Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.211
      1  1.211    simonb /*	$NetBSD: kern_time.c,v 1.211 2021/04/03 12:57:21 simonb Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.207   thorpej  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
      5  1.207   thorpej  *     The NetBSD Foundation, Inc.
      6   1.42       cgd  * All rights reserved.
      7   1.42       cgd  *
      8   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      9  1.207   thorpej  * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
     10   1.42       cgd  *
     11   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     12   1.42       cgd  * modification, are permitted provided that the following conditions
     13   1.42       cgd  * are met:
     14   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     15   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     16   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     18   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     19   1.42       cgd  *
     20   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     31   1.42       cgd  */
     32    1.9       cgd 
     33    1.1       cgd /*
     34    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     35    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     36    1.1       cgd  *
     37    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     38    1.1       cgd  * modification, are permitted provided that the following conditions
     39    1.1       cgd  * are met:
     40    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     41    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     42    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     43    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     44    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     45   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     46    1.1       cgd  *    may be used to endorse or promote products derived from this software
     47    1.1       cgd  *    without specific prior written permission.
     48    1.1       cgd  *
     49    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59    1.1       cgd  * SUCH DAMAGE.
     60    1.1       cgd  *
     61   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     62    1.1       cgd  */
     63   1.58     lukem 
     64   1.58     lukem #include <sys/cdefs.h>
     65  1.211    simonb __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.211 2021/04/03 12:57:21 simonb Exp $");
     66    1.1       cgd 
     67    1.5   mycroft #include <sys/param.h>
     68    1.5   mycroft #include <sys/resourcevar.h>
     69    1.5   mycroft #include <sys/kernel.h>
     70    1.8       cgd #include <sys/systm.h>
     71    1.5   mycroft #include <sys/proc.h>
     72    1.8       cgd #include <sys/vnode.h>
     73   1.17  christos #include <sys/signalvar.h>
     74   1.25     perry #include <sys/syslog.h>
     75  1.101    kardel #include <sys/timetc.h>
     76  1.143        ad #include <sys/timex.h>
     77   1.99      elad #include <sys/kauth.h>
     78   1.11       cgd #include <sys/mount.h>
     79   1.11       cgd #include <sys/syscallargs.h>
     80  1.143        ad #include <sys/cpu.h>
     81   1.19  christos 
     82  1.210   thorpej kmutex_t	itimer_mutex __cacheline_aligned;	/* XXX static */
     83  1.207   thorpej static struct itlist itimer_realtime_changed_notify;
     84  1.142        ad 
     85  1.207   thorpej static void	ptimer_intr(void *);
     86  1.207   thorpej static void	*ptimer_sih __read_mostly;
     87  1.210   thorpej static TAILQ_HEAD(, ptimer) ptimer_queue;
     88   1.97    simonb 
     89  1.168      yamt #define	CLOCK_VIRTUAL_P(clockid)	\
     90  1.168      yamt 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
     91  1.168      yamt 
     92  1.168      yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
     93  1.168      yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
     94  1.168      yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
     95  1.170  christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
     96  1.168      yamt 
     97  1.187  christos #define	DELAYTIMER_MAX	32
     98  1.186  christos 
     99  1.131        ad /*
    100  1.131        ad  * Initialize timekeeping.
    101  1.131        ad  */
    102  1.131        ad void
    103  1.131        ad time_init(void)
    104  1.131        ad {
    105  1.131        ad 
    106  1.207   thorpej 	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
    107  1.207   thorpej 	LIST_INIT(&itimer_realtime_changed_notify);
    108  1.207   thorpej 
    109  1.207   thorpej 	TAILQ_INIT(&ptimer_queue);
    110  1.207   thorpej 	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    111  1.207   thorpej 	    ptimer_intr, NULL);
    112  1.207   thorpej }
    113  1.207   thorpej 
    114  1.207   thorpej /*
    115  1.207   thorpej  * Check if the time will wrap if set to ts.
    116  1.207   thorpej  *
    117  1.207   thorpej  * ts - timespec describing the new time
    118  1.207   thorpej  * delta - the delta between the current time and ts
    119  1.207   thorpej  */
    120  1.207   thorpej bool
    121  1.207   thorpej time_wraps(struct timespec *ts, struct timespec *delta)
    122  1.207   thorpej {
    123  1.207   thorpej 
    124  1.207   thorpej 	/*
    125  1.207   thorpej 	 * Don't allow the time to be set forward so far it
    126  1.207   thorpej 	 * will wrap and become negative, thus allowing an
    127  1.207   thorpej 	 * attacker to bypass the next check below.  The
    128  1.207   thorpej 	 * cutoff is 1 year before rollover occurs, so even
    129  1.207   thorpej 	 * if the attacker uses adjtime(2) to move the time
    130  1.207   thorpej 	 * past the cutoff, it will take a very long time
    131  1.207   thorpej 	 * to get to the wrap point.
    132  1.207   thorpej 	 */
    133  1.207   thorpej 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
    134  1.207   thorpej 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
    135  1.207   thorpej 		return true;
    136  1.207   thorpej 
    137  1.207   thorpej 	return false;
    138  1.207   thorpej }
    139  1.207   thorpej 
    140  1.207   thorpej /*
    141  1.207   thorpej  * itimer_lock:
    142  1.207   thorpej  *
    143  1.207   thorpej  *	Acquire the interval timer data lock.
    144  1.207   thorpej  */
    145  1.207   thorpej void
    146  1.207   thorpej itimer_lock(void)
    147  1.207   thorpej {
    148  1.207   thorpej 	mutex_spin_enter(&itimer_mutex);
    149  1.131        ad }
    150  1.131        ad 
    151  1.207   thorpej /*
    152  1.207   thorpej  * itimer_unlock:
    153  1.207   thorpej  *
    154  1.207   thorpej  *	Release the interval timer data lock.
    155  1.207   thorpej  */
    156  1.142        ad void
    157  1.207   thorpej itimer_unlock(void)
    158  1.142        ad {
    159  1.207   thorpej 	mutex_spin_exit(&itimer_mutex);
    160  1.207   thorpej }
    161  1.142        ad 
    162  1.207   thorpej /*
    163  1.207   thorpej  * itimer_lock_held:
    164  1.207   thorpej  *
    165  1.207   thorpej  *	Check that the interval timer lock is held for diagnostic
    166  1.207   thorpej  *	assertions.
    167  1.207   thorpej  */
    168  1.210   thorpej inline bool __diagused
    169  1.207   thorpej itimer_lock_held(void)
    170  1.207   thorpej {
    171  1.207   thorpej 	return mutex_owned(&itimer_mutex);
    172  1.142        ad }
    173  1.142        ad 
    174  1.207   thorpej /*
    175  1.207   thorpej  * Time of day and interval timer support.
    176    1.1       cgd  *
    177    1.1       cgd  * These routines provide the kernel entry points to get and set
    178    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    179    1.1       cgd  * here provide support for adding and subtracting timeval structures
    180    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    181    1.1       cgd  * timers when they expire.
    182    1.1       cgd  */
    183    1.1       cgd 
    184   1.22       jtc /* This function is used by clock_settime and settimeofday */
    185  1.132      elad static int
    186  1.156  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    187   1.22       jtc {
    188  1.156  christos 	struct timespec delta, now;
    189   1.22       jtc 
    190  1.206       nia 	/*
    191  1.206       nia 	 * The time being set to an unreasonable value will cause
    192  1.206       nia 	 * unreasonable system behaviour.
    193  1.206       nia 	 */
    194  1.206       nia 	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
    195  1.206       nia 		return (EINVAL);
    196  1.206       nia 
    197  1.156  christos 	nanotime(&now);
    198  1.156  christos 	timespecsub(ts, &now, &delta);
    199  1.132      elad 
    200  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    201  1.156  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    202  1.156  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    203   1.29       tls 		return (EPERM);
    204   1.55      tron 	}
    205  1.132      elad 
    206   1.29       tls #ifdef notyet
    207  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    208   1.29       tls 		return (EPERM);
    209   1.55      tron 	}
    210   1.29       tls #endif
    211  1.103    kardel 
    212  1.156  christos 	tc_setclock(ts);
    213  1.103    kardel 
    214   1.22       jtc 	resettodr();
    215  1.129        ad 
    216  1.207   thorpej 	/*
    217  1.207   thorpej 	 * Notify pending CLOCK_REALTIME timers about the real time change.
    218  1.207   thorpej 	 * There may be inactive timers on this list, but this happens
    219  1.207   thorpej 	 * comparatively less often than timers firing, and so it's better
    220  1.207   thorpej 	 * to put the extra checks here than to complicate the other code
    221  1.207   thorpej 	 * path.
    222  1.207   thorpej 	 */
    223  1.207   thorpej 	struct itimer *it;
    224  1.207   thorpej 	itimer_lock();
    225  1.207   thorpej 	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
    226  1.207   thorpej 		KASSERT(it->it_ops->ito_realtime_changed != NULL);
    227  1.207   thorpej 		if (timespecisset(&it->it_time.it_value)) {
    228  1.207   thorpej 			(*it->it_ops->ito_realtime_changed)(it);
    229  1.207   thorpej 		}
    230  1.207   thorpej 	}
    231  1.207   thorpej 	itimer_unlock();
    232  1.207   thorpej 
    233   1.29       tls 	return (0);
    234   1.22       jtc }
    235   1.22       jtc 
    236  1.132      elad int
    237  1.132      elad settime(struct proc *p, struct timespec *ts)
    238  1.132      elad {
    239  1.132      elad 	return (settime1(p, ts, true));
    240  1.132      elad }
    241  1.132      elad 
    242   1.22       jtc /* ARGSUSED */
    243   1.22       jtc int
    244  1.156  christos sys___clock_gettime50(struct lwp *l,
    245  1.156  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    246   1.22       jtc {
    247  1.135       dsl 	/* {
    248   1.22       jtc 		syscallarg(clockid_t) clock_id;
    249   1.23       cgd 		syscallarg(struct timespec *) tp;
    250  1.135       dsl 	} */
    251  1.165     njoly 	int error;
    252   1.22       jtc 	struct timespec ats;
    253   1.22       jtc 
    254  1.165     njoly 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
    255  1.165     njoly 	if (error != 0)
    256  1.165     njoly 		return error;
    257  1.165     njoly 
    258  1.165     njoly 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    259  1.165     njoly }
    260  1.165     njoly 
    261   1.22       jtc /* ARGSUSED */
    262   1.22       jtc int
    263  1.156  christos sys___clock_settime50(struct lwp *l,
    264  1.156  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    265   1.22       jtc {
    266  1.135       dsl 	/* {
    267   1.22       jtc 		syscallarg(clockid_t) clock_id;
    268   1.23       cgd 		syscallarg(const struct timespec *) tp;
    269  1.135       dsl 	} */
    270  1.156  christos 	int error;
    271  1.156  christos 	struct timespec ats;
    272   1.22       jtc 
    273  1.156  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    274  1.156  christos 		return error;
    275  1.156  christos 
    276  1.156  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    277   1.56      manu }
    278   1.56      manu 
    279   1.56      manu 
    280   1.56      manu int
    281  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    282  1.132      elad     bool check_kauth)
    283   1.56      manu {
    284   1.56      manu 	int error;
    285   1.56      manu 
    286  1.201     kamil 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
    287  1.201     kamil 		return EINVAL;
    288  1.201     kamil 
    289   1.61    simonb 	switch (clock_id) {
    290   1.61    simonb 	case CLOCK_REALTIME:
    291  1.156  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    292   1.61    simonb 			return (error);
    293   1.61    simonb 		break;
    294   1.61    simonb 	case CLOCK_MONOTONIC:
    295   1.61    simonb 		return (EINVAL);	/* read-only clock */
    296   1.61    simonb 	default:
    297   1.56      manu 		return (EINVAL);
    298   1.61    simonb 	}
    299   1.22       jtc 
    300   1.22       jtc 	return 0;
    301   1.22       jtc }
    302   1.22       jtc 
    303   1.22       jtc int
    304  1.156  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    305  1.140      yamt     register_t *retval)
    306   1.22       jtc {
    307  1.135       dsl 	/* {
    308   1.22       jtc 		syscallarg(clockid_t) clock_id;
    309   1.23       cgd 		syscallarg(struct timespec *) tp;
    310  1.135       dsl 	} */
    311   1.22       jtc 	struct timespec ts;
    312  1.180      maxv 	int error;
    313   1.22       jtc 
    314  1.164     njoly 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
    315  1.164     njoly 		return error;
    316  1.164     njoly 
    317  1.164     njoly 	if (SCARG(uap, tp))
    318  1.164     njoly 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    319  1.164     njoly 
    320  1.164     njoly 	return error;
    321  1.164     njoly }
    322  1.164     njoly 
    323  1.164     njoly int
    324  1.164     njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
    325  1.164     njoly {
    326  1.164     njoly 
    327   1.61    simonb 	switch (clock_id) {
    328   1.61    simonb 	case CLOCK_REALTIME:
    329   1.61    simonb 	case CLOCK_MONOTONIC:
    330  1.164     njoly 		ts->tv_sec = 0;
    331  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    332  1.164     njoly 			ts->tv_nsec = 1;
    333  1.102    kardel 		else
    334  1.164     njoly 			ts->tv_nsec = 1000000000 / tc_getfrequency();
    335   1.61    simonb 		break;
    336   1.61    simonb 	default:
    337  1.164     njoly 		return EINVAL;
    338   1.61    simonb 	}
    339   1.22       jtc 
    340  1.164     njoly 	return 0;
    341   1.22       jtc }
    342   1.22       jtc 
    343   1.27       jtc /* ARGSUSED */
    344   1.27       jtc int
    345  1.156  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    346  1.140      yamt     register_t *retval)
    347   1.27       jtc {
    348  1.135       dsl 	/* {
    349  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    350  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    351  1.135       dsl 	} */
    352  1.101    kardel 	struct timespec rmt, rqt;
    353  1.120       dsl 	int error, error1;
    354  1.101    kardel 
    355  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    356  1.101    kardel 	if (error)
    357  1.101    kardel 		return (error);
    358  1.101    kardel 
    359  1.175  christos 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
    360  1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    361  1.175  christos 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    362  1.175  christos 		return error;
    363  1.175  christos 
    364  1.175  christos 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    365  1.175  christos 	return error1 ? error1 : error;
    366  1.175  christos }
    367  1.175  christos 
    368  1.175  christos /* ARGSUSED */
    369  1.175  christos int
    370  1.175  christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
    371  1.175  christos     register_t *retval)
    372  1.175  christos {
    373  1.175  christos 	/* {
    374  1.175  christos 		syscallarg(clockid_t) clock_id;
    375  1.175  christos 		syscallarg(int) flags;
    376  1.175  christos 		syscallarg(struct timespec *) rqtp;
    377  1.175  christos 		syscallarg(struct timespec *) rmtp;
    378  1.175  christos 	} */
    379  1.175  christos 	struct timespec rmt, rqt;
    380  1.175  christos 	int error, error1;
    381  1.175  christos 
    382  1.175  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    383  1.175  christos 	if (error)
    384  1.181  christos 		goto out;
    385  1.175  christos 
    386  1.175  christos 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
    387  1.175  christos 	    SCARG(uap, rmtp) ? &rmt : NULL);
    388  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    389  1.181  christos 		goto out;
    390  1.120       dsl 
    391  1.189     njoly 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
    392  1.189     njoly 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
    393  1.181  christos 		error = error1;
    394  1.181  christos out:
    395  1.181  christos 	*retval = error;
    396  1.181  christos 	return 0;
    397  1.120       dsl }
    398  1.120       dsl 
    399  1.120       dsl int
    400  1.175  christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
    401  1.175  christos     struct timespec *rmt)
    402  1.120       dsl {
    403  1.141      yamt 	struct timespec rmtstart;
    404  1.120       dsl 	int error, timo;
    405  1.120       dsl 
    406  1.184       uwe 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
    407  1.184       uwe 		if (error == ETIMEDOUT) {
    408  1.184       uwe 			error = 0;
    409  1.184       uwe 			if (rmt != NULL)
    410  1.184       uwe 				rmt->tv_sec = rmt->tv_nsec = 0;
    411  1.184       uwe 		}
    412  1.184       uwe 		return error;
    413  1.184       uwe 	}
    414  1.101    kardel 
    415  1.101    kardel 	/*
    416  1.175  christos 	 * Avoid inadvertently sleeping forever
    417  1.101    kardel 	 */
    418  1.101    kardel 	if (timo == 0)
    419  1.101    kardel 		timo = 1;
    420  1.141      yamt again:
    421  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    422  1.197       kre 	if (error == EWOULDBLOCK)
    423  1.197       kre 		error = 0;
    424  1.141      yamt 	if (rmt != NULL || error == 0) {
    425  1.141      yamt 		struct timespec rmtend;
    426  1.141      yamt 		struct timespec t0;
    427  1.141      yamt 		struct timespec *t;
    428  1.204      maxv 		int err;
    429  1.204      maxv 
    430  1.204      maxv 		err = clock_gettime1(clock_id, &rmtend);
    431  1.204      maxv 		if (err != 0)
    432  1.204      maxv 			return err;
    433  1.101    kardel 
    434  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    435  1.179  christos 		if (flags & TIMER_ABSTIME) {
    436  1.179  christos 			timespecsub(rqt, &rmtend, t);
    437  1.179  christos 		} else {
    438  1.179  christos 			timespecsub(&rmtend, &rmtstart, t);
    439  1.179  christos 			timespecsub(rqt, t, t);
    440  1.179  christos 		}
    441  1.141      yamt 		if (t->tv_sec < 0)
    442  1.141      yamt 			timespecclear(t);
    443  1.141      yamt 		if (error == 0) {
    444  1.141      yamt 			timo = tstohz(t);
    445  1.141      yamt 			if (timo > 0)
    446  1.141      yamt 				goto again;
    447  1.141      yamt 		}
    448  1.141      yamt 	}
    449  1.104    kardel 
    450  1.101    kardel 	if (error == ERESTART)
    451  1.101    kardel 		error = EINTR;
    452  1.101    kardel 
    453  1.101    kardel 	return error;
    454   1.27       jtc }
    455   1.22       jtc 
    456  1.186  christos int
    457  1.186  christos sys_clock_getcpuclockid2(struct lwp *l,
    458  1.186  christos     const struct sys_clock_getcpuclockid2_args *uap,
    459  1.186  christos     register_t *retval)
    460  1.186  christos {
    461  1.186  christos 	/* {
    462  1.186  christos 		syscallarg(idtype_t idtype;
    463  1.186  christos 		syscallarg(id_t id);
    464  1.186  christos 		syscallarg(clockid_t *)clock_id;
    465  1.186  christos 	} */
    466  1.186  christos 	pid_t pid;
    467  1.186  christos 	lwpid_t lid;
    468  1.186  christos 	clockid_t clock_id;
    469  1.186  christos 	id_t id = SCARG(uap, id);
    470  1.186  christos 
    471  1.186  christos 	switch (SCARG(uap, idtype)) {
    472  1.186  christos 	case P_PID:
    473  1.188   msaitoh 		pid = id == 0 ? l->l_proc->p_pid : id;
    474  1.186  christos 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
    475  1.186  christos 		break;
    476  1.186  christos 	case P_LWPID:
    477  1.186  christos 		lid = id == 0 ? l->l_lid : id;
    478  1.186  christos 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
    479  1.186  christos 		break;
    480  1.186  christos 	default:
    481  1.186  christos 		return EINVAL;
    482  1.186  christos 	}
    483  1.186  christos 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
    484  1.186  christos }
    485  1.186  christos 
    486    1.1       cgd /* ARGSUSED */
    487    1.3    andrew int
    488  1.156  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    489  1.140      yamt     register_t *retval)
    490   1.15   thorpej {
    491  1.135       dsl 	/* {
    492   1.11       cgd 		syscallarg(struct timeval *) tp;
    493  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    494  1.135       dsl 	} */
    495    1.1       cgd 	struct timeval atv;
    496    1.1       cgd 	int error = 0;
    497   1.25     perry 	struct timezone tzfake;
    498    1.1       cgd 
    499   1.11       cgd 	if (SCARG(uap, tp)) {
    500  1.190      maxv 		memset(&atv, 0, sizeof(atv));
    501    1.1       cgd 		microtime(&atv);
    502   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    503   1.17  christos 		if (error)
    504    1.1       cgd 			return (error);
    505    1.1       cgd 	}
    506   1.25     perry 	if (SCARG(uap, tzp)) {
    507   1.25     perry 		/*
    508   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    509   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    510   1.25     perry 		 */
    511   1.25     perry 		tzfake.tz_minuteswest = 0;
    512   1.25     perry 		tzfake.tz_dsttime = 0;
    513   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    514   1.25     perry 	}
    515    1.1       cgd 	return (error);
    516    1.1       cgd }
    517    1.1       cgd 
    518    1.1       cgd /* ARGSUSED */
    519    1.3    andrew int
    520  1.156  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    521  1.140      yamt     register_t *retval)
    522   1.15   thorpej {
    523  1.135       dsl 	/* {
    524   1.24       cgd 		syscallarg(const struct timeval *) tv;
    525  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    526  1.135       dsl 	} */
    527   1.60      manu 
    528  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    529   1.60      manu }
    530   1.60      manu 
    531   1.60      manu int
    532  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    533  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    534   1.60      manu {
    535   1.22       jtc 	struct timeval atv;
    536   1.98  christos 	struct timespec ts;
    537   1.22       jtc 	int error;
    538    1.1       cgd 
    539    1.8       cgd 	/* Verify all parameters before changing time. */
    540  1.119       dsl 
    541   1.25     perry 	/*
    542   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    543   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    544   1.25     perry 	 */
    545   1.98  christos 	if (utzp)
    546   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    547  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    548   1.98  christos 
    549   1.98  christos 	if (utv == NULL)
    550   1.98  christos 		return 0;
    551   1.98  christos 
    552  1.119       dsl 	if (userspace) {
    553  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    554  1.119       dsl 			return error;
    555  1.119       dsl 		utv = &atv;
    556  1.119       dsl 	}
    557  1.119       dsl 
    558  1.200     kamil 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
    559  1.200     kamil 		return EINVAL;
    560  1.200     kamil 
    561  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    562  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    563    1.1       cgd }
    564    1.1       cgd 
    565   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    566    1.1       cgd 
    567    1.1       cgd /* ARGSUSED */
    568    1.3    andrew int
    569  1.156  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    570  1.140      yamt     register_t *retval)
    571   1.15   thorpej {
    572  1.135       dsl 	/* {
    573   1.24       cgd 		syscallarg(const struct timeval *) delta;
    574   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    575  1.135       dsl 	} */
    576  1.180      maxv 	int error;
    577  1.156  christos 	struct timeval atv, oldatv;
    578    1.1       cgd 
    579  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    580  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    581  1.156  christos 		return error;
    582   1.17  christos 
    583  1.156  christos 	if (SCARG(uap, delta)) {
    584  1.156  christos 		error = copyin(SCARG(uap, delta), &atv,
    585  1.156  christos 		    sizeof(*SCARG(uap, delta)));
    586  1.156  christos 		if (error)
    587  1.156  christos 			return (error);
    588  1.156  christos 	}
    589  1.156  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    590  1.156  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    591  1.156  christos 	if (SCARG(uap, olddelta))
    592  1.156  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    593  1.156  christos 		    sizeof(*SCARG(uap, olddelta)));
    594  1.156  christos 	return error;
    595   1.56      manu }
    596   1.56      manu 
    597  1.156  christos void
    598  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    599   1.56      manu {
    600  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    601  1.101    kardel 
    602  1.101    kardel 	if (olddelta) {
    603  1.194      maxv 		memset(olddelta, 0, sizeof(*olddelta));
    604  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    605  1.156  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    606  1.156  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    607  1.156  christos 		if (olddelta->tv_usec < 0) {
    608  1.156  christos 			olddelta->tv_usec += 1000000;
    609  1.156  christos 			olddelta->tv_sec--;
    610  1.101    kardel 		}
    611  1.157  christos 		mutex_spin_exit(&timecounter_lock);
    612  1.101    kardel 	}
    613  1.101    kardel 
    614  1.101    kardel 	if (delta) {
    615  1.156  christos 		mutex_spin_enter(&timecounter_lock);
    616  1.157  christos 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    617  1.101    kardel 
    618  1.143        ad 		if (time_adjtime) {
    619  1.101    kardel 			/* We need to save the system time during shutdown */
    620  1.101    kardel 			time_adjusted |= 1;
    621  1.143        ad 		}
    622  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    623  1.101    kardel 	}
    624    1.1       cgd }
    625    1.1       cgd 
    626    1.1       cgd /*
    627  1.207   thorpej  * Interval timer support.
    628  1.207   thorpej  *
    629  1.207   thorpej  * The itimer_*() routines provide generic support for interval timers,
    630  1.207   thorpej  * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
    631  1.207   thorpej  * CLOCK_PROF).
    632  1.207   thorpej  *
    633  1.207   thorpej  * Real timers keep their deadline as an absolute time, and are fired
    634  1.207   thorpej  * by a callout.  Virtual timers are kept as a linked-list of deltas,
    635  1.207   thorpej  * and are processed by hardclock().
    636    1.1       cgd  *
    637  1.207   thorpej  * Because the real time timer callout may be delayed in real time due
    638  1.207   thorpej  * to interrupt processing on the system, it is possible for the real
    639  1.207   thorpej  * time timeout routine (itimer_callout()) run past after its deadline.
    640  1.207   thorpej  * It does not suffice, therefore, to reload the real timer .it_value
    641  1.207   thorpej  * from the timer's .it_interval.  Rather, we compute the next deadline
    642  1.207   thorpej  * in absolute time based on the current time and the .it_interval value,
    643  1.207   thorpej  * and report any overruns.
    644    1.1       cgd  *
    645  1.207   thorpej  * Note that while the virtual timers are supported in a generic fashion
    646  1.207   thorpej  * here, they only (currently) make sense as per-process timers, and thus
    647  1.207   thorpej  * only really work for that case.
    648  1.207   thorpej  */
    649   1.63   thorpej 
    650  1.207   thorpej /*
    651  1.207   thorpej  * itimer_init:
    652  1.207   thorpej  *
    653  1.207   thorpej  *	Initialize the common data for an interval timer.
    654  1.207   thorpej  */
    655  1.210   thorpej void
    656  1.207   thorpej itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
    657  1.207   thorpej     clockid_t const id, struct itlist * const itl)
    658   1.63   thorpej {
    659   1.92      cube 
    660  1.207   thorpej 	KASSERT(itimer_lock_held());
    661  1.207   thorpej 	KASSERT(ops != NULL);
    662  1.207   thorpej 
    663  1.207   thorpej 	timespecclear(&it->it_time.it_value);
    664  1.207   thorpej 	it->it_ops = ops;
    665  1.207   thorpej 	it->it_clockid = id;
    666  1.207   thorpej 	it->it_overruns = 0;
    667  1.207   thorpej 	it->it_dying = false;
    668  1.207   thorpej 	if (!CLOCK_VIRTUAL_P(id)) {
    669  1.207   thorpej 		KASSERT(itl == NULL);
    670  1.207   thorpej 		callout_init(&it->it_ch, CALLOUT_MPSAFE);
    671  1.207   thorpej 		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
    672  1.207   thorpej 			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
    673  1.207   thorpej 			    it, it_rtchgq);
    674  1.207   thorpej 		}
    675  1.207   thorpej 	} else {
    676  1.207   thorpej 		KASSERT(itl != NULL);
    677  1.207   thorpej 		it->it_vlist = itl;
    678  1.207   thorpej 		it->it_active = false;
    679  1.207   thorpej 	}
    680   1.92      cube }
    681   1.92      cube 
    682  1.207   thorpej /*
    683  1.210   thorpej  * itimer_poison:
    684  1.207   thorpej  *
    685  1.210   thorpej  *	Poison an interval timer, preventing it from being scheduled
    686  1.210   thorpej  *	or processed, in preparation for freeing the timer.
    687  1.207   thorpej  */
    688  1.210   thorpej void
    689  1.210   thorpej itimer_poison(struct itimer * const it)
    690   1.92      cube {
    691  1.105        ad 
    692  1.207   thorpej 	KASSERT(itimer_lock_held());
    693   1.63   thorpej 
    694  1.207   thorpej 	it->it_dying = true;
    695   1.63   thorpej 
    696  1.207   thorpej 	/*
    697  1.207   thorpej 	 * For non-virtual timers, stop the callout, or wait for it to
    698  1.207   thorpej 	 * run if it has already fired.  It cannot restart again after
    699  1.207   thorpej 	 * this point: the callout won't restart itself when dying, no
    700  1.207   thorpej 	 * other users holding the lock can restart it, and any other
    701  1.207   thorpej 	 * users waiting for callout_halt concurrently (itimer_settime)
    702  1.207   thorpej 	 * will restart from the top.
    703  1.207   thorpej 	 */
    704  1.207   thorpej 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    705  1.207   thorpej 		callout_halt(&it->it_ch, &itimer_mutex);
    706  1.207   thorpej 		if (it->it_clockid == CLOCK_REALTIME &&
    707  1.207   thorpej 		    it->it_ops->ito_realtime_changed != NULL) {
    708  1.207   thorpej 			LIST_REMOVE(it, it_rtchgq);
    709  1.207   thorpej 		}
    710  1.207   thorpej 	}
    711  1.210   thorpej }
    712  1.210   thorpej 
    713  1.210   thorpej /*
    714  1.210   thorpej  * itimer_fini:
    715  1.210   thorpej  *
    716  1.210   thorpej  *	Release resources used by an interval timer.
    717  1.210   thorpej  *
    718  1.210   thorpej  *	N.B. itimer_lock must be held on entry, and is released on exit.
    719  1.210   thorpej  */
    720  1.210   thorpej void
    721  1.210   thorpej itimer_fini(struct itimer * const it)
    722  1.210   thorpej {
    723   1.63   thorpej 
    724  1.210   thorpej 	KASSERT(itimer_lock_held());
    725  1.142        ad 
    726  1.210   thorpej 	/* All done with the global state. */
    727  1.207   thorpej 	itimer_unlock();
    728  1.207   thorpej 
    729  1.207   thorpej 	/* Destroy the callout, if needed. */
    730  1.207   thorpej 	if (!CLOCK_VIRTUAL_P(it->it_clockid))
    731  1.207   thorpej 		callout_destroy(&it->it_ch);
    732  1.207   thorpej }
    733  1.207   thorpej 
    734  1.207   thorpej /*
    735  1.207   thorpej  * itimer_decr:
    736  1.207   thorpej  *
    737  1.207   thorpej  *	Decrement an interval timer by a specified number of nanoseconds,
    738  1.207   thorpej  *	which must be less than a second, i.e. < 1000000000.  If the timer
    739  1.207   thorpej  *	expires, then reload it.  In this case, carry over (nsec - old value)
    740  1.207   thorpej  *	to reduce the value reloaded into the timer so that the timer does
    741  1.207   thorpej  *	not drift.  This routine assumes that it is called in a context where
    742  1.207   thorpej  *	the timers on which it is operating cannot change in value.
    743  1.207   thorpej  *
    744  1.207   thorpej  *	Returns true if the timer has expired.
    745  1.207   thorpej  */
    746  1.207   thorpej static bool
    747  1.207   thorpej itimer_decr(struct itimer *it, int nsec)
    748  1.207   thorpej {
    749  1.207   thorpej 	struct itimerspec *itp;
    750  1.207   thorpej 	int error __diagused;
    751  1.207   thorpej 
    752  1.207   thorpej 	KASSERT(itimer_lock_held());
    753  1.207   thorpej 	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
    754  1.207   thorpej 
    755  1.207   thorpej 	itp = &it->it_time;
    756  1.207   thorpej 	if (itp->it_value.tv_nsec < nsec) {
    757  1.207   thorpej 		if (itp->it_value.tv_sec == 0) {
    758  1.207   thorpej 			/* expired, and already in next interval */
    759  1.207   thorpej 			nsec -= itp->it_value.tv_nsec;
    760  1.207   thorpej 			goto expire;
    761  1.207   thorpej 		}
    762  1.207   thorpej 		itp->it_value.tv_nsec += 1000000000;
    763  1.207   thorpej 		itp->it_value.tv_sec--;
    764  1.142        ad 	}
    765  1.207   thorpej 	itp->it_value.tv_nsec -= nsec;
    766  1.207   thorpej 	nsec = 0;
    767  1.207   thorpej 	if (timespecisset(&itp->it_value))
    768  1.207   thorpej 		return false;
    769  1.207   thorpej 	/* expired, exactly at end of interval */
    770  1.207   thorpej  expire:
    771  1.207   thorpej 	if (timespecisset(&itp->it_interval)) {
    772  1.207   thorpej 		itp->it_value = itp->it_interval;
    773  1.207   thorpej 		itp->it_value.tv_nsec -= nsec;
    774  1.207   thorpej 		if (itp->it_value.tv_nsec < 0) {
    775  1.207   thorpej 			itp->it_value.tv_nsec += 1000000000;
    776  1.207   thorpej 			itp->it_value.tv_sec--;
    777   1.63   thorpej 		}
    778  1.207   thorpej 		error = itimer_settime(it);
    779  1.207   thorpej 		KASSERT(error == 0); /* virtual, never fails */
    780  1.207   thorpej 	} else
    781  1.207   thorpej 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
    782  1.207   thorpej 	return true;
    783  1.207   thorpej }
    784  1.207   thorpej 
    785  1.207   thorpej static void itimer_callout(void *);
    786   1.63   thorpej 
    787  1.207   thorpej /*
    788  1.207   thorpej  * itimer_arm_real:
    789  1.207   thorpej  *
    790  1.207   thorpej  *	Arm a non-virtual timer.
    791  1.207   thorpej  */
    792  1.207   thorpej static void
    793  1.207   thorpej itimer_arm_real(struct itimer * const it)
    794  1.207   thorpej {
    795  1.207   thorpej 	/*
    796  1.207   thorpej 	 * Don't need to check tshzto() return value, here.
    797  1.207   thorpej 	 * callout_reset() does it for us.
    798  1.207   thorpej 	 */
    799  1.207   thorpej 	callout_reset(&it->it_ch,
    800  1.207   thorpej 	    (it->it_clockid == CLOCK_MONOTONIC
    801  1.207   thorpej 		? tshztoup(&it->it_time.it_value)
    802  1.207   thorpej 		: tshzto(&it->it_time.it_value)),
    803  1.207   thorpej 	    itimer_callout, it);
    804   1.63   thorpej }
    805   1.63   thorpej 
    806  1.207   thorpej /*
    807  1.207   thorpej  * itimer_callout:
    808  1.207   thorpej  *
    809  1.207   thorpej  *	Callout to expire a non-virtual timer.  Queue it up for processing,
    810  1.207   thorpej  *	and then reload, if it is configured to do so.
    811  1.207   thorpej  *
    812  1.207   thorpej  *	N.B. A delay in processing this callout causes multiple
    813  1.207   thorpej  *	SIGALRM calls to be compressed into one.
    814  1.207   thorpej  */
    815  1.207   thorpej static void
    816  1.207   thorpej itimer_callout(void *arg)
    817   1.15   thorpej {
    818  1.207   thorpej 	uint64_t last_val, next_val, interval, now_ns;
    819  1.207   thorpej 	struct timespec now, next;
    820  1.207   thorpej 	struct itimer * const it = arg;
    821  1.207   thorpej 	int backwards;
    822    1.1       cgd 
    823  1.207   thorpej 	itimer_lock();
    824  1.207   thorpej 	(*it->it_ops->ito_fire)(it);
    825   1.63   thorpej 
    826  1.207   thorpej 	if (!timespecisset(&it->it_time.it_interval)) {
    827  1.207   thorpej 		timespecclear(&it->it_time.it_value);
    828  1.207   thorpej 		itimer_unlock();
    829  1.207   thorpej 		return;
    830  1.142        ad 	}
    831  1.207   thorpej 
    832  1.207   thorpej 	if (it->it_clockid == CLOCK_MONOTONIC) {
    833  1.207   thorpej 		getnanouptime(&now);
    834  1.207   thorpej 	} else {
    835  1.207   thorpej 		getnanotime(&now);
    836   1.63   thorpej 	}
    837  1.207   thorpej 	backwards = (timespeccmp(&it->it_time.it_value, &now, >));
    838  1.207   thorpej 	timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
    839  1.207   thorpej 	/* Handle the easy case of non-overflown timers first. */
    840  1.207   thorpej 	if (!backwards && timespeccmp(&next, &now, >)) {
    841  1.207   thorpej 		it->it_time.it_value = next;
    842  1.207   thorpej 	} else {
    843  1.207   thorpej 		now_ns = timespec2ns(&now);
    844  1.207   thorpej 		last_val = timespec2ns(&it->it_time.it_value);
    845  1.207   thorpej 		interval = timespec2ns(&it->it_time.it_interval);
    846  1.198  riastrad 
    847  1.207   thorpej 		next_val = now_ns +
    848  1.207   thorpej 		    (now_ns - last_val + interval - 1) % interval;
    849  1.207   thorpej 
    850  1.207   thorpej 		if (backwards)
    851  1.207   thorpej 			next_val += interval;
    852  1.207   thorpej 		else
    853  1.207   thorpej 			it->it_overruns += (now_ns - last_val) / interval;
    854  1.207   thorpej 
    855  1.207   thorpej 		it->it_time.it_value.tv_sec = next_val / 1000000000;
    856  1.207   thorpej 		it->it_time.it_value.tv_nsec = next_val % 1000000000;
    857  1.207   thorpej 	}
    858   1.63   thorpej 
    859  1.207   thorpej 	/*
    860  1.207   thorpej 	 * Reset the callout, if it's not going away.
    861  1.207   thorpej 	 */
    862  1.207   thorpej 	if (!it->it_dying)
    863  1.207   thorpej 		itimer_arm_real(it);
    864  1.207   thorpej 	itimer_unlock();
    865   1.63   thorpej }
    866   1.63   thorpej 
    867   1.63   thorpej /*
    868  1.207   thorpej  * itimer_settime:
    869  1.207   thorpej  *
    870  1.207   thorpej  *	Set up the given interval timer. The value in it->it_time.it_value
    871  1.207   thorpej  *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
    872  1.207   thorpej  *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
    873  1.198  riastrad  *
    874  1.207   thorpej  *	If the callout had already fired but not yet run, fails with
    875  1.207   thorpej  *	ERESTART -- caller must restart from the top to look up a timer.
    876   1.63   thorpej  */
    877  1.198  riastrad int
    878  1.207   thorpej itimer_settime(struct itimer *it)
    879   1.63   thorpej {
    880  1.207   thorpej 	struct itimer *itn, *pitn;
    881  1.207   thorpej 	struct itlist *itl;
    882   1.63   thorpej 
    883  1.207   thorpej 	KASSERT(itimer_lock_held());
    884  1.142        ad 
    885  1.207   thorpej 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    886  1.198  riastrad 		/*
    887  1.198  riastrad 		 * Try to stop the callout.  However, if it had already
    888  1.198  riastrad 		 * fired, we have to drop the lock to wait for it, so
    889  1.198  riastrad 		 * the world may have changed and pt may not be there
    890  1.198  riastrad 		 * any more.  In that case, tell the caller to start
    891  1.198  riastrad 		 * over from the top.
    892  1.198  riastrad 		 */
    893  1.207   thorpej 		if (callout_halt(&it->it_ch, &itimer_mutex))
    894  1.198  riastrad 			return ERESTART;
    895  1.198  riastrad 
    896  1.207   thorpej 		/* Now we can touch it and start it up again. */
    897  1.207   thorpej 		if (timespecisset(&it->it_time.it_value))
    898  1.207   thorpej 			itimer_arm_real(it);
    899   1.63   thorpej 	} else {
    900  1.207   thorpej 		if (it->it_active) {
    901  1.207   thorpej 			itn = LIST_NEXT(it, it_list);
    902  1.207   thorpej 			LIST_REMOVE(it, it_list);
    903  1.207   thorpej 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
    904  1.207   thorpej 				timespecadd(&it->it_time.it_value,
    905  1.207   thorpej 				    &itn->it_time.it_value,
    906  1.207   thorpej 				    &itn->it_time.it_value);
    907  1.207   thorpej 		}
    908  1.207   thorpej 		if (timespecisset(&it->it_time.it_value)) {
    909  1.207   thorpej 			itl = it->it_vlist;
    910  1.207   thorpej 			for (itn = LIST_FIRST(itl), pitn = NULL;
    911  1.207   thorpej 			     itn && timespeccmp(&it->it_time.it_value,
    912  1.207   thorpej 				 &itn->it_time.it_value, >);
    913  1.207   thorpej 			     pitn = itn, itn = LIST_NEXT(itn, it_list))
    914  1.207   thorpej 				timespecsub(&it->it_time.it_value,
    915  1.207   thorpej 				    &itn->it_time.it_value,
    916  1.207   thorpej 				    &it->it_time.it_value);
    917  1.207   thorpej 
    918  1.207   thorpej 			if (pitn)
    919  1.207   thorpej 				LIST_INSERT_AFTER(pitn, it, it_list);
    920   1.63   thorpej 			else
    921  1.207   thorpej 				LIST_INSERT_HEAD(itl, it, it_list);
    922   1.63   thorpej 
    923  1.207   thorpej 			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
    924  1.207   thorpej 				timespecsub(&itn->it_time.it_value,
    925  1.207   thorpej 				    &it->it_time.it_value,
    926  1.207   thorpej 				    &itn->it_time.it_value);
    927   1.63   thorpej 
    928  1.207   thorpej 			it->it_active = true;
    929  1.207   thorpej 		} else {
    930  1.207   thorpej 			it->it_active = false;
    931  1.207   thorpej 		}
    932   1.63   thorpej 	}
    933  1.198  riastrad 
    934  1.198  riastrad 	/* Success!  */
    935  1.198  riastrad 	return 0;
    936   1.63   thorpej }
    937   1.63   thorpej 
    938  1.207   thorpej /*
    939  1.207   thorpej  * itimer_gettime:
    940  1.207   thorpej  *
    941  1.207   thorpej  *	Return the remaining time of an interval timer.
    942  1.207   thorpej  */
    943   1.63   thorpej void
    944  1.207   thorpej itimer_gettime(const struct itimer *it, struct itimerspec *aits)
    945   1.63   thorpej {
    946  1.150  christos 	struct timespec now;
    947  1.207   thorpej 	struct itimer *itn;
    948   1.63   thorpej 
    949  1.207   thorpej 	KASSERT(itimer_lock_held());
    950  1.142        ad 
    951  1.207   thorpej 	*aits = it->it_time;
    952  1.207   thorpej 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
    953    1.1       cgd 		/*
    954   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    955   1.63   thorpej 		 * part of real time timer.  If time for real time
    956   1.63   thorpej 		 * timer has passed return 0, else return difference
    957   1.63   thorpej 		 * between current time and time for the timer to go
    958   1.63   thorpej 		 * off.
    959    1.1       cgd 		 */
    960  1.150  christos 		if (timespecisset(&aits->it_value)) {
    961  1.207   thorpej 			if (it->it_clockid == CLOCK_REALTIME) {
    962  1.168      yamt 				getnanotime(&now);
    963  1.168      yamt 			} else { /* CLOCK_MONOTONIC */
    964  1.168      yamt 				getnanouptime(&now);
    965  1.168      yamt 			}
    966  1.150  christos 			if (timespeccmp(&aits->it_value, &now, <))
    967  1.150  christos 				timespecclear(&aits->it_value);
    968  1.101    kardel 			else
    969  1.150  christos 				timespecsub(&aits->it_value, &now,
    970  1.150  christos 				    &aits->it_value);
    971   1.36   thorpej 		}
    972  1.207   thorpej 	} else if (it->it_active) {
    973  1.207   thorpej 		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
    974  1.207   thorpej 		     itn = LIST_NEXT(itn, it_list))
    975  1.150  christos 			timespecadd(&aits->it_value,
    976  1.207   thorpej 			    &itn->it_time.it_value, &aits->it_value);
    977  1.207   thorpej 		KASSERT(itn != NULL); /* it should be findable on the list */
    978    1.1       cgd 	} else
    979  1.150  christos 		timespecclear(&aits->it_value);
    980   1.63   thorpej }
    981   1.63   thorpej 
    982  1.207   thorpej /*
    983  1.207   thorpej  * Per-process timer support.
    984  1.207   thorpej  *
    985  1.207   thorpej  * Both the BSD getitimer() family and the POSIX timer_*() family of
    986  1.207   thorpej  * routines are supported.
    987  1.207   thorpej  *
    988  1.207   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    989  1.207   thorpej  * allocated on demand - many processes don't use timers at all. The
    990  1.207   thorpej  * first four elements in this array are reserved for the BSD timers:
    991  1.207   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
    992  1.207   thorpej  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
    993  1.207   thorpej  * allocated by the timer_create() syscall.
    994  1.207   thorpej  *
    995  1.207   thorpej  * These timers are a "sub-class" of interval timer.
    996  1.207   thorpej  */
    997  1.207   thorpej 
    998  1.207   thorpej /*
    999  1.207   thorpej  * ptimer_free:
   1000  1.207   thorpej  *
   1001  1.207   thorpej  *	Free the per-process timer at the specified index.
   1002  1.207   thorpej  */
   1003  1.207   thorpej static void
   1004  1.207   thorpej ptimer_free(struct ptimers *pts, int index)
   1005  1.207   thorpej {
   1006  1.207   thorpej 	struct itimer *it;
   1007  1.207   thorpej 	struct ptimer *pt;
   1008  1.207   thorpej 
   1009  1.207   thorpej 	KASSERT(itimer_lock_held());
   1010  1.207   thorpej 
   1011  1.207   thorpej 	it = pts->pts_timers[index];
   1012  1.207   thorpej 	pt = container_of(it, struct ptimer, pt_itimer);
   1013  1.207   thorpej 	pts->pts_timers[index] = NULL;
   1014  1.210   thorpej 	itimer_poison(it);
   1015  1.210   thorpej 
   1016  1.210   thorpej 	/*
   1017  1.210   thorpej 	 * Remove it from the queue to be signalled.  Must be done
   1018  1.210   thorpej 	 * after itimer is poisoned, because we may have had to wait
   1019  1.210   thorpej 	 * for the callout to complete.
   1020  1.210   thorpej 	 */
   1021  1.210   thorpej 	if (pt->pt_queued) {
   1022  1.210   thorpej 		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
   1023  1.210   thorpej 		pt->pt_queued = false;
   1024  1.210   thorpej 	}
   1025  1.210   thorpej 
   1026  1.207   thorpej 	itimer_fini(it);	/* releases itimer_lock */
   1027  1.207   thorpej 	kmem_free(pt, sizeof(*pt));
   1028  1.207   thorpej }
   1029  1.207   thorpej 
   1030  1.207   thorpej /*
   1031  1.207   thorpej  * ptimers_alloc:
   1032  1.207   thorpej  *
   1033  1.207   thorpej  *	Allocate a ptimers for the specified process.
   1034  1.207   thorpej  */
   1035  1.207   thorpej static struct ptimers *
   1036  1.207   thorpej ptimers_alloc(struct proc *p)
   1037  1.207   thorpej {
   1038  1.207   thorpej 	struct ptimers *pts;
   1039  1.207   thorpej 	int i;
   1040  1.207   thorpej 
   1041  1.207   thorpej 	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
   1042  1.207   thorpej 	LIST_INIT(&pts->pts_virtual);
   1043  1.207   thorpej 	LIST_INIT(&pts->pts_prof);
   1044  1.207   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1045  1.207   thorpej 		pts->pts_timers[i] = NULL;
   1046  1.207   thorpej 	itimer_lock();
   1047  1.207   thorpej 	if (p->p_timers == NULL) {
   1048  1.207   thorpej 		p->p_timers = pts;
   1049  1.207   thorpej 		itimer_unlock();
   1050  1.207   thorpej 		return pts;
   1051  1.207   thorpej 	}
   1052  1.207   thorpej 	itimer_unlock();
   1053  1.207   thorpej 	kmem_free(pts, sizeof(*pts));
   1054  1.207   thorpej 	return p->p_timers;
   1055  1.207   thorpej }
   1056  1.207   thorpej 
   1057  1.207   thorpej /*
   1058  1.207   thorpej  * ptimers_free:
   1059  1.207   thorpej  *
   1060  1.207   thorpej  *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1061  1.207   thorpej  *	then clean up all timers and free all the data structures. If
   1062  1.207   thorpej  *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
   1063  1.207   thorpej  *	by timer_create(), not the BSD setitimer() timers, and only free the
   1064  1.207   thorpej  *	structure if none of those remain.
   1065  1.207   thorpej  *
   1066  1.207   thorpej  *	This function is exported because it is needed in the exec and
   1067  1.207   thorpej  *	exit code paths.
   1068  1.207   thorpej  */
   1069  1.207   thorpej void
   1070  1.207   thorpej ptimers_free(struct proc *p, int which)
   1071  1.207   thorpej {
   1072  1.207   thorpej 	struct ptimers *pts;
   1073  1.207   thorpej 	struct itimer *itn;
   1074  1.207   thorpej 	struct timespec ts;
   1075  1.207   thorpej 	int i;
   1076  1.207   thorpej 
   1077  1.207   thorpej 	if (p->p_timers == NULL)
   1078  1.207   thorpej 		return;
   1079  1.207   thorpej 
   1080  1.207   thorpej 	pts = p->p_timers;
   1081  1.207   thorpej 	itimer_lock();
   1082  1.207   thorpej 	if (which == TIMERS_ALL) {
   1083  1.207   thorpej 		p->p_timers = NULL;
   1084  1.207   thorpej 		i = 0;
   1085  1.207   thorpej 	} else {
   1086  1.207   thorpej 		timespecclear(&ts);
   1087  1.207   thorpej 		for (itn = LIST_FIRST(&pts->pts_virtual);
   1088  1.207   thorpej 		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
   1089  1.207   thorpej 		     itn = LIST_NEXT(itn, it_list)) {
   1090  1.207   thorpej 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
   1091  1.207   thorpej 			timespecadd(&ts, &itn->it_time.it_value, &ts);
   1092  1.207   thorpej 		}
   1093  1.207   thorpej 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1094  1.207   thorpej 		if (itn) {
   1095  1.207   thorpej 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
   1096  1.207   thorpej 			timespecadd(&ts, &itn->it_time.it_value,
   1097  1.207   thorpej 			    &itn->it_time.it_value);
   1098  1.207   thorpej 			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
   1099  1.207   thorpej 		}
   1100  1.207   thorpej 		timespecclear(&ts);
   1101  1.207   thorpej 		for (itn = LIST_FIRST(&pts->pts_prof);
   1102  1.207   thorpej 		     itn && itn != pts->pts_timers[ITIMER_PROF];
   1103  1.207   thorpej 		     itn = LIST_NEXT(itn, it_list)) {
   1104  1.207   thorpej 			KASSERT(itn->it_clockid == CLOCK_PROF);
   1105  1.207   thorpej 			timespecadd(&ts, &itn->it_time.it_value, &ts);
   1106  1.207   thorpej 		}
   1107  1.207   thorpej 		LIST_FIRST(&pts->pts_prof) = NULL;
   1108  1.207   thorpej 		if (itn) {
   1109  1.207   thorpej 			KASSERT(itn->it_clockid == CLOCK_PROF);
   1110  1.207   thorpej 			timespecadd(&ts, &itn->it_time.it_value,
   1111  1.207   thorpej 			    &itn->it_time.it_value);
   1112  1.207   thorpej 			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
   1113  1.207   thorpej 		}
   1114  1.207   thorpej 		i = TIMER_MIN;
   1115  1.207   thorpej 	}
   1116  1.207   thorpej 	for ( ; i < TIMER_MAX; i++) {
   1117  1.207   thorpej 		if (pts->pts_timers[i] != NULL) {
   1118  1.207   thorpej 			/* Free the timer and release the lock.  */
   1119  1.207   thorpej 			ptimer_free(pts, i);
   1120  1.207   thorpej 			/* Reacquire the lock for the next one.  */
   1121  1.207   thorpej 			itimer_lock();
   1122  1.207   thorpej 		}
   1123  1.207   thorpej 	}
   1124  1.207   thorpej 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1125  1.207   thorpej 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
   1126  1.207   thorpej 		p->p_timers = NULL;
   1127  1.207   thorpej 		itimer_unlock();
   1128  1.207   thorpej 		kmem_free(pts, sizeof(*pts));
   1129  1.207   thorpej 	} else
   1130  1.207   thorpej 		itimer_unlock();
   1131  1.207   thorpej }
   1132  1.207   thorpej 
   1133  1.207   thorpej /*
   1134  1.207   thorpej  * ptimer_fire:
   1135  1.207   thorpej  *
   1136  1.207   thorpej  *	Fire a per-process timer.
   1137  1.207   thorpej  */
   1138  1.207   thorpej static void
   1139  1.207   thorpej ptimer_fire(struct itimer *it)
   1140  1.207   thorpej {
   1141  1.207   thorpej 	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
   1142  1.207   thorpej 
   1143  1.207   thorpej 	KASSERT(itimer_lock_held());
   1144  1.207   thorpej 
   1145  1.207   thorpej 	/*
   1146  1.207   thorpej 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1147  1.207   thorpej 	 * XXX Relying on the clock interrupt is stupid.
   1148  1.207   thorpej 	 */
   1149  1.207   thorpej 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1150  1.207   thorpej 		return;
   1151  1.207   thorpej 	}
   1152  1.210   thorpej 
   1153  1.210   thorpej 	if (!pt->pt_queued) {
   1154  1.210   thorpej 		TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
   1155  1.210   thorpej 		pt->pt_queued = true;
   1156  1.210   thorpej 		softint_schedule(ptimer_sih);
   1157  1.210   thorpej 	}
   1158  1.207   thorpej }
   1159  1.207   thorpej 
   1160  1.207   thorpej /*
   1161  1.207   thorpej  * Operations vector for per-process timers (BSD and POSIX).
   1162  1.207   thorpej  */
   1163  1.207   thorpej static const struct itimer_ops ptimer_itimer_ops = {
   1164  1.210   thorpej 	.ito_fire = ptimer_fire,
   1165  1.207   thorpej };
   1166  1.207   thorpej 
   1167  1.207   thorpej /*
   1168  1.207   thorpej  * sys_timer_create:
   1169  1.207   thorpej  *
   1170  1.207   thorpej  *	System call to create a POSIX timer.
   1171  1.207   thorpej  */
   1172  1.207   thorpej int
   1173  1.207   thorpej sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
   1174  1.207   thorpej     register_t *retval)
   1175  1.207   thorpej {
   1176  1.207   thorpej 	/* {
   1177  1.207   thorpej 		syscallarg(clockid_t) clock_id;
   1178  1.207   thorpej 		syscallarg(struct sigevent *) evp;
   1179  1.207   thorpej 		syscallarg(timer_t *) timerid;
   1180  1.207   thorpej 	} */
   1181  1.207   thorpej 
   1182  1.207   thorpej 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
   1183  1.207   thorpej 	    SCARG(uap, evp), copyin, l);
   1184  1.207   thorpej }
   1185  1.207   thorpej 
   1186  1.207   thorpej int
   1187  1.207   thorpej timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
   1188  1.207   thorpej     copyin_t fetch_event, struct lwp *l)
   1189  1.207   thorpej {
   1190  1.207   thorpej 	int error;
   1191  1.207   thorpej 	timer_t timerid;
   1192  1.207   thorpej 	struct itlist *itl;
   1193  1.207   thorpej 	struct ptimers *pts;
   1194  1.207   thorpej 	struct ptimer *pt;
   1195  1.207   thorpej 	struct proc *p;
   1196   1.63   thorpej 
   1197  1.207   thorpej 	p = l->l_proc;
   1198   1.63   thorpej 
   1199  1.207   thorpej 	if ((u_int)id > CLOCK_MONOTONIC)
   1200  1.207   thorpej 		return (EINVAL);
   1201  1.207   thorpej 
   1202  1.207   thorpej 	if ((pts = p->p_timers) == NULL)
   1203  1.207   thorpej 		pts = ptimers_alloc(p);
   1204  1.207   thorpej 
   1205  1.207   thorpej 	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
   1206  1.207   thorpej 	if (evp != NULL) {
   1207  1.207   thorpej 		if (((error =
   1208  1.207   thorpej 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
   1209  1.207   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
   1210  1.207   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
   1211  1.207   thorpej 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
   1212  1.207   thorpej 			 (pt->pt_ev.sigev_signo <= 0 ||
   1213  1.207   thorpej 			  pt->pt_ev.sigev_signo >= NSIG))) {
   1214  1.207   thorpej 			kmem_free(pt, sizeof(*pt));
   1215  1.207   thorpej 			return (error ? error : EINVAL);
   1216  1.207   thorpej 		}
   1217  1.207   thorpej 	}
   1218  1.207   thorpej 
   1219  1.207   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
   1220  1.207   thorpej 	itimer_lock();
   1221  1.207   thorpej 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
   1222  1.207   thorpej 		if (pts->pts_timers[timerid] == NULL)
   1223  1.207   thorpej 			break;
   1224  1.207   thorpej 	if (timerid == TIMER_MAX) {
   1225  1.207   thorpej 		itimer_unlock();
   1226  1.207   thorpej 		kmem_free(pt, sizeof(*pt));
   1227  1.207   thorpej 		return EAGAIN;
   1228  1.207   thorpej 	}
   1229  1.207   thorpej 	if (evp == NULL) {
   1230  1.207   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1231  1.207   thorpej 		switch (id) {
   1232  1.207   thorpej 		case CLOCK_REALTIME:
   1233  1.207   thorpej 		case CLOCK_MONOTONIC:
   1234  1.207   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1235  1.207   thorpej 			break;
   1236  1.207   thorpej 		case CLOCK_VIRTUAL:
   1237  1.207   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1238  1.207   thorpej 			break;
   1239  1.207   thorpej 		case CLOCK_PROF:
   1240  1.207   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1241  1.207   thorpej 			break;
   1242  1.207   thorpej 		}
   1243  1.207   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
   1244  1.207   thorpej 	}
   1245  1.207   thorpej 
   1246  1.207   thorpej 	switch (id) {
   1247  1.207   thorpej 	case CLOCK_VIRTUAL:
   1248  1.208   thorpej 		itl = &pts->pts_virtual;
   1249  1.207   thorpej 		break;
   1250  1.207   thorpej 	case CLOCK_PROF:
   1251  1.208   thorpej 		itl = &pts->pts_prof;
   1252  1.207   thorpej 		break;
   1253  1.207   thorpej 	default:
   1254  1.207   thorpej 		itl = NULL;
   1255  1.207   thorpej 	}
   1256  1.207   thorpej 
   1257  1.207   thorpej 	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
   1258  1.207   thorpej 	pt->pt_proc = p;
   1259  1.207   thorpej 	pt->pt_poverruns = 0;
   1260  1.207   thorpej 	pt->pt_entry = timerid;
   1261  1.210   thorpej 	pt->pt_queued = false;
   1262  1.207   thorpej 
   1263  1.207   thorpej 	pts->pts_timers[timerid] = &pt->pt_itimer;
   1264  1.207   thorpej 	itimer_unlock();
   1265  1.207   thorpej 
   1266  1.207   thorpej 	return copyout(&timerid, tid, sizeof(timerid));
   1267  1.207   thorpej }
   1268  1.207   thorpej 
   1269  1.207   thorpej /*
   1270  1.207   thorpej  * sys_timer_delete:
   1271  1.207   thorpej  *
   1272  1.207   thorpej  *	System call to delete a POSIX timer.
   1273  1.207   thorpej  */
   1274  1.207   thorpej int
   1275  1.207   thorpej sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
   1276  1.207   thorpej     register_t *retval)
   1277  1.207   thorpej {
   1278  1.207   thorpej 	/* {
   1279  1.207   thorpej 		syscallarg(timer_t) timerid;
   1280  1.207   thorpej 	} */
   1281  1.207   thorpej 	struct proc *p = l->l_proc;
   1282  1.207   thorpej 	timer_t timerid;
   1283  1.207   thorpej 	struct ptimers *pts;
   1284  1.207   thorpej 	struct itimer *it, *itn;
   1285  1.207   thorpej 
   1286  1.207   thorpej 	timerid = SCARG(uap, timerid);
   1287  1.207   thorpej 	pts = p->p_timers;
   1288  1.207   thorpej 
   1289  1.207   thorpej 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1290  1.207   thorpej 		return (EINVAL);
   1291  1.207   thorpej 
   1292  1.207   thorpej 	itimer_lock();
   1293  1.207   thorpej 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1294  1.207   thorpej 		itimer_unlock();
   1295  1.207   thorpej 		return (EINVAL);
   1296  1.207   thorpej 	}
   1297  1.207   thorpej 
   1298  1.207   thorpej 	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
   1299  1.207   thorpej 		if (it->it_active) {
   1300  1.207   thorpej 			itn = LIST_NEXT(it, it_list);
   1301  1.207   thorpej 			LIST_REMOVE(it, it_list);
   1302  1.207   thorpej 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
   1303  1.207   thorpej 				timespecadd(&it->it_time.it_value,
   1304  1.207   thorpej 				    &itn->it_time.it_value,
   1305  1.207   thorpej 				    &itn->it_time.it_value);
   1306  1.207   thorpej 			it->it_active = false;
   1307  1.207   thorpej 		}
   1308  1.207   thorpej 	}
   1309  1.207   thorpej 
   1310  1.207   thorpej 	/* Free the timer and release the lock.  */
   1311  1.207   thorpej 	ptimer_free(pts, timerid);
   1312  1.207   thorpej 
   1313  1.207   thorpej 	return (0);
   1314  1.207   thorpej }
   1315  1.207   thorpej 
   1316  1.207   thorpej /*
   1317  1.207   thorpej  * sys___timer_settime50:
   1318  1.207   thorpej  *
   1319  1.207   thorpej  *	System call to set/arm a POSIX timer.
   1320  1.207   thorpej  */
   1321   1.63   thorpej int
   1322  1.156  christos sys___timer_settime50(struct lwp *l,
   1323  1.156  christos     const struct sys___timer_settime50_args *uap,
   1324  1.140      yamt     register_t *retval)
   1325   1.63   thorpej {
   1326  1.135       dsl 	/* {
   1327   1.63   thorpej 		syscallarg(timer_t) timerid;
   1328   1.63   thorpej 		syscallarg(int) flags;
   1329   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
   1330   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
   1331  1.135       dsl 	} */
   1332   1.92      cube 	int error;
   1333   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
   1334   1.92      cube 
   1335   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
   1336   1.92      cube 	    sizeof(struct itimerspec))) != 0)
   1337   1.92      cube 		return (error);
   1338   1.92      cube 
   1339   1.92      cube 	if (SCARG(uap, ovalue))
   1340   1.92      cube 		ovp = &ovalue;
   1341   1.92      cube 
   1342   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
   1343   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
   1344   1.92      cube 		return error;
   1345   1.92      cube 
   1346   1.92      cube 	if (ovp)
   1347   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
   1348   1.92      cube 		    sizeof(struct itimerspec));
   1349   1.92      cube 	return 0;
   1350   1.92      cube }
   1351   1.92      cube 
   1352   1.92      cube int
   1353   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
   1354   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
   1355   1.92      cube {
   1356  1.150  christos 	struct timespec now;
   1357  1.150  christos 	struct itimerspec val, oval;
   1358  1.142        ad 	struct ptimers *pts;
   1359  1.207   thorpej 	struct itimer *it;
   1360  1.160  christos 	int error;
   1361   1.63   thorpej 
   1362  1.142        ad 	pts = p->p_timers;
   1363   1.63   thorpej 
   1364  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1365  1.142        ad 		return EINVAL;
   1366  1.150  christos 	val = *value;
   1367  1.160  christos 	if ((error = itimespecfix(&val.it_value)) != 0 ||
   1368  1.160  christos 	    (error = itimespecfix(&val.it_interval)) != 0)
   1369  1.160  christos 		return error;
   1370   1.63   thorpej 
   1371  1.207   thorpej 	itimer_lock();
   1372  1.207   thorpej  restart:
   1373  1.207   thorpej 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1374  1.207   thorpej 		itimer_unlock();
   1375  1.150  christos 		return EINVAL;
   1376  1.142        ad 	}
   1377  1.142        ad 
   1378  1.207   thorpej 	oval = it->it_time;
   1379  1.207   thorpej 	it->it_time = val;
   1380   1.63   thorpej 
   1381   1.67   nathanw 	/*
   1382   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
   1383   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
   1384   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
   1385   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
   1386   1.67   nathanw 	 * negative, which would confuse the comparison tests.
   1387   1.67   nathanw 	 */
   1388  1.207   thorpej 	if (timespecisset(&it->it_time.it_value)) {
   1389  1.207   thorpej 		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
   1390  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
   1391  1.207   thorpej 				if (it->it_clockid == CLOCK_REALTIME) {
   1392  1.168      yamt 					getnanotime(&now);
   1393  1.168      yamt 				} else { /* CLOCK_MONOTONIC */
   1394  1.168      yamt 					getnanouptime(&now);
   1395  1.168      yamt 				}
   1396  1.207   thorpej 				timespecadd(&it->it_time.it_value, &now,
   1397  1.207   thorpej 				    &it->it_time.it_value);
   1398  1.101    kardel 			}
   1399   1.67   nathanw 		} else {
   1400   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
   1401  1.150  christos 				getnanotime(&now);
   1402  1.207   thorpej 				timespecsub(&it->it_time.it_value, &now,
   1403  1.207   thorpej 				    &it->it_time.it_value);
   1404  1.207   thorpej 				if (!timespecisset(&it->it_time.it_value) ||
   1405  1.207   thorpej 				    it->it_time.it_value.tv_sec < 0) {
   1406  1.207   thorpej 					it->it_time.it_value.tv_sec = 0;
   1407  1.207   thorpej 					it->it_time.it_value.tv_nsec = 1;
   1408   1.67   nathanw 				}
   1409   1.67   nathanw 			}
   1410   1.67   nathanw 		}
   1411   1.67   nathanw 	}
   1412   1.67   nathanw 
   1413  1.207   thorpej 	error = itimer_settime(it);
   1414  1.198  riastrad 	if (error == ERESTART) {
   1415  1.207   thorpej 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
   1416  1.198  riastrad 		goto restart;
   1417  1.198  riastrad 	}
   1418  1.198  riastrad 	KASSERT(error == 0);
   1419  1.207   thorpej 	itimer_unlock();
   1420   1.63   thorpej 
   1421  1.150  christos 	if (ovalue)
   1422  1.150  christos 		*ovalue = oval;
   1423   1.63   thorpej 
   1424   1.63   thorpej 	return (0);
   1425   1.63   thorpej }
   1426   1.63   thorpej 
   1427  1.207   thorpej /*
   1428  1.207   thorpej  * sys___timer_gettime50:
   1429  1.207   thorpej  *
   1430  1.207   thorpej  *	System call to return the time remaining until a POSIX timer fires.
   1431  1.207   thorpej  */
   1432   1.63   thorpej int
   1433  1.156  christos sys___timer_gettime50(struct lwp *l,
   1434  1.156  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
   1435   1.63   thorpej {
   1436  1.135       dsl 	/* {
   1437   1.63   thorpej 		syscallarg(timer_t) timerid;
   1438   1.63   thorpej 		syscallarg(struct itimerspec *) value;
   1439  1.135       dsl 	} */
   1440   1.63   thorpej 	struct itimerspec its;
   1441   1.92      cube 	int error;
   1442   1.92      cube 
   1443   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
   1444   1.92      cube 	    &its)) != 0)
   1445   1.92      cube 		return error;
   1446   1.92      cube 
   1447   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
   1448   1.92      cube }
   1449   1.92      cube 
   1450   1.92      cube int
   1451   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
   1452   1.92      cube {
   1453  1.207   thorpej 	struct itimer *it;
   1454  1.142        ad 	struct ptimers *pts;
   1455   1.63   thorpej 
   1456  1.142        ad 	pts = p->p_timers;
   1457  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1458   1.63   thorpej 		return (EINVAL);
   1459  1.207   thorpej 	itimer_lock();
   1460  1.207   thorpej 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1461  1.207   thorpej 		itimer_unlock();
   1462  1.142        ad 		return (EINVAL);
   1463  1.142        ad 	}
   1464  1.207   thorpej 	itimer_gettime(it, its);
   1465  1.207   thorpej 	itimer_unlock();
   1466   1.63   thorpej 
   1467   1.92      cube 	return 0;
   1468   1.63   thorpej }
   1469   1.63   thorpej 
   1470   1.63   thorpej /*
   1471  1.207   thorpej  * sys_timer_getoverrun:
   1472  1.207   thorpej  *
   1473  1.207   thorpej  *	System call to return the number of times a POSIX timer has
   1474  1.207   thorpej  *	expired while a notification was already pending.  The counter
   1475  1.207   thorpej  *	is reset when a timer expires and a notification can be posted.
   1476   1.63   thorpej  */
   1477   1.63   thorpej int
   1478  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
   1479  1.140      yamt     register_t *retval)
   1480   1.63   thorpej {
   1481  1.135       dsl 	/* {
   1482   1.63   thorpej 		syscallarg(timer_t) timerid;
   1483  1.135       dsl 	} */
   1484   1.63   thorpej 	struct proc *p = l->l_proc;
   1485  1.142        ad 	struct ptimers *pts;
   1486   1.63   thorpej 	int timerid;
   1487  1.207   thorpej 	struct itimer *it;
   1488   1.63   thorpej 	struct ptimer *pt;
   1489   1.63   thorpej 
   1490   1.63   thorpej 	timerid = SCARG(uap, timerid);
   1491   1.63   thorpej 
   1492  1.142        ad 	pts = p->p_timers;
   1493  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
   1494  1.142        ad 		return (EINVAL);
   1495  1.207   thorpej 	itimer_lock();
   1496  1.207   thorpej 	if ((it = pts->pts_timers[timerid]) == NULL) {
   1497  1.207   thorpej 		itimer_unlock();
   1498   1.63   thorpej 		return (EINVAL);
   1499  1.142        ad 	}
   1500  1.207   thorpej 	pt = container_of(it, struct ptimer, pt_itimer);
   1501   1.63   thorpej 	*retval = pt->pt_poverruns;
   1502  1.187  christos 	if (*retval >= DELAYTIMER_MAX)
   1503  1.187  christos 		*retval = DELAYTIMER_MAX;
   1504  1.207   thorpej 	itimer_unlock();
   1505   1.63   thorpej 
   1506   1.63   thorpej 	return (0);
   1507   1.63   thorpej }
   1508   1.63   thorpej 
   1509   1.63   thorpej /*
   1510  1.207   thorpej  * sys___getitimer50:
   1511  1.207   thorpej  *
   1512  1.207   thorpej  *	System call to get the time remaining before a BSD timer fires.
   1513   1.63   thorpej  */
   1514   1.63   thorpej int
   1515  1.156  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1516  1.140      yamt     register_t *retval)
   1517   1.63   thorpej {
   1518  1.135       dsl 	/* {
   1519   1.63   thorpej 		syscallarg(int) which;
   1520   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1521  1.135       dsl 	} */
   1522   1.63   thorpej 	struct proc *p = l->l_proc;
   1523   1.63   thorpej 	struct itimerval aitv;
   1524   1.91      cube 	int error;
   1525   1.91      cube 
   1526  1.191      maxv 	memset(&aitv, 0, sizeof(aitv));
   1527   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1528   1.91      cube 	if (error)
   1529   1.91      cube 		return error;
   1530   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1531   1.91      cube }
   1532   1.63   thorpej 
   1533   1.91      cube int
   1534   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1535   1.91      cube {
   1536  1.142        ad 	struct ptimers *pts;
   1537  1.207   thorpej 	struct itimer *it;
   1538  1.150  christos 	struct itimerspec its;
   1539   1.63   thorpej 
   1540  1.170  christos 	if ((u_int)which > ITIMER_MONOTONIC)
   1541   1.63   thorpej 		return (EINVAL);
   1542   1.63   thorpej 
   1543  1.207   thorpej 	itimer_lock();
   1544  1.142        ad 	pts = p->p_timers;
   1545  1.207   thorpej 	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
   1546   1.91      cube 		timerclear(&itvp->it_value);
   1547   1.91      cube 		timerclear(&itvp->it_interval);
   1548  1.150  christos 	} else {
   1549  1.207   thorpej 		itimer_gettime(it, &its);
   1550  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1551  1.151  christos 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1552  1.150  christos 	}
   1553  1.207   thorpej 	itimer_unlock();
   1554   1.63   thorpej 
   1555   1.91      cube 	return 0;
   1556    1.1       cgd }
   1557    1.1       cgd 
   1558  1.207   thorpej /*
   1559  1.207   thorpej  * sys___setitimer50:
   1560  1.207   thorpej  *
   1561  1.207   thorpej  *	System call to set/arm a BSD timer.
   1562  1.207   thorpej  */
   1563    1.3    andrew int
   1564  1.156  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1565  1.140      yamt     register_t *retval)
   1566   1.15   thorpej {
   1567  1.135       dsl 	/* {
   1568   1.30   mycroft 		syscallarg(int) which;
   1569   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1570   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1571  1.135       dsl 	} */
   1572   1.63   thorpej 	struct proc *p = l->l_proc;
   1573   1.30   mycroft 	int which = SCARG(uap, which);
   1574  1.156  christos 	struct sys___getitimer50_args getargs;
   1575   1.91      cube 	const struct itimerval *itvp;
   1576    1.1       cgd 	struct itimerval aitv;
   1577   1.91      cube 	int error;
   1578    1.1       cgd 
   1579   1.11       cgd 	itvp = SCARG(uap, itv);
   1580   1.63   thorpej 	if (itvp &&
   1581  1.174  dholland 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
   1582    1.1       cgd 		return (error);
   1583   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1584   1.30   mycroft 		SCARG(&getargs, which) = which;
   1585   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1586  1.156  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1587   1.21       cgd 			return (error);
   1588   1.21       cgd 	}
   1589    1.1       cgd 	if (itvp == 0)
   1590    1.1       cgd 		return (0);
   1591   1.91      cube 
   1592   1.91      cube 	return dosetitimer(p, which, &aitv);
   1593   1.91      cube }
   1594   1.91      cube 
   1595   1.91      cube int
   1596   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1597   1.91      cube {
   1598  1.150  christos 	struct timespec now;
   1599  1.142        ad 	struct ptimers *pts;
   1600  1.207   thorpej 	struct ptimer *spare;
   1601  1.207   thorpej 	struct itimer *it;
   1602  1.207   thorpej 	struct itlist *itl;
   1603  1.198  riastrad 	int error;
   1604   1.91      cube 
   1605  1.211    simonb 	if ((u_int)which > ITIMER_MONOTONIC)
   1606  1.211    simonb 		return (EINVAL);
   1607   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1608    1.1       cgd 		return (EINVAL);
   1609   1.63   thorpej 
   1610   1.63   thorpej 	/*
   1611   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1612   1.63   thorpej 	 * wants to clear the timer.
   1613   1.63   thorpej 	 */
   1614  1.142        ad 	spare = NULL;
   1615  1.142        ad 	pts = p->p_timers;
   1616  1.142        ad  retry:
   1617  1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1618  1.142        ad 	    pts->pts_timers[which] == NULL))
   1619   1.63   thorpej 		return (0);
   1620  1.142        ad 	if (pts == NULL)
   1621  1.207   thorpej 		pts = ptimers_alloc(p);
   1622  1.207   thorpej 	itimer_lock();
   1623  1.207   thorpej  restart:
   1624  1.207   thorpej 	it = pts->pts_timers[which];
   1625  1.207   thorpej 	if (it == NULL) {
   1626  1.207   thorpej 		struct ptimer *pt;
   1627  1.207   thorpej 
   1628  1.142        ad 		if (spare == NULL) {
   1629  1.207   thorpej 			itimer_unlock();
   1630  1.207   thorpej 			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
   1631  1.142        ad 			goto retry;
   1632  1.142        ad 		}
   1633  1.142        ad 		pt = spare;
   1634  1.142        ad 		spare = NULL;
   1635  1.207   thorpej 
   1636  1.207   thorpej 		it = &pt->pt_itimer;
   1637   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1638   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1639  1.149  christos 
   1640   1.63   thorpej 		switch (which) {
   1641   1.63   thorpej 		case ITIMER_REAL:
   1642  1.170  christos 		case ITIMER_MONOTONIC:
   1643  1.207   thorpej 			itl = NULL;
   1644   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1645   1.63   thorpej 			break;
   1646   1.63   thorpej 		case ITIMER_VIRTUAL:
   1647  1.208   thorpej 			itl = &pts->pts_virtual;
   1648   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1649   1.63   thorpej 			break;
   1650   1.63   thorpej 		case ITIMER_PROF:
   1651  1.208   thorpej 			itl = &pts->pts_prof;
   1652   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1653   1.63   thorpej 			break;
   1654  1.209  christos 		default:
   1655  1.209  christos 			panic("%s: can't happen %d", __func__, which);
   1656    1.1       cgd 		}
   1657  1.207   thorpej 		itimer_init(it, &ptimer_itimer_ops, which, itl);
   1658  1.207   thorpej 		pt->pt_proc = p;
   1659  1.207   thorpej 		pt->pt_entry = which;
   1660  1.207   thorpej 
   1661  1.207   thorpej 		pts->pts_timers[which] = it;
   1662  1.142        ad 	}
   1663   1.63   thorpej 
   1664  1.207   thorpej 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
   1665  1.207   thorpej 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
   1666  1.150  christos 
   1667  1.207   thorpej 	if (timespecisset(&it->it_time.it_value)) {
   1668   1.67   nathanw 		/* Convert to absolute time */
   1669  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1670  1.170  christos 		switch (which) {
   1671  1.170  christos 		case ITIMER_REAL:
   1672  1.170  christos 			getnanotime(&now);
   1673  1.207   thorpej 			timespecadd(&it->it_time.it_value, &now,
   1674  1.207   thorpej 			    &it->it_time.it_value);
   1675  1.170  christos 			break;
   1676  1.170  christos 		case ITIMER_MONOTONIC:
   1677  1.170  christos 			getnanouptime(&now);
   1678  1.207   thorpej 			timespecadd(&it->it_time.it_value, &now,
   1679  1.207   thorpej 			    &it->it_time.it_value);
   1680  1.170  christos 			break;
   1681  1.170  christos 		default:
   1682  1.170  christos 			break;
   1683  1.170  christos 		}
   1684   1.67   nathanw 	}
   1685  1.207   thorpej 	error = itimer_settime(it);
   1686  1.198  riastrad 	if (error == ERESTART) {
   1687  1.207   thorpej 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
   1688  1.198  riastrad 		goto restart;
   1689  1.198  riastrad 	}
   1690  1.198  riastrad 	KASSERT(error == 0);
   1691  1.207   thorpej 	itimer_unlock();
   1692  1.142        ad 	if (spare != NULL)
   1693  1.207   thorpej 		kmem_free(spare, sizeof(*spare));
   1694   1.63   thorpej 
   1695    1.1       cgd 	return (0);
   1696    1.1       cgd }
   1697    1.1       cgd 
   1698    1.1       cgd /*
   1699  1.207   thorpej  * ptimer_tick:
   1700  1.207   thorpej  *
   1701  1.207   thorpej  *	Called from hardclock() to decrement per-process virtual timers.
   1702    1.1       cgd  */
   1703    1.3    andrew void
   1704  1.207   thorpej ptimer_tick(lwp_t *l, bool user)
   1705    1.6       cgd {
   1706   1.63   thorpej 	struct ptimers *pts;
   1707  1.207   thorpej 	struct itimer *it;
   1708  1.142        ad 	proc_t *p;
   1709  1.142        ad 
   1710  1.142        ad 	p = l->l_proc;
   1711  1.142        ad 	if (p->p_timers == NULL)
   1712  1.142        ad 		return;
   1713  1.142        ad 
   1714  1.207   thorpej 	itimer_lock();
   1715  1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1716   1.63   thorpej 		/*
   1717  1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1718   1.63   thorpej 		 */
   1719  1.207   thorpej 		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1720  1.207   thorpej 			if (itimer_decr(it, tick * 1000))
   1721  1.207   thorpej 				(*it->it_ops->ito_fire)(it);
   1722  1.207   thorpej 		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
   1723  1.207   thorpej 			if (itimer_decr(it, tick * 1000))
   1724  1.207   thorpej 				(*it->it_ops->ito_fire)(it);
   1725  1.142        ad 	}
   1726  1.207   thorpej 	itimer_unlock();
   1727  1.142        ad }
   1728  1.142        ad 
   1729  1.207   thorpej /*
   1730  1.207   thorpej  * ptimer_intr:
   1731  1.207   thorpej  *
   1732  1.207   thorpej  *	Software interrupt handler for processing per-process
   1733  1.207   thorpej  *	timer expiration.
   1734  1.207   thorpej  */
   1735  1.142        ad static void
   1736  1.207   thorpej ptimer_intr(void *cookie)
   1737  1.142        ad {
   1738  1.142        ad 	ksiginfo_t ksi;
   1739  1.207   thorpej 	struct itimer *it;
   1740  1.142        ad 	struct ptimer *pt;
   1741  1.142        ad 	proc_t *p;
   1742  1.142        ad 
   1743  1.205        ad 	mutex_enter(&proc_lock);
   1744  1.207   thorpej 	itimer_lock();
   1745  1.210   thorpej 	while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
   1746  1.210   thorpej 		it = &pt->pt_itimer;
   1747  1.142        ad 
   1748  1.210   thorpej 		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
   1749  1.210   thorpej 		KASSERT(pt->pt_queued);
   1750  1.210   thorpej 		pt->pt_queued = false;
   1751  1.207   thorpej 
   1752  1.207   thorpej 		p = pt->pt_proc;
   1753  1.207   thorpej 		if (p->p_timers == NULL) {
   1754  1.154  wrstuden 			/* Process is dying. */
   1755  1.142        ad 			continue;
   1756  1.154  wrstuden 		}
   1757  1.172     rmind 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
   1758  1.142        ad 			continue;
   1759  1.142        ad 		}
   1760  1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1761  1.207   thorpej 			it->it_overruns++;
   1762  1.142        ad 			continue;
   1763   1.64   nathanw 		}
   1764  1.142        ad 
   1765  1.142        ad 		KSI_INIT(&ksi);
   1766  1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1767  1.142        ad 		ksi.ksi_code = SI_TIMER;
   1768  1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1769  1.207   thorpej 		pt->pt_poverruns = it->it_overruns;
   1770  1.207   thorpej 		it->it_overruns = 0;
   1771  1.207   thorpej 		itimer_unlock();
   1772  1.142        ad 		kpsignal(p, &ksi, NULL);
   1773  1.207   thorpej 		itimer_lock();
   1774   1.63   thorpej 	}
   1775  1.207   thorpej 	itimer_unlock();
   1776  1.205        ad 	mutex_exit(&proc_lock);
   1777   1.63   thorpej }
   1778