kern_time.c revision 1.189.8.6 1 1.189.8.6 martin /* $NetBSD: kern_time.c,v 1.189.8.6 2020/05/25 17:48:16 martin Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.158 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.158 ad * by Christopher G. Demetriou, and by Andrew Doran.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd *
19 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
30 1.42 cgd */
31 1.9 cgd
32 1.1 cgd /*
33 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.8 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * Redistribution and use in source and binary forms, with or without
37 1.1 cgd * modification, are permitted provided that the following conditions
38 1.1 cgd * are met:
39 1.1 cgd * 1. Redistributions of source code must retain the above copyright
40 1.1 cgd * notice, this list of conditions and the following disclaimer.
41 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer in the
43 1.1 cgd * documentation and/or other materials provided with the distribution.
44 1.72 agc * 3. Neither the name of the University nor the names of its contributors
45 1.1 cgd * may be used to endorse or promote products derived from this software
46 1.1 cgd * without specific prior written permission.
47 1.1 cgd *
48 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 1.1 cgd * SUCH DAMAGE.
59 1.1 cgd *
60 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 1.1 cgd */
62 1.58 lukem
63 1.58 lukem #include <sys/cdefs.h>
64 1.189.8.6 martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.189.8.6 2020/05/25 17:48:16 martin Exp $");
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/resourcevar.h>
68 1.5 mycroft #include <sys/kernel.h>
69 1.8 cgd #include <sys/systm.h>
70 1.5 mycroft #include <sys/proc.h>
71 1.8 cgd #include <sys/vnode.h>
72 1.17 christos #include <sys/signalvar.h>
73 1.25 perry #include <sys/syslog.h>
74 1.101 kardel #include <sys/timetc.h>
75 1.143 ad #include <sys/timex.h>
76 1.99 elad #include <sys/kauth.h>
77 1.11 cgd #include <sys/mount.h>
78 1.11 cgd #include <sys/syscallargs.h>
79 1.143 ad #include <sys/cpu.h>
80 1.19 christos
81 1.142 ad static void timer_intr(void *);
82 1.142 ad static void itimerfire(struct ptimer *);
83 1.142 ad static void itimerfree(struct ptimers *, int);
84 1.142 ad
85 1.142 ad kmutex_t timer_lock;
86 1.142 ad
87 1.142 ad static void *timer_sih;
88 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
89 1.131 ad
90 1.161 pooka struct pool ptimer_pool, ptimers_pool;
91 1.97 simonb
92 1.168 yamt #define CLOCK_VIRTUAL_P(clockid) \
93 1.168 yamt ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94 1.168 yamt
95 1.168 yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96 1.168 yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97 1.168 yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
98 1.170 christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99 1.168 yamt
100 1.187 christos #define DELAYTIMER_MAX 32
101 1.186 christos
102 1.131 ad /*
103 1.131 ad * Initialize timekeeping.
104 1.131 ad */
105 1.131 ad void
106 1.131 ad time_init(void)
107 1.131 ad {
108 1.131 ad
109 1.161 pooka pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110 1.161 pooka &pool_allocator_nointr, IPL_NONE);
111 1.161 pooka pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112 1.161 pooka &pool_allocator_nointr, IPL_NONE);
113 1.131 ad }
114 1.131 ad
115 1.142 ad void
116 1.142 ad time_init2(void)
117 1.142 ad {
118 1.142 ad
119 1.142 ad TAILQ_INIT(&timer_queue);
120 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 1.142 ad timer_intr, NULL);
123 1.142 ad }
124 1.142 ad
125 1.63 thorpej /* Time of day and interval timer support.
126 1.1 cgd *
127 1.1 cgd * These routines provide the kernel entry points to get and set
128 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
129 1.1 cgd * here provide support for adding and subtracting timeval structures
130 1.1 cgd * and decrementing interval timers, optionally reloading the interval
131 1.1 cgd * timers when they expire.
132 1.1 cgd */
133 1.1 cgd
134 1.22 jtc /* This function is used by clock_settime and settimeofday */
135 1.132 elad static int
136 1.156 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137 1.22 jtc {
138 1.156 christos struct timespec delta, now;
139 1.129 ad int s;
140 1.22 jtc
141 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142 1.129 ad s = splclock();
143 1.156 christos nanotime(&now);
144 1.156 christos timespecsub(ts, &now, &delta);
145 1.132 elad
146 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147 1.156 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148 1.156 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149 1.129 ad splx(s);
150 1.29 tls return (EPERM);
151 1.55 tron }
152 1.132 elad
153 1.29 tls #ifdef notyet
154 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155 1.129 ad splx(s);
156 1.29 tls return (EPERM);
157 1.55 tron }
158 1.29 tls #endif
159 1.103 kardel
160 1.156 christos tc_setclock(ts);
161 1.103 kardel
162 1.156 christos timespecadd(&boottime, &delta, &boottime);
163 1.103 kardel
164 1.22 jtc resettodr();
165 1.129 ad splx(s);
166 1.129 ad
167 1.29 tls return (0);
168 1.22 jtc }
169 1.22 jtc
170 1.132 elad int
171 1.132 elad settime(struct proc *p, struct timespec *ts)
172 1.132 elad {
173 1.132 elad return (settime1(p, ts, true));
174 1.132 elad }
175 1.132 elad
176 1.22 jtc /* ARGSUSED */
177 1.22 jtc int
178 1.156 christos sys___clock_gettime50(struct lwp *l,
179 1.156 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
180 1.22 jtc {
181 1.135 dsl /* {
182 1.22 jtc syscallarg(clockid_t) clock_id;
183 1.23 cgd syscallarg(struct timespec *) tp;
184 1.135 dsl } */
185 1.165 njoly int error;
186 1.22 jtc struct timespec ats;
187 1.22 jtc
188 1.165 njoly error = clock_gettime1(SCARG(uap, clock_id), &ats);
189 1.165 njoly if (error != 0)
190 1.165 njoly return error;
191 1.165 njoly
192 1.165 njoly return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193 1.165 njoly }
194 1.165 njoly
195 1.22 jtc /* ARGSUSED */
196 1.22 jtc int
197 1.156 christos sys___clock_settime50(struct lwp *l,
198 1.156 christos const struct sys___clock_settime50_args *uap, register_t *retval)
199 1.22 jtc {
200 1.135 dsl /* {
201 1.22 jtc syscallarg(clockid_t) clock_id;
202 1.23 cgd syscallarg(const struct timespec *) tp;
203 1.135 dsl } */
204 1.156 christos int error;
205 1.156 christos struct timespec ats;
206 1.22 jtc
207 1.156 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208 1.156 christos return error;
209 1.156 christos
210 1.156 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211 1.56 manu }
212 1.56 manu
213 1.56 manu
214 1.56 manu int
215 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216 1.132 elad bool check_kauth)
217 1.56 manu {
218 1.56 manu int error;
219 1.56 manu
220 1.61 simonb switch (clock_id) {
221 1.61 simonb case CLOCK_REALTIME:
222 1.156 christos if ((error = settime1(p, tp, check_kauth)) != 0)
223 1.61 simonb return (error);
224 1.61 simonb break;
225 1.61 simonb case CLOCK_MONOTONIC:
226 1.61 simonb return (EINVAL); /* read-only clock */
227 1.61 simonb default:
228 1.56 manu return (EINVAL);
229 1.61 simonb }
230 1.22 jtc
231 1.22 jtc return 0;
232 1.22 jtc }
233 1.22 jtc
234 1.22 jtc int
235 1.156 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236 1.140 yamt register_t *retval)
237 1.22 jtc {
238 1.135 dsl /* {
239 1.22 jtc syscallarg(clockid_t) clock_id;
240 1.23 cgd syscallarg(struct timespec *) tp;
241 1.135 dsl } */
242 1.22 jtc struct timespec ts;
243 1.180 maxv int error;
244 1.22 jtc
245 1.164 njoly if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246 1.164 njoly return error;
247 1.164 njoly
248 1.164 njoly if (SCARG(uap, tp))
249 1.164 njoly error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250 1.164 njoly
251 1.164 njoly return error;
252 1.164 njoly }
253 1.164 njoly
254 1.164 njoly int
255 1.164 njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
256 1.164 njoly {
257 1.164 njoly
258 1.61 simonb switch (clock_id) {
259 1.61 simonb case CLOCK_REALTIME:
260 1.61 simonb case CLOCK_MONOTONIC:
261 1.164 njoly ts->tv_sec = 0;
262 1.102 kardel if (tc_getfrequency() > 1000000000)
263 1.164 njoly ts->tv_nsec = 1;
264 1.102 kardel else
265 1.164 njoly ts->tv_nsec = 1000000000 / tc_getfrequency();
266 1.61 simonb break;
267 1.61 simonb default:
268 1.164 njoly return EINVAL;
269 1.61 simonb }
270 1.22 jtc
271 1.164 njoly return 0;
272 1.22 jtc }
273 1.22 jtc
274 1.27 jtc /* ARGSUSED */
275 1.27 jtc int
276 1.156 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277 1.140 yamt register_t *retval)
278 1.27 jtc {
279 1.135 dsl /* {
280 1.101 kardel syscallarg(struct timespec *) rqtp;
281 1.101 kardel syscallarg(struct timespec *) rmtp;
282 1.135 dsl } */
283 1.101 kardel struct timespec rmt, rqt;
284 1.120 dsl int error, error1;
285 1.101 kardel
286 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287 1.101 kardel if (error)
288 1.101 kardel return (error);
289 1.101 kardel
290 1.175 christos error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
292 1.175 christos if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293 1.175 christos return error;
294 1.175 christos
295 1.175 christos error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296 1.175 christos return error1 ? error1 : error;
297 1.175 christos }
298 1.175 christos
299 1.175 christos /* ARGSUSED */
300 1.175 christos int
301 1.175 christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302 1.175 christos register_t *retval)
303 1.175 christos {
304 1.175 christos /* {
305 1.175 christos syscallarg(clockid_t) clock_id;
306 1.175 christos syscallarg(int) flags;
307 1.175 christos syscallarg(struct timespec *) rqtp;
308 1.175 christos syscallarg(struct timespec *) rmtp;
309 1.175 christos } */
310 1.175 christos struct timespec rmt, rqt;
311 1.175 christos int error, error1;
312 1.175 christos
313 1.175 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314 1.175 christos if (error)
315 1.181 christos goto out;
316 1.175 christos
317 1.175 christos error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
319 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320 1.181 christos goto out;
321 1.120 dsl
322 1.189 njoly if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
323 1.189 njoly (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
324 1.181 christos error = error1;
325 1.181 christos out:
326 1.181 christos *retval = error;
327 1.181 christos return 0;
328 1.120 dsl }
329 1.120 dsl
330 1.120 dsl int
331 1.175 christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
332 1.175 christos struct timespec *rmt)
333 1.120 dsl {
334 1.141 yamt struct timespec rmtstart;
335 1.120 dsl int error, timo;
336 1.120 dsl
337 1.184 uwe if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
338 1.184 uwe if (error == ETIMEDOUT) {
339 1.184 uwe error = 0;
340 1.184 uwe if (rmt != NULL)
341 1.184 uwe rmt->tv_sec = rmt->tv_nsec = 0;
342 1.184 uwe }
343 1.184 uwe return error;
344 1.184 uwe }
345 1.101 kardel
346 1.101 kardel /*
347 1.175 christos * Avoid inadvertently sleeping forever
348 1.101 kardel */
349 1.101 kardel if (timo == 0)
350 1.101 kardel timo = 1;
351 1.141 yamt again:
352 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
353 1.141 yamt if (rmt != NULL || error == 0) {
354 1.141 yamt struct timespec rmtend;
355 1.141 yamt struct timespec t0;
356 1.141 yamt struct timespec *t;
357 1.189.8.6 martin int err;
358 1.189.8.6 martin
359 1.189.8.6 martin err = clock_gettime1(clock_id, &rmtend);
360 1.189.8.6 martin if (err != 0)
361 1.189.8.6 martin return err;
362 1.101 kardel
363 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
364 1.179 christos if (flags & TIMER_ABSTIME) {
365 1.179 christos timespecsub(rqt, &rmtend, t);
366 1.179 christos } else {
367 1.179 christos timespecsub(&rmtend, &rmtstart, t);
368 1.179 christos timespecsub(rqt, t, t);
369 1.179 christos }
370 1.141 yamt if (t->tv_sec < 0)
371 1.141 yamt timespecclear(t);
372 1.141 yamt if (error == 0) {
373 1.141 yamt timo = tstohz(t);
374 1.141 yamt if (timo > 0)
375 1.141 yamt goto again;
376 1.141 yamt }
377 1.141 yamt }
378 1.104 kardel
379 1.101 kardel if (error == ERESTART)
380 1.101 kardel error = EINTR;
381 1.101 kardel if (error == EWOULDBLOCK)
382 1.101 kardel error = 0;
383 1.101 kardel
384 1.101 kardel return error;
385 1.27 jtc }
386 1.22 jtc
387 1.186 christos int
388 1.186 christos sys_clock_getcpuclockid2(struct lwp *l,
389 1.186 christos const struct sys_clock_getcpuclockid2_args *uap,
390 1.186 christos register_t *retval)
391 1.186 christos {
392 1.186 christos /* {
393 1.186 christos syscallarg(idtype_t idtype;
394 1.186 christos syscallarg(id_t id);
395 1.186 christos syscallarg(clockid_t *)clock_id;
396 1.186 christos } */
397 1.186 christos pid_t pid;
398 1.186 christos lwpid_t lid;
399 1.186 christos clockid_t clock_id;
400 1.186 christos id_t id = SCARG(uap, id);
401 1.186 christos
402 1.186 christos switch (SCARG(uap, idtype)) {
403 1.186 christos case P_PID:
404 1.188 msaitoh pid = id == 0 ? l->l_proc->p_pid : id;
405 1.186 christos clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
406 1.186 christos break;
407 1.186 christos case P_LWPID:
408 1.186 christos lid = id == 0 ? l->l_lid : id;
409 1.186 christos clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
410 1.186 christos break;
411 1.186 christos default:
412 1.186 christos return EINVAL;
413 1.186 christos }
414 1.186 christos return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
415 1.186 christos }
416 1.186 christos
417 1.1 cgd /* ARGSUSED */
418 1.3 andrew int
419 1.156 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
420 1.140 yamt register_t *retval)
421 1.15 thorpej {
422 1.135 dsl /* {
423 1.11 cgd syscallarg(struct timeval *) tp;
424 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
425 1.135 dsl } */
426 1.1 cgd struct timeval atv;
427 1.1 cgd int error = 0;
428 1.25 perry struct timezone tzfake;
429 1.1 cgd
430 1.11 cgd if (SCARG(uap, tp)) {
431 1.189.8.4 martin memset(&atv, 0, sizeof(atv));
432 1.1 cgd microtime(&atv);
433 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
434 1.17 christos if (error)
435 1.1 cgd return (error);
436 1.1 cgd }
437 1.25 perry if (SCARG(uap, tzp)) {
438 1.25 perry /*
439 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
440 1.25 perry * fake up a timezone struct and return it if demanded.
441 1.25 perry */
442 1.25 perry tzfake.tz_minuteswest = 0;
443 1.25 perry tzfake.tz_dsttime = 0;
444 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
445 1.25 perry }
446 1.1 cgd return (error);
447 1.1 cgd }
448 1.1 cgd
449 1.1 cgd /* ARGSUSED */
450 1.3 andrew int
451 1.156 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
452 1.140 yamt register_t *retval)
453 1.15 thorpej {
454 1.135 dsl /* {
455 1.24 cgd syscallarg(const struct timeval *) tv;
456 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
457 1.135 dsl } */
458 1.60 manu
459 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
460 1.60 manu }
461 1.60 manu
462 1.60 manu int
463 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
464 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
465 1.60 manu {
466 1.22 jtc struct timeval atv;
467 1.98 christos struct timespec ts;
468 1.22 jtc int error;
469 1.1 cgd
470 1.8 cgd /* Verify all parameters before changing time. */
471 1.119 dsl
472 1.25 perry /*
473 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
474 1.25 perry * obsolete program would try to set it, so we log a warning.
475 1.25 perry */
476 1.98 christos if (utzp)
477 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
478 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
479 1.98 christos
480 1.98 christos if (utv == NULL)
481 1.98 christos return 0;
482 1.98 christos
483 1.119 dsl if (userspace) {
484 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
485 1.119 dsl return error;
486 1.119 dsl utv = &atv;
487 1.119 dsl }
488 1.119 dsl
489 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
490 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
491 1.1 cgd }
492 1.1 cgd
493 1.68 dsl int time_adjusted; /* set if an adjustment is made */
494 1.1 cgd
495 1.1 cgd /* ARGSUSED */
496 1.3 andrew int
497 1.156 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
498 1.140 yamt register_t *retval)
499 1.15 thorpej {
500 1.135 dsl /* {
501 1.24 cgd syscallarg(const struct timeval *) delta;
502 1.11 cgd syscallarg(struct timeval *) olddelta;
503 1.135 dsl } */
504 1.180 maxv int error;
505 1.156 christos struct timeval atv, oldatv;
506 1.1 cgd
507 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
508 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
509 1.156 christos return error;
510 1.17 christos
511 1.156 christos if (SCARG(uap, delta)) {
512 1.156 christos error = copyin(SCARG(uap, delta), &atv,
513 1.156 christos sizeof(*SCARG(uap, delta)));
514 1.156 christos if (error)
515 1.156 christos return (error);
516 1.156 christos }
517 1.156 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
518 1.156 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
519 1.156 christos if (SCARG(uap, olddelta))
520 1.156 christos error = copyout(&oldatv, SCARG(uap, olddelta),
521 1.156 christos sizeof(*SCARG(uap, olddelta)));
522 1.156 christos return error;
523 1.56 manu }
524 1.56 manu
525 1.156 christos void
526 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
527 1.56 manu {
528 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
529 1.101 kardel
530 1.101 kardel if (olddelta) {
531 1.189.8.4 martin memset(olddelta, 0, sizeof(*olddelta));
532 1.143 ad mutex_spin_enter(&timecounter_lock);
533 1.156 christos olddelta->tv_sec = time_adjtime / 1000000;
534 1.156 christos olddelta->tv_usec = time_adjtime % 1000000;
535 1.156 christos if (olddelta->tv_usec < 0) {
536 1.156 christos olddelta->tv_usec += 1000000;
537 1.156 christos olddelta->tv_sec--;
538 1.101 kardel }
539 1.157 christos mutex_spin_exit(&timecounter_lock);
540 1.101 kardel }
541 1.101 kardel
542 1.101 kardel if (delta) {
543 1.156 christos mutex_spin_enter(&timecounter_lock);
544 1.157 christos time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
545 1.101 kardel
546 1.143 ad if (time_adjtime) {
547 1.101 kardel /* We need to save the system time during shutdown */
548 1.101 kardel time_adjusted |= 1;
549 1.143 ad }
550 1.143 ad mutex_spin_exit(&timecounter_lock);
551 1.101 kardel }
552 1.1 cgd }
553 1.1 cgd
554 1.1 cgd /*
555 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
556 1.63 thorpej * timer_*() family of routines are supported.
557 1.1 cgd *
558 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
559 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
560 1.183 christos * first four elements in this array are reserved for the BSD timers:
561 1.170 christos * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
562 1.170 christos * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
563 1.170 christos * allocated by the timer_create() syscall.
564 1.1 cgd *
565 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
566 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
567 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
568 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
569 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
570 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
571 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
572 1.63 thorpej * given below), to be delayed in real time past when it is supposed
573 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
574 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
575 1.63 thorpej * compute the next time in absolute time the timer should go off. */
576 1.63 thorpej
577 1.63 thorpej /* Allocate a POSIX realtime timer. */
578 1.63 thorpej int
579 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
580 1.140 yamt register_t *retval)
581 1.63 thorpej {
582 1.135 dsl /* {
583 1.63 thorpej syscallarg(clockid_t) clock_id;
584 1.63 thorpej syscallarg(struct sigevent *) evp;
585 1.63 thorpej syscallarg(timer_t *) timerid;
586 1.135 dsl } */
587 1.92 cube
588 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
589 1.105 ad SCARG(uap, evp), copyin, l);
590 1.92 cube }
591 1.92 cube
592 1.92 cube int
593 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
594 1.105 ad copyin_t fetch_event, struct lwp *l)
595 1.92 cube {
596 1.92 cube int error;
597 1.92 cube timer_t timerid;
598 1.142 ad struct ptimers *pts;
599 1.63 thorpej struct ptimer *pt;
600 1.105 ad struct proc *p;
601 1.105 ad
602 1.105 ad p = l->l_proc;
603 1.63 thorpej
604 1.170 christos if ((u_int)id > CLOCK_MONOTONIC)
605 1.63 thorpej return (EINVAL);
606 1.63 thorpej
607 1.142 ad if ((pts = p->p_timers) == NULL)
608 1.142 ad pts = timers_alloc(p);
609 1.63 thorpej
610 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
611 1.189.8.1 martin memset(pt, 0, sizeof(*pt));
612 1.142 ad if (evp != NULL) {
613 1.63 thorpej if (((error =
614 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
615 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
616 1.163 drochner (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
617 1.163 drochner (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
618 1.163 drochner (pt->pt_ev.sigev_signo <= 0 ||
619 1.163 drochner pt->pt_ev.sigev_signo >= NSIG))) {
620 1.63 thorpej pool_put(&ptimer_pool, pt);
621 1.63 thorpej return (error ? error : EINVAL);
622 1.63 thorpej }
623 1.142 ad }
624 1.142 ad
625 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
626 1.142 ad mutex_spin_enter(&timer_lock);
627 1.183 christos for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
628 1.142 ad if (pts->pts_timers[timerid] == NULL)
629 1.142 ad break;
630 1.142 ad if (timerid == TIMER_MAX) {
631 1.142 ad mutex_spin_exit(&timer_lock);
632 1.142 ad pool_put(&ptimer_pool, pt);
633 1.142 ad return EAGAIN;
634 1.142 ad }
635 1.142 ad if (evp == NULL) {
636 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
637 1.63 thorpej switch (id) {
638 1.63 thorpej case CLOCK_REALTIME:
639 1.168 yamt case CLOCK_MONOTONIC:
640 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
641 1.63 thorpej break;
642 1.63 thorpej case CLOCK_VIRTUAL:
643 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
644 1.63 thorpej break;
645 1.63 thorpej case CLOCK_PROF:
646 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
647 1.63 thorpej break;
648 1.63 thorpej }
649 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
650 1.63 thorpej }
651 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
652 1.73 christos pt->pt_info.ksi_errno = 0;
653 1.73 christos pt->pt_info.ksi_code = 0;
654 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
655 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
656 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
657 1.63 thorpej pt->pt_type = id;
658 1.63 thorpej pt->pt_proc = p;
659 1.63 thorpej pt->pt_overruns = 0;
660 1.63 thorpej pt->pt_poverruns = 0;
661 1.64 nathanw pt->pt_entry = timerid;
662 1.142 ad pt->pt_queued = false;
663 1.150 christos timespecclear(&pt->pt_time.it_value);
664 1.168 yamt if (!CLOCK_VIRTUAL_P(id))
665 1.168 yamt callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
666 1.149 christos else
667 1.149 christos pt->pt_active = 0;
668 1.149 christos
669 1.142 ad pts->pts_timers[timerid] = pt;
670 1.142 ad mutex_spin_exit(&timer_lock);
671 1.63 thorpej
672 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
673 1.63 thorpej }
674 1.63 thorpej
675 1.63 thorpej /* Delete a POSIX realtime timer */
676 1.3 andrew int
677 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
678 1.140 yamt register_t *retval)
679 1.15 thorpej {
680 1.135 dsl /* {
681 1.63 thorpej syscallarg(timer_t) timerid;
682 1.135 dsl } */
683 1.63 thorpej struct proc *p = l->l_proc;
684 1.65 jdolecek timer_t timerid;
685 1.142 ad struct ptimers *pts;
686 1.63 thorpej struct ptimer *pt, *ptn;
687 1.1 cgd
688 1.63 thorpej timerid = SCARG(uap, timerid);
689 1.142 ad pts = p->p_timers;
690 1.142 ad
691 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
692 1.142 ad return (EINVAL);
693 1.63 thorpej
694 1.142 ad mutex_spin_enter(&timer_lock);
695 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
696 1.142 ad mutex_spin_exit(&timer_lock);
697 1.1 cgd return (EINVAL);
698 1.142 ad }
699 1.168 yamt if (CLOCK_VIRTUAL_P(pt->pt_type)) {
700 1.149 christos if (pt->pt_active) {
701 1.149 christos ptn = LIST_NEXT(pt, pt_list);
702 1.149 christos LIST_REMOVE(pt, pt_list);
703 1.149 christos for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
704 1.150 christos timespecadd(&pt->pt_time.it_value,
705 1.149 christos &ptn->pt_time.it_value,
706 1.149 christos &ptn->pt_time.it_value);
707 1.149 christos pt->pt_active = 0;
708 1.149 christos }
709 1.63 thorpej }
710 1.142 ad itimerfree(pts, timerid);
711 1.63 thorpej
712 1.63 thorpej return (0);
713 1.63 thorpej }
714 1.63 thorpej
715 1.63 thorpej /*
716 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
717 1.168 yamt * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
718 1.168 yamt * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
719 1.63 thorpej */
720 1.63 thorpej void
721 1.63 thorpej timer_settime(struct ptimer *pt)
722 1.63 thorpej {
723 1.63 thorpej struct ptimer *ptn, *pptn;
724 1.63 thorpej struct ptlist *ptl;
725 1.63 thorpej
726 1.142 ad KASSERT(mutex_owned(&timer_lock));
727 1.142 ad
728 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
729 1.168 yamt callout_halt(&pt->pt_ch, &timer_lock);
730 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
731 1.63 thorpej /*
732 1.150 christos * Don't need to check tshzto() return value, here.
733 1.63 thorpej * callout_reset() does it for us.
734 1.63 thorpej */
735 1.171 christos callout_reset(&pt->pt_ch,
736 1.171 christos pt->pt_type == CLOCK_MONOTONIC ?
737 1.171 christos tshztoup(&pt->pt_time.it_value) :
738 1.171 christos tshzto(&pt->pt_time.it_value),
739 1.63 thorpej realtimerexpire, pt);
740 1.63 thorpej }
741 1.63 thorpej } else {
742 1.63 thorpej if (pt->pt_active) {
743 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
744 1.63 thorpej LIST_REMOVE(pt, pt_list);
745 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
746 1.150 christos timespecadd(&pt->pt_time.it_value,
747 1.63 thorpej &ptn->pt_time.it_value,
748 1.63 thorpej &ptn->pt_time.it_value);
749 1.63 thorpej }
750 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
751 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
752 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
753 1.63 thorpej else
754 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
755 1.63 thorpej
756 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
757 1.150 christos ptn && timespeccmp(&pt->pt_time.it_value,
758 1.63 thorpej &ptn->pt_time.it_value, >);
759 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
760 1.150 christos timespecsub(&pt->pt_time.it_value,
761 1.63 thorpej &ptn->pt_time.it_value,
762 1.63 thorpej &pt->pt_time.it_value);
763 1.63 thorpej
764 1.63 thorpej if (pptn)
765 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
766 1.63 thorpej else
767 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
768 1.63 thorpej
769 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
770 1.150 christos timespecsub(&ptn->pt_time.it_value,
771 1.63 thorpej &pt->pt_time.it_value,
772 1.63 thorpej &ptn->pt_time.it_value);
773 1.63 thorpej
774 1.63 thorpej pt->pt_active = 1;
775 1.63 thorpej } else
776 1.63 thorpej pt->pt_active = 0;
777 1.63 thorpej }
778 1.63 thorpej }
779 1.63 thorpej
780 1.63 thorpej void
781 1.150 christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
782 1.63 thorpej {
783 1.150 christos struct timespec now;
784 1.63 thorpej struct ptimer *ptn;
785 1.63 thorpej
786 1.142 ad KASSERT(mutex_owned(&timer_lock));
787 1.142 ad
788 1.150 christos *aits = pt->pt_time;
789 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
790 1.1 cgd /*
791 1.12 mycroft * Convert from absolute to relative time in .it_value
792 1.63 thorpej * part of real time timer. If time for real time
793 1.63 thorpej * timer has passed return 0, else return difference
794 1.63 thorpej * between current time and time for the timer to go
795 1.63 thorpej * off.
796 1.1 cgd */
797 1.150 christos if (timespecisset(&aits->it_value)) {
798 1.168 yamt if (pt->pt_type == CLOCK_REALTIME) {
799 1.168 yamt getnanotime(&now);
800 1.168 yamt } else { /* CLOCK_MONOTONIC */
801 1.168 yamt getnanouptime(&now);
802 1.168 yamt }
803 1.150 christos if (timespeccmp(&aits->it_value, &now, <))
804 1.150 christos timespecclear(&aits->it_value);
805 1.101 kardel else
806 1.150 christos timespecsub(&aits->it_value, &now,
807 1.150 christos &aits->it_value);
808 1.36 thorpej }
809 1.63 thorpej } else if (pt->pt_active) {
810 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
811 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
812 1.63 thorpej else
813 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
814 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
815 1.150 christos timespecadd(&aits->it_value,
816 1.150 christos &ptn->pt_time.it_value, &aits->it_value);
817 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
818 1.1 cgd } else
819 1.150 christos timespecclear(&aits->it_value);
820 1.63 thorpej }
821 1.63 thorpej
822 1.63 thorpej
823 1.63 thorpej
824 1.63 thorpej /* Set and arm a POSIX realtime timer */
825 1.63 thorpej int
826 1.156 christos sys___timer_settime50(struct lwp *l,
827 1.156 christos const struct sys___timer_settime50_args *uap,
828 1.140 yamt register_t *retval)
829 1.63 thorpej {
830 1.135 dsl /* {
831 1.63 thorpej syscallarg(timer_t) timerid;
832 1.63 thorpej syscallarg(int) flags;
833 1.63 thorpej syscallarg(const struct itimerspec *) value;
834 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
835 1.135 dsl } */
836 1.92 cube int error;
837 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
838 1.92 cube
839 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
840 1.92 cube sizeof(struct itimerspec))) != 0)
841 1.92 cube return (error);
842 1.92 cube
843 1.92 cube if (SCARG(uap, ovalue))
844 1.92 cube ovp = &ovalue;
845 1.92 cube
846 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
847 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
848 1.92 cube return error;
849 1.92 cube
850 1.92 cube if (ovp)
851 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
852 1.92 cube sizeof(struct itimerspec));
853 1.92 cube return 0;
854 1.92 cube }
855 1.92 cube
856 1.92 cube int
857 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
858 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
859 1.92 cube {
860 1.150 christos struct timespec now;
861 1.150 christos struct itimerspec val, oval;
862 1.142 ad struct ptimers *pts;
863 1.63 thorpej struct ptimer *pt;
864 1.160 christos int error;
865 1.63 thorpej
866 1.142 ad pts = p->p_timers;
867 1.63 thorpej
868 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
869 1.142 ad return EINVAL;
870 1.150 christos val = *value;
871 1.160 christos if ((error = itimespecfix(&val.it_value)) != 0 ||
872 1.160 christos (error = itimespecfix(&val.it_interval)) != 0)
873 1.160 christos return error;
874 1.63 thorpej
875 1.142 ad mutex_spin_enter(&timer_lock);
876 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
877 1.142 ad mutex_spin_exit(&timer_lock);
878 1.150 christos return EINVAL;
879 1.142 ad }
880 1.142 ad
881 1.63 thorpej oval = pt->pt_time;
882 1.63 thorpej pt->pt_time = val;
883 1.63 thorpej
884 1.67 nathanw /*
885 1.67 nathanw * If we've been passed a relative time for a realtime timer,
886 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
887 1.67 nathanw * timer, convert it to relative and make sure we don't set it
888 1.67 nathanw * to zero, which would cancel the timer, or let it go
889 1.67 nathanw * negative, which would confuse the comparison tests.
890 1.67 nathanw */
891 1.150 christos if (timespecisset(&pt->pt_time.it_value)) {
892 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
893 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
894 1.168 yamt if (pt->pt_type == CLOCK_REALTIME) {
895 1.168 yamt getnanotime(&now);
896 1.168 yamt } else { /* CLOCK_MONOTONIC */
897 1.168 yamt getnanouptime(&now);
898 1.168 yamt }
899 1.150 christos timespecadd(&pt->pt_time.it_value, &now,
900 1.101 kardel &pt->pt_time.it_value);
901 1.101 kardel }
902 1.67 nathanw } else {
903 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
904 1.150 christos getnanotime(&now);
905 1.150 christos timespecsub(&pt->pt_time.it_value, &now,
906 1.101 kardel &pt->pt_time.it_value);
907 1.150 christos if (!timespecisset(&pt->pt_time.it_value) ||
908 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
909 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
910 1.150 christos pt->pt_time.it_value.tv_nsec = 1;
911 1.67 nathanw }
912 1.67 nathanw }
913 1.67 nathanw }
914 1.67 nathanw }
915 1.67 nathanw
916 1.63 thorpej timer_settime(pt);
917 1.142 ad mutex_spin_exit(&timer_lock);
918 1.63 thorpej
919 1.150 christos if (ovalue)
920 1.150 christos *ovalue = oval;
921 1.63 thorpej
922 1.63 thorpej return (0);
923 1.63 thorpej }
924 1.63 thorpej
925 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
926 1.63 thorpej int
927 1.156 christos sys___timer_gettime50(struct lwp *l,
928 1.156 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
929 1.63 thorpej {
930 1.135 dsl /* {
931 1.63 thorpej syscallarg(timer_t) timerid;
932 1.63 thorpej syscallarg(struct itimerspec *) value;
933 1.135 dsl } */
934 1.63 thorpej struct itimerspec its;
935 1.92 cube int error;
936 1.92 cube
937 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
938 1.92 cube &its)) != 0)
939 1.92 cube return error;
940 1.92 cube
941 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
942 1.92 cube }
943 1.92 cube
944 1.92 cube int
945 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
946 1.92 cube {
947 1.63 thorpej struct ptimer *pt;
948 1.142 ad struct ptimers *pts;
949 1.63 thorpej
950 1.142 ad pts = p->p_timers;
951 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
952 1.63 thorpej return (EINVAL);
953 1.142 ad mutex_spin_enter(&timer_lock);
954 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
955 1.142 ad mutex_spin_exit(&timer_lock);
956 1.142 ad return (EINVAL);
957 1.142 ad }
958 1.150 christos timer_gettime(pt, its);
959 1.142 ad mutex_spin_exit(&timer_lock);
960 1.63 thorpej
961 1.92 cube return 0;
962 1.63 thorpej }
963 1.63 thorpej
964 1.63 thorpej /*
965 1.63 thorpej * Return the count of the number of times a periodic timer expired
966 1.63 thorpej * while a notification was already pending. The counter is reset when
967 1.63 thorpej * a timer expires and a notification can be posted.
968 1.63 thorpej */
969 1.63 thorpej int
970 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
971 1.140 yamt register_t *retval)
972 1.63 thorpej {
973 1.135 dsl /* {
974 1.63 thorpej syscallarg(timer_t) timerid;
975 1.135 dsl } */
976 1.63 thorpej struct proc *p = l->l_proc;
977 1.142 ad struct ptimers *pts;
978 1.63 thorpej int timerid;
979 1.63 thorpej struct ptimer *pt;
980 1.63 thorpej
981 1.63 thorpej timerid = SCARG(uap, timerid);
982 1.63 thorpej
983 1.142 ad pts = p->p_timers;
984 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
985 1.142 ad return (EINVAL);
986 1.142 ad mutex_spin_enter(&timer_lock);
987 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
988 1.142 ad mutex_spin_exit(&timer_lock);
989 1.63 thorpej return (EINVAL);
990 1.142 ad }
991 1.63 thorpej *retval = pt->pt_poverruns;
992 1.187 christos if (*retval >= DELAYTIMER_MAX)
993 1.187 christos *retval = DELAYTIMER_MAX;
994 1.142 ad mutex_spin_exit(&timer_lock);
995 1.63 thorpej
996 1.63 thorpej return (0);
997 1.63 thorpej }
998 1.63 thorpej
999 1.63 thorpej /*
1000 1.63 thorpej * Real interval timer expired:
1001 1.63 thorpej * send process whose timer expired an alarm signal.
1002 1.63 thorpej * If time is not set up to reload, then just return.
1003 1.63 thorpej * Else compute next time timer should go off which is > current time.
1004 1.63 thorpej * This is where delay in processing this timeout causes multiple
1005 1.63 thorpej * SIGALRM calls to be compressed into one.
1006 1.63 thorpej */
1007 1.63 thorpej void
1008 1.63 thorpej realtimerexpire(void *arg)
1009 1.63 thorpej {
1010 1.166 yamt uint64_t last_val, next_val, interval, now_ns;
1011 1.150 christos struct timespec now, next;
1012 1.63 thorpej struct ptimer *pt;
1013 1.148 joerg int backwards;
1014 1.63 thorpej
1015 1.142 ad pt = arg;
1016 1.63 thorpej
1017 1.142 ad mutex_spin_enter(&timer_lock);
1018 1.63 thorpej itimerfire(pt);
1019 1.63 thorpej
1020 1.150 christos if (!timespecisset(&pt->pt_time.it_interval)) {
1021 1.150 christos timespecclear(&pt->pt_time.it_value);
1022 1.142 ad mutex_spin_exit(&timer_lock);
1023 1.63 thorpej return;
1024 1.63 thorpej }
1025 1.148 joerg
1026 1.171 christos if (pt->pt_type == CLOCK_MONOTONIC) {
1027 1.171 christos getnanouptime(&now);
1028 1.171 christos } else {
1029 1.171 christos getnanotime(&now);
1030 1.171 christos }
1031 1.150 christos backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1032 1.150 christos timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1033 1.148 joerg /* Handle the easy case of non-overflown timers first. */
1034 1.150 christos if (!backwards && timespeccmp(&next, &now, >)) {
1035 1.148 joerg pt->pt_time.it_value = next;
1036 1.148 joerg } else {
1037 1.166 yamt now_ns = timespec2ns(&now);
1038 1.150 christos last_val = timespec2ns(&pt->pt_time.it_value);
1039 1.150 christos interval = timespec2ns(&pt->pt_time.it_interval);
1040 1.148 joerg
1041 1.166 yamt next_val = now_ns +
1042 1.166 yamt (now_ns - last_val + interval - 1) % interval;
1043 1.148 joerg
1044 1.148 joerg if (backwards)
1045 1.148 joerg next_val += interval;
1046 1.148 joerg else
1047 1.166 yamt pt->pt_overruns += (now_ns - last_val) / interval;
1048 1.148 joerg
1049 1.150 christos pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1050 1.150 christos pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1051 1.101 kardel }
1052 1.148 joerg
1053 1.148 joerg /*
1054 1.150 christos * Don't need to check tshzto() return value, here.
1055 1.148 joerg * callout_reset() does it for us.
1056 1.148 joerg */
1057 1.171 christos callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1058 1.171 christos tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1059 1.148 joerg realtimerexpire, pt);
1060 1.148 joerg mutex_spin_exit(&timer_lock);
1061 1.63 thorpej }
1062 1.63 thorpej
1063 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1064 1.63 thorpej /* ARGSUSED */
1065 1.63 thorpej int
1066 1.156 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1067 1.140 yamt register_t *retval)
1068 1.63 thorpej {
1069 1.135 dsl /* {
1070 1.63 thorpej syscallarg(int) which;
1071 1.63 thorpej syscallarg(struct itimerval *) itv;
1072 1.135 dsl } */
1073 1.63 thorpej struct proc *p = l->l_proc;
1074 1.63 thorpej struct itimerval aitv;
1075 1.91 cube int error;
1076 1.91 cube
1077 1.189.8.3 martin memset(&aitv, 0, sizeof(aitv));
1078 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1079 1.91 cube if (error)
1080 1.91 cube return error;
1081 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1082 1.91 cube }
1083 1.63 thorpej
1084 1.91 cube int
1085 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1086 1.91 cube {
1087 1.142 ad struct ptimers *pts;
1088 1.142 ad struct ptimer *pt;
1089 1.150 christos struct itimerspec its;
1090 1.63 thorpej
1091 1.170 christos if ((u_int)which > ITIMER_MONOTONIC)
1092 1.63 thorpej return (EINVAL);
1093 1.63 thorpej
1094 1.142 ad mutex_spin_enter(&timer_lock);
1095 1.142 ad pts = p->p_timers;
1096 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1097 1.91 cube timerclear(&itvp->it_value);
1098 1.91 cube timerclear(&itvp->it_interval);
1099 1.150 christos } else {
1100 1.150 christos timer_gettime(pt, &its);
1101 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1102 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1103 1.150 christos }
1104 1.188 msaitoh mutex_spin_exit(&timer_lock);
1105 1.63 thorpej
1106 1.91 cube return 0;
1107 1.1 cgd }
1108 1.1 cgd
1109 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1110 1.1 cgd /* ARGSUSED */
1111 1.3 andrew int
1112 1.156 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1113 1.140 yamt register_t *retval)
1114 1.15 thorpej {
1115 1.135 dsl /* {
1116 1.30 mycroft syscallarg(int) which;
1117 1.24 cgd syscallarg(const struct itimerval *) itv;
1118 1.11 cgd syscallarg(struct itimerval *) oitv;
1119 1.135 dsl } */
1120 1.63 thorpej struct proc *p = l->l_proc;
1121 1.30 mycroft int which = SCARG(uap, which);
1122 1.156 christos struct sys___getitimer50_args getargs;
1123 1.91 cube const struct itimerval *itvp;
1124 1.1 cgd struct itimerval aitv;
1125 1.91 cube int error;
1126 1.1 cgd
1127 1.170 christos if ((u_int)which > ITIMER_MONOTONIC)
1128 1.1 cgd return (EINVAL);
1129 1.11 cgd itvp = SCARG(uap, itv);
1130 1.63 thorpej if (itvp &&
1131 1.174 dholland (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1132 1.1 cgd return (error);
1133 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1134 1.30 mycroft SCARG(&getargs, which) = which;
1135 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1136 1.156 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1137 1.21 cgd return (error);
1138 1.21 cgd }
1139 1.1 cgd if (itvp == 0)
1140 1.1 cgd return (0);
1141 1.91 cube
1142 1.91 cube return dosetitimer(p, which, &aitv);
1143 1.91 cube }
1144 1.91 cube
1145 1.91 cube int
1146 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1147 1.91 cube {
1148 1.150 christos struct timespec now;
1149 1.142 ad struct ptimers *pts;
1150 1.142 ad struct ptimer *pt, *spare;
1151 1.91 cube
1152 1.170 christos KASSERT((u_int)which <= CLOCK_MONOTONIC);
1153 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1154 1.1 cgd return (EINVAL);
1155 1.63 thorpej
1156 1.63 thorpej /*
1157 1.63 thorpej * Don't bother allocating data structures if the process just
1158 1.63 thorpej * wants to clear the timer.
1159 1.63 thorpej */
1160 1.142 ad spare = NULL;
1161 1.142 ad pts = p->p_timers;
1162 1.142 ad retry:
1163 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1164 1.142 ad pts->pts_timers[which] == NULL))
1165 1.63 thorpej return (0);
1166 1.142 ad if (pts == NULL)
1167 1.142 ad pts = timers_alloc(p);
1168 1.142 ad mutex_spin_enter(&timer_lock);
1169 1.142 ad pt = pts->pts_timers[which];
1170 1.142 ad if (pt == NULL) {
1171 1.142 ad if (spare == NULL) {
1172 1.142 ad mutex_spin_exit(&timer_lock);
1173 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1174 1.189.8.2 martin memset(spare, 0, sizeof(*spare));
1175 1.142 ad goto retry;
1176 1.142 ad }
1177 1.142 ad pt = spare;
1178 1.142 ad spare = NULL;
1179 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1180 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1181 1.63 thorpej pt->pt_overruns = 0;
1182 1.63 thorpej pt->pt_proc = p;
1183 1.63 thorpej pt->pt_type = which;
1184 1.64 nathanw pt->pt_entry = which;
1185 1.142 ad pt->pt_queued = false;
1186 1.189.8.5 martin if (!CLOCK_VIRTUAL_P(which))
1187 1.149 christos callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1188 1.149 christos else
1189 1.149 christos pt->pt_active = 0;
1190 1.149 christos
1191 1.63 thorpej switch (which) {
1192 1.63 thorpej case ITIMER_REAL:
1193 1.170 christos case ITIMER_MONOTONIC:
1194 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1195 1.63 thorpej break;
1196 1.63 thorpej case ITIMER_VIRTUAL:
1197 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1198 1.63 thorpej break;
1199 1.63 thorpej case ITIMER_PROF:
1200 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1201 1.63 thorpej break;
1202 1.1 cgd }
1203 1.142 ad pts->pts_timers[which] = pt;
1204 1.142 ad }
1205 1.63 thorpej
1206 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1207 1.150 christos TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1208 1.150 christos
1209 1.170 christos if (timespecisset(&pt->pt_time.it_value)) {
1210 1.67 nathanw /* Convert to absolute time */
1211 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1212 1.170 christos switch (which) {
1213 1.170 christos case ITIMER_REAL:
1214 1.170 christos getnanotime(&now);
1215 1.170 christos timespecadd(&pt->pt_time.it_value, &now,
1216 1.170 christos &pt->pt_time.it_value);
1217 1.170 christos break;
1218 1.170 christos case ITIMER_MONOTONIC:
1219 1.170 christos getnanouptime(&now);
1220 1.170 christos timespecadd(&pt->pt_time.it_value, &now,
1221 1.170 christos &pt->pt_time.it_value);
1222 1.170 christos break;
1223 1.170 christos default:
1224 1.170 christos break;
1225 1.170 christos }
1226 1.67 nathanw }
1227 1.63 thorpej timer_settime(pt);
1228 1.142 ad mutex_spin_exit(&timer_lock);
1229 1.142 ad if (spare != NULL)
1230 1.142 ad pool_put(&ptimer_pool, spare);
1231 1.63 thorpej
1232 1.1 cgd return (0);
1233 1.1 cgd }
1234 1.1 cgd
1235 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1236 1.142 ad struct ptimers *
1237 1.63 thorpej timers_alloc(struct proc *p)
1238 1.63 thorpej {
1239 1.142 ad struct ptimers *pts;
1240 1.63 thorpej int i;
1241 1.63 thorpej
1242 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1243 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1244 1.63 thorpej LIST_INIT(&pts->pts_prof);
1245 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1246 1.63 thorpej pts->pts_timers[i] = NULL;
1247 1.142 ad mutex_spin_enter(&timer_lock);
1248 1.142 ad if (p->p_timers == NULL) {
1249 1.142 ad p->p_timers = pts;
1250 1.142 ad mutex_spin_exit(&timer_lock);
1251 1.142 ad return pts;
1252 1.142 ad }
1253 1.142 ad mutex_spin_exit(&timer_lock);
1254 1.142 ad pool_put(&ptimers_pool, pts);
1255 1.142 ad return p->p_timers;
1256 1.63 thorpej }
1257 1.63 thorpej
1258 1.1 cgd /*
1259 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1260 1.63 thorpej * then clean up all timers and free all the data structures. If
1261 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1262 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1263 1.63 thorpej * structure if none of those remain.
1264 1.1 cgd */
1265 1.3 andrew void
1266 1.63 thorpej timers_free(struct proc *p, int which)
1267 1.6 cgd {
1268 1.63 thorpej struct ptimers *pts;
1269 1.142 ad struct ptimer *ptn;
1270 1.150 christos struct timespec ts;
1271 1.142 ad int i;
1272 1.63 thorpej
1273 1.142 ad if (p->p_timers == NULL)
1274 1.142 ad return;
1275 1.63 thorpej
1276 1.142 ad pts = p->p_timers;
1277 1.142 ad mutex_spin_enter(&timer_lock);
1278 1.142 ad if (which == TIMERS_ALL) {
1279 1.142 ad p->p_timers = NULL;
1280 1.142 ad i = 0;
1281 1.142 ad } else {
1282 1.150 christos timespecclear(&ts);
1283 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1284 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1285 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1286 1.168 yamt KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1287 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1288 1.149 christos }
1289 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1290 1.142 ad if (ptn) {
1291 1.168 yamt KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1292 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1293 1.142 ad &ptn->pt_time.it_value);
1294 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1295 1.142 ad }
1296 1.150 christos timespecclear(&ts);
1297 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1298 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1299 1.149 christos ptn = LIST_NEXT(ptn, pt_list)) {
1300 1.168 yamt KASSERT(ptn->pt_type == CLOCK_PROF);
1301 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1302 1.149 christos }
1303 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1304 1.142 ad if (ptn) {
1305 1.168 yamt KASSERT(ptn->pt_type == CLOCK_PROF);
1306 1.150 christos timespecadd(&ts, &ptn->pt_time.it_value,
1307 1.142 ad &ptn->pt_time.it_value);
1308 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1309 1.63 thorpej }
1310 1.183 christos i = TIMER_MIN;
1311 1.142 ad }
1312 1.142 ad for ( ; i < TIMER_MAX; i++) {
1313 1.142 ad if (pts->pts_timers[i] != NULL) {
1314 1.142 ad itimerfree(pts, i);
1315 1.142 ad mutex_spin_enter(&timer_lock);
1316 1.1 cgd }
1317 1.1 cgd }
1318 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1319 1.183 christos pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1320 1.142 ad p->p_timers = NULL;
1321 1.142 ad mutex_spin_exit(&timer_lock);
1322 1.142 ad pool_put(&ptimers_pool, pts);
1323 1.142 ad } else
1324 1.142 ad mutex_spin_exit(&timer_lock);
1325 1.142 ad }
1326 1.142 ad
1327 1.142 ad static void
1328 1.142 ad itimerfree(struct ptimers *pts, int index)
1329 1.142 ad {
1330 1.142 ad struct ptimer *pt;
1331 1.142 ad
1332 1.142 ad KASSERT(mutex_owned(&timer_lock));
1333 1.142 ad
1334 1.142 ad pt = pts->pts_timers[index];
1335 1.142 ad pts->pts_timers[index] = NULL;
1336 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type))
1337 1.144 ad callout_halt(&pt->pt_ch, &timer_lock);
1338 1.167 yamt if (pt->pt_queued)
1339 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1340 1.144 ad mutex_spin_exit(&timer_lock);
1341 1.168 yamt if (!CLOCK_VIRTUAL_P(pt->pt_type))
1342 1.149 christos callout_destroy(&pt->pt_ch);
1343 1.142 ad pool_put(&ptimer_pool, pt);
1344 1.1 cgd }
1345 1.1 cgd
1346 1.1 cgd /*
1347 1.1 cgd * Decrement an interval timer by a specified number
1348 1.152 christos * of nanoseconds, which must be less than a second,
1349 1.152 christos * i.e. < 1000000000. If the timer expires, then reload
1350 1.152 christos * it. In this case, carry over (nsec - old value) to
1351 1.8 cgd * reduce the value reloaded into the timer so that
1352 1.1 cgd * the timer does not drift. This routine assumes
1353 1.1 cgd * that it is called in a context where the timers
1354 1.1 cgd * on which it is operating cannot change in value.
1355 1.1 cgd */
1356 1.142 ad static int
1357 1.152 christos itimerdecr(struct ptimer *pt, int nsec)
1358 1.63 thorpej {
1359 1.150 christos struct itimerspec *itp;
1360 1.1 cgd
1361 1.142 ad KASSERT(mutex_owned(&timer_lock));
1362 1.168 yamt KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1363 1.142 ad
1364 1.63 thorpej itp = &pt->pt_time;
1365 1.150 christos if (itp->it_value.tv_nsec < nsec) {
1366 1.1 cgd if (itp->it_value.tv_sec == 0) {
1367 1.1 cgd /* expired, and already in next interval */
1368 1.150 christos nsec -= itp->it_value.tv_nsec;
1369 1.1 cgd goto expire;
1370 1.1 cgd }
1371 1.150 christos itp->it_value.tv_nsec += 1000000000;
1372 1.1 cgd itp->it_value.tv_sec--;
1373 1.1 cgd }
1374 1.152 christos itp->it_value.tv_nsec -= nsec;
1375 1.152 christos nsec = 0;
1376 1.150 christos if (timespecisset(&itp->it_value))
1377 1.1 cgd return (1);
1378 1.1 cgd /* expired, exactly at end of interval */
1379 1.1 cgd expire:
1380 1.150 christos if (timespecisset(&itp->it_interval)) {
1381 1.1 cgd itp->it_value = itp->it_interval;
1382 1.150 christos itp->it_value.tv_nsec -= nsec;
1383 1.150 christos if (itp->it_value.tv_nsec < 0) {
1384 1.150 christos itp->it_value.tv_nsec += 1000000000;
1385 1.1 cgd itp->it_value.tv_sec--;
1386 1.1 cgd }
1387 1.63 thorpej timer_settime(pt);
1388 1.1 cgd } else
1389 1.150 christos itp->it_value.tv_nsec = 0; /* sec is already 0 */
1390 1.1 cgd return (0);
1391 1.42 cgd }
1392 1.42 cgd
1393 1.142 ad static void
1394 1.63 thorpej itimerfire(struct ptimer *pt)
1395 1.63 thorpej {
1396 1.78 cl
1397 1.142 ad KASSERT(mutex_owned(&timer_lock));
1398 1.142 ad
1399 1.142 ad /*
1400 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1401 1.142 ad * XXX Relying on the clock interrupt is stupid.
1402 1.142 ad */
1403 1.173 rmind if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1404 1.142 ad return;
1405 1.172 rmind }
1406 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1407 1.142 ad pt->pt_queued = true;
1408 1.142 ad softint_schedule(timer_sih);
1409 1.142 ad }
1410 1.142 ad
1411 1.142 ad void
1412 1.142 ad timer_tick(lwp_t *l, bool user)
1413 1.142 ad {
1414 1.142 ad struct ptimers *pts;
1415 1.142 ad struct ptimer *pt;
1416 1.142 ad proc_t *p;
1417 1.142 ad
1418 1.142 ad p = l->l_proc;
1419 1.142 ad if (p->p_timers == NULL)
1420 1.142 ad return;
1421 1.142 ad
1422 1.142 ad mutex_spin_enter(&timer_lock);
1423 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1424 1.63 thorpej /*
1425 1.142 ad * Run current process's virtual and profile time, as needed.
1426 1.63 thorpej */
1427 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1428 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1429 1.142 ad itimerfire(pt);
1430 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1431 1.152 christos if (itimerdecr(pt, tick * 1000) == 0)
1432 1.142 ad itimerfire(pt);
1433 1.142 ad }
1434 1.142 ad mutex_spin_exit(&timer_lock);
1435 1.142 ad }
1436 1.142 ad
1437 1.142 ad static void
1438 1.142 ad timer_intr(void *cookie)
1439 1.142 ad {
1440 1.142 ad ksiginfo_t ksi;
1441 1.142 ad struct ptimer *pt;
1442 1.142 ad proc_t *p;
1443 1.142 ad
1444 1.158 ad mutex_enter(proc_lock);
1445 1.142 ad mutex_spin_enter(&timer_lock);
1446 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1447 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1448 1.142 ad KASSERT(pt->pt_queued);
1449 1.142 ad pt->pt_queued = false;
1450 1.142 ad
1451 1.154 wrstuden if (pt->pt_proc->p_timers == NULL) {
1452 1.154 wrstuden /* Process is dying. */
1453 1.142 ad continue;
1454 1.154 wrstuden }
1455 1.142 ad p = pt->pt_proc;
1456 1.172 rmind if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1457 1.142 ad continue;
1458 1.142 ad }
1459 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1460 1.63 thorpej pt->pt_overruns++;
1461 1.142 ad continue;
1462 1.64 nathanw }
1463 1.142 ad
1464 1.142 ad KSI_INIT(&ksi);
1465 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1466 1.142 ad ksi.ksi_code = SI_TIMER;
1467 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1468 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1469 1.142 ad pt->pt_overruns = 0;
1470 1.142 ad mutex_spin_exit(&timer_lock);
1471 1.142 ad kpsignal(p, &ksi, NULL);
1472 1.142 ad mutex_spin_enter(&timer_lock);
1473 1.63 thorpej }
1474 1.142 ad mutex_spin_exit(&timer_lock);
1475 1.158 ad mutex_exit(proc_lock);
1476 1.63 thorpej }
1477 1.162 elad
1478 1.162 elad /*
1479 1.162 elad * Check if the time will wrap if set to ts.
1480 1.162 elad *
1481 1.162 elad * ts - timespec describing the new time
1482 1.162 elad * delta - the delta between the current time and ts
1483 1.162 elad */
1484 1.162 elad bool
1485 1.162 elad time_wraps(struct timespec *ts, struct timespec *delta)
1486 1.162 elad {
1487 1.162 elad
1488 1.162 elad /*
1489 1.162 elad * Don't allow the time to be set forward so far it
1490 1.162 elad * will wrap and become negative, thus allowing an
1491 1.162 elad * attacker to bypass the next check below. The
1492 1.162 elad * cutoff is 1 year before rollover occurs, so even
1493 1.162 elad * if the attacker uses adjtime(2) to move the time
1494 1.162 elad * past the cutoff, it will take a very long time
1495 1.162 elad * to get to the wrap point.
1496 1.162 elad */
1497 1.162 elad if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1498 1.162 elad (delta->tv_sec < 0 || delta->tv_nsec < 0))
1499 1.162 elad return true;
1500 1.162 elad
1501 1.162 elad return false;
1502 1.162 elad }
1503