kern_time.c revision 1.211 1 1.211 simonb /* $NetBSD: kern_time.c,v 1.211 2021/04/03 12:57:21 simonb Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.207 thorpej * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 1.207 thorpej * The NetBSD Foundation, Inc.
6 1.42 cgd * All rights reserved.
7 1.42 cgd *
8 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
9 1.207 thorpej * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 1.42 cgd *
11 1.42 cgd * Redistribution and use in source and binary forms, with or without
12 1.42 cgd * modification, are permitted provided that the following conditions
13 1.42 cgd * are met:
14 1.42 cgd * 1. Redistributions of source code must retain the above copyright
15 1.42 cgd * notice, this list of conditions and the following disclaimer.
16 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
17 1.42 cgd * notice, this list of conditions and the following disclaimer in the
18 1.42 cgd * documentation and/or other materials provided with the distribution.
19 1.42 cgd *
20 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
31 1.42 cgd */
32 1.9 cgd
33 1.1 cgd /*
34 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
35 1.8 cgd * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.72 agc * 3. Neither the name of the University nor the names of its contributors
46 1.1 cgd * may be used to endorse or promote products derived from this software
47 1.1 cgd * without specific prior written permission.
48 1.1 cgd *
49 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 cgd * SUCH DAMAGE.
60 1.1 cgd *
61 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 1.1 cgd */
63 1.58 lukem
64 1.58 lukem #include <sys/cdefs.h>
65 1.211 simonb __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.211 2021/04/03 12:57:21 simonb Exp $");
66 1.1 cgd
67 1.5 mycroft #include <sys/param.h>
68 1.5 mycroft #include <sys/resourcevar.h>
69 1.5 mycroft #include <sys/kernel.h>
70 1.8 cgd #include <sys/systm.h>
71 1.5 mycroft #include <sys/proc.h>
72 1.8 cgd #include <sys/vnode.h>
73 1.17 christos #include <sys/signalvar.h>
74 1.25 perry #include <sys/syslog.h>
75 1.101 kardel #include <sys/timetc.h>
76 1.143 ad #include <sys/timex.h>
77 1.99 elad #include <sys/kauth.h>
78 1.11 cgd #include <sys/mount.h>
79 1.11 cgd #include <sys/syscallargs.h>
80 1.143 ad #include <sys/cpu.h>
81 1.19 christos
82 1.210 thorpej kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */
83 1.207 thorpej static struct itlist itimer_realtime_changed_notify;
84 1.142 ad
85 1.207 thorpej static void ptimer_intr(void *);
86 1.207 thorpej static void *ptimer_sih __read_mostly;
87 1.210 thorpej static TAILQ_HEAD(, ptimer) ptimer_queue;
88 1.97 simonb
89 1.168 yamt #define CLOCK_VIRTUAL_P(clockid) \
90 1.168 yamt ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
91 1.168 yamt
92 1.168 yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
93 1.168 yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
94 1.168 yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
95 1.170 christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
96 1.168 yamt
97 1.187 christos #define DELAYTIMER_MAX 32
98 1.186 christos
99 1.131 ad /*
100 1.131 ad * Initialize timekeeping.
101 1.131 ad */
102 1.131 ad void
103 1.131 ad time_init(void)
104 1.131 ad {
105 1.131 ad
106 1.207 thorpej mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
107 1.207 thorpej LIST_INIT(&itimer_realtime_changed_notify);
108 1.207 thorpej
109 1.207 thorpej TAILQ_INIT(&ptimer_queue);
110 1.207 thorpej ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
111 1.207 thorpej ptimer_intr, NULL);
112 1.207 thorpej }
113 1.207 thorpej
114 1.207 thorpej /*
115 1.207 thorpej * Check if the time will wrap if set to ts.
116 1.207 thorpej *
117 1.207 thorpej * ts - timespec describing the new time
118 1.207 thorpej * delta - the delta between the current time and ts
119 1.207 thorpej */
120 1.207 thorpej bool
121 1.207 thorpej time_wraps(struct timespec *ts, struct timespec *delta)
122 1.207 thorpej {
123 1.207 thorpej
124 1.207 thorpej /*
125 1.207 thorpej * Don't allow the time to be set forward so far it
126 1.207 thorpej * will wrap and become negative, thus allowing an
127 1.207 thorpej * attacker to bypass the next check below. The
128 1.207 thorpej * cutoff is 1 year before rollover occurs, so even
129 1.207 thorpej * if the attacker uses adjtime(2) to move the time
130 1.207 thorpej * past the cutoff, it will take a very long time
131 1.207 thorpej * to get to the wrap point.
132 1.207 thorpej */
133 1.207 thorpej if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
134 1.207 thorpej (delta->tv_sec < 0 || delta->tv_nsec < 0))
135 1.207 thorpej return true;
136 1.207 thorpej
137 1.207 thorpej return false;
138 1.207 thorpej }
139 1.207 thorpej
140 1.207 thorpej /*
141 1.207 thorpej * itimer_lock:
142 1.207 thorpej *
143 1.207 thorpej * Acquire the interval timer data lock.
144 1.207 thorpej */
145 1.207 thorpej void
146 1.207 thorpej itimer_lock(void)
147 1.207 thorpej {
148 1.207 thorpej mutex_spin_enter(&itimer_mutex);
149 1.131 ad }
150 1.131 ad
151 1.207 thorpej /*
152 1.207 thorpej * itimer_unlock:
153 1.207 thorpej *
154 1.207 thorpej * Release the interval timer data lock.
155 1.207 thorpej */
156 1.142 ad void
157 1.207 thorpej itimer_unlock(void)
158 1.142 ad {
159 1.207 thorpej mutex_spin_exit(&itimer_mutex);
160 1.207 thorpej }
161 1.142 ad
162 1.207 thorpej /*
163 1.207 thorpej * itimer_lock_held:
164 1.207 thorpej *
165 1.207 thorpej * Check that the interval timer lock is held for diagnostic
166 1.207 thorpej * assertions.
167 1.207 thorpej */
168 1.210 thorpej inline bool __diagused
169 1.207 thorpej itimer_lock_held(void)
170 1.207 thorpej {
171 1.207 thorpej return mutex_owned(&itimer_mutex);
172 1.142 ad }
173 1.142 ad
174 1.207 thorpej /*
175 1.207 thorpej * Time of day and interval timer support.
176 1.1 cgd *
177 1.1 cgd * These routines provide the kernel entry points to get and set
178 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
179 1.1 cgd * here provide support for adding and subtracting timeval structures
180 1.1 cgd * and decrementing interval timers, optionally reloading the interval
181 1.1 cgd * timers when they expire.
182 1.1 cgd */
183 1.1 cgd
184 1.22 jtc /* This function is used by clock_settime and settimeofday */
185 1.132 elad static int
186 1.156 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
187 1.22 jtc {
188 1.156 christos struct timespec delta, now;
189 1.22 jtc
190 1.206 nia /*
191 1.206 nia * The time being set to an unreasonable value will cause
192 1.206 nia * unreasonable system behaviour.
193 1.206 nia */
194 1.206 nia if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
195 1.206 nia return (EINVAL);
196 1.206 nia
197 1.156 christos nanotime(&now);
198 1.156 christos timespecsub(ts, &now, &delta);
199 1.132 elad
200 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
201 1.156 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
202 1.156 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
203 1.29 tls return (EPERM);
204 1.55 tron }
205 1.132 elad
206 1.29 tls #ifdef notyet
207 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
208 1.29 tls return (EPERM);
209 1.55 tron }
210 1.29 tls #endif
211 1.103 kardel
212 1.156 christos tc_setclock(ts);
213 1.103 kardel
214 1.22 jtc resettodr();
215 1.129 ad
216 1.207 thorpej /*
217 1.207 thorpej * Notify pending CLOCK_REALTIME timers about the real time change.
218 1.207 thorpej * There may be inactive timers on this list, but this happens
219 1.207 thorpej * comparatively less often than timers firing, and so it's better
220 1.207 thorpej * to put the extra checks here than to complicate the other code
221 1.207 thorpej * path.
222 1.207 thorpej */
223 1.207 thorpej struct itimer *it;
224 1.207 thorpej itimer_lock();
225 1.207 thorpej LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
226 1.207 thorpej KASSERT(it->it_ops->ito_realtime_changed != NULL);
227 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
228 1.207 thorpej (*it->it_ops->ito_realtime_changed)(it);
229 1.207 thorpej }
230 1.207 thorpej }
231 1.207 thorpej itimer_unlock();
232 1.207 thorpej
233 1.29 tls return (0);
234 1.22 jtc }
235 1.22 jtc
236 1.132 elad int
237 1.132 elad settime(struct proc *p, struct timespec *ts)
238 1.132 elad {
239 1.132 elad return (settime1(p, ts, true));
240 1.132 elad }
241 1.132 elad
242 1.22 jtc /* ARGSUSED */
243 1.22 jtc int
244 1.156 christos sys___clock_gettime50(struct lwp *l,
245 1.156 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
246 1.22 jtc {
247 1.135 dsl /* {
248 1.22 jtc syscallarg(clockid_t) clock_id;
249 1.23 cgd syscallarg(struct timespec *) tp;
250 1.135 dsl } */
251 1.165 njoly int error;
252 1.22 jtc struct timespec ats;
253 1.22 jtc
254 1.165 njoly error = clock_gettime1(SCARG(uap, clock_id), &ats);
255 1.165 njoly if (error != 0)
256 1.165 njoly return error;
257 1.165 njoly
258 1.165 njoly return copyout(&ats, SCARG(uap, tp), sizeof(ats));
259 1.165 njoly }
260 1.165 njoly
261 1.22 jtc /* ARGSUSED */
262 1.22 jtc int
263 1.156 christos sys___clock_settime50(struct lwp *l,
264 1.156 christos const struct sys___clock_settime50_args *uap, register_t *retval)
265 1.22 jtc {
266 1.135 dsl /* {
267 1.22 jtc syscallarg(clockid_t) clock_id;
268 1.23 cgd syscallarg(const struct timespec *) tp;
269 1.135 dsl } */
270 1.156 christos int error;
271 1.156 christos struct timespec ats;
272 1.22 jtc
273 1.156 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
274 1.156 christos return error;
275 1.156 christos
276 1.156 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
277 1.56 manu }
278 1.56 manu
279 1.56 manu
280 1.56 manu int
281 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
282 1.132 elad bool check_kauth)
283 1.56 manu {
284 1.56 manu int error;
285 1.56 manu
286 1.201 kamil if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
287 1.201 kamil return EINVAL;
288 1.201 kamil
289 1.61 simonb switch (clock_id) {
290 1.61 simonb case CLOCK_REALTIME:
291 1.156 christos if ((error = settime1(p, tp, check_kauth)) != 0)
292 1.61 simonb return (error);
293 1.61 simonb break;
294 1.61 simonb case CLOCK_MONOTONIC:
295 1.61 simonb return (EINVAL); /* read-only clock */
296 1.61 simonb default:
297 1.56 manu return (EINVAL);
298 1.61 simonb }
299 1.22 jtc
300 1.22 jtc return 0;
301 1.22 jtc }
302 1.22 jtc
303 1.22 jtc int
304 1.156 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
305 1.140 yamt register_t *retval)
306 1.22 jtc {
307 1.135 dsl /* {
308 1.22 jtc syscallarg(clockid_t) clock_id;
309 1.23 cgd syscallarg(struct timespec *) tp;
310 1.135 dsl } */
311 1.22 jtc struct timespec ts;
312 1.180 maxv int error;
313 1.22 jtc
314 1.164 njoly if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
315 1.164 njoly return error;
316 1.164 njoly
317 1.164 njoly if (SCARG(uap, tp))
318 1.164 njoly error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319 1.164 njoly
320 1.164 njoly return error;
321 1.164 njoly }
322 1.164 njoly
323 1.164 njoly int
324 1.164 njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
325 1.164 njoly {
326 1.164 njoly
327 1.61 simonb switch (clock_id) {
328 1.61 simonb case CLOCK_REALTIME:
329 1.61 simonb case CLOCK_MONOTONIC:
330 1.164 njoly ts->tv_sec = 0;
331 1.102 kardel if (tc_getfrequency() > 1000000000)
332 1.164 njoly ts->tv_nsec = 1;
333 1.102 kardel else
334 1.164 njoly ts->tv_nsec = 1000000000 / tc_getfrequency();
335 1.61 simonb break;
336 1.61 simonb default:
337 1.164 njoly return EINVAL;
338 1.61 simonb }
339 1.22 jtc
340 1.164 njoly return 0;
341 1.22 jtc }
342 1.22 jtc
343 1.27 jtc /* ARGSUSED */
344 1.27 jtc int
345 1.156 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
346 1.140 yamt register_t *retval)
347 1.27 jtc {
348 1.135 dsl /* {
349 1.101 kardel syscallarg(struct timespec *) rqtp;
350 1.101 kardel syscallarg(struct timespec *) rmtp;
351 1.135 dsl } */
352 1.101 kardel struct timespec rmt, rqt;
353 1.120 dsl int error, error1;
354 1.101 kardel
355 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
356 1.101 kardel if (error)
357 1.101 kardel return (error);
358 1.101 kardel
359 1.175 christos error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
360 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
361 1.175 christos if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
362 1.175 christos return error;
363 1.175 christos
364 1.175 christos error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
365 1.175 christos return error1 ? error1 : error;
366 1.175 christos }
367 1.175 christos
368 1.175 christos /* ARGSUSED */
369 1.175 christos int
370 1.175 christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
371 1.175 christos register_t *retval)
372 1.175 christos {
373 1.175 christos /* {
374 1.175 christos syscallarg(clockid_t) clock_id;
375 1.175 christos syscallarg(int) flags;
376 1.175 christos syscallarg(struct timespec *) rqtp;
377 1.175 christos syscallarg(struct timespec *) rmtp;
378 1.175 christos } */
379 1.175 christos struct timespec rmt, rqt;
380 1.175 christos int error, error1;
381 1.175 christos
382 1.175 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
383 1.175 christos if (error)
384 1.181 christos goto out;
385 1.175 christos
386 1.175 christos error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
387 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
388 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
389 1.181 christos goto out;
390 1.120 dsl
391 1.189 njoly if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
392 1.189 njoly (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
393 1.181 christos error = error1;
394 1.181 christos out:
395 1.181 christos *retval = error;
396 1.181 christos return 0;
397 1.120 dsl }
398 1.120 dsl
399 1.120 dsl int
400 1.175 christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
401 1.175 christos struct timespec *rmt)
402 1.120 dsl {
403 1.141 yamt struct timespec rmtstart;
404 1.120 dsl int error, timo;
405 1.120 dsl
406 1.184 uwe if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
407 1.184 uwe if (error == ETIMEDOUT) {
408 1.184 uwe error = 0;
409 1.184 uwe if (rmt != NULL)
410 1.184 uwe rmt->tv_sec = rmt->tv_nsec = 0;
411 1.184 uwe }
412 1.184 uwe return error;
413 1.184 uwe }
414 1.101 kardel
415 1.101 kardel /*
416 1.175 christos * Avoid inadvertently sleeping forever
417 1.101 kardel */
418 1.101 kardel if (timo == 0)
419 1.101 kardel timo = 1;
420 1.141 yamt again:
421 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
422 1.197 kre if (error == EWOULDBLOCK)
423 1.197 kre error = 0;
424 1.141 yamt if (rmt != NULL || error == 0) {
425 1.141 yamt struct timespec rmtend;
426 1.141 yamt struct timespec t0;
427 1.141 yamt struct timespec *t;
428 1.204 maxv int err;
429 1.204 maxv
430 1.204 maxv err = clock_gettime1(clock_id, &rmtend);
431 1.204 maxv if (err != 0)
432 1.204 maxv return err;
433 1.101 kardel
434 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
435 1.179 christos if (flags & TIMER_ABSTIME) {
436 1.179 christos timespecsub(rqt, &rmtend, t);
437 1.179 christos } else {
438 1.179 christos timespecsub(&rmtend, &rmtstart, t);
439 1.179 christos timespecsub(rqt, t, t);
440 1.179 christos }
441 1.141 yamt if (t->tv_sec < 0)
442 1.141 yamt timespecclear(t);
443 1.141 yamt if (error == 0) {
444 1.141 yamt timo = tstohz(t);
445 1.141 yamt if (timo > 0)
446 1.141 yamt goto again;
447 1.141 yamt }
448 1.141 yamt }
449 1.104 kardel
450 1.101 kardel if (error == ERESTART)
451 1.101 kardel error = EINTR;
452 1.101 kardel
453 1.101 kardel return error;
454 1.27 jtc }
455 1.22 jtc
456 1.186 christos int
457 1.186 christos sys_clock_getcpuclockid2(struct lwp *l,
458 1.186 christos const struct sys_clock_getcpuclockid2_args *uap,
459 1.186 christos register_t *retval)
460 1.186 christos {
461 1.186 christos /* {
462 1.186 christos syscallarg(idtype_t idtype;
463 1.186 christos syscallarg(id_t id);
464 1.186 christos syscallarg(clockid_t *)clock_id;
465 1.186 christos } */
466 1.186 christos pid_t pid;
467 1.186 christos lwpid_t lid;
468 1.186 christos clockid_t clock_id;
469 1.186 christos id_t id = SCARG(uap, id);
470 1.186 christos
471 1.186 christos switch (SCARG(uap, idtype)) {
472 1.186 christos case P_PID:
473 1.188 msaitoh pid = id == 0 ? l->l_proc->p_pid : id;
474 1.186 christos clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
475 1.186 christos break;
476 1.186 christos case P_LWPID:
477 1.186 christos lid = id == 0 ? l->l_lid : id;
478 1.186 christos clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
479 1.186 christos break;
480 1.186 christos default:
481 1.186 christos return EINVAL;
482 1.186 christos }
483 1.186 christos return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
484 1.186 christos }
485 1.186 christos
486 1.1 cgd /* ARGSUSED */
487 1.3 andrew int
488 1.156 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
489 1.140 yamt register_t *retval)
490 1.15 thorpej {
491 1.135 dsl /* {
492 1.11 cgd syscallarg(struct timeval *) tp;
493 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
494 1.135 dsl } */
495 1.1 cgd struct timeval atv;
496 1.1 cgd int error = 0;
497 1.25 perry struct timezone tzfake;
498 1.1 cgd
499 1.11 cgd if (SCARG(uap, tp)) {
500 1.190 maxv memset(&atv, 0, sizeof(atv));
501 1.1 cgd microtime(&atv);
502 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
503 1.17 christos if (error)
504 1.1 cgd return (error);
505 1.1 cgd }
506 1.25 perry if (SCARG(uap, tzp)) {
507 1.25 perry /*
508 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
509 1.25 perry * fake up a timezone struct and return it if demanded.
510 1.25 perry */
511 1.25 perry tzfake.tz_minuteswest = 0;
512 1.25 perry tzfake.tz_dsttime = 0;
513 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
514 1.25 perry }
515 1.1 cgd return (error);
516 1.1 cgd }
517 1.1 cgd
518 1.1 cgd /* ARGSUSED */
519 1.3 andrew int
520 1.156 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
521 1.140 yamt register_t *retval)
522 1.15 thorpej {
523 1.135 dsl /* {
524 1.24 cgd syscallarg(const struct timeval *) tv;
525 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
526 1.135 dsl } */
527 1.60 manu
528 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
529 1.60 manu }
530 1.60 manu
531 1.60 manu int
532 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
533 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
534 1.60 manu {
535 1.22 jtc struct timeval atv;
536 1.98 christos struct timespec ts;
537 1.22 jtc int error;
538 1.1 cgd
539 1.8 cgd /* Verify all parameters before changing time. */
540 1.119 dsl
541 1.25 perry /*
542 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
543 1.25 perry * obsolete program would try to set it, so we log a warning.
544 1.25 perry */
545 1.98 christos if (utzp)
546 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
547 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
548 1.98 christos
549 1.98 christos if (utv == NULL)
550 1.98 christos return 0;
551 1.98 christos
552 1.119 dsl if (userspace) {
553 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
554 1.119 dsl return error;
555 1.119 dsl utv = &atv;
556 1.119 dsl }
557 1.119 dsl
558 1.200 kamil if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
559 1.200 kamil return EINVAL;
560 1.200 kamil
561 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
562 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
563 1.1 cgd }
564 1.1 cgd
565 1.68 dsl int time_adjusted; /* set if an adjustment is made */
566 1.1 cgd
567 1.1 cgd /* ARGSUSED */
568 1.3 andrew int
569 1.156 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
570 1.140 yamt register_t *retval)
571 1.15 thorpej {
572 1.135 dsl /* {
573 1.24 cgd syscallarg(const struct timeval *) delta;
574 1.11 cgd syscallarg(struct timeval *) olddelta;
575 1.135 dsl } */
576 1.180 maxv int error;
577 1.156 christos struct timeval atv, oldatv;
578 1.1 cgd
579 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
580 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
581 1.156 christos return error;
582 1.17 christos
583 1.156 christos if (SCARG(uap, delta)) {
584 1.156 christos error = copyin(SCARG(uap, delta), &atv,
585 1.156 christos sizeof(*SCARG(uap, delta)));
586 1.156 christos if (error)
587 1.156 christos return (error);
588 1.156 christos }
589 1.156 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
590 1.156 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
591 1.156 christos if (SCARG(uap, olddelta))
592 1.156 christos error = copyout(&oldatv, SCARG(uap, olddelta),
593 1.156 christos sizeof(*SCARG(uap, olddelta)));
594 1.156 christos return error;
595 1.56 manu }
596 1.56 manu
597 1.156 christos void
598 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
599 1.56 manu {
600 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
601 1.101 kardel
602 1.101 kardel if (olddelta) {
603 1.194 maxv memset(olddelta, 0, sizeof(*olddelta));
604 1.143 ad mutex_spin_enter(&timecounter_lock);
605 1.156 christos olddelta->tv_sec = time_adjtime / 1000000;
606 1.156 christos olddelta->tv_usec = time_adjtime % 1000000;
607 1.156 christos if (olddelta->tv_usec < 0) {
608 1.156 christos olddelta->tv_usec += 1000000;
609 1.156 christos olddelta->tv_sec--;
610 1.101 kardel }
611 1.157 christos mutex_spin_exit(&timecounter_lock);
612 1.101 kardel }
613 1.101 kardel
614 1.101 kardel if (delta) {
615 1.156 christos mutex_spin_enter(&timecounter_lock);
616 1.157 christos time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
617 1.101 kardel
618 1.143 ad if (time_adjtime) {
619 1.101 kardel /* We need to save the system time during shutdown */
620 1.101 kardel time_adjusted |= 1;
621 1.143 ad }
622 1.143 ad mutex_spin_exit(&timecounter_lock);
623 1.101 kardel }
624 1.1 cgd }
625 1.1 cgd
626 1.1 cgd /*
627 1.207 thorpej * Interval timer support.
628 1.207 thorpej *
629 1.207 thorpej * The itimer_*() routines provide generic support for interval timers,
630 1.207 thorpej * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
631 1.207 thorpej * CLOCK_PROF).
632 1.207 thorpej *
633 1.207 thorpej * Real timers keep their deadline as an absolute time, and are fired
634 1.207 thorpej * by a callout. Virtual timers are kept as a linked-list of deltas,
635 1.207 thorpej * and are processed by hardclock().
636 1.1 cgd *
637 1.207 thorpej * Because the real time timer callout may be delayed in real time due
638 1.207 thorpej * to interrupt processing on the system, it is possible for the real
639 1.207 thorpej * time timeout routine (itimer_callout()) run past after its deadline.
640 1.207 thorpej * It does not suffice, therefore, to reload the real timer .it_value
641 1.207 thorpej * from the timer's .it_interval. Rather, we compute the next deadline
642 1.207 thorpej * in absolute time based on the current time and the .it_interval value,
643 1.207 thorpej * and report any overruns.
644 1.1 cgd *
645 1.207 thorpej * Note that while the virtual timers are supported in a generic fashion
646 1.207 thorpej * here, they only (currently) make sense as per-process timers, and thus
647 1.207 thorpej * only really work for that case.
648 1.207 thorpej */
649 1.63 thorpej
650 1.207 thorpej /*
651 1.207 thorpej * itimer_init:
652 1.207 thorpej *
653 1.207 thorpej * Initialize the common data for an interval timer.
654 1.207 thorpej */
655 1.210 thorpej void
656 1.207 thorpej itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
657 1.207 thorpej clockid_t const id, struct itlist * const itl)
658 1.63 thorpej {
659 1.92 cube
660 1.207 thorpej KASSERT(itimer_lock_held());
661 1.207 thorpej KASSERT(ops != NULL);
662 1.207 thorpej
663 1.207 thorpej timespecclear(&it->it_time.it_value);
664 1.207 thorpej it->it_ops = ops;
665 1.207 thorpej it->it_clockid = id;
666 1.207 thorpej it->it_overruns = 0;
667 1.207 thorpej it->it_dying = false;
668 1.207 thorpej if (!CLOCK_VIRTUAL_P(id)) {
669 1.207 thorpej KASSERT(itl == NULL);
670 1.207 thorpej callout_init(&it->it_ch, CALLOUT_MPSAFE);
671 1.207 thorpej if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
672 1.207 thorpej LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
673 1.207 thorpej it, it_rtchgq);
674 1.207 thorpej }
675 1.207 thorpej } else {
676 1.207 thorpej KASSERT(itl != NULL);
677 1.207 thorpej it->it_vlist = itl;
678 1.207 thorpej it->it_active = false;
679 1.207 thorpej }
680 1.92 cube }
681 1.92 cube
682 1.207 thorpej /*
683 1.210 thorpej * itimer_poison:
684 1.207 thorpej *
685 1.210 thorpej * Poison an interval timer, preventing it from being scheduled
686 1.210 thorpej * or processed, in preparation for freeing the timer.
687 1.207 thorpej */
688 1.210 thorpej void
689 1.210 thorpej itimer_poison(struct itimer * const it)
690 1.92 cube {
691 1.105 ad
692 1.207 thorpej KASSERT(itimer_lock_held());
693 1.63 thorpej
694 1.207 thorpej it->it_dying = true;
695 1.63 thorpej
696 1.207 thorpej /*
697 1.207 thorpej * For non-virtual timers, stop the callout, or wait for it to
698 1.207 thorpej * run if it has already fired. It cannot restart again after
699 1.207 thorpej * this point: the callout won't restart itself when dying, no
700 1.207 thorpej * other users holding the lock can restart it, and any other
701 1.207 thorpej * users waiting for callout_halt concurrently (itimer_settime)
702 1.207 thorpej * will restart from the top.
703 1.207 thorpej */
704 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
705 1.207 thorpej callout_halt(&it->it_ch, &itimer_mutex);
706 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME &&
707 1.207 thorpej it->it_ops->ito_realtime_changed != NULL) {
708 1.207 thorpej LIST_REMOVE(it, it_rtchgq);
709 1.207 thorpej }
710 1.207 thorpej }
711 1.210 thorpej }
712 1.210 thorpej
713 1.210 thorpej /*
714 1.210 thorpej * itimer_fini:
715 1.210 thorpej *
716 1.210 thorpej * Release resources used by an interval timer.
717 1.210 thorpej *
718 1.210 thorpej * N.B. itimer_lock must be held on entry, and is released on exit.
719 1.210 thorpej */
720 1.210 thorpej void
721 1.210 thorpej itimer_fini(struct itimer * const it)
722 1.210 thorpej {
723 1.63 thorpej
724 1.210 thorpej KASSERT(itimer_lock_held());
725 1.142 ad
726 1.210 thorpej /* All done with the global state. */
727 1.207 thorpej itimer_unlock();
728 1.207 thorpej
729 1.207 thorpej /* Destroy the callout, if needed. */
730 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid))
731 1.207 thorpej callout_destroy(&it->it_ch);
732 1.207 thorpej }
733 1.207 thorpej
734 1.207 thorpej /*
735 1.207 thorpej * itimer_decr:
736 1.207 thorpej *
737 1.207 thorpej * Decrement an interval timer by a specified number of nanoseconds,
738 1.207 thorpej * which must be less than a second, i.e. < 1000000000. If the timer
739 1.207 thorpej * expires, then reload it. In this case, carry over (nsec - old value)
740 1.207 thorpej * to reduce the value reloaded into the timer so that the timer does
741 1.207 thorpej * not drift. This routine assumes that it is called in a context where
742 1.207 thorpej * the timers on which it is operating cannot change in value.
743 1.207 thorpej *
744 1.207 thorpej * Returns true if the timer has expired.
745 1.207 thorpej */
746 1.207 thorpej static bool
747 1.207 thorpej itimer_decr(struct itimer *it, int nsec)
748 1.207 thorpej {
749 1.207 thorpej struct itimerspec *itp;
750 1.207 thorpej int error __diagused;
751 1.207 thorpej
752 1.207 thorpej KASSERT(itimer_lock_held());
753 1.207 thorpej KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
754 1.207 thorpej
755 1.207 thorpej itp = &it->it_time;
756 1.207 thorpej if (itp->it_value.tv_nsec < nsec) {
757 1.207 thorpej if (itp->it_value.tv_sec == 0) {
758 1.207 thorpej /* expired, and already in next interval */
759 1.207 thorpej nsec -= itp->it_value.tv_nsec;
760 1.207 thorpej goto expire;
761 1.207 thorpej }
762 1.207 thorpej itp->it_value.tv_nsec += 1000000000;
763 1.207 thorpej itp->it_value.tv_sec--;
764 1.142 ad }
765 1.207 thorpej itp->it_value.tv_nsec -= nsec;
766 1.207 thorpej nsec = 0;
767 1.207 thorpej if (timespecisset(&itp->it_value))
768 1.207 thorpej return false;
769 1.207 thorpej /* expired, exactly at end of interval */
770 1.207 thorpej expire:
771 1.207 thorpej if (timespecisset(&itp->it_interval)) {
772 1.207 thorpej itp->it_value = itp->it_interval;
773 1.207 thorpej itp->it_value.tv_nsec -= nsec;
774 1.207 thorpej if (itp->it_value.tv_nsec < 0) {
775 1.207 thorpej itp->it_value.tv_nsec += 1000000000;
776 1.207 thorpej itp->it_value.tv_sec--;
777 1.63 thorpej }
778 1.207 thorpej error = itimer_settime(it);
779 1.207 thorpej KASSERT(error == 0); /* virtual, never fails */
780 1.207 thorpej } else
781 1.207 thorpej itp->it_value.tv_nsec = 0; /* sec is already 0 */
782 1.207 thorpej return true;
783 1.207 thorpej }
784 1.207 thorpej
785 1.207 thorpej static void itimer_callout(void *);
786 1.63 thorpej
787 1.207 thorpej /*
788 1.207 thorpej * itimer_arm_real:
789 1.207 thorpej *
790 1.207 thorpej * Arm a non-virtual timer.
791 1.207 thorpej */
792 1.207 thorpej static void
793 1.207 thorpej itimer_arm_real(struct itimer * const it)
794 1.207 thorpej {
795 1.207 thorpej /*
796 1.207 thorpej * Don't need to check tshzto() return value, here.
797 1.207 thorpej * callout_reset() does it for us.
798 1.207 thorpej */
799 1.207 thorpej callout_reset(&it->it_ch,
800 1.207 thorpej (it->it_clockid == CLOCK_MONOTONIC
801 1.207 thorpej ? tshztoup(&it->it_time.it_value)
802 1.207 thorpej : tshzto(&it->it_time.it_value)),
803 1.207 thorpej itimer_callout, it);
804 1.63 thorpej }
805 1.63 thorpej
806 1.207 thorpej /*
807 1.207 thorpej * itimer_callout:
808 1.207 thorpej *
809 1.207 thorpej * Callout to expire a non-virtual timer. Queue it up for processing,
810 1.207 thorpej * and then reload, if it is configured to do so.
811 1.207 thorpej *
812 1.207 thorpej * N.B. A delay in processing this callout causes multiple
813 1.207 thorpej * SIGALRM calls to be compressed into one.
814 1.207 thorpej */
815 1.207 thorpej static void
816 1.207 thorpej itimer_callout(void *arg)
817 1.15 thorpej {
818 1.207 thorpej uint64_t last_val, next_val, interval, now_ns;
819 1.207 thorpej struct timespec now, next;
820 1.207 thorpej struct itimer * const it = arg;
821 1.207 thorpej int backwards;
822 1.1 cgd
823 1.207 thorpej itimer_lock();
824 1.207 thorpej (*it->it_ops->ito_fire)(it);
825 1.63 thorpej
826 1.207 thorpej if (!timespecisset(&it->it_time.it_interval)) {
827 1.207 thorpej timespecclear(&it->it_time.it_value);
828 1.207 thorpej itimer_unlock();
829 1.207 thorpej return;
830 1.142 ad }
831 1.207 thorpej
832 1.207 thorpej if (it->it_clockid == CLOCK_MONOTONIC) {
833 1.207 thorpej getnanouptime(&now);
834 1.207 thorpej } else {
835 1.207 thorpej getnanotime(&now);
836 1.63 thorpej }
837 1.207 thorpej backwards = (timespeccmp(&it->it_time.it_value, &now, >));
838 1.207 thorpej timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
839 1.207 thorpej /* Handle the easy case of non-overflown timers first. */
840 1.207 thorpej if (!backwards && timespeccmp(&next, &now, >)) {
841 1.207 thorpej it->it_time.it_value = next;
842 1.207 thorpej } else {
843 1.207 thorpej now_ns = timespec2ns(&now);
844 1.207 thorpej last_val = timespec2ns(&it->it_time.it_value);
845 1.207 thorpej interval = timespec2ns(&it->it_time.it_interval);
846 1.198 riastrad
847 1.207 thorpej next_val = now_ns +
848 1.207 thorpej (now_ns - last_val + interval - 1) % interval;
849 1.207 thorpej
850 1.207 thorpej if (backwards)
851 1.207 thorpej next_val += interval;
852 1.207 thorpej else
853 1.207 thorpej it->it_overruns += (now_ns - last_val) / interval;
854 1.207 thorpej
855 1.207 thorpej it->it_time.it_value.tv_sec = next_val / 1000000000;
856 1.207 thorpej it->it_time.it_value.tv_nsec = next_val % 1000000000;
857 1.207 thorpej }
858 1.63 thorpej
859 1.207 thorpej /*
860 1.207 thorpej * Reset the callout, if it's not going away.
861 1.207 thorpej */
862 1.207 thorpej if (!it->it_dying)
863 1.207 thorpej itimer_arm_real(it);
864 1.207 thorpej itimer_unlock();
865 1.63 thorpej }
866 1.63 thorpej
867 1.63 thorpej /*
868 1.207 thorpej * itimer_settime:
869 1.207 thorpej *
870 1.207 thorpej * Set up the given interval timer. The value in it->it_time.it_value
871 1.207 thorpej * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
872 1.207 thorpej * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
873 1.198 riastrad *
874 1.207 thorpej * If the callout had already fired but not yet run, fails with
875 1.207 thorpej * ERESTART -- caller must restart from the top to look up a timer.
876 1.63 thorpej */
877 1.198 riastrad int
878 1.207 thorpej itimer_settime(struct itimer *it)
879 1.63 thorpej {
880 1.207 thorpej struct itimer *itn, *pitn;
881 1.207 thorpej struct itlist *itl;
882 1.63 thorpej
883 1.207 thorpej KASSERT(itimer_lock_held());
884 1.142 ad
885 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
886 1.198 riastrad /*
887 1.198 riastrad * Try to stop the callout. However, if it had already
888 1.198 riastrad * fired, we have to drop the lock to wait for it, so
889 1.198 riastrad * the world may have changed and pt may not be there
890 1.198 riastrad * any more. In that case, tell the caller to start
891 1.198 riastrad * over from the top.
892 1.198 riastrad */
893 1.207 thorpej if (callout_halt(&it->it_ch, &itimer_mutex))
894 1.198 riastrad return ERESTART;
895 1.198 riastrad
896 1.207 thorpej /* Now we can touch it and start it up again. */
897 1.207 thorpej if (timespecisset(&it->it_time.it_value))
898 1.207 thorpej itimer_arm_real(it);
899 1.63 thorpej } else {
900 1.207 thorpej if (it->it_active) {
901 1.207 thorpej itn = LIST_NEXT(it, it_list);
902 1.207 thorpej LIST_REMOVE(it, it_list);
903 1.207 thorpej for ( ; itn; itn = LIST_NEXT(itn, it_list))
904 1.207 thorpej timespecadd(&it->it_time.it_value,
905 1.207 thorpej &itn->it_time.it_value,
906 1.207 thorpej &itn->it_time.it_value);
907 1.207 thorpej }
908 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
909 1.207 thorpej itl = it->it_vlist;
910 1.207 thorpej for (itn = LIST_FIRST(itl), pitn = NULL;
911 1.207 thorpej itn && timespeccmp(&it->it_time.it_value,
912 1.207 thorpej &itn->it_time.it_value, >);
913 1.207 thorpej pitn = itn, itn = LIST_NEXT(itn, it_list))
914 1.207 thorpej timespecsub(&it->it_time.it_value,
915 1.207 thorpej &itn->it_time.it_value,
916 1.207 thorpej &it->it_time.it_value);
917 1.207 thorpej
918 1.207 thorpej if (pitn)
919 1.207 thorpej LIST_INSERT_AFTER(pitn, it, it_list);
920 1.63 thorpej else
921 1.207 thorpej LIST_INSERT_HEAD(itl, it, it_list);
922 1.63 thorpej
923 1.207 thorpej for ( ; itn ; itn = LIST_NEXT(itn, it_list))
924 1.207 thorpej timespecsub(&itn->it_time.it_value,
925 1.207 thorpej &it->it_time.it_value,
926 1.207 thorpej &itn->it_time.it_value);
927 1.63 thorpej
928 1.207 thorpej it->it_active = true;
929 1.207 thorpej } else {
930 1.207 thorpej it->it_active = false;
931 1.207 thorpej }
932 1.63 thorpej }
933 1.198 riastrad
934 1.198 riastrad /* Success! */
935 1.198 riastrad return 0;
936 1.63 thorpej }
937 1.63 thorpej
938 1.207 thorpej /*
939 1.207 thorpej * itimer_gettime:
940 1.207 thorpej *
941 1.207 thorpej * Return the remaining time of an interval timer.
942 1.207 thorpej */
943 1.63 thorpej void
944 1.207 thorpej itimer_gettime(const struct itimer *it, struct itimerspec *aits)
945 1.63 thorpej {
946 1.150 christos struct timespec now;
947 1.207 thorpej struct itimer *itn;
948 1.63 thorpej
949 1.207 thorpej KASSERT(itimer_lock_held());
950 1.142 ad
951 1.207 thorpej *aits = it->it_time;
952 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
953 1.1 cgd /*
954 1.12 mycroft * Convert from absolute to relative time in .it_value
955 1.63 thorpej * part of real time timer. If time for real time
956 1.63 thorpej * timer has passed return 0, else return difference
957 1.63 thorpej * between current time and time for the timer to go
958 1.63 thorpej * off.
959 1.1 cgd */
960 1.150 christos if (timespecisset(&aits->it_value)) {
961 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME) {
962 1.168 yamt getnanotime(&now);
963 1.168 yamt } else { /* CLOCK_MONOTONIC */
964 1.168 yamt getnanouptime(&now);
965 1.168 yamt }
966 1.150 christos if (timespeccmp(&aits->it_value, &now, <))
967 1.150 christos timespecclear(&aits->it_value);
968 1.101 kardel else
969 1.150 christos timespecsub(&aits->it_value, &now,
970 1.150 christos &aits->it_value);
971 1.36 thorpej }
972 1.207 thorpej } else if (it->it_active) {
973 1.207 thorpej for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
974 1.207 thorpej itn = LIST_NEXT(itn, it_list))
975 1.150 christos timespecadd(&aits->it_value,
976 1.207 thorpej &itn->it_time.it_value, &aits->it_value);
977 1.207 thorpej KASSERT(itn != NULL); /* it should be findable on the list */
978 1.1 cgd } else
979 1.150 christos timespecclear(&aits->it_value);
980 1.63 thorpej }
981 1.63 thorpej
982 1.207 thorpej /*
983 1.207 thorpej * Per-process timer support.
984 1.207 thorpej *
985 1.207 thorpej * Both the BSD getitimer() family and the POSIX timer_*() family of
986 1.207 thorpej * routines are supported.
987 1.207 thorpej *
988 1.207 thorpej * All timers are kept in an array pointed to by p_timers, which is
989 1.207 thorpej * allocated on demand - many processes don't use timers at all. The
990 1.207 thorpej * first four elements in this array are reserved for the BSD timers:
991 1.207 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
992 1.207 thorpej * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
993 1.207 thorpej * allocated by the timer_create() syscall.
994 1.207 thorpej *
995 1.207 thorpej * These timers are a "sub-class" of interval timer.
996 1.207 thorpej */
997 1.207 thorpej
998 1.207 thorpej /*
999 1.207 thorpej * ptimer_free:
1000 1.207 thorpej *
1001 1.207 thorpej * Free the per-process timer at the specified index.
1002 1.207 thorpej */
1003 1.207 thorpej static void
1004 1.207 thorpej ptimer_free(struct ptimers *pts, int index)
1005 1.207 thorpej {
1006 1.207 thorpej struct itimer *it;
1007 1.207 thorpej struct ptimer *pt;
1008 1.207 thorpej
1009 1.207 thorpej KASSERT(itimer_lock_held());
1010 1.207 thorpej
1011 1.207 thorpej it = pts->pts_timers[index];
1012 1.207 thorpej pt = container_of(it, struct ptimer, pt_itimer);
1013 1.207 thorpej pts->pts_timers[index] = NULL;
1014 1.210 thorpej itimer_poison(it);
1015 1.210 thorpej
1016 1.210 thorpej /*
1017 1.210 thorpej * Remove it from the queue to be signalled. Must be done
1018 1.210 thorpej * after itimer is poisoned, because we may have had to wait
1019 1.210 thorpej * for the callout to complete.
1020 1.210 thorpej */
1021 1.210 thorpej if (pt->pt_queued) {
1022 1.210 thorpej TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1023 1.210 thorpej pt->pt_queued = false;
1024 1.210 thorpej }
1025 1.210 thorpej
1026 1.207 thorpej itimer_fini(it); /* releases itimer_lock */
1027 1.207 thorpej kmem_free(pt, sizeof(*pt));
1028 1.207 thorpej }
1029 1.207 thorpej
1030 1.207 thorpej /*
1031 1.207 thorpej * ptimers_alloc:
1032 1.207 thorpej *
1033 1.207 thorpej * Allocate a ptimers for the specified process.
1034 1.207 thorpej */
1035 1.207 thorpej static struct ptimers *
1036 1.207 thorpej ptimers_alloc(struct proc *p)
1037 1.207 thorpej {
1038 1.207 thorpej struct ptimers *pts;
1039 1.207 thorpej int i;
1040 1.207 thorpej
1041 1.207 thorpej pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1042 1.207 thorpej LIST_INIT(&pts->pts_virtual);
1043 1.207 thorpej LIST_INIT(&pts->pts_prof);
1044 1.207 thorpej for (i = 0; i < TIMER_MAX; i++)
1045 1.207 thorpej pts->pts_timers[i] = NULL;
1046 1.207 thorpej itimer_lock();
1047 1.207 thorpej if (p->p_timers == NULL) {
1048 1.207 thorpej p->p_timers = pts;
1049 1.207 thorpej itimer_unlock();
1050 1.207 thorpej return pts;
1051 1.207 thorpej }
1052 1.207 thorpej itimer_unlock();
1053 1.207 thorpej kmem_free(pts, sizeof(*pts));
1054 1.207 thorpej return p->p_timers;
1055 1.207 thorpej }
1056 1.207 thorpej
1057 1.207 thorpej /*
1058 1.207 thorpej * ptimers_free:
1059 1.207 thorpej *
1060 1.207 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1061 1.207 thorpej * then clean up all timers and free all the data structures. If
1062 1.207 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1063 1.207 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1064 1.207 thorpej * structure if none of those remain.
1065 1.207 thorpej *
1066 1.207 thorpej * This function is exported because it is needed in the exec and
1067 1.207 thorpej * exit code paths.
1068 1.207 thorpej */
1069 1.207 thorpej void
1070 1.207 thorpej ptimers_free(struct proc *p, int which)
1071 1.207 thorpej {
1072 1.207 thorpej struct ptimers *pts;
1073 1.207 thorpej struct itimer *itn;
1074 1.207 thorpej struct timespec ts;
1075 1.207 thorpej int i;
1076 1.207 thorpej
1077 1.207 thorpej if (p->p_timers == NULL)
1078 1.207 thorpej return;
1079 1.207 thorpej
1080 1.207 thorpej pts = p->p_timers;
1081 1.207 thorpej itimer_lock();
1082 1.207 thorpej if (which == TIMERS_ALL) {
1083 1.207 thorpej p->p_timers = NULL;
1084 1.207 thorpej i = 0;
1085 1.207 thorpej } else {
1086 1.207 thorpej timespecclear(&ts);
1087 1.207 thorpej for (itn = LIST_FIRST(&pts->pts_virtual);
1088 1.207 thorpej itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1089 1.207 thorpej itn = LIST_NEXT(itn, it_list)) {
1090 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1091 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value, &ts);
1092 1.207 thorpej }
1093 1.207 thorpej LIST_FIRST(&pts->pts_virtual) = NULL;
1094 1.207 thorpej if (itn) {
1095 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1096 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value,
1097 1.207 thorpej &itn->it_time.it_value);
1098 1.207 thorpej LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1099 1.207 thorpej }
1100 1.207 thorpej timespecclear(&ts);
1101 1.207 thorpej for (itn = LIST_FIRST(&pts->pts_prof);
1102 1.207 thorpej itn && itn != pts->pts_timers[ITIMER_PROF];
1103 1.207 thorpej itn = LIST_NEXT(itn, it_list)) {
1104 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_PROF);
1105 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value, &ts);
1106 1.207 thorpej }
1107 1.207 thorpej LIST_FIRST(&pts->pts_prof) = NULL;
1108 1.207 thorpej if (itn) {
1109 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_PROF);
1110 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value,
1111 1.207 thorpej &itn->it_time.it_value);
1112 1.207 thorpej LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1113 1.207 thorpej }
1114 1.207 thorpej i = TIMER_MIN;
1115 1.207 thorpej }
1116 1.207 thorpej for ( ; i < TIMER_MAX; i++) {
1117 1.207 thorpej if (pts->pts_timers[i] != NULL) {
1118 1.207 thorpej /* Free the timer and release the lock. */
1119 1.207 thorpej ptimer_free(pts, i);
1120 1.207 thorpej /* Reacquire the lock for the next one. */
1121 1.207 thorpej itimer_lock();
1122 1.207 thorpej }
1123 1.207 thorpej }
1124 1.207 thorpej if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1125 1.207 thorpej pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1126 1.207 thorpej p->p_timers = NULL;
1127 1.207 thorpej itimer_unlock();
1128 1.207 thorpej kmem_free(pts, sizeof(*pts));
1129 1.207 thorpej } else
1130 1.207 thorpej itimer_unlock();
1131 1.207 thorpej }
1132 1.207 thorpej
1133 1.207 thorpej /*
1134 1.207 thorpej * ptimer_fire:
1135 1.207 thorpej *
1136 1.207 thorpej * Fire a per-process timer.
1137 1.207 thorpej */
1138 1.207 thorpej static void
1139 1.207 thorpej ptimer_fire(struct itimer *it)
1140 1.207 thorpej {
1141 1.207 thorpej struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1142 1.207 thorpej
1143 1.207 thorpej KASSERT(itimer_lock_held());
1144 1.207 thorpej
1145 1.207 thorpej /*
1146 1.207 thorpej * XXX Can overrun, but we don't do signal queueing yet, anyway.
1147 1.207 thorpej * XXX Relying on the clock interrupt is stupid.
1148 1.207 thorpej */
1149 1.207 thorpej if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1150 1.207 thorpej return;
1151 1.207 thorpej }
1152 1.210 thorpej
1153 1.210 thorpej if (!pt->pt_queued) {
1154 1.210 thorpej TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1155 1.210 thorpej pt->pt_queued = true;
1156 1.210 thorpej softint_schedule(ptimer_sih);
1157 1.210 thorpej }
1158 1.207 thorpej }
1159 1.207 thorpej
1160 1.207 thorpej /*
1161 1.207 thorpej * Operations vector for per-process timers (BSD and POSIX).
1162 1.207 thorpej */
1163 1.207 thorpej static const struct itimer_ops ptimer_itimer_ops = {
1164 1.210 thorpej .ito_fire = ptimer_fire,
1165 1.207 thorpej };
1166 1.207 thorpej
1167 1.207 thorpej /*
1168 1.207 thorpej * sys_timer_create:
1169 1.207 thorpej *
1170 1.207 thorpej * System call to create a POSIX timer.
1171 1.207 thorpej */
1172 1.207 thorpej int
1173 1.207 thorpej sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1174 1.207 thorpej register_t *retval)
1175 1.207 thorpej {
1176 1.207 thorpej /* {
1177 1.207 thorpej syscallarg(clockid_t) clock_id;
1178 1.207 thorpej syscallarg(struct sigevent *) evp;
1179 1.207 thorpej syscallarg(timer_t *) timerid;
1180 1.207 thorpej } */
1181 1.207 thorpej
1182 1.207 thorpej return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1183 1.207 thorpej SCARG(uap, evp), copyin, l);
1184 1.207 thorpej }
1185 1.207 thorpej
1186 1.207 thorpej int
1187 1.207 thorpej timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1188 1.207 thorpej copyin_t fetch_event, struct lwp *l)
1189 1.207 thorpej {
1190 1.207 thorpej int error;
1191 1.207 thorpej timer_t timerid;
1192 1.207 thorpej struct itlist *itl;
1193 1.207 thorpej struct ptimers *pts;
1194 1.207 thorpej struct ptimer *pt;
1195 1.207 thorpej struct proc *p;
1196 1.63 thorpej
1197 1.207 thorpej p = l->l_proc;
1198 1.63 thorpej
1199 1.207 thorpej if ((u_int)id > CLOCK_MONOTONIC)
1200 1.207 thorpej return (EINVAL);
1201 1.207 thorpej
1202 1.207 thorpej if ((pts = p->p_timers) == NULL)
1203 1.207 thorpej pts = ptimers_alloc(p);
1204 1.207 thorpej
1205 1.207 thorpej pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1206 1.207 thorpej if (evp != NULL) {
1207 1.207 thorpej if (((error =
1208 1.207 thorpej (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1209 1.207 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1210 1.207 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1211 1.207 thorpej (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1212 1.207 thorpej (pt->pt_ev.sigev_signo <= 0 ||
1213 1.207 thorpej pt->pt_ev.sigev_signo >= NSIG))) {
1214 1.207 thorpej kmem_free(pt, sizeof(*pt));
1215 1.207 thorpej return (error ? error : EINVAL);
1216 1.207 thorpej }
1217 1.207 thorpej }
1218 1.207 thorpej
1219 1.207 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
1220 1.207 thorpej itimer_lock();
1221 1.207 thorpej for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1222 1.207 thorpej if (pts->pts_timers[timerid] == NULL)
1223 1.207 thorpej break;
1224 1.207 thorpej if (timerid == TIMER_MAX) {
1225 1.207 thorpej itimer_unlock();
1226 1.207 thorpej kmem_free(pt, sizeof(*pt));
1227 1.207 thorpej return EAGAIN;
1228 1.207 thorpej }
1229 1.207 thorpej if (evp == NULL) {
1230 1.207 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1231 1.207 thorpej switch (id) {
1232 1.207 thorpej case CLOCK_REALTIME:
1233 1.207 thorpej case CLOCK_MONOTONIC:
1234 1.207 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1235 1.207 thorpej break;
1236 1.207 thorpej case CLOCK_VIRTUAL:
1237 1.207 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1238 1.207 thorpej break;
1239 1.207 thorpej case CLOCK_PROF:
1240 1.207 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1241 1.207 thorpej break;
1242 1.207 thorpej }
1243 1.207 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
1244 1.207 thorpej }
1245 1.207 thorpej
1246 1.207 thorpej switch (id) {
1247 1.207 thorpej case CLOCK_VIRTUAL:
1248 1.208 thorpej itl = &pts->pts_virtual;
1249 1.207 thorpej break;
1250 1.207 thorpej case CLOCK_PROF:
1251 1.208 thorpej itl = &pts->pts_prof;
1252 1.207 thorpej break;
1253 1.207 thorpej default:
1254 1.207 thorpej itl = NULL;
1255 1.207 thorpej }
1256 1.207 thorpej
1257 1.207 thorpej itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1258 1.207 thorpej pt->pt_proc = p;
1259 1.207 thorpej pt->pt_poverruns = 0;
1260 1.207 thorpej pt->pt_entry = timerid;
1261 1.210 thorpej pt->pt_queued = false;
1262 1.207 thorpej
1263 1.207 thorpej pts->pts_timers[timerid] = &pt->pt_itimer;
1264 1.207 thorpej itimer_unlock();
1265 1.207 thorpej
1266 1.207 thorpej return copyout(&timerid, tid, sizeof(timerid));
1267 1.207 thorpej }
1268 1.207 thorpej
1269 1.207 thorpej /*
1270 1.207 thorpej * sys_timer_delete:
1271 1.207 thorpej *
1272 1.207 thorpej * System call to delete a POSIX timer.
1273 1.207 thorpej */
1274 1.207 thorpej int
1275 1.207 thorpej sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1276 1.207 thorpej register_t *retval)
1277 1.207 thorpej {
1278 1.207 thorpej /* {
1279 1.207 thorpej syscallarg(timer_t) timerid;
1280 1.207 thorpej } */
1281 1.207 thorpej struct proc *p = l->l_proc;
1282 1.207 thorpej timer_t timerid;
1283 1.207 thorpej struct ptimers *pts;
1284 1.207 thorpej struct itimer *it, *itn;
1285 1.207 thorpej
1286 1.207 thorpej timerid = SCARG(uap, timerid);
1287 1.207 thorpej pts = p->p_timers;
1288 1.207 thorpej
1289 1.207 thorpej if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1290 1.207 thorpej return (EINVAL);
1291 1.207 thorpej
1292 1.207 thorpej itimer_lock();
1293 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1294 1.207 thorpej itimer_unlock();
1295 1.207 thorpej return (EINVAL);
1296 1.207 thorpej }
1297 1.207 thorpej
1298 1.207 thorpej if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1299 1.207 thorpej if (it->it_active) {
1300 1.207 thorpej itn = LIST_NEXT(it, it_list);
1301 1.207 thorpej LIST_REMOVE(it, it_list);
1302 1.207 thorpej for ( ; itn; itn = LIST_NEXT(itn, it_list))
1303 1.207 thorpej timespecadd(&it->it_time.it_value,
1304 1.207 thorpej &itn->it_time.it_value,
1305 1.207 thorpej &itn->it_time.it_value);
1306 1.207 thorpej it->it_active = false;
1307 1.207 thorpej }
1308 1.207 thorpej }
1309 1.207 thorpej
1310 1.207 thorpej /* Free the timer and release the lock. */
1311 1.207 thorpej ptimer_free(pts, timerid);
1312 1.207 thorpej
1313 1.207 thorpej return (0);
1314 1.207 thorpej }
1315 1.207 thorpej
1316 1.207 thorpej /*
1317 1.207 thorpej * sys___timer_settime50:
1318 1.207 thorpej *
1319 1.207 thorpej * System call to set/arm a POSIX timer.
1320 1.207 thorpej */
1321 1.63 thorpej int
1322 1.156 christos sys___timer_settime50(struct lwp *l,
1323 1.156 christos const struct sys___timer_settime50_args *uap,
1324 1.140 yamt register_t *retval)
1325 1.63 thorpej {
1326 1.135 dsl /* {
1327 1.63 thorpej syscallarg(timer_t) timerid;
1328 1.63 thorpej syscallarg(int) flags;
1329 1.63 thorpej syscallarg(const struct itimerspec *) value;
1330 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
1331 1.135 dsl } */
1332 1.92 cube int error;
1333 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
1334 1.92 cube
1335 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
1336 1.92 cube sizeof(struct itimerspec))) != 0)
1337 1.92 cube return (error);
1338 1.92 cube
1339 1.92 cube if (SCARG(uap, ovalue))
1340 1.92 cube ovp = &ovalue;
1341 1.92 cube
1342 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1343 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
1344 1.92 cube return error;
1345 1.92 cube
1346 1.92 cube if (ovp)
1347 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
1348 1.92 cube sizeof(struct itimerspec));
1349 1.92 cube return 0;
1350 1.92 cube }
1351 1.92 cube
1352 1.92 cube int
1353 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
1354 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
1355 1.92 cube {
1356 1.150 christos struct timespec now;
1357 1.150 christos struct itimerspec val, oval;
1358 1.142 ad struct ptimers *pts;
1359 1.207 thorpej struct itimer *it;
1360 1.160 christos int error;
1361 1.63 thorpej
1362 1.142 ad pts = p->p_timers;
1363 1.63 thorpej
1364 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1365 1.142 ad return EINVAL;
1366 1.150 christos val = *value;
1367 1.160 christos if ((error = itimespecfix(&val.it_value)) != 0 ||
1368 1.160 christos (error = itimespecfix(&val.it_interval)) != 0)
1369 1.160 christos return error;
1370 1.63 thorpej
1371 1.207 thorpej itimer_lock();
1372 1.207 thorpej restart:
1373 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1374 1.207 thorpej itimer_unlock();
1375 1.150 christos return EINVAL;
1376 1.142 ad }
1377 1.142 ad
1378 1.207 thorpej oval = it->it_time;
1379 1.207 thorpej it->it_time = val;
1380 1.63 thorpej
1381 1.67 nathanw /*
1382 1.67 nathanw * If we've been passed a relative time for a realtime timer,
1383 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
1384 1.67 nathanw * timer, convert it to relative and make sure we don't set it
1385 1.67 nathanw * to zero, which would cancel the timer, or let it go
1386 1.67 nathanw * negative, which would confuse the comparison tests.
1387 1.67 nathanw */
1388 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
1389 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1390 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
1391 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME) {
1392 1.168 yamt getnanotime(&now);
1393 1.168 yamt } else { /* CLOCK_MONOTONIC */
1394 1.168 yamt getnanouptime(&now);
1395 1.168 yamt }
1396 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1397 1.207 thorpej &it->it_time.it_value);
1398 1.101 kardel }
1399 1.67 nathanw } else {
1400 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
1401 1.150 christos getnanotime(&now);
1402 1.207 thorpej timespecsub(&it->it_time.it_value, &now,
1403 1.207 thorpej &it->it_time.it_value);
1404 1.207 thorpej if (!timespecisset(&it->it_time.it_value) ||
1405 1.207 thorpej it->it_time.it_value.tv_sec < 0) {
1406 1.207 thorpej it->it_time.it_value.tv_sec = 0;
1407 1.207 thorpej it->it_time.it_value.tv_nsec = 1;
1408 1.67 nathanw }
1409 1.67 nathanw }
1410 1.67 nathanw }
1411 1.67 nathanw }
1412 1.67 nathanw
1413 1.207 thorpej error = itimer_settime(it);
1414 1.198 riastrad if (error == ERESTART) {
1415 1.207 thorpej KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1416 1.198 riastrad goto restart;
1417 1.198 riastrad }
1418 1.198 riastrad KASSERT(error == 0);
1419 1.207 thorpej itimer_unlock();
1420 1.63 thorpej
1421 1.150 christos if (ovalue)
1422 1.150 christos *ovalue = oval;
1423 1.63 thorpej
1424 1.63 thorpej return (0);
1425 1.63 thorpej }
1426 1.63 thorpej
1427 1.207 thorpej /*
1428 1.207 thorpej * sys___timer_gettime50:
1429 1.207 thorpej *
1430 1.207 thorpej * System call to return the time remaining until a POSIX timer fires.
1431 1.207 thorpej */
1432 1.63 thorpej int
1433 1.156 christos sys___timer_gettime50(struct lwp *l,
1434 1.156 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
1435 1.63 thorpej {
1436 1.135 dsl /* {
1437 1.63 thorpej syscallarg(timer_t) timerid;
1438 1.63 thorpej syscallarg(struct itimerspec *) value;
1439 1.135 dsl } */
1440 1.63 thorpej struct itimerspec its;
1441 1.92 cube int error;
1442 1.92 cube
1443 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1444 1.92 cube &its)) != 0)
1445 1.92 cube return error;
1446 1.92 cube
1447 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
1448 1.92 cube }
1449 1.92 cube
1450 1.92 cube int
1451 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1452 1.92 cube {
1453 1.207 thorpej struct itimer *it;
1454 1.142 ad struct ptimers *pts;
1455 1.63 thorpej
1456 1.142 ad pts = p->p_timers;
1457 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1458 1.63 thorpej return (EINVAL);
1459 1.207 thorpej itimer_lock();
1460 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1461 1.207 thorpej itimer_unlock();
1462 1.142 ad return (EINVAL);
1463 1.142 ad }
1464 1.207 thorpej itimer_gettime(it, its);
1465 1.207 thorpej itimer_unlock();
1466 1.63 thorpej
1467 1.92 cube return 0;
1468 1.63 thorpej }
1469 1.63 thorpej
1470 1.63 thorpej /*
1471 1.207 thorpej * sys_timer_getoverrun:
1472 1.207 thorpej *
1473 1.207 thorpej * System call to return the number of times a POSIX timer has
1474 1.207 thorpej * expired while a notification was already pending. The counter
1475 1.207 thorpej * is reset when a timer expires and a notification can be posted.
1476 1.63 thorpej */
1477 1.63 thorpej int
1478 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1479 1.140 yamt register_t *retval)
1480 1.63 thorpej {
1481 1.135 dsl /* {
1482 1.63 thorpej syscallarg(timer_t) timerid;
1483 1.135 dsl } */
1484 1.63 thorpej struct proc *p = l->l_proc;
1485 1.142 ad struct ptimers *pts;
1486 1.63 thorpej int timerid;
1487 1.207 thorpej struct itimer *it;
1488 1.63 thorpej struct ptimer *pt;
1489 1.63 thorpej
1490 1.63 thorpej timerid = SCARG(uap, timerid);
1491 1.63 thorpej
1492 1.142 ad pts = p->p_timers;
1493 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1494 1.142 ad return (EINVAL);
1495 1.207 thorpej itimer_lock();
1496 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1497 1.207 thorpej itimer_unlock();
1498 1.63 thorpej return (EINVAL);
1499 1.142 ad }
1500 1.207 thorpej pt = container_of(it, struct ptimer, pt_itimer);
1501 1.63 thorpej *retval = pt->pt_poverruns;
1502 1.187 christos if (*retval >= DELAYTIMER_MAX)
1503 1.187 christos *retval = DELAYTIMER_MAX;
1504 1.207 thorpej itimer_unlock();
1505 1.63 thorpej
1506 1.63 thorpej return (0);
1507 1.63 thorpej }
1508 1.63 thorpej
1509 1.63 thorpej /*
1510 1.207 thorpej * sys___getitimer50:
1511 1.207 thorpej *
1512 1.207 thorpej * System call to get the time remaining before a BSD timer fires.
1513 1.63 thorpej */
1514 1.63 thorpej int
1515 1.156 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1516 1.140 yamt register_t *retval)
1517 1.63 thorpej {
1518 1.135 dsl /* {
1519 1.63 thorpej syscallarg(int) which;
1520 1.63 thorpej syscallarg(struct itimerval *) itv;
1521 1.135 dsl } */
1522 1.63 thorpej struct proc *p = l->l_proc;
1523 1.63 thorpej struct itimerval aitv;
1524 1.91 cube int error;
1525 1.91 cube
1526 1.191 maxv memset(&aitv, 0, sizeof(aitv));
1527 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1528 1.91 cube if (error)
1529 1.91 cube return error;
1530 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1531 1.91 cube }
1532 1.63 thorpej
1533 1.91 cube int
1534 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1535 1.91 cube {
1536 1.142 ad struct ptimers *pts;
1537 1.207 thorpej struct itimer *it;
1538 1.150 christos struct itimerspec its;
1539 1.63 thorpej
1540 1.170 christos if ((u_int)which > ITIMER_MONOTONIC)
1541 1.63 thorpej return (EINVAL);
1542 1.63 thorpej
1543 1.207 thorpej itimer_lock();
1544 1.142 ad pts = p->p_timers;
1545 1.207 thorpej if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1546 1.91 cube timerclear(&itvp->it_value);
1547 1.91 cube timerclear(&itvp->it_interval);
1548 1.150 christos } else {
1549 1.207 thorpej itimer_gettime(it, &its);
1550 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1551 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1552 1.150 christos }
1553 1.207 thorpej itimer_unlock();
1554 1.63 thorpej
1555 1.91 cube return 0;
1556 1.1 cgd }
1557 1.1 cgd
1558 1.207 thorpej /*
1559 1.207 thorpej * sys___setitimer50:
1560 1.207 thorpej *
1561 1.207 thorpej * System call to set/arm a BSD timer.
1562 1.207 thorpej */
1563 1.3 andrew int
1564 1.156 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1565 1.140 yamt register_t *retval)
1566 1.15 thorpej {
1567 1.135 dsl /* {
1568 1.30 mycroft syscallarg(int) which;
1569 1.24 cgd syscallarg(const struct itimerval *) itv;
1570 1.11 cgd syscallarg(struct itimerval *) oitv;
1571 1.135 dsl } */
1572 1.63 thorpej struct proc *p = l->l_proc;
1573 1.30 mycroft int which = SCARG(uap, which);
1574 1.156 christos struct sys___getitimer50_args getargs;
1575 1.91 cube const struct itimerval *itvp;
1576 1.1 cgd struct itimerval aitv;
1577 1.91 cube int error;
1578 1.1 cgd
1579 1.11 cgd itvp = SCARG(uap, itv);
1580 1.63 thorpej if (itvp &&
1581 1.174 dholland (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1582 1.1 cgd return (error);
1583 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1584 1.30 mycroft SCARG(&getargs, which) = which;
1585 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1586 1.156 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1587 1.21 cgd return (error);
1588 1.21 cgd }
1589 1.1 cgd if (itvp == 0)
1590 1.1 cgd return (0);
1591 1.91 cube
1592 1.91 cube return dosetitimer(p, which, &aitv);
1593 1.91 cube }
1594 1.91 cube
1595 1.91 cube int
1596 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1597 1.91 cube {
1598 1.150 christos struct timespec now;
1599 1.142 ad struct ptimers *pts;
1600 1.207 thorpej struct ptimer *spare;
1601 1.207 thorpej struct itimer *it;
1602 1.207 thorpej struct itlist *itl;
1603 1.198 riastrad int error;
1604 1.91 cube
1605 1.211 simonb if ((u_int)which > ITIMER_MONOTONIC)
1606 1.211 simonb return (EINVAL);
1607 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1608 1.1 cgd return (EINVAL);
1609 1.63 thorpej
1610 1.63 thorpej /*
1611 1.63 thorpej * Don't bother allocating data structures if the process just
1612 1.63 thorpej * wants to clear the timer.
1613 1.63 thorpej */
1614 1.142 ad spare = NULL;
1615 1.142 ad pts = p->p_timers;
1616 1.142 ad retry:
1617 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1618 1.142 ad pts->pts_timers[which] == NULL))
1619 1.63 thorpej return (0);
1620 1.142 ad if (pts == NULL)
1621 1.207 thorpej pts = ptimers_alloc(p);
1622 1.207 thorpej itimer_lock();
1623 1.207 thorpej restart:
1624 1.207 thorpej it = pts->pts_timers[which];
1625 1.207 thorpej if (it == NULL) {
1626 1.207 thorpej struct ptimer *pt;
1627 1.207 thorpej
1628 1.142 ad if (spare == NULL) {
1629 1.207 thorpej itimer_unlock();
1630 1.207 thorpej spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1631 1.142 ad goto retry;
1632 1.142 ad }
1633 1.142 ad pt = spare;
1634 1.142 ad spare = NULL;
1635 1.207 thorpej
1636 1.207 thorpej it = &pt->pt_itimer;
1637 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1638 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1639 1.149 christos
1640 1.63 thorpej switch (which) {
1641 1.63 thorpej case ITIMER_REAL:
1642 1.170 christos case ITIMER_MONOTONIC:
1643 1.207 thorpej itl = NULL;
1644 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1645 1.63 thorpej break;
1646 1.63 thorpej case ITIMER_VIRTUAL:
1647 1.208 thorpej itl = &pts->pts_virtual;
1648 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1649 1.63 thorpej break;
1650 1.63 thorpej case ITIMER_PROF:
1651 1.208 thorpej itl = &pts->pts_prof;
1652 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1653 1.63 thorpej break;
1654 1.209 christos default:
1655 1.209 christos panic("%s: can't happen %d", __func__, which);
1656 1.1 cgd }
1657 1.207 thorpej itimer_init(it, &ptimer_itimer_ops, which, itl);
1658 1.207 thorpej pt->pt_proc = p;
1659 1.207 thorpej pt->pt_entry = which;
1660 1.207 thorpej
1661 1.207 thorpej pts->pts_timers[which] = it;
1662 1.142 ad }
1663 1.63 thorpej
1664 1.207 thorpej TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1665 1.207 thorpej TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1666 1.150 christos
1667 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
1668 1.67 nathanw /* Convert to absolute time */
1669 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1670 1.170 christos switch (which) {
1671 1.170 christos case ITIMER_REAL:
1672 1.170 christos getnanotime(&now);
1673 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1674 1.207 thorpej &it->it_time.it_value);
1675 1.170 christos break;
1676 1.170 christos case ITIMER_MONOTONIC:
1677 1.170 christos getnanouptime(&now);
1678 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1679 1.207 thorpej &it->it_time.it_value);
1680 1.170 christos break;
1681 1.170 christos default:
1682 1.170 christos break;
1683 1.170 christos }
1684 1.67 nathanw }
1685 1.207 thorpej error = itimer_settime(it);
1686 1.198 riastrad if (error == ERESTART) {
1687 1.207 thorpej KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1688 1.198 riastrad goto restart;
1689 1.198 riastrad }
1690 1.198 riastrad KASSERT(error == 0);
1691 1.207 thorpej itimer_unlock();
1692 1.142 ad if (spare != NULL)
1693 1.207 thorpej kmem_free(spare, sizeof(*spare));
1694 1.63 thorpej
1695 1.1 cgd return (0);
1696 1.1 cgd }
1697 1.1 cgd
1698 1.1 cgd /*
1699 1.207 thorpej * ptimer_tick:
1700 1.207 thorpej *
1701 1.207 thorpej * Called from hardclock() to decrement per-process virtual timers.
1702 1.1 cgd */
1703 1.3 andrew void
1704 1.207 thorpej ptimer_tick(lwp_t *l, bool user)
1705 1.6 cgd {
1706 1.63 thorpej struct ptimers *pts;
1707 1.207 thorpej struct itimer *it;
1708 1.142 ad proc_t *p;
1709 1.142 ad
1710 1.142 ad p = l->l_proc;
1711 1.142 ad if (p->p_timers == NULL)
1712 1.142 ad return;
1713 1.142 ad
1714 1.207 thorpej itimer_lock();
1715 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1716 1.63 thorpej /*
1717 1.142 ad * Run current process's virtual and profile time, as needed.
1718 1.63 thorpej */
1719 1.207 thorpej if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1720 1.207 thorpej if (itimer_decr(it, tick * 1000))
1721 1.207 thorpej (*it->it_ops->ito_fire)(it);
1722 1.207 thorpej if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1723 1.207 thorpej if (itimer_decr(it, tick * 1000))
1724 1.207 thorpej (*it->it_ops->ito_fire)(it);
1725 1.142 ad }
1726 1.207 thorpej itimer_unlock();
1727 1.142 ad }
1728 1.142 ad
1729 1.207 thorpej /*
1730 1.207 thorpej * ptimer_intr:
1731 1.207 thorpej *
1732 1.207 thorpej * Software interrupt handler for processing per-process
1733 1.207 thorpej * timer expiration.
1734 1.207 thorpej */
1735 1.142 ad static void
1736 1.207 thorpej ptimer_intr(void *cookie)
1737 1.142 ad {
1738 1.142 ad ksiginfo_t ksi;
1739 1.207 thorpej struct itimer *it;
1740 1.142 ad struct ptimer *pt;
1741 1.142 ad proc_t *p;
1742 1.142 ad
1743 1.205 ad mutex_enter(&proc_lock);
1744 1.207 thorpej itimer_lock();
1745 1.210 thorpej while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1746 1.210 thorpej it = &pt->pt_itimer;
1747 1.142 ad
1748 1.210 thorpej TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1749 1.210 thorpej KASSERT(pt->pt_queued);
1750 1.210 thorpej pt->pt_queued = false;
1751 1.207 thorpej
1752 1.207 thorpej p = pt->pt_proc;
1753 1.207 thorpej if (p->p_timers == NULL) {
1754 1.154 wrstuden /* Process is dying. */
1755 1.142 ad continue;
1756 1.154 wrstuden }
1757 1.172 rmind if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1758 1.142 ad continue;
1759 1.142 ad }
1760 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1761 1.207 thorpej it->it_overruns++;
1762 1.142 ad continue;
1763 1.64 nathanw }
1764 1.142 ad
1765 1.142 ad KSI_INIT(&ksi);
1766 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1767 1.142 ad ksi.ksi_code = SI_TIMER;
1768 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1769 1.207 thorpej pt->pt_poverruns = it->it_overruns;
1770 1.207 thorpej it->it_overruns = 0;
1771 1.207 thorpej itimer_unlock();
1772 1.142 ad kpsignal(p, &ksi, NULL);
1773 1.207 thorpej itimer_lock();
1774 1.63 thorpej }
1775 1.207 thorpej itimer_unlock();
1776 1.205 ad mutex_exit(&proc_lock);
1777 1.63 thorpej }
1778