      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1124        1.1       cgd 		return (EINVAL);
   1125       1.11       cgd 	itvp = SCARG(uap, itv);
   1126       1.63   thorpej 	if (itvp &&
   1127      1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1128        1.1       cgd 		return (error);
   1129       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1130       1.30   mycroft 		SCARG(&getargs, which) = which;
   1131       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1132      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1133       1.21       cgd 			return (error);
   1134       1.21       cgd 	}
   1135        1.1       cgd 	if (itvp == 0)
   1136        1.1       cgd 		return (0);
   1137       1.91      cube 
   1138       1.91      cube 	return dosetitimer(p, which, &aitv);
   1139       1.91      cube }
   1140       1.91      cube 
   1141       1.91      cube int
   1142       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1143       1.91      cube {
   1144      1.150  christos 	struct timespec now;
   1145      1.142        ad 	struct ptimers *pts;
   1146      1.142        ad 	struct ptimer *pt, *spare;
   1147       1.91      cube 
   1148      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1149       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1150        1.1       cgd 		return (EINVAL);
   1151       1.63   thorpej 
   1152       1.63   thorpej 	/*
   1153       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1154       1.63   thorpej 	 * wants to clear the timer.
   1155       1.63   thorpej 	 */
   1156      1.142        ad 	spare = NULL;
   1157      1.142        ad 	pts = p->p_timers;
   1158      1.142        ad  retry:
   1159      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1160      1.142        ad 	    pts->pts_timers[which] == NULL))
   1161       1.63   thorpej 		return (0);
   1162      1.142        ad 	if (pts == NULL)
   1163      1.142        ad 		pts = timers_alloc(p);
   1164      1.142        ad 	mutex_spin_enter(&timer_lock);
   1165      1.142        ad 	pt = pts->pts_timers[which];
   1166      1.142        ad 	if (pt == NULL) {
   1167      1.142        ad 		if (spare == NULL) {
   1168      1.142        ad 			mutex_spin_exit(&timer_lock);
   1169      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1170  1.189.8.2    martin 			memset(spare, 0, sizeof(*spare));
   1171      1.142        ad 			goto retry;
   1172      1.142        ad 		}
   1173      1.142        ad 		pt = spare;
   1174      1.142        ad 		spare = NULL;
   1175       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1176       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1177       1.63   thorpej 		pt->pt_overruns = 0;
   1178       1.63   thorpej 		pt->pt_proc = p;
   1179       1.63   thorpej 		pt->pt_type = which;
   1180       1.64   nathanw 		pt->pt_entry = which;
   1181      1.142        ad 		pt->pt_queued = false;
   1182  1.189.8.5    martin 		if (!CLOCK_VIRTUAL_P(which))
   1183      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1184      1.149  christos 		else
   1185      1.149  christos 			pt->pt_active = 0;
   1186      1.149  christos 
   1187       1.63   thorpej 		switch (which) {
   1188       1.63   thorpej 		case ITIMER_REAL:
   1189      1.170  christos 		case ITIMER_MONOTONIC:
   1190       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1191       1.63   thorpej 			break;
   1192       1.63   thorpej 		case ITIMER_VIRTUAL:
   1193       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1194       1.63   thorpej 			break;
   1195       1.63   thorpej 		case ITIMER_PROF:
   1196       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1197       1.63   thorpej 			break;
   1198        1.1       cgd 		}
   1199      1.142        ad 		pts->pts_timers[which] = pt;
   1200      1.142        ad 	}
   1201       1.63   thorpej 
   1202      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1203      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1204      1.150  christos 
   1205      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1206       1.67   nathanw 		/* Convert to absolute time */
   1207      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1208      1.170  christos 		switch (which) {
   1209      1.170  christos 		case ITIMER_REAL:
   1210      1.170  christos 			getnanotime(&now);
   1211      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1212      1.170  christos 			    &pt->pt_time.it_value);
   1213      1.170  christos 			break;
   1214      1.170  christos 		case ITIMER_MONOTONIC:
   1215      1.170  christos 			getnanouptime(&now);
   1216      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1217      1.170  christos 			    &pt->pt_time.it_value);
   1218      1.170  christos 			break;
   1219      1.170  christos 		default:
   1220      1.170  christos 			break;
   1221      1.170  christos 		}
   1222       1.67   nathanw 	}
   1223       1.63   thorpej 	timer_settime(pt);
   1224      1.142        ad 	mutex_spin_exit(&timer_lock);
   1225      1.142        ad 	if (spare != NULL)
   1226      1.142        ad 		pool_put(&ptimer_pool, spare);
   1227       1.63   thorpej 
   1228        1.1       cgd 	return (0);
   1229        1.1       cgd }
   1230        1.1       cgd 
   1231       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1232      1.142        ad struct ptimers *
   1233       1.63   thorpej timers_alloc(struct proc *p)
   1234       1.63   thorpej {
   1235      1.142        ad 	struct ptimers *pts;
   1236       1.63   thorpej 	int i;
   1237       1.63   thorpej 
   1238      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1239       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1240       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1241       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1242       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1243      1.142        ad 	mutex_spin_enter(&timer_lock);
   1244      1.142        ad 	if (p->p_timers == NULL) {
   1245      1.142        ad 		p->p_timers = pts;
   1246      1.142        ad 		mutex_spin_exit(&timer_lock);
   1247      1.142        ad 		return pts;
   1248      1.142        ad 	}
   1249      1.142        ad 	mutex_spin_exit(&timer_lock);
   1250      1.142        ad 	pool_put(&ptimers_pool, pts);
   1251      1.142        ad 	return p->p_timers;
   1252       1.63   thorpej }
   1253       1.63   thorpej 
   1254        1.1       cgd /*
   1255       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1256       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1257       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1258       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1259       1.63   thorpej  * structure if none of those remain.
   1260        1.1       cgd  */
   1261        1.3    andrew void
   1262       1.63   thorpej timers_free(struct proc *p, int which)
   1263        1.6       cgd {
   1264       1.63   thorpej 	struct ptimers *pts;
   1265      1.142        ad 	struct ptimer *ptn;
   1266      1.150  christos 	struct timespec ts;
   1267      1.142        ad 	int i;
   1268       1.63   thorpej 
   1269      1.142        ad 	if (p->p_timers == NULL)
   1270      1.142        ad 		return;
   1271       1.63   thorpej 
   1272      1.142        ad 	pts = p->p_timers;
   1273      1.142        ad 	mutex_spin_enter(&timer_lock);
   1274      1.142        ad 	if (which == TIMERS_ALL) {
   1275      1.142        ad 		p->p_timers = NULL;
   1276      1.142        ad 		i = 0;
   1277      1.142        ad 	} else {
   1278      1.150  christos 		timespecclear(&ts);
   1279      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1280      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1281      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1282      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1283      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1284      1.149  christos 		}
   1285      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1286      1.142        ad 		if (ptn) {
   1287      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1288      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1289      1.142        ad 			    &ptn->pt_time.it_value);
   1290      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1291      1.142        ad 		}
   1292      1.150  christos 		timespecclear(&ts);
   1293      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1294      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1295      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1296      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1297      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1298      1.149  christos 		}
   1299      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1300      1.142        ad 		if (ptn) {
   1301      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1302      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1303      1.142        ad 			    &ptn->pt_time.it_value);
   1304      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1305       1.63   thorpej 		}
   1306      1.183  christos 		i = TIMER_MIN;
   1307      1.142        ad 	}
   1308      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1309      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1310      1.142        ad 			itimerfree(pts, i);
   1311      1.142        ad 			mutex_spin_enter(&timer_lock);
   1312        1.1       cgd 		}
   1313        1.1       cgd 	}
   1314      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1315      1.183  christos 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1316      1.142        ad 		p->p_timers = NULL;
   1317      1.142        ad 		mutex_spin_exit(&timer_lock);
   1318      1.142        ad 		pool_put(&ptimers_pool, pts);
   1319      1.142        ad 	} else
   1320      1.142        ad 		mutex_spin_exit(&timer_lock);
   1321      1.142        ad }
   1322      1.142        ad 
   1323      1.142        ad static void
   1324      1.142        ad itimerfree(struct ptimers *pts, int index)
   1325      1.142        ad {
   1326      1.142        ad 	struct ptimer *pt;
   1327      1.142        ad 
   1328      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1329      1.142        ad 
   1330      1.142        ad 	pt = pts->pts_timers[index];
   1331      1.142        ad 	pts->pts_timers[index] = NULL;
   1332      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1333      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1334      1.167      yamt 	if (pt->pt_queued)
   1335      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1336      1.144        ad 	mutex_spin_exit(&timer_lock);
   1337      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1338      1.149  christos 		callout_destroy(&pt->pt_ch);
   1339      1.142        ad 	pool_put(&ptimer_pool, pt);
   1340        1.1       cgd }
   1341        1.1       cgd 
   1342        1.1       cgd /*
   1343        1.1       cgd  * Decrement an interval timer by a specified number
   1344      1.152  christos  * of nanoseconds, which must be less than a second,
   1345      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1346      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1347        1.8       cgd  * reduce the value reloaded into the timer so that
   1348        1.1       cgd  * the timer does not drift.  This routine assumes
   1349        1.1       cgd  * that it is called in a context where the timers
   1350        1.1       cgd  * on which it is operating cannot change in value.
   1351        1.1       cgd  */
   1352      1.142        ad static int
   1353      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1354       1.63   thorpej {
   1355      1.150  christos 	struct itimerspec *itp;
   1356        1.1       cgd 
   1357      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1358      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1359      1.142        ad 
   1360       1.63   thorpej 	itp = &pt->pt_time;
   1361      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1362        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1363        1.1       cgd 			/* expired, and already in next interval */
   1364      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1365        1.1       cgd 			goto expire;
   1366        1.1       cgd 		}
   1367      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1368        1.1       cgd 		itp->it_value.tv_sec--;
   1369        1.1       cgd 	}
   1370      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1371      1.152  christos 	nsec = 0;
   1372      1.150  christos 	if (timespecisset(&itp->it_value))
   1373        1.1       cgd 		return (1);
   1374        1.1       cgd 	/* expired, exactly at end of interval */
   1375        1.1       cgd expire:
   1376      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1377        1.1       cgd 		itp->it_value = itp->it_interval;
   1378      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1379      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1380      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1381        1.1       cgd 			itp->it_value.tv_sec--;
   1382        1.1       cgd 		}
   1383       1.63   thorpej 		timer_settime(pt);
   1384        1.1       cgd 	} else
   1385      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1386        1.1       cgd 	return (0);
   1387       1.42       cgd }
   1388       1.42       cgd 
   1389      1.142        ad static void
   1390       1.63   thorpej itimerfire(struct ptimer *pt)
   1391       1.63   thorpej {
   1392       1.78        cl 
   1393      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1394      1.142        ad 
   1395      1.142        ad 	/*
   1396      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1397      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1398      1.142        ad 	 */
   1399      1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1400      1.142        ad 		return;
   1401      1.172     rmind 	}
   1402      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1403      1.142        ad 	pt->pt_queued = true;
   1404      1.142        ad 	softint_schedule(timer_sih);
   1405      1.142        ad }
   1406      1.142        ad 
   1407      1.142        ad void
   1408      1.142        ad timer_tick(lwp_t *l, bool user)
   1409      1.142        ad {
   1410      1.142        ad 	struct ptimers *pts;
   1411      1.142        ad 	struct ptimer *pt;
   1412      1.142        ad 	proc_t *p;
   1413      1.142        ad 
   1414      1.142        ad 	p = l->l_proc;
   1415      1.142        ad 	if (p->p_timers == NULL)
   1416      1.142        ad 		return;
   1417      1.142        ad 
   1418      1.142        ad 	mutex_spin_enter(&timer_lock);
   1419      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1420       1.63   thorpej 		/*
   1421      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1422       1.63   thorpej 		 */
   1423      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1424      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1425      1.142        ad 				itimerfire(pt);
   1426      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1427      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1428      1.142        ad 				itimerfire(pt);
   1429      1.142        ad 	}
   1430      1.142        ad 	mutex_spin_exit(&timer_lock);
   1431      1.142        ad }
   1432      1.142        ad 
   1433      1.142        ad static void
   1434      1.142        ad timer_intr(void *cookie)
   1435      1.142        ad {
   1436      1.142        ad 	ksiginfo_t ksi;
   1437      1.142        ad 	struct ptimer *pt;
   1438      1.142        ad 	proc_t *p;
   1439      1.142        ad 
   1440      1.158        ad 	mutex_enter(proc_lock);
   1441      1.142        ad 	mutex_spin_enter(&timer_lock);
   1442      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1443      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1444      1.142        ad 		KASSERT(pt->pt_queued);
   1445      1.142        ad 		pt->pt_queued = false;
   1446      1.142        ad 
   1447      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1448      1.154  wrstuden 			/* Process is dying. */
   1449      1.142        ad 			continue;
   1450      1.154  wrstuden 		}
   1451      1.142        ad 		p = pt->pt_proc;
   1452      1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1453      1.142        ad 			continue;
   1454      1.142        ad 		}
   1455      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1456       1.63   thorpej 			pt->pt_overruns++;
   1457      1.142        ad 			continue;
   1458       1.64   nathanw 		}
   1459      1.142        ad 
   1460      1.142        ad 		KSI_INIT(&ksi);
   1461      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1462      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1463      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1464      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1465      1.142        ad 		pt->pt_overruns = 0;
   1466      1.142        ad 		mutex_spin_exit(&timer_lock);
   1467      1.142        ad 		kpsignal(p, &ksi, NULL);
   1468      1.142        ad 		mutex_spin_enter(&timer_lock);
   1469       1.63   thorpej 	}
   1470      1.142        ad 	mutex_spin_exit(&timer_lock);
   1471      1.158        ad 	mutex_exit(proc_lock);
   1472       1.63   thorpej }
   1473      1.162      elad 
   1474      1.162      elad /*
   1475      1.162      elad  * Check if the time will wrap if set to ts.
   1476      1.162      elad  *
   1477      1.162      elad  * ts - timespec describing the new time
   1478      1.162      elad  * delta - the delta between the current time and ts
   1479      1.162      elad  */
   1480      1.162      elad bool
   1481      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1482      1.162      elad {
   1483      1.162      elad 
   1484      1.162      elad 	/*
   1485      1.162      elad 	 * Don't allow the time to be set forward so far it
   1486      1.162      elad 	 * will wrap and become negative, thus allowing an
   1487      1.162      elad 	 * attacker to bypass the next check below.  The
   1488      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1489      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1490      1.162      elad 	 * past the cutoff, it will take a very long time
   1491      1.162      elad 	 * to get to the wrap point.
   1492      1.162      elad 	 */
   1493      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1494      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1495      1.162      elad 		return true;
   1496      1.162      elad 
   1497      1.162      elad 	return false;
   1498      1.162      elad }
   1499