Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.197.4.2
      1  1.197.4.2    martin /*	$NetBSD: kern_time.c,v 1.197.4.2 2019/09/11 16:36:13 martin Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.158        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.158        ad  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.197.4.2    martin __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.197.4.2 2019/09/11 16:36:13 martin Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78       1.11       cgd #include <sys/syscallargs.h>
     79      1.143        ad #include <sys/cpu.h>
     80       1.19  christos 
     81      1.142        ad static void	timer_intr(void *);
     82      1.142        ad static void	itimerfire(struct ptimer *);
     83      1.142        ad static void	itimerfree(struct ptimers *, int);
     84      1.142        ad 
     85      1.142        ad kmutex_t	timer_lock;
     86      1.142        ad 
     87      1.142        ad static void	*timer_sih;
     88      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     89      1.131        ad 
     90      1.161     pooka struct pool ptimer_pool, ptimers_pool;
     91       1.97    simonb 
     92      1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     93      1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     94      1.168      yamt 
     95      1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     96      1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     97      1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     98      1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     99      1.168      yamt 
    100      1.187  christos #define	DELAYTIMER_MAX	32
    101      1.186  christos 
    102      1.131        ad /*
    103      1.131        ad  * Initialize timekeeping.
    104      1.131        ad  */
    105      1.131        ad void
    106      1.131        ad time_init(void)
    107      1.131        ad {
    108      1.131        ad 
    109      1.161     pooka 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    110      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    111      1.161     pooka 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    112      1.161     pooka 	    &pool_allocator_nointr, IPL_NONE);
    113      1.131        ad }
    114      1.131        ad 
    115      1.142        ad void
    116      1.142        ad time_init2(void)
    117      1.142        ad {
    118      1.142        ad 
    119      1.142        ad 	TAILQ_INIT(&timer_queue);
    120      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122      1.142        ad 	    timer_intr, NULL);
    123      1.142        ad }
    124      1.142        ad 
    125       1.63   thorpej /* Time of day and interval timer support.
    126        1.1       cgd  *
    127        1.1       cgd  * These routines provide the kernel entry points to get and set
    128        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    129        1.1       cgd  * here provide support for adding and subtracting timeval structures
    130        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    131        1.1       cgd  * timers when they expire.
    132        1.1       cgd  */
    133        1.1       cgd 
    134       1.22       jtc /* This function is used by clock_settime and settimeofday */
    135      1.132      elad static int
    136      1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    137       1.22       jtc {
    138      1.156  christos 	struct timespec delta, now;
    139      1.129        ad 	int s;
    140       1.22       jtc 
    141       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142      1.129        ad 	s = splclock();
    143      1.156  christos 	nanotime(&now);
    144      1.156  christos 	timespecsub(ts, &now, &delta);
    145      1.132      elad 
    146      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147      1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    148      1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149      1.129        ad 		splx(s);
    150       1.29       tls 		return (EPERM);
    151       1.55      tron 	}
    152      1.132      elad 
    153       1.29       tls #ifdef notyet
    154      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155      1.129        ad 		splx(s);
    156       1.29       tls 		return (EPERM);
    157       1.55      tron 	}
    158       1.29       tls #endif
    159      1.103    kardel 
    160      1.156  christos 	tc_setclock(ts);
    161      1.103    kardel 
    162      1.156  christos 	timespecadd(&boottime, &delta, &boottime);
    163      1.103    kardel 
    164       1.22       jtc 	resettodr();
    165      1.129        ad 	splx(s);
    166      1.129        ad 
    167       1.29       tls 	return (0);
    168       1.22       jtc }
    169       1.22       jtc 
    170      1.132      elad int
    171      1.132      elad settime(struct proc *p, struct timespec *ts)
    172      1.132      elad {
    173      1.132      elad 	return (settime1(p, ts, true));
    174      1.132      elad }
    175      1.132      elad 
    176       1.22       jtc /* ARGSUSED */
    177       1.22       jtc int
    178      1.156  christos sys___clock_gettime50(struct lwp *l,
    179      1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    180       1.22       jtc {
    181      1.135       dsl 	/* {
    182       1.22       jtc 		syscallarg(clockid_t) clock_id;
    183       1.23       cgd 		syscallarg(struct timespec *) tp;
    184      1.135       dsl 	} */
    185      1.165     njoly 	int error;
    186       1.22       jtc 	struct timespec ats;
    187       1.22       jtc 
    188      1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    189      1.165     njoly 	if (error != 0)
    190      1.165     njoly 		return error;
    191      1.165     njoly 
    192      1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    193      1.165     njoly }
    194      1.165     njoly 
    195       1.22       jtc /* ARGSUSED */
    196       1.22       jtc int
    197      1.156  christos sys___clock_settime50(struct lwp *l,
    198      1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    199       1.22       jtc {
    200      1.135       dsl 	/* {
    201       1.22       jtc 		syscallarg(clockid_t) clock_id;
    202       1.23       cgd 		syscallarg(const struct timespec *) tp;
    203      1.135       dsl 	} */
    204      1.156  christos 	int error;
    205      1.156  christos 	struct timespec ats;
    206       1.22       jtc 
    207      1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    208      1.156  christos 		return error;
    209      1.156  christos 
    210      1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    211       1.56      manu }
    212       1.56      manu 
    213       1.56      manu 
    214       1.56      manu int
    215      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    216      1.132      elad     bool check_kauth)
    217       1.56      manu {
    218       1.56      manu 	int error;
    219       1.56      manu 
    220       1.61    simonb 	switch (clock_id) {
    221       1.61    simonb 	case CLOCK_REALTIME:
    222      1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    223       1.61    simonb 			return (error);
    224       1.61    simonb 		break;
    225       1.61    simonb 	case CLOCK_MONOTONIC:
    226       1.61    simonb 		return (EINVAL);	/* read-only clock */
    227       1.61    simonb 	default:
    228       1.56      manu 		return (EINVAL);
    229       1.61    simonb 	}
    230       1.22       jtc 
    231       1.22       jtc 	return 0;
    232       1.22       jtc }
    233       1.22       jtc 
    234       1.22       jtc int
    235      1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    236      1.140      yamt     register_t *retval)
    237       1.22       jtc {
    238      1.135       dsl 	/* {
    239       1.22       jtc 		syscallarg(clockid_t) clock_id;
    240       1.23       cgd 		syscallarg(struct timespec *) tp;
    241      1.135       dsl 	} */
    242       1.22       jtc 	struct timespec ts;
    243      1.180      maxv 	int error;
    244       1.22       jtc 
    245      1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    246      1.164     njoly 		return error;
    247      1.164     njoly 
    248      1.164     njoly 	if (SCARG(uap, tp))
    249      1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    250      1.164     njoly 
    251      1.164     njoly 	return error;
    252      1.164     njoly }
    253      1.164     njoly 
    254      1.164     njoly int
    255      1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    256      1.164     njoly {
    257      1.164     njoly 
    258       1.61    simonb 	switch (clock_id) {
    259       1.61    simonb 	case CLOCK_REALTIME:
    260       1.61    simonb 	case CLOCK_MONOTONIC:
    261      1.164     njoly 		ts->tv_sec = 0;
    262      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    263      1.164     njoly 			ts->tv_nsec = 1;
    264      1.102    kardel 		else
    265      1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    266       1.61    simonb 		break;
    267       1.61    simonb 	default:
    268      1.164     njoly 		return EINVAL;
    269       1.61    simonb 	}
    270       1.22       jtc 
    271      1.164     njoly 	return 0;
    272       1.22       jtc }
    273       1.22       jtc 
    274       1.27       jtc /* ARGSUSED */
    275       1.27       jtc int
    276      1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    277      1.140      yamt     register_t *retval)
    278       1.27       jtc {
    279      1.135       dsl 	/* {
    280      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    281      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    282      1.135       dsl 	} */
    283      1.101    kardel 	struct timespec rmt, rqt;
    284      1.120       dsl 	int error, error1;
    285      1.101    kardel 
    286      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    287      1.101    kardel 	if (error)
    288      1.101    kardel 		return (error);
    289      1.101    kardel 
    290      1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    291      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    292      1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    293      1.175  christos 		return error;
    294      1.175  christos 
    295      1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    296      1.175  christos 	return error1 ? error1 : error;
    297      1.175  christos }
    298      1.175  christos 
    299      1.175  christos /* ARGSUSED */
    300      1.175  christos int
    301      1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    302      1.175  christos     register_t *retval)
    303      1.175  christos {
    304      1.175  christos 	/* {
    305      1.175  christos 		syscallarg(clockid_t) clock_id;
    306      1.175  christos 		syscallarg(int) flags;
    307      1.175  christos 		syscallarg(struct timespec *) rqtp;
    308      1.175  christos 		syscallarg(struct timespec *) rmtp;
    309      1.175  christos 	} */
    310      1.175  christos 	struct timespec rmt, rqt;
    311      1.175  christos 	int error, error1;
    312      1.175  christos 
    313      1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    314      1.175  christos 	if (error)
    315      1.181  christos 		goto out;
    316      1.175  christos 
    317      1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    318      1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    319      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    320      1.181  christos 		goto out;
    321      1.120       dsl 
    322      1.189     njoly 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    323      1.189     njoly 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    324      1.181  christos 		error = error1;
    325      1.181  christos out:
    326      1.181  christos 	*retval = error;
    327      1.181  christos 	return 0;
    328      1.120       dsl }
    329      1.120       dsl 
    330      1.120       dsl int
    331      1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    332      1.175  christos     struct timespec *rmt)
    333      1.120       dsl {
    334      1.141      yamt 	struct timespec rmtstart;
    335      1.120       dsl 	int error, timo;
    336      1.120       dsl 
    337      1.184       uwe 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    338      1.184       uwe 		if (error == ETIMEDOUT) {
    339      1.184       uwe 			error = 0;
    340      1.184       uwe 			if (rmt != NULL)
    341      1.184       uwe 				rmt->tv_sec = rmt->tv_nsec = 0;
    342      1.184       uwe 		}
    343      1.184       uwe 		return error;
    344      1.184       uwe 	}
    345      1.101    kardel 
    346      1.101    kardel 	/*
    347      1.175  christos 	 * Avoid inadvertently sleeping forever
    348      1.101    kardel 	 */
    349      1.101    kardel 	if (timo == 0)
    350      1.101    kardel 		timo = 1;
    351      1.141      yamt again:
    352      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    353      1.197       kre 	if (error == EWOULDBLOCK)
    354      1.197       kre 		error = 0;
    355      1.141      yamt 	if (rmt != NULL || error == 0) {
    356      1.141      yamt 		struct timespec rmtend;
    357      1.141      yamt 		struct timespec t0;
    358      1.141      yamt 		struct timespec *t;
    359      1.101    kardel 
    360      1.175  christos 		(void)clock_gettime1(clock_id, &rmtend);
    361      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    362      1.179  christos 		if (flags & TIMER_ABSTIME) {
    363      1.179  christos 			timespecsub(rqt, &rmtend, t);
    364      1.179  christos 		} else {
    365      1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    366      1.179  christos 			timespecsub(rqt, t, t);
    367      1.179  christos 		}
    368      1.141      yamt 		if (t->tv_sec < 0)
    369      1.141      yamt 			timespecclear(t);
    370      1.141      yamt 		if (error == 0) {
    371      1.141      yamt 			timo = tstohz(t);
    372      1.141      yamt 			if (timo > 0)
    373      1.141      yamt 				goto again;
    374      1.141      yamt 		}
    375      1.141      yamt 	}
    376      1.104    kardel 
    377      1.101    kardel 	if (error == ERESTART)
    378      1.101    kardel 		error = EINTR;
    379      1.101    kardel 
    380      1.101    kardel 	return error;
    381       1.27       jtc }
    382       1.22       jtc 
    383      1.186  christos int
    384      1.186  christos sys_clock_getcpuclockid2(struct lwp *l,
    385      1.186  christos     const struct sys_clock_getcpuclockid2_args *uap,
    386      1.186  christos     register_t *retval)
    387      1.186  christos {
    388      1.186  christos 	/* {
    389      1.186  christos 		syscallarg(idtype_t idtype;
    390      1.186  christos 		syscallarg(id_t id);
    391      1.186  christos 		syscallarg(clockid_t *)clock_id;
    392      1.186  christos 	} */
    393      1.186  christos 	pid_t pid;
    394      1.186  christos 	lwpid_t lid;
    395      1.186  christos 	clockid_t clock_id;
    396      1.186  christos 	id_t id = SCARG(uap, id);
    397      1.186  christos 
    398      1.186  christos 	switch (SCARG(uap, idtype)) {
    399      1.186  christos 	case P_PID:
    400      1.188   msaitoh 		pid = id == 0 ? l->l_proc->p_pid : id;
    401      1.186  christos 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    402      1.186  christos 		break;
    403      1.186  christos 	case P_LWPID:
    404      1.186  christos 		lid = id == 0 ? l->l_lid : id;
    405      1.186  christos 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    406      1.186  christos 		break;
    407      1.186  christos 	default:
    408      1.186  christos 		return EINVAL;
    409      1.186  christos 	}
    410      1.186  christos 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    411      1.186  christos }
    412      1.186  christos 
    413        1.1       cgd /* ARGSUSED */
    414        1.3    andrew int
    415      1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    416      1.140      yamt     register_t *retval)
    417       1.15   thorpej {
    418      1.135       dsl 	/* {
    419       1.11       cgd 		syscallarg(struct timeval *) tp;
    420      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    421      1.135       dsl 	} */
    422        1.1       cgd 	struct timeval atv;
    423        1.1       cgd 	int error = 0;
    424       1.25     perry 	struct timezone tzfake;
    425        1.1       cgd 
    426       1.11       cgd 	if (SCARG(uap, tp)) {
    427      1.190      maxv 		memset(&atv, 0, sizeof(atv));
    428        1.1       cgd 		microtime(&atv);
    429       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    430       1.17  christos 		if (error)
    431        1.1       cgd 			return (error);
    432        1.1       cgd 	}
    433       1.25     perry 	if (SCARG(uap, tzp)) {
    434       1.25     perry 		/*
    435       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    436       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    437       1.25     perry 		 */
    438       1.25     perry 		tzfake.tz_minuteswest = 0;
    439       1.25     perry 		tzfake.tz_dsttime = 0;
    440       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    441       1.25     perry 	}
    442        1.1       cgd 	return (error);
    443        1.1       cgd }
    444        1.1       cgd 
    445        1.1       cgd /* ARGSUSED */
    446        1.3    andrew int
    447      1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    448      1.140      yamt     register_t *retval)
    449       1.15   thorpej {
    450      1.135       dsl 	/* {
    451       1.24       cgd 		syscallarg(const struct timeval *) tv;
    452      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    453      1.135       dsl 	} */
    454       1.60      manu 
    455      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    456       1.60      manu }
    457       1.60      manu 
    458       1.60      manu int
    459      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    460      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    461       1.60      manu {
    462       1.22       jtc 	struct timeval atv;
    463       1.98  christos 	struct timespec ts;
    464       1.22       jtc 	int error;
    465        1.1       cgd 
    466        1.8       cgd 	/* Verify all parameters before changing time. */
    467      1.119       dsl 
    468       1.25     perry 	/*
    469       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    470       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    471       1.25     perry 	 */
    472       1.98  christos 	if (utzp)
    473       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    474      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    475       1.98  christos 
    476       1.98  christos 	if (utv == NULL)
    477       1.98  christos 		return 0;
    478       1.98  christos 
    479      1.119       dsl 	if (userspace) {
    480      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    481      1.119       dsl 			return error;
    482      1.119       dsl 		utv = &atv;
    483      1.119       dsl 	}
    484      1.119       dsl 
    485      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    486      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    487        1.1       cgd }
    488        1.1       cgd 
    489       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    490        1.1       cgd 
    491        1.1       cgd /* ARGSUSED */
    492        1.3    andrew int
    493      1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    494      1.140      yamt     register_t *retval)
    495       1.15   thorpej {
    496      1.135       dsl 	/* {
    497       1.24       cgd 		syscallarg(const struct timeval *) delta;
    498       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    499      1.135       dsl 	} */
    500      1.180      maxv 	int error;
    501      1.156  christos 	struct timeval atv, oldatv;
    502        1.1       cgd 
    503      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    504      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    505      1.156  christos 		return error;
    506       1.17  christos 
    507      1.156  christos 	if (SCARG(uap, delta)) {
    508      1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    509      1.156  christos 		    sizeof(*SCARG(uap, delta)));
    510      1.156  christos 		if (error)
    511      1.156  christos 			return (error);
    512      1.156  christos 	}
    513      1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    514      1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    515      1.156  christos 	if (SCARG(uap, olddelta))
    516      1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    517      1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    518      1.156  christos 	return error;
    519       1.56      manu }
    520       1.56      manu 
    521      1.156  christos void
    522      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    523       1.56      manu {
    524      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    525      1.101    kardel 
    526      1.101    kardel 	if (olddelta) {
    527      1.194      maxv 		memset(olddelta, 0, sizeof(*olddelta));
    528      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    529      1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    530      1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    531      1.156  christos 		if (olddelta->tv_usec < 0) {
    532      1.156  christos 			olddelta->tv_usec += 1000000;
    533      1.156  christos 			olddelta->tv_sec--;
    534      1.101    kardel 		}
    535      1.157  christos 		mutex_spin_exit(&timecounter_lock);
    536      1.101    kardel 	}
    537      1.101    kardel 
    538      1.101    kardel 	if (delta) {
    539      1.156  christos 		mutex_spin_enter(&timecounter_lock);
    540      1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    541      1.101    kardel 
    542      1.143        ad 		if (time_adjtime) {
    543      1.101    kardel 			/* We need to save the system time during shutdown */
    544      1.101    kardel 			time_adjusted |= 1;
    545      1.143        ad 		}
    546      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    547      1.101    kardel 	}
    548        1.1       cgd }
    549        1.1       cgd 
    550        1.1       cgd /*
    551       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    552       1.63   thorpej  * timer_*() family of routines are supported.
    553        1.1       cgd  *
    554       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    555       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    556      1.183  christos  * first four elements in this array are reserved for the BSD timers:
    557      1.170  christos  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    558      1.170  christos  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    559      1.170  christos  * allocated by the timer_create() syscall.
    560        1.1       cgd  *
    561       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    562       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    563        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    564       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    565       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    566       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    567       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    568       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    569       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    570       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    571       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    572       1.63   thorpej 
    573       1.63   thorpej /* Allocate a POSIX realtime timer. */
    574       1.63   thorpej int
    575      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    576      1.140      yamt     register_t *retval)
    577       1.63   thorpej {
    578      1.135       dsl 	/* {
    579       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    580       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    581       1.63   thorpej 		syscallarg(timer_t *) timerid;
    582      1.135       dsl 	} */
    583       1.92      cube 
    584       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    585      1.105        ad 	    SCARG(uap, evp), copyin, l);
    586       1.92      cube }
    587       1.92      cube 
    588       1.92      cube int
    589       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    590      1.105        ad     copyin_t fetch_event, struct lwp *l)
    591       1.92      cube {
    592       1.92      cube 	int error;
    593       1.92      cube 	timer_t timerid;
    594      1.142        ad 	struct ptimers *pts;
    595       1.63   thorpej 	struct ptimer *pt;
    596      1.105        ad 	struct proc *p;
    597      1.105        ad 
    598      1.105        ad 	p = l->l_proc;
    599       1.63   thorpej 
    600      1.170  christos 	if ((u_int)id > CLOCK_MONOTONIC)
    601       1.63   thorpej 		return (EINVAL);
    602       1.63   thorpej 
    603      1.142        ad 	if ((pts = p->p_timers) == NULL)
    604      1.142        ad 		pts = timers_alloc(p);
    605       1.63   thorpej 
    606      1.195  christos 	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
    607      1.142        ad 	if (evp != NULL) {
    608       1.63   thorpej 		if (((error =
    609       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    610       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    611      1.163  drochner 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    612      1.163  drochner 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    613      1.163  drochner 			 (pt->pt_ev.sigev_signo <= 0 ||
    614      1.163  drochner 			  pt->pt_ev.sigev_signo >= NSIG))) {
    615       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    616       1.63   thorpej 			return (error ? error : EINVAL);
    617       1.63   thorpej 		}
    618      1.142        ad 	}
    619      1.142        ad 
    620      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    621      1.142        ad 	mutex_spin_enter(&timer_lock);
    622      1.183  christos 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
    623      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    624      1.142        ad 			break;
    625      1.142        ad 	if (timerid == TIMER_MAX) {
    626      1.142        ad 		mutex_spin_exit(&timer_lock);
    627      1.142        ad 		pool_put(&ptimer_pool, pt);
    628      1.142        ad 		return EAGAIN;
    629      1.142        ad 	}
    630      1.142        ad 	if (evp == NULL) {
    631       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    632       1.63   thorpej 		switch (id) {
    633       1.63   thorpej 		case CLOCK_REALTIME:
    634      1.168      yamt 		case CLOCK_MONOTONIC:
    635       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    636       1.63   thorpej 			break;
    637       1.63   thorpej 		case CLOCK_VIRTUAL:
    638       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    639       1.63   thorpej 			break;
    640       1.63   thorpej 		case CLOCK_PROF:
    641       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    642       1.63   thorpej 			break;
    643       1.63   thorpej 		}
    644       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    645       1.63   thorpej 	}
    646       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    647       1.73  christos 	pt->pt_info.ksi_errno = 0;
    648       1.73  christos 	pt->pt_info.ksi_code = 0;
    649       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    650      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    651      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    652       1.63   thorpej 	pt->pt_type = id;
    653       1.63   thorpej 	pt->pt_proc = p;
    654       1.63   thorpej 	pt->pt_overruns = 0;
    655       1.63   thorpej 	pt->pt_poverruns = 0;
    656       1.64   nathanw 	pt->pt_entry = timerid;
    657      1.142        ad 	pt->pt_queued = false;
    658      1.150  christos 	timespecclear(&pt->pt_time.it_value);
    659      1.168      yamt 	if (!CLOCK_VIRTUAL_P(id))
    660      1.168      yamt 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
    661      1.149  christos 	else
    662      1.149  christos 		pt->pt_active = 0;
    663      1.149  christos 
    664      1.142        ad 	pts->pts_timers[timerid] = pt;
    665      1.142        ad 	mutex_spin_exit(&timer_lock);
    666       1.63   thorpej 
    667       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    668       1.63   thorpej }
    669       1.63   thorpej 
    670       1.63   thorpej /* Delete a POSIX realtime timer */
    671        1.3    andrew int
    672      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    673      1.140      yamt     register_t *retval)
    674       1.15   thorpej {
    675      1.135       dsl 	/* {
    676       1.63   thorpej 		syscallarg(timer_t) timerid;
    677      1.135       dsl 	} */
    678       1.63   thorpej 	struct proc *p = l->l_proc;
    679       1.65  jdolecek 	timer_t timerid;
    680      1.142        ad 	struct ptimers *pts;
    681       1.63   thorpej 	struct ptimer *pt, *ptn;
    682        1.1       cgd 
    683       1.63   thorpej 	timerid = SCARG(uap, timerid);
    684      1.142        ad 	pts = p->p_timers;
    685      1.142        ad 
    686      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    687      1.142        ad 		return (EINVAL);
    688       1.63   thorpej 
    689      1.142        ad 	mutex_spin_enter(&timer_lock);
    690      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    691      1.142        ad 		mutex_spin_exit(&timer_lock);
    692        1.1       cgd 		return (EINVAL);
    693      1.142        ad 	}
    694      1.168      yamt 	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
    695      1.149  christos 		if (pt->pt_active) {
    696      1.149  christos 			ptn = LIST_NEXT(pt, pt_list);
    697      1.149  christos 			LIST_REMOVE(pt, pt_list);
    698      1.149  christos 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    699      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    700      1.149  christos 				    &ptn->pt_time.it_value,
    701      1.149  christos 				    &ptn->pt_time.it_value);
    702      1.149  christos 			pt->pt_active = 0;
    703      1.149  christos 		}
    704       1.63   thorpej 	}
    705  1.197.4.1    martin 
    706  1.197.4.1    martin 	/* Free the timer and release the lock.  */
    707      1.142        ad 	itimerfree(pts, timerid);
    708       1.63   thorpej 
    709       1.63   thorpej 	return (0);
    710       1.63   thorpej }
    711       1.63   thorpej 
    712       1.63   thorpej /*
    713       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    714      1.168      yamt  * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
    715      1.168      yamt  * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    716  1.197.4.1    martin  *
    717  1.197.4.1    martin  * If the callout had already fired but not yet run, fails with
    718  1.197.4.1    martin  * ERESTART -- caller must restart from the top to look up a timer.
    719       1.63   thorpej  */
    720  1.197.4.1    martin int
    721       1.63   thorpej timer_settime(struct ptimer *pt)
    722       1.63   thorpej {
    723       1.63   thorpej 	struct ptimer *ptn, *pptn;
    724       1.63   thorpej 	struct ptlist *ptl;
    725       1.63   thorpej 
    726      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    727      1.142        ad 
    728      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    729  1.197.4.1    martin 		/*
    730  1.197.4.1    martin 		 * Try to stop the callout.  However, if it had already
    731  1.197.4.1    martin 		 * fired, we have to drop the lock to wait for it, so
    732  1.197.4.1    martin 		 * the world may have changed and pt may not be there
    733  1.197.4.1    martin 		 * any more.  In that case, tell the caller to start
    734  1.197.4.1    martin 		 * over from the top.
    735  1.197.4.1    martin 		 */
    736  1.197.4.1    martin 		if (callout_halt(&pt->pt_ch, &timer_lock))
    737  1.197.4.1    martin 			return ERESTART;
    738  1.197.4.1    martin 
    739  1.197.4.1    martin 		/* Now we can touch pt and start it up again.  */
    740      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    741       1.63   thorpej 			/*
    742      1.150  christos 			 * Don't need to check tshzto() return value, here.
    743       1.63   thorpej 			 * callout_reset() does it for us.
    744       1.63   thorpej 			 */
    745      1.171  christos 			callout_reset(&pt->pt_ch,
    746      1.171  christos 			    pt->pt_type == CLOCK_MONOTONIC ?
    747      1.171  christos 			    tshztoup(&pt->pt_time.it_value) :
    748      1.171  christos 			    tshzto(&pt->pt_time.it_value),
    749       1.63   thorpej 			    realtimerexpire, pt);
    750       1.63   thorpej 		}
    751       1.63   thorpej 	} else {
    752       1.63   thorpej 		if (pt->pt_active) {
    753       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    754       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    755       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    756      1.150  christos 				timespecadd(&pt->pt_time.it_value,
    757       1.63   thorpej 				    &ptn->pt_time.it_value,
    758       1.63   thorpej 				    &ptn->pt_time.it_value);
    759       1.63   thorpej 		}
    760      1.150  christos 		if (timespecisset(&pt->pt_time.it_value)) {
    761       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    762       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    763       1.63   thorpej 			else
    764       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    765       1.63   thorpej 
    766       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    767      1.150  christos 			     ptn && timespeccmp(&pt->pt_time.it_value,
    768       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    769       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    770      1.150  christos 				timespecsub(&pt->pt_time.it_value,
    771       1.63   thorpej 				    &ptn->pt_time.it_value,
    772       1.63   thorpej 				    &pt->pt_time.it_value);
    773       1.63   thorpej 
    774       1.63   thorpej 			if (pptn)
    775       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    776       1.63   thorpej 			else
    777       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    778       1.63   thorpej 
    779       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    780      1.150  christos 				timespecsub(&ptn->pt_time.it_value,
    781       1.63   thorpej 				    &pt->pt_time.it_value,
    782       1.63   thorpej 				    &ptn->pt_time.it_value);
    783       1.63   thorpej 
    784       1.63   thorpej 			pt->pt_active = 1;
    785       1.63   thorpej 		} else
    786       1.63   thorpej 			pt->pt_active = 0;
    787       1.63   thorpej 	}
    788  1.197.4.1    martin 
    789  1.197.4.1    martin 	/* Success!  */
    790  1.197.4.1    martin 	return 0;
    791       1.63   thorpej }
    792       1.63   thorpej 
    793       1.63   thorpej void
    794      1.150  christos timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    795       1.63   thorpej {
    796      1.150  christos 	struct timespec now;
    797       1.63   thorpej 	struct ptimer *ptn;
    798       1.63   thorpej 
    799      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    800      1.142        ad 
    801      1.150  christos 	*aits = pt->pt_time;
    802      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    803        1.1       cgd 		/*
    804       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    805       1.63   thorpej 		 * part of real time timer.  If time for real time
    806       1.63   thorpej 		 * timer has passed return 0, else return difference
    807       1.63   thorpej 		 * between current time and time for the timer to go
    808       1.63   thorpej 		 * off.
    809        1.1       cgd 		 */
    810      1.150  christos 		if (timespecisset(&aits->it_value)) {
    811      1.168      yamt 			if (pt->pt_type == CLOCK_REALTIME) {
    812      1.168      yamt 				getnanotime(&now);
    813      1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    814      1.168      yamt 				getnanouptime(&now);
    815      1.168      yamt 			}
    816      1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    817      1.150  christos 				timespecclear(&aits->it_value);
    818      1.101    kardel 			else
    819      1.150  christos 				timespecsub(&aits->it_value, &now,
    820      1.150  christos 				    &aits->it_value);
    821       1.36   thorpej 		}
    822       1.63   thorpej 	} else if (pt->pt_active) {
    823       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    824       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    825       1.63   thorpej 		else
    826       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    827       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    828      1.150  christos 			timespecadd(&aits->it_value,
    829      1.150  christos 			    &ptn->pt_time.it_value, &aits->it_value);
    830       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    831        1.1       cgd 	} else
    832      1.150  christos 		timespecclear(&aits->it_value);
    833       1.63   thorpej }
    834       1.63   thorpej 
    835       1.63   thorpej 
    836       1.63   thorpej 
    837       1.63   thorpej /* Set and arm a POSIX realtime timer */
    838       1.63   thorpej int
    839      1.156  christos sys___timer_settime50(struct lwp *l,
    840      1.156  christos     const struct sys___timer_settime50_args *uap,
    841      1.140      yamt     register_t *retval)
    842       1.63   thorpej {
    843      1.135       dsl 	/* {
    844       1.63   thorpej 		syscallarg(timer_t) timerid;
    845       1.63   thorpej 		syscallarg(int) flags;
    846       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    847       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    848      1.135       dsl 	} */
    849       1.92      cube 	int error;
    850       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    851       1.92      cube 
    852       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    853       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    854       1.92      cube 		return (error);
    855       1.92      cube 
    856       1.92      cube 	if (SCARG(uap, ovalue))
    857       1.92      cube 		ovp = &ovalue;
    858       1.92      cube 
    859       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    860       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    861       1.92      cube 		return error;
    862       1.92      cube 
    863       1.92      cube 	if (ovp)
    864       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    865       1.92      cube 		    sizeof(struct itimerspec));
    866       1.92      cube 	return 0;
    867       1.92      cube }
    868       1.92      cube 
    869       1.92      cube int
    870       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    871       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    872       1.92      cube {
    873      1.150  christos 	struct timespec now;
    874      1.150  christos 	struct itimerspec val, oval;
    875      1.142        ad 	struct ptimers *pts;
    876       1.63   thorpej 	struct ptimer *pt;
    877      1.160  christos 	int error;
    878       1.63   thorpej 
    879      1.142        ad 	pts = p->p_timers;
    880       1.63   thorpej 
    881      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    882      1.142        ad 		return EINVAL;
    883      1.150  christos 	val = *value;
    884      1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    885      1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
    886      1.160  christos 		return error;
    887       1.63   thorpej 
    888      1.142        ad 	mutex_spin_enter(&timer_lock);
    889  1.197.4.1    martin restart:
    890      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    891      1.142        ad 		mutex_spin_exit(&timer_lock);
    892      1.150  christos 		return EINVAL;
    893      1.142        ad 	}
    894      1.142        ad 
    895       1.63   thorpej 	oval = pt->pt_time;
    896       1.63   thorpej 	pt->pt_time = val;
    897       1.63   thorpej 
    898       1.67   nathanw 	/*
    899       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    900       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    901       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    902       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    903       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    904       1.67   nathanw 	 */
    905      1.150  christos 	if (timespecisset(&pt->pt_time.it_value)) {
    906      1.168      yamt 		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
    907      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    908      1.168      yamt 				if (pt->pt_type == CLOCK_REALTIME) {
    909      1.168      yamt 					getnanotime(&now);
    910      1.168      yamt 				} else { /* CLOCK_MONOTONIC */
    911      1.168      yamt 					getnanouptime(&now);
    912      1.168      yamt 				}
    913      1.150  christos 				timespecadd(&pt->pt_time.it_value, &now,
    914      1.101    kardel 				    &pt->pt_time.it_value);
    915      1.101    kardel 			}
    916       1.67   nathanw 		} else {
    917       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    918      1.150  christos 				getnanotime(&now);
    919      1.150  christos 				timespecsub(&pt->pt_time.it_value, &now,
    920      1.101    kardel 				    &pt->pt_time.it_value);
    921      1.150  christos 				if (!timespecisset(&pt->pt_time.it_value) ||
    922       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    923       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    924      1.150  christos 					pt->pt_time.it_value.tv_nsec = 1;
    925       1.67   nathanw 				}
    926       1.67   nathanw 			}
    927       1.67   nathanw 		}
    928       1.67   nathanw 	}
    929       1.67   nathanw 
    930  1.197.4.1    martin 	error = timer_settime(pt);
    931  1.197.4.1    martin 	if (error == ERESTART) {
    932  1.197.4.1    martin 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
    933  1.197.4.1    martin 		goto restart;
    934  1.197.4.1    martin 	}
    935  1.197.4.1    martin 	KASSERT(error == 0);
    936      1.142        ad 	mutex_spin_exit(&timer_lock);
    937       1.63   thorpej 
    938      1.150  christos 	if (ovalue)
    939      1.150  christos 		*ovalue = oval;
    940       1.63   thorpej 
    941       1.63   thorpej 	return (0);
    942       1.63   thorpej }
    943       1.63   thorpej 
    944       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    945       1.63   thorpej int
    946      1.156  christos sys___timer_gettime50(struct lwp *l,
    947      1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    948       1.63   thorpej {
    949      1.135       dsl 	/* {
    950       1.63   thorpej 		syscallarg(timer_t) timerid;
    951       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    952      1.135       dsl 	} */
    953       1.63   thorpej 	struct itimerspec its;
    954       1.92      cube 	int error;
    955       1.92      cube 
    956       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    957       1.92      cube 	    &its)) != 0)
    958       1.92      cube 		return error;
    959       1.92      cube 
    960       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    961       1.92      cube }
    962       1.92      cube 
    963       1.92      cube int
    964       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    965       1.92      cube {
    966       1.63   thorpej 	struct ptimer *pt;
    967      1.142        ad 	struct ptimers *pts;
    968       1.63   thorpej 
    969      1.142        ad 	pts = p->p_timers;
    970      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    971       1.63   thorpej 		return (EINVAL);
    972      1.142        ad 	mutex_spin_enter(&timer_lock);
    973      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    974      1.142        ad 		mutex_spin_exit(&timer_lock);
    975      1.142        ad 		return (EINVAL);
    976      1.142        ad 	}
    977      1.150  christos 	timer_gettime(pt, its);
    978      1.142        ad 	mutex_spin_exit(&timer_lock);
    979       1.63   thorpej 
    980       1.92      cube 	return 0;
    981       1.63   thorpej }
    982       1.63   thorpej 
    983       1.63   thorpej /*
    984       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    985       1.63   thorpej  * while a notification was already pending. The counter is reset when
    986       1.63   thorpej  * a timer expires and a notification can be posted.
    987       1.63   thorpej  */
    988       1.63   thorpej int
    989      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    990      1.140      yamt     register_t *retval)
    991       1.63   thorpej {
    992      1.135       dsl 	/* {
    993       1.63   thorpej 		syscallarg(timer_t) timerid;
    994      1.135       dsl 	} */
    995       1.63   thorpej 	struct proc *p = l->l_proc;
    996      1.142        ad 	struct ptimers *pts;
    997       1.63   thorpej 	int timerid;
    998       1.63   thorpej 	struct ptimer *pt;
    999       1.63   thorpej 
   1000       1.63   thorpej 	timerid = SCARG(uap, timerid);
   1001       1.63   thorpej 
   1002      1.142        ad 	pts = p->p_timers;
   1003      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1004      1.142        ad 		return (EINVAL);
   1005      1.142        ad 	mutex_spin_enter(&timer_lock);
   1006      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
   1007      1.142        ad 		mutex_spin_exit(&timer_lock);
   1008       1.63   thorpej 		return (EINVAL);
   1009      1.142        ad 	}
   1010       1.63   thorpej 	*retval = pt->pt_poverruns;
   1011      1.187  christos 	if (*retval >= DELAYTIMER_MAX)
   1012      1.187  christos 		*retval = DELAYTIMER_MAX;
   1013      1.142        ad 	mutex_spin_exit(&timer_lock);
   1014       1.63   thorpej 
   1015       1.63   thorpej 	return (0);
   1016       1.63   thorpej }
   1017       1.63   thorpej 
   1018       1.63   thorpej /*
   1019       1.63   thorpej  * Real interval timer expired:
   1020       1.63   thorpej  * send process whose timer expired an alarm signal.
   1021       1.63   thorpej  * If time is not set up to reload, then just return.
   1022       1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1023       1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1024       1.63   thorpej  * SIGALRM calls to be compressed into one.
   1025       1.63   thorpej  */
   1026       1.63   thorpej void
   1027       1.63   thorpej realtimerexpire(void *arg)
   1028       1.63   thorpej {
   1029      1.166      yamt 	uint64_t last_val, next_val, interval, now_ns;
   1030      1.150  christos 	struct timespec now, next;
   1031       1.63   thorpej 	struct ptimer *pt;
   1032      1.148     joerg 	int backwards;
   1033       1.63   thorpej 
   1034      1.142        ad 	pt = arg;
   1035       1.63   thorpej 
   1036      1.142        ad 	mutex_spin_enter(&timer_lock);
   1037       1.63   thorpej 	itimerfire(pt);
   1038       1.63   thorpej 
   1039      1.150  christos 	if (!timespecisset(&pt->pt_time.it_interval)) {
   1040      1.150  christos 		timespecclear(&pt->pt_time.it_value);
   1041      1.142        ad 		mutex_spin_exit(&timer_lock);
   1042       1.63   thorpej 		return;
   1043       1.63   thorpej 	}
   1044      1.148     joerg 
   1045      1.171  christos 	if (pt->pt_type == CLOCK_MONOTONIC) {
   1046      1.171  christos 		getnanouptime(&now);
   1047      1.171  christos 	} else {
   1048      1.171  christos 		getnanotime(&now);
   1049      1.171  christos 	}
   1050      1.150  christos 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
   1051      1.150  christos 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
   1052      1.148     joerg 	/* Handle the easy case of non-overflown timers first. */
   1053      1.150  christos 	if (!backwards && timespeccmp(&next, &now, >)) {
   1054      1.148     joerg 		pt->pt_time.it_value = next;
   1055      1.148     joerg 	} else {
   1056      1.166      yamt 		now_ns = timespec2ns(&now);
   1057      1.150  christos 		last_val = timespec2ns(&pt->pt_time.it_value);
   1058      1.150  christos 		interval = timespec2ns(&pt->pt_time.it_interval);
   1059      1.148     joerg 
   1060      1.166      yamt 		next_val = now_ns +
   1061      1.166      yamt 		    (now_ns - last_val + interval - 1) % interval;
   1062      1.148     joerg 
   1063      1.148     joerg 		if (backwards)
   1064      1.148     joerg 			next_val += interval;
   1065      1.148     joerg 		else
   1066      1.166      yamt 			pt->pt_overruns += (now_ns - last_val) / interval;
   1067      1.148     joerg 
   1068      1.150  christos 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1069      1.150  christos 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1070      1.101    kardel 	}
   1071      1.148     joerg 
   1072      1.148     joerg 	/*
   1073  1.197.4.1    martin 	 * Reset the callout, if it's not going away.
   1074  1.197.4.1    martin 	 *
   1075      1.150  christos 	 * Don't need to check tshzto() return value, here.
   1076      1.148     joerg 	 * callout_reset() does it for us.
   1077      1.148     joerg 	 */
   1078  1.197.4.1    martin 	if (!pt->pt_dying)
   1079  1.197.4.1    martin 		callout_reset(&pt->pt_ch,
   1080  1.197.4.1    martin 		    (pt->pt_type == CLOCK_MONOTONIC
   1081  1.197.4.1    martin 			? tshztoup(&pt->pt_time.it_value)
   1082  1.197.4.1    martin 			: tshzto(&pt->pt_time.it_value)),
   1083  1.197.4.1    martin 		    realtimerexpire, pt);
   1084      1.148     joerg 	mutex_spin_exit(&timer_lock);
   1085       1.63   thorpej }
   1086       1.63   thorpej 
   1087       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1088       1.63   thorpej /* ARGSUSED */
   1089       1.63   thorpej int
   1090      1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1091      1.140      yamt     register_t *retval)
   1092       1.63   thorpej {
   1093      1.135       dsl 	/* {
   1094       1.63   thorpej 		syscallarg(int) which;
   1095       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1096      1.135       dsl 	} */
   1097       1.63   thorpej 	struct proc *p = l->l_proc;
   1098       1.63   thorpej 	struct itimerval aitv;
   1099       1.91      cube 	int error;
   1100       1.91      cube 
   1101      1.191      maxv 	memset(&aitv, 0, sizeof(aitv));
   1102       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1103       1.91      cube 	if (error)
   1104       1.91      cube 		return error;
   1105       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1106       1.91      cube }
   1107       1.63   thorpej 
   1108       1.91      cube int
   1109       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1110       1.91      cube {
   1111      1.142        ad 	struct ptimers *pts;
   1112      1.142        ad 	struct ptimer *pt;
   1113      1.150  christos 	struct itimerspec its;
   1114       1.63   thorpej 
   1115      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1116       1.63   thorpej 		return (EINVAL);
   1117       1.63   thorpej 
   1118      1.142        ad 	mutex_spin_enter(&timer_lock);
   1119      1.142        ad 	pts = p->p_timers;
   1120      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1121       1.91      cube 		timerclear(&itvp->it_value);
   1122       1.91      cube 		timerclear(&itvp->it_interval);
   1123      1.150  christos 	} else {
   1124      1.150  christos 		timer_gettime(pt, &its);
   1125      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1126      1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1127      1.150  christos 	}
   1128      1.188   msaitoh 	mutex_spin_exit(&timer_lock);
   1129       1.63   thorpej 
   1130       1.91      cube 	return 0;
   1131        1.1       cgd }
   1132        1.1       cgd 
   1133       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1134        1.1       cgd /* ARGSUSED */
   1135        1.3    andrew int
   1136      1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1137      1.140      yamt     register_t *retval)
   1138       1.15   thorpej {
   1139      1.135       dsl 	/* {
   1140       1.30   mycroft 		syscallarg(int) which;
   1141       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1142       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1143      1.135       dsl 	} */
   1144       1.63   thorpej 	struct proc *p = l->l_proc;
   1145       1.30   mycroft 	int which = SCARG(uap, which);
   1146      1.156  christos 	struct sys___getitimer50_args getargs;
   1147       1.91      cube 	const struct itimerval *itvp;
   1148        1.1       cgd 	struct itimerval aitv;
   1149       1.91      cube 	int error;
   1150        1.1       cgd 
   1151      1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1152        1.1       cgd 		return (EINVAL);
   1153       1.11       cgd 	itvp = SCARG(uap, itv);
   1154       1.63   thorpej 	if (itvp &&
   1155      1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1156        1.1       cgd 		return (error);
   1157       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1158       1.30   mycroft 		SCARG(&getargs, which) = which;
   1159       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1160      1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1161       1.21       cgd 			return (error);
   1162       1.21       cgd 	}
   1163        1.1       cgd 	if (itvp == 0)
   1164        1.1       cgd 		return (0);
   1165       1.91      cube 
   1166       1.91      cube 	return dosetitimer(p, which, &aitv);
   1167       1.91      cube }
   1168       1.91      cube 
   1169       1.91      cube int
   1170       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1171       1.91      cube {
   1172      1.150  christos 	struct timespec now;
   1173      1.142        ad 	struct ptimers *pts;
   1174      1.142        ad 	struct ptimer *pt, *spare;
   1175  1.197.4.1    martin 	int error;
   1176       1.91      cube 
   1177      1.170  christos 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
   1178       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1179        1.1       cgd 		return (EINVAL);
   1180       1.63   thorpej 
   1181       1.63   thorpej 	/*
   1182       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1183       1.63   thorpej 	 * wants to clear the timer.
   1184       1.63   thorpej 	 */
   1185      1.142        ad 	spare = NULL;
   1186      1.142        ad 	pts = p->p_timers;
   1187      1.142        ad  retry:
   1188      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1189      1.142        ad 	    pts->pts_timers[which] == NULL))
   1190       1.63   thorpej 		return (0);
   1191      1.142        ad 	if (pts == NULL)
   1192      1.142        ad 		pts = timers_alloc(p);
   1193      1.142        ad 	mutex_spin_enter(&timer_lock);
   1194  1.197.4.1    martin restart:
   1195      1.142        ad 	pt = pts->pts_timers[which];
   1196      1.142        ad 	if (pt == NULL) {
   1197      1.142        ad 		if (spare == NULL) {
   1198      1.142        ad 			mutex_spin_exit(&timer_lock);
   1199      1.195  christos 			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
   1200      1.142        ad 			goto retry;
   1201      1.142        ad 		}
   1202      1.142        ad 		pt = spare;
   1203      1.142        ad 		spare = NULL;
   1204       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1205       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1206       1.63   thorpej 		pt->pt_overruns = 0;
   1207       1.63   thorpej 		pt->pt_proc = p;
   1208       1.63   thorpej 		pt->pt_type = which;
   1209       1.64   nathanw 		pt->pt_entry = which;
   1210      1.142        ad 		pt->pt_queued = false;
   1211      1.196   mlelstv 		if (!CLOCK_VIRTUAL_P(which))
   1212      1.149  christos 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1213      1.149  christos 		else
   1214      1.149  christos 			pt->pt_active = 0;
   1215      1.149  christos 
   1216       1.63   thorpej 		switch (which) {
   1217       1.63   thorpej 		case ITIMER_REAL:
   1218      1.170  christos 		case ITIMER_MONOTONIC:
   1219       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1220       1.63   thorpej 			break;
   1221       1.63   thorpej 		case ITIMER_VIRTUAL:
   1222       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1223       1.63   thorpej 			break;
   1224       1.63   thorpej 		case ITIMER_PROF:
   1225       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1226       1.63   thorpej 			break;
   1227        1.1       cgd 		}
   1228      1.142        ad 		pts->pts_timers[which] = pt;
   1229      1.142        ad 	}
   1230       1.63   thorpej 
   1231      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1232      1.150  christos 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1233      1.150  christos 
   1234      1.170  christos 	if (timespecisset(&pt->pt_time.it_value)) {
   1235       1.67   nathanw 		/* Convert to absolute time */
   1236      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1237      1.170  christos 		switch (which) {
   1238      1.170  christos 		case ITIMER_REAL:
   1239      1.170  christos 			getnanotime(&now);
   1240      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1241      1.170  christos 			    &pt->pt_time.it_value);
   1242      1.170  christos 			break;
   1243      1.170  christos 		case ITIMER_MONOTONIC:
   1244      1.170  christos 			getnanouptime(&now);
   1245      1.170  christos 			timespecadd(&pt->pt_time.it_value, &now,
   1246      1.170  christos 			    &pt->pt_time.it_value);
   1247      1.170  christos 			break;
   1248      1.170  christos 		default:
   1249      1.170  christos 			break;
   1250      1.170  christos 		}
   1251       1.67   nathanw 	}
   1252  1.197.4.1    martin 	error = timer_settime(pt);
   1253  1.197.4.1    martin 	if (error == ERESTART) {
   1254  1.197.4.1    martin 		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
   1255  1.197.4.1    martin 		goto restart;
   1256  1.197.4.1    martin 	}
   1257  1.197.4.1    martin 	KASSERT(error == 0);
   1258      1.142        ad 	mutex_spin_exit(&timer_lock);
   1259      1.142        ad 	if (spare != NULL)
   1260      1.142        ad 		pool_put(&ptimer_pool, spare);
   1261       1.63   thorpej 
   1262        1.1       cgd 	return (0);
   1263        1.1       cgd }
   1264        1.1       cgd 
   1265       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1266      1.142        ad struct ptimers *
   1267       1.63   thorpej timers_alloc(struct proc *p)
   1268       1.63   thorpej {
   1269      1.142        ad 	struct ptimers *pts;
   1270       1.63   thorpej 	int i;
   1271       1.63   thorpej 
   1272      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1273       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1274       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1275       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1276       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1277      1.142        ad 	mutex_spin_enter(&timer_lock);
   1278      1.142        ad 	if (p->p_timers == NULL) {
   1279      1.142        ad 		p->p_timers = pts;
   1280      1.142        ad 		mutex_spin_exit(&timer_lock);
   1281      1.142        ad 		return pts;
   1282      1.142        ad 	}
   1283      1.142        ad 	mutex_spin_exit(&timer_lock);
   1284      1.142        ad 	pool_put(&ptimers_pool, pts);
   1285      1.142        ad 	return p->p_timers;
   1286       1.63   thorpej }
   1287       1.63   thorpej 
   1288        1.1       cgd /*
   1289       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1290       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1291       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1292       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1293       1.63   thorpej  * structure if none of those remain.
   1294        1.1       cgd  */
   1295        1.3    andrew void
   1296       1.63   thorpej timers_free(struct proc *p, int which)
   1297        1.6       cgd {
   1298       1.63   thorpej 	struct ptimers *pts;
   1299      1.142        ad 	struct ptimer *ptn;
   1300      1.150  christos 	struct timespec ts;
   1301      1.142        ad 	int i;
   1302       1.63   thorpej 
   1303      1.142        ad 	if (p->p_timers == NULL)
   1304      1.142        ad 		return;
   1305       1.63   thorpej 
   1306      1.142        ad 	pts = p->p_timers;
   1307      1.142        ad 	mutex_spin_enter(&timer_lock);
   1308      1.142        ad 	if (which == TIMERS_ALL) {
   1309      1.142        ad 		p->p_timers = NULL;
   1310      1.142        ad 		i = 0;
   1311      1.142        ad 	} else {
   1312      1.150  christos 		timespecclear(&ts);
   1313      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1314      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1315      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1316      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1317      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1318      1.149  christos 		}
   1319      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1320      1.142        ad 		if (ptn) {
   1321      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
   1322      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1323      1.142        ad 			    &ptn->pt_time.it_value);
   1324      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1325      1.142        ad 		}
   1326      1.150  christos 		timespecclear(&ts);
   1327      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1328      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1329      1.149  christos 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1330      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1331      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1332      1.149  christos 		}
   1333      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1334      1.142        ad 		if (ptn) {
   1335      1.168      yamt 			KASSERT(ptn->pt_type == CLOCK_PROF);
   1336      1.150  christos 			timespecadd(&ts, &ptn->pt_time.it_value,
   1337      1.142        ad 			    &ptn->pt_time.it_value);
   1338      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1339       1.63   thorpej 		}
   1340      1.183  christos 		i = TIMER_MIN;
   1341      1.142        ad 	}
   1342      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1343      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1344  1.197.4.1    martin 			/* Free the timer and release the lock.  */
   1345      1.142        ad 			itimerfree(pts, i);
   1346  1.197.4.1    martin 			/* Reacquire the lock for the next one.  */
   1347      1.142        ad 			mutex_spin_enter(&timer_lock);
   1348        1.1       cgd 		}
   1349        1.1       cgd 	}
   1350      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1351      1.183  christos 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1352      1.142        ad 		p->p_timers = NULL;
   1353      1.142        ad 		mutex_spin_exit(&timer_lock);
   1354      1.142        ad 		pool_put(&ptimers_pool, pts);
   1355      1.142        ad 	} else
   1356      1.142        ad 		mutex_spin_exit(&timer_lock);
   1357      1.142        ad }
   1358      1.142        ad 
   1359      1.142        ad static void
   1360      1.142        ad itimerfree(struct ptimers *pts, int index)
   1361      1.142        ad {
   1362      1.142        ad 	struct ptimer *pt;
   1363      1.142        ad 
   1364      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1365      1.142        ad 
   1366      1.142        ad 	pt = pts->pts_timers[index];
   1367  1.197.4.1    martin 
   1368  1.197.4.1    martin 	/*
   1369  1.197.4.1    martin 	 * Prevent new references, and notify the callout not to
   1370  1.197.4.1    martin 	 * restart itself.
   1371  1.197.4.1    martin 	 */
   1372      1.142        ad 	pts->pts_timers[index] = NULL;
   1373  1.197.4.1    martin 	pt->pt_dying = true;
   1374  1.197.4.1    martin 
   1375  1.197.4.1    martin 	/*
   1376  1.197.4.1    martin 	 * For non-virtual timers, stop the callout, or wait for it to
   1377  1.197.4.1    martin 	 * run if it has already fired.  It cannot restart again after
   1378  1.197.4.1    martin 	 * this point: the callout won't restart itself when dying, no
   1379  1.197.4.1    martin 	 * other users holding the lock can restart it, and any other
   1380  1.197.4.1    martin 	 * users waiting for callout_halt concurrently (timer_settime)
   1381  1.197.4.1    martin 	 * will restart from the top.
   1382  1.197.4.1    martin 	 */
   1383      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1384      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1385  1.197.4.1    martin 
   1386  1.197.4.1    martin 	/* Remove it from the queue to be signalled.  */
   1387      1.167      yamt 	if (pt->pt_queued)
   1388      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1389  1.197.4.1    martin 
   1390  1.197.4.1    martin 	/* All done with the global state.  */
   1391      1.144        ad 	mutex_spin_exit(&timer_lock);
   1392  1.197.4.1    martin 
   1393  1.197.4.1    martin 	/* Destroy the callout, if needed, and free the ptimer.  */
   1394      1.168      yamt 	if (!CLOCK_VIRTUAL_P(pt->pt_type))
   1395      1.149  christos 		callout_destroy(&pt->pt_ch);
   1396      1.142        ad 	pool_put(&ptimer_pool, pt);
   1397        1.1       cgd }
   1398        1.1       cgd 
   1399        1.1       cgd /*
   1400        1.1       cgd  * Decrement an interval timer by a specified number
   1401      1.152  christos  * of nanoseconds, which must be less than a second,
   1402      1.152  christos  * i.e. < 1000000000.  If the timer expires, then reload
   1403      1.152  christos  * it.  In this case, carry over (nsec - old value) to
   1404        1.8       cgd  * reduce the value reloaded into the timer so that
   1405        1.1       cgd  * the timer does not drift.  This routine assumes
   1406        1.1       cgd  * that it is called in a context where the timers
   1407        1.1       cgd  * on which it is operating cannot change in value.
   1408        1.1       cgd  */
   1409      1.142        ad static int
   1410      1.152  christos itimerdecr(struct ptimer *pt, int nsec)
   1411       1.63   thorpej {
   1412      1.150  christos 	struct itimerspec *itp;
   1413  1.197.4.2    martin 	int error __diagused;
   1414        1.1       cgd 
   1415      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1416      1.168      yamt 	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
   1417      1.142        ad 
   1418       1.63   thorpej 	itp = &pt->pt_time;
   1419      1.150  christos 	if (itp->it_value.tv_nsec < nsec) {
   1420        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1421        1.1       cgd 			/* expired, and already in next interval */
   1422      1.150  christos 			nsec -= itp->it_value.tv_nsec;
   1423        1.1       cgd 			goto expire;
   1424        1.1       cgd 		}
   1425      1.150  christos 		itp->it_value.tv_nsec += 1000000000;
   1426        1.1       cgd 		itp->it_value.tv_sec--;
   1427        1.1       cgd 	}
   1428      1.152  christos 	itp->it_value.tv_nsec -= nsec;
   1429      1.152  christos 	nsec = 0;
   1430      1.150  christos 	if (timespecisset(&itp->it_value))
   1431        1.1       cgd 		return (1);
   1432        1.1       cgd 	/* expired, exactly at end of interval */
   1433        1.1       cgd expire:
   1434      1.150  christos 	if (timespecisset(&itp->it_interval)) {
   1435        1.1       cgd 		itp->it_value = itp->it_interval;
   1436      1.150  christos 		itp->it_value.tv_nsec -= nsec;
   1437      1.150  christos 		if (itp->it_value.tv_nsec < 0) {
   1438      1.150  christos 			itp->it_value.tv_nsec += 1000000000;
   1439        1.1       cgd 			itp->it_value.tv_sec--;
   1440        1.1       cgd 		}
   1441  1.197.4.1    martin 		error = timer_settime(pt);
   1442  1.197.4.1    martin 		KASSERT(error == 0); /* virtual, never fails */
   1443        1.1       cgd 	} else
   1444      1.150  christos 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1445        1.1       cgd 	return (0);
   1446       1.42       cgd }
   1447       1.42       cgd 
   1448      1.142        ad static void
   1449       1.63   thorpej itimerfire(struct ptimer *pt)
   1450       1.63   thorpej {
   1451       1.78        cl 
   1452      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1453      1.142        ad 
   1454      1.142        ad 	/*
   1455      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1456      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1457      1.142        ad 	 */
   1458      1.173     rmind 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
   1459      1.142        ad 		return;
   1460      1.172     rmind 	}
   1461      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1462      1.142        ad 	pt->pt_queued = true;
   1463      1.142        ad 	softint_schedule(timer_sih);
   1464      1.142        ad }
   1465      1.142        ad 
   1466      1.142        ad void
   1467      1.142        ad timer_tick(lwp_t *l, bool user)
   1468      1.142        ad {
   1469      1.142        ad 	struct ptimers *pts;
   1470      1.142        ad 	struct ptimer *pt;
   1471      1.142        ad 	proc_t *p;
   1472      1.142        ad 
   1473      1.142        ad 	p = l->l_proc;
   1474      1.142        ad 	if (p->p_timers == NULL)
   1475      1.142        ad 		return;
   1476      1.142        ad 
   1477      1.142        ad 	mutex_spin_enter(&timer_lock);
   1478      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1479       1.63   thorpej 		/*
   1480      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1481       1.63   thorpej 		 */
   1482      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1483      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1484      1.142        ad 				itimerfire(pt);
   1485      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1486      1.152  christos 			if (itimerdecr(pt, tick * 1000) == 0)
   1487      1.142        ad 				itimerfire(pt);
   1488      1.142        ad 	}
   1489      1.142        ad 	mutex_spin_exit(&timer_lock);
   1490      1.142        ad }
   1491      1.142        ad 
   1492      1.142        ad static void
   1493      1.142        ad timer_intr(void *cookie)
   1494      1.142        ad {
   1495      1.142        ad 	ksiginfo_t ksi;
   1496      1.142        ad 	struct ptimer *pt;
   1497      1.142        ad 	proc_t *p;
   1498      1.142        ad 
   1499      1.158        ad 	mutex_enter(proc_lock);
   1500      1.142        ad 	mutex_spin_enter(&timer_lock);
   1501      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1502      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1503      1.142        ad 		KASSERT(pt->pt_queued);
   1504      1.142        ad 		pt->pt_queued = false;
   1505      1.142        ad 
   1506      1.154  wrstuden 		if (pt->pt_proc->p_timers == NULL) {
   1507      1.154  wrstuden 			/* Process is dying. */
   1508      1.142        ad 			continue;
   1509      1.154  wrstuden 		}
   1510      1.142        ad 		p = pt->pt_proc;
   1511      1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1512      1.142        ad 			continue;
   1513      1.142        ad 		}
   1514      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1515       1.63   thorpej 			pt->pt_overruns++;
   1516      1.142        ad 			continue;
   1517       1.64   nathanw 		}
   1518      1.142        ad 
   1519      1.142        ad 		KSI_INIT(&ksi);
   1520      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1521      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1522      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1523      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1524      1.142        ad 		pt->pt_overruns = 0;
   1525      1.142        ad 		mutex_spin_exit(&timer_lock);
   1526      1.142        ad 		kpsignal(p, &ksi, NULL);
   1527      1.142        ad 		mutex_spin_enter(&timer_lock);
   1528       1.63   thorpej 	}
   1529      1.142        ad 	mutex_spin_exit(&timer_lock);
   1530      1.158        ad 	mutex_exit(proc_lock);
   1531       1.63   thorpej }
   1532      1.162      elad 
   1533      1.162      elad /*
   1534      1.162      elad  * Check if the time will wrap if set to ts.
   1535      1.162      elad  *
   1536      1.162      elad  * ts - timespec describing the new time
   1537      1.162      elad  * delta - the delta between the current time and ts
   1538      1.162      elad  */
   1539      1.162      elad bool
   1540      1.162      elad time_wraps(struct timespec *ts, struct timespec *delta)
   1541      1.162      elad {
   1542      1.162      elad 
   1543      1.162      elad 	/*
   1544      1.162      elad 	 * Don't allow the time to be set forward so far it
   1545      1.162      elad 	 * will wrap and become negative, thus allowing an
   1546      1.162      elad 	 * attacker to bypass the next check below.  The
   1547      1.162      elad 	 * cutoff is 1 year before rollover occurs, so even
   1548      1.162      elad 	 * if the attacker uses adjtime(2) to move the time
   1549      1.162      elad 	 * past the cutoff, it will take a very long time
   1550      1.162      elad 	 * to get to the wrap point.
   1551      1.162      elad 	 */
   1552      1.162      elad 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1553      1.162      elad 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1554      1.162      elad 		return true;
   1555      1.162      elad 
   1556      1.162      elad 	return false;
   1557      1.162      elad }
   1558