kern_time.c revision 1.218 1 1.218 riastrad /* $NetBSD: kern_time.c,v 1.218 2022/10/26 23:23:52 riastradh Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.207 thorpej * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 1.207 thorpej * The NetBSD Foundation, Inc.
6 1.42 cgd * All rights reserved.
7 1.42 cgd *
8 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
9 1.207 thorpej * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 1.42 cgd *
11 1.42 cgd * Redistribution and use in source and binary forms, with or without
12 1.42 cgd * modification, are permitted provided that the following conditions
13 1.42 cgd * are met:
14 1.42 cgd * 1. Redistributions of source code must retain the above copyright
15 1.42 cgd * notice, this list of conditions and the following disclaimer.
16 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
17 1.42 cgd * notice, this list of conditions and the following disclaimer in the
18 1.42 cgd * documentation and/or other materials provided with the distribution.
19 1.42 cgd *
20 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
31 1.42 cgd */
32 1.9 cgd
33 1.1 cgd /*
34 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
35 1.8 cgd * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.72 agc * 3. Neither the name of the University nor the names of its contributors
46 1.1 cgd * may be used to endorse or promote products derived from this software
47 1.1 cgd * without specific prior written permission.
48 1.1 cgd *
49 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 cgd * SUCH DAMAGE.
60 1.1 cgd *
61 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 1.1 cgd */
63 1.58 lukem
64 1.58 lukem #include <sys/cdefs.h>
65 1.218 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.218 2022/10/26 23:23:52 riastradh Exp $");
66 1.1 cgd
67 1.5 mycroft #include <sys/param.h>
68 1.5 mycroft #include <sys/resourcevar.h>
69 1.5 mycroft #include <sys/kernel.h>
70 1.8 cgd #include <sys/systm.h>
71 1.5 mycroft #include <sys/proc.h>
72 1.8 cgd #include <sys/vnode.h>
73 1.17 christos #include <sys/signalvar.h>
74 1.25 perry #include <sys/syslog.h>
75 1.101 kardel #include <sys/timetc.h>
76 1.218 riastrad #include <sys/timevar.h>
77 1.143 ad #include <sys/timex.h>
78 1.99 elad #include <sys/kauth.h>
79 1.11 cgd #include <sys/mount.h>
80 1.11 cgd #include <sys/syscallargs.h>
81 1.143 ad #include <sys/cpu.h>
82 1.19 christos
83 1.210 thorpej kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */
84 1.207 thorpej static struct itlist itimer_realtime_changed_notify;
85 1.142 ad
86 1.207 thorpej static void ptimer_intr(void *);
87 1.207 thorpej static void *ptimer_sih __read_mostly;
88 1.210 thorpej static TAILQ_HEAD(, ptimer) ptimer_queue;
89 1.97 simonb
90 1.168 yamt #define CLOCK_VIRTUAL_P(clockid) \
91 1.168 yamt ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
92 1.168 yamt
93 1.168 yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
94 1.168 yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
95 1.168 yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
96 1.170 christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
97 1.168 yamt
98 1.187 christos #define DELAYTIMER_MAX 32
99 1.186 christos
100 1.131 ad /*
101 1.131 ad * Initialize timekeeping.
102 1.131 ad */
103 1.131 ad void
104 1.131 ad time_init(void)
105 1.131 ad {
106 1.131 ad
107 1.207 thorpej mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
108 1.207 thorpej LIST_INIT(&itimer_realtime_changed_notify);
109 1.207 thorpej
110 1.207 thorpej TAILQ_INIT(&ptimer_queue);
111 1.207 thorpej ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
112 1.207 thorpej ptimer_intr, NULL);
113 1.207 thorpej }
114 1.207 thorpej
115 1.207 thorpej /*
116 1.207 thorpej * Check if the time will wrap if set to ts.
117 1.207 thorpej *
118 1.207 thorpej * ts - timespec describing the new time
119 1.207 thorpej * delta - the delta between the current time and ts
120 1.207 thorpej */
121 1.207 thorpej bool
122 1.207 thorpej time_wraps(struct timespec *ts, struct timespec *delta)
123 1.207 thorpej {
124 1.207 thorpej
125 1.207 thorpej /*
126 1.207 thorpej * Don't allow the time to be set forward so far it
127 1.207 thorpej * will wrap and become negative, thus allowing an
128 1.207 thorpej * attacker to bypass the next check below. The
129 1.207 thorpej * cutoff is 1 year before rollover occurs, so even
130 1.207 thorpej * if the attacker uses adjtime(2) to move the time
131 1.207 thorpej * past the cutoff, it will take a very long time
132 1.207 thorpej * to get to the wrap point.
133 1.207 thorpej */
134 1.207 thorpej if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
135 1.207 thorpej (delta->tv_sec < 0 || delta->tv_nsec < 0))
136 1.207 thorpej return true;
137 1.207 thorpej
138 1.207 thorpej return false;
139 1.207 thorpej }
140 1.207 thorpej
141 1.207 thorpej /*
142 1.207 thorpej * itimer_lock:
143 1.207 thorpej *
144 1.207 thorpej * Acquire the interval timer data lock.
145 1.207 thorpej */
146 1.207 thorpej void
147 1.207 thorpej itimer_lock(void)
148 1.207 thorpej {
149 1.207 thorpej mutex_spin_enter(&itimer_mutex);
150 1.131 ad }
151 1.131 ad
152 1.207 thorpej /*
153 1.207 thorpej * itimer_unlock:
154 1.207 thorpej *
155 1.207 thorpej * Release the interval timer data lock.
156 1.207 thorpej */
157 1.142 ad void
158 1.207 thorpej itimer_unlock(void)
159 1.142 ad {
160 1.207 thorpej mutex_spin_exit(&itimer_mutex);
161 1.207 thorpej }
162 1.142 ad
163 1.207 thorpej /*
164 1.207 thorpej * itimer_lock_held:
165 1.207 thorpej *
166 1.207 thorpej * Check that the interval timer lock is held for diagnostic
167 1.207 thorpej * assertions.
168 1.207 thorpej */
169 1.210 thorpej inline bool __diagused
170 1.207 thorpej itimer_lock_held(void)
171 1.207 thorpej {
172 1.207 thorpej return mutex_owned(&itimer_mutex);
173 1.142 ad }
174 1.142 ad
175 1.207 thorpej /*
176 1.207 thorpej * Time of day and interval timer support.
177 1.1 cgd *
178 1.1 cgd * These routines provide the kernel entry points to get and set
179 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
180 1.1 cgd * here provide support for adding and subtracting timeval structures
181 1.1 cgd * and decrementing interval timers, optionally reloading the interval
182 1.1 cgd * timers when they expire.
183 1.1 cgd */
184 1.1 cgd
185 1.22 jtc /* This function is used by clock_settime and settimeofday */
186 1.132 elad static int
187 1.156 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
188 1.22 jtc {
189 1.156 christos struct timespec delta, now;
190 1.22 jtc
191 1.206 nia /*
192 1.206 nia * The time being set to an unreasonable value will cause
193 1.206 nia * unreasonable system behaviour.
194 1.206 nia */
195 1.206 nia if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
196 1.217 riastrad return EINVAL;
197 1.206 nia
198 1.156 christos nanotime(&now);
199 1.156 christos timespecsub(ts, &now, &delta);
200 1.132 elad
201 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
202 1.156 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
203 1.156 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
204 1.217 riastrad return EPERM;
205 1.55 tron }
206 1.132 elad
207 1.29 tls #ifdef notyet
208 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
209 1.217 riastrad return EPERM;
210 1.55 tron }
211 1.29 tls #endif
212 1.103 kardel
213 1.156 christos tc_setclock(ts);
214 1.103 kardel
215 1.22 jtc resettodr();
216 1.129 ad
217 1.207 thorpej /*
218 1.207 thorpej * Notify pending CLOCK_REALTIME timers about the real time change.
219 1.207 thorpej * There may be inactive timers on this list, but this happens
220 1.207 thorpej * comparatively less often than timers firing, and so it's better
221 1.207 thorpej * to put the extra checks here than to complicate the other code
222 1.207 thorpej * path.
223 1.207 thorpej */
224 1.207 thorpej struct itimer *it;
225 1.207 thorpej itimer_lock();
226 1.207 thorpej LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
227 1.207 thorpej KASSERT(it->it_ops->ito_realtime_changed != NULL);
228 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
229 1.207 thorpej (*it->it_ops->ito_realtime_changed)(it);
230 1.207 thorpej }
231 1.207 thorpej }
232 1.207 thorpej itimer_unlock();
233 1.207 thorpej
234 1.217 riastrad return 0;
235 1.22 jtc }
236 1.22 jtc
237 1.132 elad int
238 1.132 elad settime(struct proc *p, struct timespec *ts)
239 1.132 elad {
240 1.217 riastrad return settime1(p, ts, true);
241 1.132 elad }
242 1.132 elad
243 1.22 jtc /* ARGSUSED */
244 1.22 jtc int
245 1.156 christos sys___clock_gettime50(struct lwp *l,
246 1.156 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
247 1.22 jtc {
248 1.135 dsl /* {
249 1.22 jtc syscallarg(clockid_t) clock_id;
250 1.23 cgd syscallarg(struct timespec *) tp;
251 1.135 dsl } */
252 1.165 njoly int error;
253 1.22 jtc struct timespec ats;
254 1.22 jtc
255 1.165 njoly error = clock_gettime1(SCARG(uap, clock_id), &ats);
256 1.165 njoly if (error != 0)
257 1.165 njoly return error;
258 1.165 njoly
259 1.165 njoly return copyout(&ats, SCARG(uap, tp), sizeof(ats));
260 1.165 njoly }
261 1.165 njoly
262 1.22 jtc /* ARGSUSED */
263 1.22 jtc int
264 1.156 christos sys___clock_settime50(struct lwp *l,
265 1.156 christos const struct sys___clock_settime50_args *uap, register_t *retval)
266 1.22 jtc {
267 1.135 dsl /* {
268 1.22 jtc syscallarg(clockid_t) clock_id;
269 1.23 cgd syscallarg(const struct timespec *) tp;
270 1.135 dsl } */
271 1.156 christos int error;
272 1.156 christos struct timespec ats;
273 1.22 jtc
274 1.156 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
275 1.156 christos return error;
276 1.156 christos
277 1.156 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
278 1.56 manu }
279 1.56 manu
280 1.56 manu
281 1.56 manu int
282 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
283 1.132 elad bool check_kauth)
284 1.56 manu {
285 1.56 manu int error;
286 1.56 manu
287 1.201 kamil if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
288 1.201 kamil return EINVAL;
289 1.201 kamil
290 1.61 simonb switch (clock_id) {
291 1.61 simonb case CLOCK_REALTIME:
292 1.156 christos if ((error = settime1(p, tp, check_kauth)) != 0)
293 1.217 riastrad return error;
294 1.61 simonb break;
295 1.61 simonb case CLOCK_MONOTONIC:
296 1.217 riastrad return EINVAL; /* read-only clock */
297 1.61 simonb default:
298 1.217 riastrad return EINVAL;
299 1.61 simonb }
300 1.22 jtc
301 1.22 jtc return 0;
302 1.22 jtc }
303 1.22 jtc
304 1.22 jtc int
305 1.156 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
306 1.140 yamt register_t *retval)
307 1.22 jtc {
308 1.135 dsl /* {
309 1.22 jtc syscallarg(clockid_t) clock_id;
310 1.23 cgd syscallarg(struct timespec *) tp;
311 1.135 dsl } */
312 1.22 jtc struct timespec ts;
313 1.180 maxv int error;
314 1.22 jtc
315 1.164 njoly if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
316 1.164 njoly return error;
317 1.164 njoly
318 1.164 njoly if (SCARG(uap, tp))
319 1.164 njoly error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
320 1.164 njoly
321 1.164 njoly return error;
322 1.164 njoly }
323 1.164 njoly
324 1.164 njoly int
325 1.164 njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
326 1.164 njoly {
327 1.164 njoly
328 1.61 simonb switch (clock_id) {
329 1.61 simonb case CLOCK_REALTIME:
330 1.61 simonb case CLOCK_MONOTONIC:
331 1.164 njoly ts->tv_sec = 0;
332 1.102 kardel if (tc_getfrequency() > 1000000000)
333 1.164 njoly ts->tv_nsec = 1;
334 1.102 kardel else
335 1.164 njoly ts->tv_nsec = 1000000000 / tc_getfrequency();
336 1.61 simonb break;
337 1.61 simonb default:
338 1.164 njoly return EINVAL;
339 1.61 simonb }
340 1.22 jtc
341 1.164 njoly return 0;
342 1.22 jtc }
343 1.22 jtc
344 1.27 jtc /* ARGSUSED */
345 1.27 jtc int
346 1.156 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
347 1.140 yamt register_t *retval)
348 1.27 jtc {
349 1.135 dsl /* {
350 1.101 kardel syscallarg(struct timespec *) rqtp;
351 1.101 kardel syscallarg(struct timespec *) rmtp;
352 1.135 dsl } */
353 1.101 kardel struct timespec rmt, rqt;
354 1.120 dsl int error, error1;
355 1.101 kardel
356 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
357 1.101 kardel if (error)
358 1.217 riastrad return error;
359 1.101 kardel
360 1.175 christos error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
361 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
362 1.175 christos if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
363 1.175 christos return error;
364 1.175 christos
365 1.175 christos error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
366 1.175 christos return error1 ? error1 : error;
367 1.175 christos }
368 1.175 christos
369 1.175 christos /* ARGSUSED */
370 1.175 christos int
371 1.175 christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
372 1.175 christos register_t *retval)
373 1.175 christos {
374 1.175 christos /* {
375 1.175 christos syscallarg(clockid_t) clock_id;
376 1.175 christos syscallarg(int) flags;
377 1.175 christos syscallarg(struct timespec *) rqtp;
378 1.175 christos syscallarg(struct timespec *) rmtp;
379 1.175 christos } */
380 1.175 christos struct timespec rmt, rqt;
381 1.175 christos int error, error1;
382 1.175 christos
383 1.175 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
384 1.175 christos if (error)
385 1.181 christos goto out;
386 1.175 christos
387 1.175 christos error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
388 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
389 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
390 1.181 christos goto out;
391 1.120 dsl
392 1.189 njoly if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
393 1.189 njoly (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
394 1.181 christos error = error1;
395 1.181 christos out:
396 1.181 christos *retval = error;
397 1.181 christos return 0;
398 1.120 dsl }
399 1.120 dsl
400 1.120 dsl int
401 1.175 christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
402 1.175 christos struct timespec *rmt)
403 1.120 dsl {
404 1.141 yamt struct timespec rmtstart;
405 1.120 dsl int error, timo;
406 1.120 dsl
407 1.184 uwe if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
408 1.184 uwe if (error == ETIMEDOUT) {
409 1.184 uwe error = 0;
410 1.184 uwe if (rmt != NULL)
411 1.184 uwe rmt->tv_sec = rmt->tv_nsec = 0;
412 1.184 uwe }
413 1.184 uwe return error;
414 1.184 uwe }
415 1.101 kardel
416 1.101 kardel /*
417 1.175 christos * Avoid inadvertently sleeping forever
418 1.101 kardel */
419 1.101 kardel if (timo == 0)
420 1.101 kardel timo = 1;
421 1.141 yamt again:
422 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
423 1.197 kre if (error == EWOULDBLOCK)
424 1.197 kre error = 0;
425 1.141 yamt if (rmt != NULL || error == 0) {
426 1.141 yamt struct timespec rmtend;
427 1.141 yamt struct timespec t0;
428 1.141 yamt struct timespec *t;
429 1.204 maxv int err;
430 1.204 maxv
431 1.204 maxv err = clock_gettime1(clock_id, &rmtend);
432 1.204 maxv if (err != 0)
433 1.204 maxv return err;
434 1.101 kardel
435 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
436 1.179 christos if (flags & TIMER_ABSTIME) {
437 1.179 christos timespecsub(rqt, &rmtend, t);
438 1.179 christos } else {
439 1.213 riastrad if (timespeccmp(&rmtend, &rmtstart, <))
440 1.213 riastrad timespecclear(t); /* clock wound back */
441 1.213 riastrad else
442 1.213 riastrad timespecsub(&rmtend, &rmtstart, t);
443 1.213 riastrad if (timespeccmp(rqt, t, <))
444 1.213 riastrad timespecclear(t);
445 1.213 riastrad else
446 1.213 riastrad timespecsub(rqt, t, t);
447 1.179 christos }
448 1.141 yamt if (t->tv_sec < 0)
449 1.141 yamt timespecclear(t);
450 1.141 yamt if (error == 0) {
451 1.141 yamt timo = tstohz(t);
452 1.141 yamt if (timo > 0)
453 1.141 yamt goto again;
454 1.141 yamt }
455 1.141 yamt }
456 1.104 kardel
457 1.101 kardel if (error == ERESTART)
458 1.101 kardel error = EINTR;
459 1.101 kardel
460 1.101 kardel return error;
461 1.27 jtc }
462 1.22 jtc
463 1.186 christos int
464 1.186 christos sys_clock_getcpuclockid2(struct lwp *l,
465 1.186 christos const struct sys_clock_getcpuclockid2_args *uap,
466 1.186 christos register_t *retval)
467 1.186 christos {
468 1.186 christos /* {
469 1.186 christos syscallarg(idtype_t idtype;
470 1.186 christos syscallarg(id_t id);
471 1.186 christos syscallarg(clockid_t *)clock_id;
472 1.186 christos } */
473 1.186 christos pid_t pid;
474 1.186 christos lwpid_t lid;
475 1.186 christos clockid_t clock_id;
476 1.186 christos id_t id = SCARG(uap, id);
477 1.186 christos
478 1.186 christos switch (SCARG(uap, idtype)) {
479 1.186 christos case P_PID:
480 1.188 msaitoh pid = id == 0 ? l->l_proc->p_pid : id;
481 1.186 christos clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
482 1.186 christos break;
483 1.186 christos case P_LWPID:
484 1.186 christos lid = id == 0 ? l->l_lid : id;
485 1.186 christos clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
486 1.186 christos break;
487 1.186 christos default:
488 1.186 christos return EINVAL;
489 1.186 christos }
490 1.186 christos return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
491 1.186 christos }
492 1.186 christos
493 1.1 cgd /* ARGSUSED */
494 1.3 andrew int
495 1.156 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
496 1.140 yamt register_t *retval)
497 1.15 thorpej {
498 1.135 dsl /* {
499 1.11 cgd syscallarg(struct timeval *) tp;
500 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
501 1.135 dsl } */
502 1.1 cgd struct timeval atv;
503 1.1 cgd int error = 0;
504 1.25 perry struct timezone tzfake;
505 1.1 cgd
506 1.11 cgd if (SCARG(uap, tp)) {
507 1.190 maxv memset(&atv, 0, sizeof(atv));
508 1.1 cgd microtime(&atv);
509 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
510 1.17 christos if (error)
511 1.217 riastrad return error;
512 1.1 cgd }
513 1.25 perry if (SCARG(uap, tzp)) {
514 1.25 perry /*
515 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
516 1.25 perry * fake up a timezone struct and return it if demanded.
517 1.25 perry */
518 1.25 perry tzfake.tz_minuteswest = 0;
519 1.25 perry tzfake.tz_dsttime = 0;
520 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
521 1.25 perry }
522 1.217 riastrad return error;
523 1.1 cgd }
524 1.1 cgd
525 1.1 cgd /* ARGSUSED */
526 1.3 andrew int
527 1.156 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
528 1.140 yamt register_t *retval)
529 1.15 thorpej {
530 1.135 dsl /* {
531 1.24 cgd syscallarg(const struct timeval *) tv;
532 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
533 1.135 dsl } */
534 1.60 manu
535 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
536 1.60 manu }
537 1.60 manu
538 1.60 manu int
539 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
540 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
541 1.60 manu {
542 1.22 jtc struct timeval atv;
543 1.98 christos struct timespec ts;
544 1.22 jtc int error;
545 1.1 cgd
546 1.8 cgd /* Verify all parameters before changing time. */
547 1.119 dsl
548 1.25 perry /*
549 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
550 1.25 perry * obsolete program would try to set it, so we log a warning.
551 1.25 perry */
552 1.98 christos if (utzp)
553 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
554 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
555 1.98 christos
556 1.217 riastrad if (utv == NULL)
557 1.98 christos return 0;
558 1.98 christos
559 1.119 dsl if (userspace) {
560 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
561 1.119 dsl return error;
562 1.119 dsl utv = &atv;
563 1.119 dsl }
564 1.119 dsl
565 1.200 kamil if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
566 1.200 kamil return EINVAL;
567 1.200 kamil
568 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
569 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
570 1.1 cgd }
571 1.1 cgd
572 1.68 dsl int time_adjusted; /* set if an adjustment is made */
573 1.1 cgd
574 1.1 cgd /* ARGSUSED */
575 1.3 andrew int
576 1.156 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
577 1.140 yamt register_t *retval)
578 1.15 thorpej {
579 1.135 dsl /* {
580 1.24 cgd syscallarg(const struct timeval *) delta;
581 1.11 cgd syscallarg(struct timeval *) olddelta;
582 1.135 dsl } */
583 1.180 maxv int error;
584 1.156 christos struct timeval atv, oldatv;
585 1.1 cgd
586 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
587 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
588 1.156 christos return error;
589 1.17 christos
590 1.156 christos if (SCARG(uap, delta)) {
591 1.156 christos error = copyin(SCARG(uap, delta), &atv,
592 1.156 christos sizeof(*SCARG(uap, delta)));
593 1.156 christos if (error)
594 1.217 riastrad return error;
595 1.156 christos }
596 1.156 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
597 1.156 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
598 1.156 christos if (SCARG(uap, olddelta))
599 1.156 christos error = copyout(&oldatv, SCARG(uap, olddelta),
600 1.156 christos sizeof(*SCARG(uap, olddelta)));
601 1.156 christos return error;
602 1.56 manu }
603 1.56 manu
604 1.156 christos void
605 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
606 1.56 manu {
607 1.101 kardel
608 1.101 kardel if (olddelta) {
609 1.194 maxv memset(olddelta, 0, sizeof(*olddelta));
610 1.143 ad mutex_spin_enter(&timecounter_lock);
611 1.156 christos olddelta->tv_sec = time_adjtime / 1000000;
612 1.156 christos olddelta->tv_usec = time_adjtime % 1000000;
613 1.156 christos if (olddelta->tv_usec < 0) {
614 1.156 christos olddelta->tv_usec += 1000000;
615 1.156 christos olddelta->tv_sec--;
616 1.101 kardel }
617 1.157 christos mutex_spin_exit(&timecounter_lock);
618 1.101 kardel }
619 1.212 riastrad
620 1.101 kardel if (delta) {
621 1.156 christos mutex_spin_enter(&timecounter_lock);
622 1.212 riastrad /*
623 1.212 riastrad * XXX This should maybe just report failure to
624 1.212 riastrad * userland for nonsense deltas.
625 1.212 riastrad */
626 1.212 riastrad if (delta->tv_sec > INT64_MAX/1000000 - 1) {
627 1.212 riastrad time_adjtime = INT64_MAX;
628 1.214 riastrad } else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
629 1.214 riastrad time_adjtime = INT64_MIN;
630 1.212 riastrad } else {
631 1.214 riastrad time_adjtime = delta->tv_sec * 1000000
632 1.214 riastrad + MAX(-999999, MIN(999999, delta->tv_usec));
633 1.212 riastrad }
634 1.101 kardel
635 1.143 ad if (time_adjtime) {
636 1.101 kardel /* We need to save the system time during shutdown */
637 1.101 kardel time_adjusted |= 1;
638 1.143 ad }
639 1.143 ad mutex_spin_exit(&timecounter_lock);
640 1.101 kardel }
641 1.1 cgd }
642 1.1 cgd
643 1.1 cgd /*
644 1.207 thorpej * Interval timer support.
645 1.207 thorpej *
646 1.207 thorpej * The itimer_*() routines provide generic support for interval timers,
647 1.207 thorpej * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
648 1.207 thorpej * CLOCK_PROF).
649 1.207 thorpej *
650 1.207 thorpej * Real timers keep their deadline as an absolute time, and are fired
651 1.207 thorpej * by a callout. Virtual timers are kept as a linked-list of deltas,
652 1.207 thorpej * and are processed by hardclock().
653 1.1 cgd *
654 1.207 thorpej * Because the real time timer callout may be delayed in real time due
655 1.207 thorpej * to interrupt processing on the system, it is possible for the real
656 1.207 thorpej * time timeout routine (itimer_callout()) run past after its deadline.
657 1.207 thorpej * It does not suffice, therefore, to reload the real timer .it_value
658 1.207 thorpej * from the timer's .it_interval. Rather, we compute the next deadline
659 1.207 thorpej * in absolute time based on the current time and the .it_interval value,
660 1.207 thorpej * and report any overruns.
661 1.1 cgd *
662 1.207 thorpej * Note that while the virtual timers are supported in a generic fashion
663 1.207 thorpej * here, they only (currently) make sense as per-process timers, and thus
664 1.207 thorpej * only really work for that case.
665 1.207 thorpej */
666 1.63 thorpej
667 1.207 thorpej /*
668 1.207 thorpej * itimer_init:
669 1.207 thorpej *
670 1.207 thorpej * Initialize the common data for an interval timer.
671 1.207 thorpej */
672 1.210 thorpej void
673 1.207 thorpej itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
674 1.207 thorpej clockid_t const id, struct itlist * const itl)
675 1.63 thorpej {
676 1.92 cube
677 1.207 thorpej KASSERT(itimer_lock_held());
678 1.207 thorpej KASSERT(ops != NULL);
679 1.207 thorpej
680 1.207 thorpej timespecclear(&it->it_time.it_value);
681 1.207 thorpej it->it_ops = ops;
682 1.207 thorpej it->it_clockid = id;
683 1.207 thorpej it->it_overruns = 0;
684 1.207 thorpej it->it_dying = false;
685 1.207 thorpej if (!CLOCK_VIRTUAL_P(id)) {
686 1.207 thorpej KASSERT(itl == NULL);
687 1.207 thorpej callout_init(&it->it_ch, CALLOUT_MPSAFE);
688 1.207 thorpej if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
689 1.207 thorpej LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
690 1.207 thorpej it, it_rtchgq);
691 1.207 thorpej }
692 1.207 thorpej } else {
693 1.207 thorpej KASSERT(itl != NULL);
694 1.207 thorpej it->it_vlist = itl;
695 1.207 thorpej it->it_active = false;
696 1.207 thorpej }
697 1.92 cube }
698 1.92 cube
699 1.207 thorpej /*
700 1.210 thorpej * itimer_poison:
701 1.207 thorpej *
702 1.210 thorpej * Poison an interval timer, preventing it from being scheduled
703 1.210 thorpej * or processed, in preparation for freeing the timer.
704 1.207 thorpej */
705 1.210 thorpej void
706 1.210 thorpej itimer_poison(struct itimer * const it)
707 1.92 cube {
708 1.105 ad
709 1.207 thorpej KASSERT(itimer_lock_held());
710 1.63 thorpej
711 1.207 thorpej it->it_dying = true;
712 1.63 thorpej
713 1.207 thorpej /*
714 1.207 thorpej * For non-virtual timers, stop the callout, or wait for it to
715 1.207 thorpej * run if it has already fired. It cannot restart again after
716 1.207 thorpej * this point: the callout won't restart itself when dying, no
717 1.207 thorpej * other users holding the lock can restart it, and any other
718 1.207 thorpej * users waiting for callout_halt concurrently (itimer_settime)
719 1.207 thorpej * will restart from the top.
720 1.207 thorpej */
721 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
722 1.207 thorpej callout_halt(&it->it_ch, &itimer_mutex);
723 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME &&
724 1.207 thorpej it->it_ops->ito_realtime_changed != NULL) {
725 1.207 thorpej LIST_REMOVE(it, it_rtchgq);
726 1.207 thorpej }
727 1.207 thorpej }
728 1.210 thorpej }
729 1.210 thorpej
730 1.210 thorpej /*
731 1.210 thorpej * itimer_fini:
732 1.210 thorpej *
733 1.210 thorpej * Release resources used by an interval timer.
734 1.210 thorpej *
735 1.210 thorpej * N.B. itimer_lock must be held on entry, and is released on exit.
736 1.210 thorpej */
737 1.210 thorpej void
738 1.210 thorpej itimer_fini(struct itimer * const it)
739 1.210 thorpej {
740 1.63 thorpej
741 1.210 thorpej KASSERT(itimer_lock_held());
742 1.142 ad
743 1.210 thorpej /* All done with the global state. */
744 1.207 thorpej itimer_unlock();
745 1.207 thorpej
746 1.207 thorpej /* Destroy the callout, if needed. */
747 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid))
748 1.207 thorpej callout_destroy(&it->it_ch);
749 1.207 thorpej }
750 1.207 thorpej
751 1.207 thorpej /*
752 1.207 thorpej * itimer_decr:
753 1.207 thorpej *
754 1.207 thorpej * Decrement an interval timer by a specified number of nanoseconds,
755 1.207 thorpej * which must be less than a second, i.e. < 1000000000. If the timer
756 1.207 thorpej * expires, then reload it. In this case, carry over (nsec - old value)
757 1.207 thorpej * to reduce the value reloaded into the timer so that the timer does
758 1.207 thorpej * not drift. This routine assumes that it is called in a context where
759 1.207 thorpej * the timers on which it is operating cannot change in value.
760 1.207 thorpej *
761 1.207 thorpej * Returns true if the timer has expired.
762 1.207 thorpej */
763 1.207 thorpej static bool
764 1.207 thorpej itimer_decr(struct itimer *it, int nsec)
765 1.207 thorpej {
766 1.207 thorpej struct itimerspec *itp;
767 1.207 thorpej int error __diagused;
768 1.207 thorpej
769 1.207 thorpej KASSERT(itimer_lock_held());
770 1.207 thorpej KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
771 1.207 thorpej
772 1.207 thorpej itp = &it->it_time;
773 1.207 thorpej if (itp->it_value.tv_nsec < nsec) {
774 1.207 thorpej if (itp->it_value.tv_sec == 0) {
775 1.207 thorpej /* expired, and already in next interval */
776 1.207 thorpej nsec -= itp->it_value.tv_nsec;
777 1.207 thorpej goto expire;
778 1.207 thorpej }
779 1.207 thorpej itp->it_value.tv_nsec += 1000000000;
780 1.207 thorpej itp->it_value.tv_sec--;
781 1.142 ad }
782 1.207 thorpej itp->it_value.tv_nsec -= nsec;
783 1.207 thorpej nsec = 0;
784 1.207 thorpej if (timespecisset(&itp->it_value))
785 1.207 thorpej return false;
786 1.207 thorpej /* expired, exactly at end of interval */
787 1.207 thorpej expire:
788 1.207 thorpej if (timespecisset(&itp->it_interval)) {
789 1.207 thorpej itp->it_value = itp->it_interval;
790 1.207 thorpej itp->it_value.tv_nsec -= nsec;
791 1.207 thorpej if (itp->it_value.tv_nsec < 0) {
792 1.207 thorpej itp->it_value.tv_nsec += 1000000000;
793 1.207 thorpej itp->it_value.tv_sec--;
794 1.63 thorpej }
795 1.207 thorpej error = itimer_settime(it);
796 1.207 thorpej KASSERT(error == 0); /* virtual, never fails */
797 1.207 thorpej } else
798 1.207 thorpej itp->it_value.tv_nsec = 0; /* sec is already 0 */
799 1.207 thorpej return true;
800 1.207 thorpej }
801 1.207 thorpej
802 1.207 thorpej static void itimer_callout(void *);
803 1.63 thorpej
804 1.207 thorpej /*
805 1.207 thorpej * itimer_arm_real:
806 1.207 thorpej *
807 1.207 thorpej * Arm a non-virtual timer.
808 1.207 thorpej */
809 1.207 thorpej static void
810 1.207 thorpej itimer_arm_real(struct itimer * const it)
811 1.207 thorpej {
812 1.207 thorpej /*
813 1.207 thorpej * Don't need to check tshzto() return value, here.
814 1.207 thorpej * callout_reset() does it for us.
815 1.207 thorpej */
816 1.207 thorpej callout_reset(&it->it_ch,
817 1.207 thorpej (it->it_clockid == CLOCK_MONOTONIC
818 1.207 thorpej ? tshztoup(&it->it_time.it_value)
819 1.207 thorpej : tshzto(&it->it_time.it_value)),
820 1.207 thorpej itimer_callout, it);
821 1.63 thorpej }
822 1.63 thorpej
823 1.207 thorpej /*
824 1.207 thorpej * itimer_callout:
825 1.207 thorpej *
826 1.207 thorpej * Callout to expire a non-virtual timer. Queue it up for processing,
827 1.207 thorpej * and then reload, if it is configured to do so.
828 1.207 thorpej *
829 1.207 thorpej * N.B. A delay in processing this callout causes multiple
830 1.207 thorpej * SIGALRM calls to be compressed into one.
831 1.207 thorpej */
832 1.207 thorpej static void
833 1.207 thorpej itimer_callout(void *arg)
834 1.15 thorpej {
835 1.207 thorpej uint64_t last_val, next_val, interval, now_ns;
836 1.207 thorpej struct timespec now, next;
837 1.207 thorpej struct itimer * const it = arg;
838 1.207 thorpej int backwards;
839 1.1 cgd
840 1.207 thorpej itimer_lock();
841 1.207 thorpej (*it->it_ops->ito_fire)(it);
842 1.63 thorpej
843 1.207 thorpej if (!timespecisset(&it->it_time.it_interval)) {
844 1.207 thorpej timespecclear(&it->it_time.it_value);
845 1.207 thorpej itimer_unlock();
846 1.207 thorpej return;
847 1.142 ad }
848 1.207 thorpej
849 1.207 thorpej if (it->it_clockid == CLOCK_MONOTONIC) {
850 1.207 thorpej getnanouptime(&now);
851 1.207 thorpej } else {
852 1.207 thorpej getnanotime(&now);
853 1.63 thorpej }
854 1.216 riastrad
855 1.207 thorpej backwards = (timespeccmp(&it->it_time.it_value, &now, >));
856 1.216 riastrad
857 1.216 riastrad /* Nonnegative interval guaranteed by itimerfix. */
858 1.216 riastrad KASSERT(it->it_time.it_interval.tv_sec >= 0);
859 1.216 riastrad KASSERT(it->it_time.it_interval.tv_nsec >= 0);
860 1.216 riastrad
861 1.207 thorpej /* Handle the easy case of non-overflown timers first. */
862 1.216 riastrad if (!backwards &&
863 1.216 riastrad timespecaddok(&it->it_time.it_value, &it->it_time.it_interval)) {
864 1.216 riastrad timespecadd(&it->it_time.it_value, &it->it_time.it_interval,
865 1.216 riastrad &next);
866 1.207 thorpej it->it_time.it_value = next;
867 1.207 thorpej } else {
868 1.207 thorpej now_ns = timespec2ns(&now);
869 1.207 thorpej last_val = timespec2ns(&it->it_time.it_value);
870 1.207 thorpej interval = timespec2ns(&it->it_time.it_interval);
871 1.198 riastrad
872 1.207 thorpej next_val = now_ns +
873 1.207 thorpej (now_ns - last_val + interval - 1) % interval;
874 1.207 thorpej
875 1.207 thorpej if (backwards)
876 1.207 thorpej next_val += interval;
877 1.207 thorpej else
878 1.207 thorpej it->it_overruns += (now_ns - last_val) / interval;
879 1.207 thorpej
880 1.207 thorpej it->it_time.it_value.tv_sec = next_val / 1000000000;
881 1.207 thorpej it->it_time.it_value.tv_nsec = next_val % 1000000000;
882 1.207 thorpej }
883 1.63 thorpej
884 1.207 thorpej /*
885 1.207 thorpej * Reset the callout, if it's not going away.
886 1.207 thorpej */
887 1.207 thorpej if (!it->it_dying)
888 1.207 thorpej itimer_arm_real(it);
889 1.207 thorpej itimer_unlock();
890 1.63 thorpej }
891 1.63 thorpej
892 1.63 thorpej /*
893 1.207 thorpej * itimer_settime:
894 1.207 thorpej *
895 1.207 thorpej * Set up the given interval timer. The value in it->it_time.it_value
896 1.207 thorpej * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
897 1.207 thorpej * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
898 1.198 riastrad *
899 1.207 thorpej * If the callout had already fired but not yet run, fails with
900 1.207 thorpej * ERESTART -- caller must restart from the top to look up a timer.
901 1.63 thorpej */
902 1.198 riastrad int
903 1.207 thorpej itimer_settime(struct itimer *it)
904 1.63 thorpej {
905 1.207 thorpej struct itimer *itn, *pitn;
906 1.207 thorpej struct itlist *itl;
907 1.63 thorpej
908 1.207 thorpej KASSERT(itimer_lock_held());
909 1.142 ad
910 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
911 1.198 riastrad /*
912 1.198 riastrad * Try to stop the callout. However, if it had already
913 1.198 riastrad * fired, we have to drop the lock to wait for it, so
914 1.198 riastrad * the world may have changed and pt may not be there
915 1.198 riastrad * any more. In that case, tell the caller to start
916 1.198 riastrad * over from the top.
917 1.198 riastrad */
918 1.207 thorpej if (callout_halt(&it->it_ch, &itimer_mutex))
919 1.198 riastrad return ERESTART;
920 1.198 riastrad
921 1.207 thorpej /* Now we can touch it and start it up again. */
922 1.207 thorpej if (timespecisset(&it->it_time.it_value))
923 1.207 thorpej itimer_arm_real(it);
924 1.63 thorpej } else {
925 1.207 thorpej if (it->it_active) {
926 1.207 thorpej itn = LIST_NEXT(it, it_list);
927 1.207 thorpej LIST_REMOVE(it, it_list);
928 1.207 thorpej for ( ; itn; itn = LIST_NEXT(itn, it_list))
929 1.207 thorpej timespecadd(&it->it_time.it_value,
930 1.207 thorpej &itn->it_time.it_value,
931 1.207 thorpej &itn->it_time.it_value);
932 1.207 thorpej }
933 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
934 1.207 thorpej itl = it->it_vlist;
935 1.207 thorpej for (itn = LIST_FIRST(itl), pitn = NULL;
936 1.207 thorpej itn && timespeccmp(&it->it_time.it_value,
937 1.207 thorpej &itn->it_time.it_value, >);
938 1.207 thorpej pitn = itn, itn = LIST_NEXT(itn, it_list))
939 1.207 thorpej timespecsub(&it->it_time.it_value,
940 1.207 thorpej &itn->it_time.it_value,
941 1.207 thorpej &it->it_time.it_value);
942 1.207 thorpej
943 1.207 thorpej if (pitn)
944 1.207 thorpej LIST_INSERT_AFTER(pitn, it, it_list);
945 1.63 thorpej else
946 1.207 thorpej LIST_INSERT_HEAD(itl, it, it_list);
947 1.63 thorpej
948 1.207 thorpej for ( ; itn ; itn = LIST_NEXT(itn, it_list))
949 1.207 thorpej timespecsub(&itn->it_time.it_value,
950 1.207 thorpej &it->it_time.it_value,
951 1.207 thorpej &itn->it_time.it_value);
952 1.63 thorpej
953 1.207 thorpej it->it_active = true;
954 1.207 thorpej } else {
955 1.207 thorpej it->it_active = false;
956 1.207 thorpej }
957 1.63 thorpej }
958 1.198 riastrad
959 1.198 riastrad /* Success! */
960 1.198 riastrad return 0;
961 1.63 thorpej }
962 1.63 thorpej
963 1.207 thorpej /*
964 1.207 thorpej * itimer_gettime:
965 1.207 thorpej *
966 1.207 thorpej * Return the remaining time of an interval timer.
967 1.207 thorpej */
968 1.63 thorpej void
969 1.207 thorpej itimer_gettime(const struct itimer *it, struct itimerspec *aits)
970 1.63 thorpej {
971 1.150 christos struct timespec now;
972 1.207 thorpej struct itimer *itn;
973 1.63 thorpej
974 1.207 thorpej KASSERT(itimer_lock_held());
975 1.142 ad
976 1.207 thorpej *aits = it->it_time;
977 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
978 1.1 cgd /*
979 1.12 mycroft * Convert from absolute to relative time in .it_value
980 1.63 thorpej * part of real time timer. If time for real time
981 1.63 thorpej * timer has passed return 0, else return difference
982 1.63 thorpej * between current time and time for the timer to go
983 1.63 thorpej * off.
984 1.1 cgd */
985 1.150 christos if (timespecisset(&aits->it_value)) {
986 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME) {
987 1.168 yamt getnanotime(&now);
988 1.168 yamt } else { /* CLOCK_MONOTONIC */
989 1.168 yamt getnanouptime(&now);
990 1.168 yamt }
991 1.150 christos if (timespeccmp(&aits->it_value, &now, <))
992 1.150 christos timespecclear(&aits->it_value);
993 1.101 kardel else
994 1.150 christos timespecsub(&aits->it_value, &now,
995 1.150 christos &aits->it_value);
996 1.36 thorpej }
997 1.207 thorpej } else if (it->it_active) {
998 1.207 thorpej for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
999 1.207 thorpej itn = LIST_NEXT(itn, it_list))
1000 1.150 christos timespecadd(&aits->it_value,
1001 1.207 thorpej &itn->it_time.it_value, &aits->it_value);
1002 1.207 thorpej KASSERT(itn != NULL); /* it should be findable on the list */
1003 1.1 cgd } else
1004 1.150 christos timespecclear(&aits->it_value);
1005 1.63 thorpej }
1006 1.63 thorpej
1007 1.207 thorpej /*
1008 1.207 thorpej * Per-process timer support.
1009 1.207 thorpej *
1010 1.207 thorpej * Both the BSD getitimer() family and the POSIX timer_*() family of
1011 1.207 thorpej * routines are supported.
1012 1.207 thorpej *
1013 1.207 thorpej * All timers are kept in an array pointed to by p_timers, which is
1014 1.207 thorpej * allocated on demand - many processes don't use timers at all. The
1015 1.207 thorpej * first four elements in this array are reserved for the BSD timers:
1016 1.207 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1017 1.207 thorpej * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1018 1.207 thorpej * allocated by the timer_create() syscall.
1019 1.207 thorpej *
1020 1.207 thorpej * These timers are a "sub-class" of interval timer.
1021 1.207 thorpej */
1022 1.207 thorpej
1023 1.207 thorpej /*
1024 1.207 thorpej * ptimer_free:
1025 1.207 thorpej *
1026 1.207 thorpej * Free the per-process timer at the specified index.
1027 1.207 thorpej */
1028 1.207 thorpej static void
1029 1.207 thorpej ptimer_free(struct ptimers *pts, int index)
1030 1.207 thorpej {
1031 1.207 thorpej struct itimer *it;
1032 1.207 thorpej struct ptimer *pt;
1033 1.207 thorpej
1034 1.207 thorpej KASSERT(itimer_lock_held());
1035 1.207 thorpej
1036 1.207 thorpej it = pts->pts_timers[index];
1037 1.207 thorpej pt = container_of(it, struct ptimer, pt_itimer);
1038 1.207 thorpej pts->pts_timers[index] = NULL;
1039 1.210 thorpej itimer_poison(it);
1040 1.210 thorpej
1041 1.210 thorpej /*
1042 1.210 thorpej * Remove it from the queue to be signalled. Must be done
1043 1.210 thorpej * after itimer is poisoned, because we may have had to wait
1044 1.210 thorpej * for the callout to complete.
1045 1.210 thorpej */
1046 1.210 thorpej if (pt->pt_queued) {
1047 1.210 thorpej TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1048 1.210 thorpej pt->pt_queued = false;
1049 1.210 thorpej }
1050 1.210 thorpej
1051 1.207 thorpej itimer_fini(it); /* releases itimer_lock */
1052 1.207 thorpej kmem_free(pt, sizeof(*pt));
1053 1.207 thorpej }
1054 1.207 thorpej
1055 1.207 thorpej /*
1056 1.207 thorpej * ptimers_alloc:
1057 1.207 thorpej *
1058 1.207 thorpej * Allocate a ptimers for the specified process.
1059 1.207 thorpej */
1060 1.207 thorpej static struct ptimers *
1061 1.207 thorpej ptimers_alloc(struct proc *p)
1062 1.207 thorpej {
1063 1.207 thorpej struct ptimers *pts;
1064 1.207 thorpej int i;
1065 1.207 thorpej
1066 1.207 thorpej pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1067 1.207 thorpej LIST_INIT(&pts->pts_virtual);
1068 1.207 thorpej LIST_INIT(&pts->pts_prof);
1069 1.207 thorpej for (i = 0; i < TIMER_MAX; i++)
1070 1.207 thorpej pts->pts_timers[i] = NULL;
1071 1.207 thorpej itimer_lock();
1072 1.207 thorpej if (p->p_timers == NULL) {
1073 1.207 thorpej p->p_timers = pts;
1074 1.207 thorpej itimer_unlock();
1075 1.207 thorpej return pts;
1076 1.207 thorpej }
1077 1.207 thorpej itimer_unlock();
1078 1.207 thorpej kmem_free(pts, sizeof(*pts));
1079 1.207 thorpej return p->p_timers;
1080 1.207 thorpej }
1081 1.207 thorpej
1082 1.207 thorpej /*
1083 1.207 thorpej * ptimers_free:
1084 1.207 thorpej *
1085 1.207 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1086 1.207 thorpej * then clean up all timers and free all the data structures. If
1087 1.207 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1088 1.207 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1089 1.207 thorpej * structure if none of those remain.
1090 1.207 thorpej *
1091 1.207 thorpej * This function is exported because it is needed in the exec and
1092 1.207 thorpej * exit code paths.
1093 1.207 thorpej */
1094 1.207 thorpej void
1095 1.207 thorpej ptimers_free(struct proc *p, int which)
1096 1.207 thorpej {
1097 1.207 thorpej struct ptimers *pts;
1098 1.207 thorpej struct itimer *itn;
1099 1.207 thorpej struct timespec ts;
1100 1.207 thorpej int i;
1101 1.207 thorpej
1102 1.207 thorpej if (p->p_timers == NULL)
1103 1.207 thorpej return;
1104 1.207 thorpej
1105 1.207 thorpej pts = p->p_timers;
1106 1.207 thorpej itimer_lock();
1107 1.207 thorpej if (which == TIMERS_ALL) {
1108 1.207 thorpej p->p_timers = NULL;
1109 1.207 thorpej i = 0;
1110 1.207 thorpej } else {
1111 1.207 thorpej timespecclear(&ts);
1112 1.207 thorpej for (itn = LIST_FIRST(&pts->pts_virtual);
1113 1.207 thorpej itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1114 1.207 thorpej itn = LIST_NEXT(itn, it_list)) {
1115 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1116 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value, &ts);
1117 1.207 thorpej }
1118 1.207 thorpej LIST_FIRST(&pts->pts_virtual) = NULL;
1119 1.207 thorpej if (itn) {
1120 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1121 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value,
1122 1.207 thorpej &itn->it_time.it_value);
1123 1.207 thorpej LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1124 1.207 thorpej }
1125 1.207 thorpej timespecclear(&ts);
1126 1.207 thorpej for (itn = LIST_FIRST(&pts->pts_prof);
1127 1.207 thorpej itn && itn != pts->pts_timers[ITIMER_PROF];
1128 1.207 thorpej itn = LIST_NEXT(itn, it_list)) {
1129 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_PROF);
1130 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value, &ts);
1131 1.207 thorpej }
1132 1.207 thorpej LIST_FIRST(&pts->pts_prof) = NULL;
1133 1.207 thorpej if (itn) {
1134 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_PROF);
1135 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value,
1136 1.207 thorpej &itn->it_time.it_value);
1137 1.207 thorpej LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1138 1.207 thorpej }
1139 1.207 thorpej i = TIMER_MIN;
1140 1.207 thorpej }
1141 1.207 thorpej for ( ; i < TIMER_MAX; i++) {
1142 1.207 thorpej if (pts->pts_timers[i] != NULL) {
1143 1.207 thorpej /* Free the timer and release the lock. */
1144 1.207 thorpej ptimer_free(pts, i);
1145 1.207 thorpej /* Reacquire the lock for the next one. */
1146 1.207 thorpej itimer_lock();
1147 1.207 thorpej }
1148 1.207 thorpej }
1149 1.207 thorpej if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1150 1.207 thorpej pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1151 1.207 thorpej p->p_timers = NULL;
1152 1.207 thorpej itimer_unlock();
1153 1.207 thorpej kmem_free(pts, sizeof(*pts));
1154 1.207 thorpej } else
1155 1.207 thorpej itimer_unlock();
1156 1.207 thorpej }
1157 1.207 thorpej
1158 1.207 thorpej /*
1159 1.207 thorpej * ptimer_fire:
1160 1.207 thorpej *
1161 1.207 thorpej * Fire a per-process timer.
1162 1.207 thorpej */
1163 1.207 thorpej static void
1164 1.207 thorpej ptimer_fire(struct itimer *it)
1165 1.207 thorpej {
1166 1.207 thorpej struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1167 1.207 thorpej
1168 1.207 thorpej KASSERT(itimer_lock_held());
1169 1.207 thorpej
1170 1.207 thorpej /*
1171 1.207 thorpej * XXX Can overrun, but we don't do signal queueing yet, anyway.
1172 1.207 thorpej * XXX Relying on the clock interrupt is stupid.
1173 1.207 thorpej */
1174 1.207 thorpej if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1175 1.207 thorpej return;
1176 1.207 thorpej }
1177 1.210 thorpej
1178 1.210 thorpej if (!pt->pt_queued) {
1179 1.210 thorpej TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1180 1.210 thorpej pt->pt_queued = true;
1181 1.210 thorpej softint_schedule(ptimer_sih);
1182 1.210 thorpej }
1183 1.207 thorpej }
1184 1.207 thorpej
1185 1.207 thorpej /*
1186 1.207 thorpej * Operations vector for per-process timers (BSD and POSIX).
1187 1.207 thorpej */
1188 1.207 thorpej static const struct itimer_ops ptimer_itimer_ops = {
1189 1.210 thorpej .ito_fire = ptimer_fire,
1190 1.207 thorpej };
1191 1.207 thorpej
1192 1.207 thorpej /*
1193 1.207 thorpej * sys_timer_create:
1194 1.207 thorpej *
1195 1.207 thorpej * System call to create a POSIX timer.
1196 1.207 thorpej */
1197 1.207 thorpej int
1198 1.207 thorpej sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1199 1.207 thorpej register_t *retval)
1200 1.207 thorpej {
1201 1.207 thorpej /* {
1202 1.207 thorpej syscallarg(clockid_t) clock_id;
1203 1.207 thorpej syscallarg(struct sigevent *) evp;
1204 1.207 thorpej syscallarg(timer_t *) timerid;
1205 1.207 thorpej } */
1206 1.207 thorpej
1207 1.207 thorpej return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1208 1.207 thorpej SCARG(uap, evp), copyin, l);
1209 1.207 thorpej }
1210 1.207 thorpej
1211 1.207 thorpej int
1212 1.207 thorpej timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1213 1.207 thorpej copyin_t fetch_event, struct lwp *l)
1214 1.207 thorpej {
1215 1.207 thorpej int error;
1216 1.207 thorpej timer_t timerid;
1217 1.207 thorpej struct itlist *itl;
1218 1.207 thorpej struct ptimers *pts;
1219 1.207 thorpej struct ptimer *pt;
1220 1.207 thorpej struct proc *p;
1221 1.63 thorpej
1222 1.207 thorpej p = l->l_proc;
1223 1.63 thorpej
1224 1.207 thorpej if ((u_int)id > CLOCK_MONOTONIC)
1225 1.217 riastrad return EINVAL;
1226 1.207 thorpej
1227 1.207 thorpej if ((pts = p->p_timers) == NULL)
1228 1.207 thorpej pts = ptimers_alloc(p);
1229 1.207 thorpej
1230 1.207 thorpej pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1231 1.207 thorpej if (evp != NULL) {
1232 1.207 thorpej if (((error =
1233 1.207 thorpej (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1234 1.207 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1235 1.207 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1236 1.207 thorpej (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1237 1.207 thorpej (pt->pt_ev.sigev_signo <= 0 ||
1238 1.207 thorpej pt->pt_ev.sigev_signo >= NSIG))) {
1239 1.207 thorpej kmem_free(pt, sizeof(*pt));
1240 1.207 thorpej return (error ? error : EINVAL);
1241 1.207 thorpej }
1242 1.207 thorpej }
1243 1.207 thorpej
1244 1.207 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
1245 1.207 thorpej itimer_lock();
1246 1.207 thorpej for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1247 1.207 thorpej if (pts->pts_timers[timerid] == NULL)
1248 1.207 thorpej break;
1249 1.207 thorpej if (timerid == TIMER_MAX) {
1250 1.207 thorpej itimer_unlock();
1251 1.207 thorpej kmem_free(pt, sizeof(*pt));
1252 1.207 thorpej return EAGAIN;
1253 1.207 thorpej }
1254 1.207 thorpej if (evp == NULL) {
1255 1.207 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1256 1.207 thorpej switch (id) {
1257 1.207 thorpej case CLOCK_REALTIME:
1258 1.207 thorpej case CLOCK_MONOTONIC:
1259 1.207 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1260 1.207 thorpej break;
1261 1.207 thorpej case CLOCK_VIRTUAL:
1262 1.207 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1263 1.207 thorpej break;
1264 1.207 thorpej case CLOCK_PROF:
1265 1.207 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1266 1.207 thorpej break;
1267 1.207 thorpej }
1268 1.207 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
1269 1.207 thorpej }
1270 1.207 thorpej
1271 1.207 thorpej switch (id) {
1272 1.207 thorpej case CLOCK_VIRTUAL:
1273 1.208 thorpej itl = &pts->pts_virtual;
1274 1.207 thorpej break;
1275 1.207 thorpej case CLOCK_PROF:
1276 1.208 thorpej itl = &pts->pts_prof;
1277 1.207 thorpej break;
1278 1.207 thorpej default:
1279 1.207 thorpej itl = NULL;
1280 1.207 thorpej }
1281 1.207 thorpej
1282 1.207 thorpej itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1283 1.207 thorpej pt->pt_proc = p;
1284 1.207 thorpej pt->pt_poverruns = 0;
1285 1.207 thorpej pt->pt_entry = timerid;
1286 1.210 thorpej pt->pt_queued = false;
1287 1.207 thorpej
1288 1.207 thorpej pts->pts_timers[timerid] = &pt->pt_itimer;
1289 1.207 thorpej itimer_unlock();
1290 1.207 thorpej
1291 1.207 thorpej return copyout(&timerid, tid, sizeof(timerid));
1292 1.207 thorpej }
1293 1.207 thorpej
1294 1.207 thorpej /*
1295 1.207 thorpej * sys_timer_delete:
1296 1.207 thorpej *
1297 1.207 thorpej * System call to delete a POSIX timer.
1298 1.207 thorpej */
1299 1.207 thorpej int
1300 1.207 thorpej sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1301 1.207 thorpej register_t *retval)
1302 1.207 thorpej {
1303 1.207 thorpej /* {
1304 1.207 thorpej syscallarg(timer_t) timerid;
1305 1.207 thorpej } */
1306 1.207 thorpej struct proc *p = l->l_proc;
1307 1.207 thorpej timer_t timerid;
1308 1.207 thorpej struct ptimers *pts;
1309 1.207 thorpej struct itimer *it, *itn;
1310 1.207 thorpej
1311 1.207 thorpej timerid = SCARG(uap, timerid);
1312 1.207 thorpej pts = p->p_timers;
1313 1.217 riastrad
1314 1.207 thorpej if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1315 1.217 riastrad return EINVAL;
1316 1.207 thorpej
1317 1.207 thorpej itimer_lock();
1318 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1319 1.207 thorpej itimer_unlock();
1320 1.217 riastrad return EINVAL;
1321 1.207 thorpej }
1322 1.207 thorpej
1323 1.207 thorpej if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1324 1.207 thorpej if (it->it_active) {
1325 1.207 thorpej itn = LIST_NEXT(it, it_list);
1326 1.207 thorpej LIST_REMOVE(it, it_list);
1327 1.207 thorpej for ( ; itn; itn = LIST_NEXT(itn, it_list))
1328 1.207 thorpej timespecadd(&it->it_time.it_value,
1329 1.207 thorpej &itn->it_time.it_value,
1330 1.207 thorpej &itn->it_time.it_value);
1331 1.207 thorpej it->it_active = false;
1332 1.207 thorpej }
1333 1.207 thorpej }
1334 1.207 thorpej
1335 1.207 thorpej /* Free the timer and release the lock. */
1336 1.207 thorpej ptimer_free(pts, timerid);
1337 1.207 thorpej
1338 1.217 riastrad return 0;
1339 1.207 thorpej }
1340 1.207 thorpej
1341 1.207 thorpej /*
1342 1.207 thorpej * sys___timer_settime50:
1343 1.207 thorpej *
1344 1.207 thorpej * System call to set/arm a POSIX timer.
1345 1.207 thorpej */
1346 1.63 thorpej int
1347 1.156 christos sys___timer_settime50(struct lwp *l,
1348 1.156 christos const struct sys___timer_settime50_args *uap,
1349 1.140 yamt register_t *retval)
1350 1.63 thorpej {
1351 1.135 dsl /* {
1352 1.63 thorpej syscallarg(timer_t) timerid;
1353 1.63 thorpej syscallarg(int) flags;
1354 1.63 thorpej syscallarg(const struct itimerspec *) value;
1355 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
1356 1.135 dsl } */
1357 1.92 cube int error;
1358 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
1359 1.92 cube
1360 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
1361 1.92 cube sizeof(struct itimerspec))) != 0)
1362 1.217 riastrad return error;
1363 1.92 cube
1364 1.92 cube if (SCARG(uap, ovalue))
1365 1.92 cube ovp = &ovalue;
1366 1.92 cube
1367 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1368 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
1369 1.92 cube return error;
1370 1.92 cube
1371 1.92 cube if (ovp)
1372 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
1373 1.92 cube sizeof(struct itimerspec));
1374 1.92 cube return 0;
1375 1.92 cube }
1376 1.92 cube
1377 1.92 cube int
1378 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
1379 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
1380 1.92 cube {
1381 1.150 christos struct timespec now;
1382 1.150 christos struct itimerspec val, oval;
1383 1.142 ad struct ptimers *pts;
1384 1.207 thorpej struct itimer *it;
1385 1.160 christos int error;
1386 1.63 thorpej
1387 1.142 ad pts = p->p_timers;
1388 1.63 thorpej
1389 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1390 1.142 ad return EINVAL;
1391 1.150 christos val = *value;
1392 1.160 christos if ((error = itimespecfix(&val.it_value)) != 0 ||
1393 1.160 christos (error = itimespecfix(&val.it_interval)) != 0)
1394 1.160 christos return error;
1395 1.63 thorpej
1396 1.207 thorpej itimer_lock();
1397 1.207 thorpej restart:
1398 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1399 1.207 thorpej itimer_unlock();
1400 1.150 christos return EINVAL;
1401 1.142 ad }
1402 1.142 ad
1403 1.207 thorpej oval = it->it_time;
1404 1.207 thorpej it->it_time = val;
1405 1.63 thorpej
1406 1.67 nathanw /*
1407 1.67 nathanw * If we've been passed a relative time for a realtime timer,
1408 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
1409 1.67 nathanw * timer, convert it to relative and make sure we don't set it
1410 1.67 nathanw * to zero, which would cancel the timer, or let it go
1411 1.67 nathanw * negative, which would confuse the comparison tests.
1412 1.67 nathanw */
1413 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
1414 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1415 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
1416 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME) {
1417 1.168 yamt getnanotime(&now);
1418 1.168 yamt } else { /* CLOCK_MONOTONIC */
1419 1.168 yamt getnanouptime(&now);
1420 1.168 yamt }
1421 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1422 1.207 thorpej &it->it_time.it_value);
1423 1.101 kardel }
1424 1.67 nathanw } else {
1425 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
1426 1.150 christos getnanotime(&now);
1427 1.207 thorpej timespecsub(&it->it_time.it_value, &now,
1428 1.207 thorpej &it->it_time.it_value);
1429 1.207 thorpej if (!timespecisset(&it->it_time.it_value) ||
1430 1.207 thorpej it->it_time.it_value.tv_sec < 0) {
1431 1.207 thorpej it->it_time.it_value.tv_sec = 0;
1432 1.207 thorpej it->it_time.it_value.tv_nsec = 1;
1433 1.67 nathanw }
1434 1.67 nathanw }
1435 1.67 nathanw }
1436 1.67 nathanw }
1437 1.67 nathanw
1438 1.207 thorpej error = itimer_settime(it);
1439 1.198 riastrad if (error == ERESTART) {
1440 1.207 thorpej KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1441 1.198 riastrad goto restart;
1442 1.198 riastrad }
1443 1.198 riastrad KASSERT(error == 0);
1444 1.207 thorpej itimer_unlock();
1445 1.63 thorpej
1446 1.150 christos if (ovalue)
1447 1.150 christos *ovalue = oval;
1448 1.63 thorpej
1449 1.217 riastrad return 0;
1450 1.63 thorpej }
1451 1.63 thorpej
1452 1.207 thorpej /*
1453 1.207 thorpej * sys___timer_gettime50:
1454 1.207 thorpej *
1455 1.207 thorpej * System call to return the time remaining until a POSIX timer fires.
1456 1.207 thorpej */
1457 1.63 thorpej int
1458 1.156 christos sys___timer_gettime50(struct lwp *l,
1459 1.156 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
1460 1.63 thorpej {
1461 1.135 dsl /* {
1462 1.63 thorpej syscallarg(timer_t) timerid;
1463 1.63 thorpej syscallarg(struct itimerspec *) value;
1464 1.135 dsl } */
1465 1.63 thorpej struct itimerspec its;
1466 1.92 cube int error;
1467 1.92 cube
1468 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1469 1.92 cube &its)) != 0)
1470 1.92 cube return error;
1471 1.92 cube
1472 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
1473 1.92 cube }
1474 1.92 cube
1475 1.92 cube int
1476 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1477 1.92 cube {
1478 1.207 thorpej struct itimer *it;
1479 1.142 ad struct ptimers *pts;
1480 1.63 thorpej
1481 1.142 ad pts = p->p_timers;
1482 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1483 1.217 riastrad return EINVAL;
1484 1.207 thorpej itimer_lock();
1485 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1486 1.207 thorpej itimer_unlock();
1487 1.217 riastrad return EINVAL;
1488 1.142 ad }
1489 1.207 thorpej itimer_gettime(it, its);
1490 1.207 thorpej itimer_unlock();
1491 1.63 thorpej
1492 1.92 cube return 0;
1493 1.63 thorpej }
1494 1.63 thorpej
1495 1.63 thorpej /*
1496 1.207 thorpej * sys_timer_getoverrun:
1497 1.207 thorpej *
1498 1.207 thorpej * System call to return the number of times a POSIX timer has
1499 1.207 thorpej * expired while a notification was already pending. The counter
1500 1.207 thorpej * is reset when a timer expires and a notification can be posted.
1501 1.63 thorpej */
1502 1.63 thorpej int
1503 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1504 1.140 yamt register_t *retval)
1505 1.63 thorpej {
1506 1.135 dsl /* {
1507 1.63 thorpej syscallarg(timer_t) timerid;
1508 1.135 dsl } */
1509 1.63 thorpej struct proc *p = l->l_proc;
1510 1.142 ad struct ptimers *pts;
1511 1.63 thorpej int timerid;
1512 1.207 thorpej struct itimer *it;
1513 1.63 thorpej struct ptimer *pt;
1514 1.63 thorpej
1515 1.63 thorpej timerid = SCARG(uap, timerid);
1516 1.63 thorpej
1517 1.142 ad pts = p->p_timers;
1518 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1519 1.217 riastrad return EINVAL;
1520 1.207 thorpej itimer_lock();
1521 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1522 1.207 thorpej itimer_unlock();
1523 1.217 riastrad return EINVAL;
1524 1.142 ad }
1525 1.207 thorpej pt = container_of(it, struct ptimer, pt_itimer);
1526 1.63 thorpej *retval = pt->pt_poverruns;
1527 1.187 christos if (*retval >= DELAYTIMER_MAX)
1528 1.187 christos *retval = DELAYTIMER_MAX;
1529 1.207 thorpej itimer_unlock();
1530 1.63 thorpej
1531 1.217 riastrad return 0;
1532 1.63 thorpej }
1533 1.63 thorpej
1534 1.63 thorpej /*
1535 1.207 thorpej * sys___getitimer50:
1536 1.207 thorpej *
1537 1.207 thorpej * System call to get the time remaining before a BSD timer fires.
1538 1.63 thorpej */
1539 1.63 thorpej int
1540 1.156 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1541 1.140 yamt register_t *retval)
1542 1.63 thorpej {
1543 1.135 dsl /* {
1544 1.63 thorpej syscallarg(int) which;
1545 1.63 thorpej syscallarg(struct itimerval *) itv;
1546 1.135 dsl } */
1547 1.63 thorpej struct proc *p = l->l_proc;
1548 1.63 thorpej struct itimerval aitv;
1549 1.91 cube int error;
1550 1.91 cube
1551 1.191 maxv memset(&aitv, 0, sizeof(aitv));
1552 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1553 1.91 cube if (error)
1554 1.91 cube return error;
1555 1.217 riastrad return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
1556 1.91 cube }
1557 1.63 thorpej
1558 1.91 cube int
1559 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1560 1.91 cube {
1561 1.142 ad struct ptimers *pts;
1562 1.207 thorpej struct itimer *it;
1563 1.150 christos struct itimerspec its;
1564 1.63 thorpej
1565 1.170 christos if ((u_int)which > ITIMER_MONOTONIC)
1566 1.217 riastrad return EINVAL;
1567 1.63 thorpej
1568 1.207 thorpej itimer_lock();
1569 1.142 ad pts = p->p_timers;
1570 1.207 thorpej if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1571 1.91 cube timerclear(&itvp->it_value);
1572 1.91 cube timerclear(&itvp->it_interval);
1573 1.150 christos } else {
1574 1.207 thorpej itimer_gettime(it, &its);
1575 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1576 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1577 1.150 christos }
1578 1.207 thorpej itimer_unlock();
1579 1.63 thorpej
1580 1.91 cube return 0;
1581 1.1 cgd }
1582 1.1 cgd
1583 1.207 thorpej /*
1584 1.207 thorpej * sys___setitimer50:
1585 1.207 thorpej *
1586 1.207 thorpej * System call to set/arm a BSD timer.
1587 1.207 thorpej */
1588 1.3 andrew int
1589 1.156 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1590 1.140 yamt register_t *retval)
1591 1.15 thorpej {
1592 1.135 dsl /* {
1593 1.30 mycroft syscallarg(int) which;
1594 1.24 cgd syscallarg(const struct itimerval *) itv;
1595 1.11 cgd syscallarg(struct itimerval *) oitv;
1596 1.135 dsl } */
1597 1.63 thorpej struct proc *p = l->l_proc;
1598 1.30 mycroft int which = SCARG(uap, which);
1599 1.156 christos struct sys___getitimer50_args getargs;
1600 1.91 cube const struct itimerval *itvp;
1601 1.1 cgd struct itimerval aitv;
1602 1.91 cube int error;
1603 1.1 cgd
1604 1.11 cgd itvp = SCARG(uap, itv);
1605 1.63 thorpej if (itvp &&
1606 1.174 dholland (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1607 1.217 riastrad return error;
1608 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1609 1.30 mycroft SCARG(&getargs, which) = which;
1610 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1611 1.156 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1612 1.217 riastrad return error;
1613 1.21 cgd }
1614 1.1 cgd if (itvp == 0)
1615 1.217 riastrad return 0;
1616 1.91 cube
1617 1.91 cube return dosetitimer(p, which, &aitv);
1618 1.91 cube }
1619 1.91 cube
1620 1.91 cube int
1621 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1622 1.91 cube {
1623 1.150 christos struct timespec now;
1624 1.142 ad struct ptimers *pts;
1625 1.207 thorpej struct ptimer *spare;
1626 1.207 thorpej struct itimer *it;
1627 1.207 thorpej struct itlist *itl;
1628 1.198 riastrad int error;
1629 1.91 cube
1630 1.211 simonb if ((u_int)which > ITIMER_MONOTONIC)
1631 1.217 riastrad return EINVAL;
1632 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1633 1.217 riastrad return EINVAL;
1634 1.63 thorpej
1635 1.63 thorpej /*
1636 1.63 thorpej * Don't bother allocating data structures if the process just
1637 1.63 thorpej * wants to clear the timer.
1638 1.63 thorpej */
1639 1.142 ad spare = NULL;
1640 1.142 ad pts = p->p_timers;
1641 1.142 ad retry:
1642 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1643 1.142 ad pts->pts_timers[which] == NULL))
1644 1.217 riastrad return 0;
1645 1.142 ad if (pts == NULL)
1646 1.207 thorpej pts = ptimers_alloc(p);
1647 1.207 thorpej itimer_lock();
1648 1.207 thorpej restart:
1649 1.207 thorpej it = pts->pts_timers[which];
1650 1.207 thorpej if (it == NULL) {
1651 1.207 thorpej struct ptimer *pt;
1652 1.207 thorpej
1653 1.142 ad if (spare == NULL) {
1654 1.207 thorpej itimer_unlock();
1655 1.207 thorpej spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1656 1.142 ad goto retry;
1657 1.142 ad }
1658 1.142 ad pt = spare;
1659 1.142 ad spare = NULL;
1660 1.207 thorpej
1661 1.207 thorpej it = &pt->pt_itimer;
1662 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1663 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1664 1.149 christos
1665 1.63 thorpej switch (which) {
1666 1.63 thorpej case ITIMER_REAL:
1667 1.170 christos case ITIMER_MONOTONIC:
1668 1.207 thorpej itl = NULL;
1669 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1670 1.63 thorpej break;
1671 1.63 thorpej case ITIMER_VIRTUAL:
1672 1.208 thorpej itl = &pts->pts_virtual;
1673 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1674 1.63 thorpej break;
1675 1.63 thorpej case ITIMER_PROF:
1676 1.208 thorpej itl = &pts->pts_prof;
1677 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1678 1.63 thorpej break;
1679 1.209 christos default:
1680 1.209 christos panic("%s: can't happen %d", __func__, which);
1681 1.1 cgd }
1682 1.207 thorpej itimer_init(it, &ptimer_itimer_ops, which, itl);
1683 1.207 thorpej pt->pt_proc = p;
1684 1.207 thorpej pt->pt_entry = which;
1685 1.207 thorpej
1686 1.207 thorpej pts->pts_timers[which] = it;
1687 1.142 ad }
1688 1.63 thorpej
1689 1.207 thorpej TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1690 1.207 thorpej TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1691 1.150 christos
1692 1.215 riastrad error = 0;
1693 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
1694 1.67 nathanw /* Convert to absolute time */
1695 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1696 1.170 christos switch (which) {
1697 1.170 christos case ITIMER_REAL:
1698 1.170 christos getnanotime(&now);
1699 1.215 riastrad if (!timespecaddok(&it->it_time.it_value, &now)) {
1700 1.215 riastrad error = EINVAL;
1701 1.215 riastrad goto out;
1702 1.215 riastrad }
1703 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1704 1.207 thorpej &it->it_time.it_value);
1705 1.170 christos break;
1706 1.170 christos case ITIMER_MONOTONIC:
1707 1.170 christos getnanouptime(&now);
1708 1.215 riastrad if (!timespecaddok(&it->it_time.it_value, &now)) {
1709 1.215 riastrad error = EINVAL;
1710 1.215 riastrad goto out;
1711 1.215 riastrad }
1712 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1713 1.207 thorpej &it->it_time.it_value);
1714 1.170 christos break;
1715 1.170 christos default:
1716 1.170 christos break;
1717 1.170 christos }
1718 1.67 nathanw }
1719 1.215 riastrad
1720 1.207 thorpej error = itimer_settime(it);
1721 1.198 riastrad if (error == ERESTART) {
1722 1.207 thorpej KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1723 1.198 riastrad goto restart;
1724 1.198 riastrad }
1725 1.198 riastrad KASSERT(error == 0);
1726 1.215 riastrad out:
1727 1.207 thorpej itimer_unlock();
1728 1.142 ad if (spare != NULL)
1729 1.207 thorpej kmem_free(spare, sizeof(*spare));
1730 1.63 thorpej
1731 1.215 riastrad return error;
1732 1.1 cgd }
1733 1.1 cgd
1734 1.1 cgd /*
1735 1.207 thorpej * ptimer_tick:
1736 1.207 thorpej *
1737 1.207 thorpej * Called from hardclock() to decrement per-process virtual timers.
1738 1.1 cgd */
1739 1.3 andrew void
1740 1.207 thorpej ptimer_tick(lwp_t *l, bool user)
1741 1.6 cgd {
1742 1.63 thorpej struct ptimers *pts;
1743 1.207 thorpej struct itimer *it;
1744 1.142 ad proc_t *p;
1745 1.142 ad
1746 1.142 ad p = l->l_proc;
1747 1.142 ad if (p->p_timers == NULL)
1748 1.142 ad return;
1749 1.142 ad
1750 1.207 thorpej itimer_lock();
1751 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1752 1.63 thorpej /*
1753 1.142 ad * Run current process's virtual and profile time, as needed.
1754 1.63 thorpej */
1755 1.207 thorpej if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1756 1.207 thorpej if (itimer_decr(it, tick * 1000))
1757 1.207 thorpej (*it->it_ops->ito_fire)(it);
1758 1.207 thorpej if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1759 1.207 thorpej if (itimer_decr(it, tick * 1000))
1760 1.207 thorpej (*it->it_ops->ito_fire)(it);
1761 1.142 ad }
1762 1.207 thorpej itimer_unlock();
1763 1.142 ad }
1764 1.142 ad
1765 1.207 thorpej /*
1766 1.207 thorpej * ptimer_intr:
1767 1.207 thorpej *
1768 1.207 thorpej * Software interrupt handler for processing per-process
1769 1.207 thorpej * timer expiration.
1770 1.207 thorpej */
1771 1.142 ad static void
1772 1.207 thorpej ptimer_intr(void *cookie)
1773 1.142 ad {
1774 1.142 ad ksiginfo_t ksi;
1775 1.207 thorpej struct itimer *it;
1776 1.142 ad struct ptimer *pt;
1777 1.142 ad proc_t *p;
1778 1.217 riastrad
1779 1.205 ad mutex_enter(&proc_lock);
1780 1.207 thorpej itimer_lock();
1781 1.210 thorpej while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1782 1.210 thorpej it = &pt->pt_itimer;
1783 1.142 ad
1784 1.210 thorpej TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1785 1.210 thorpej KASSERT(pt->pt_queued);
1786 1.210 thorpej pt->pt_queued = false;
1787 1.207 thorpej
1788 1.207 thorpej p = pt->pt_proc;
1789 1.207 thorpej if (p->p_timers == NULL) {
1790 1.154 wrstuden /* Process is dying. */
1791 1.142 ad continue;
1792 1.154 wrstuden }
1793 1.172 rmind if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1794 1.142 ad continue;
1795 1.142 ad }
1796 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1797 1.207 thorpej it->it_overruns++;
1798 1.142 ad continue;
1799 1.64 nathanw }
1800 1.142 ad
1801 1.142 ad KSI_INIT(&ksi);
1802 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1803 1.142 ad ksi.ksi_code = SI_TIMER;
1804 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1805 1.207 thorpej pt->pt_poverruns = it->it_overruns;
1806 1.207 thorpej it->it_overruns = 0;
1807 1.207 thorpej itimer_unlock();
1808 1.142 ad kpsignal(p, &ksi, NULL);
1809 1.207 thorpej itimer_lock();
1810 1.63 thorpej }
1811 1.207 thorpej itimer_unlock();
1812 1.205 ad mutex_exit(&proc_lock);
1813 1.63 thorpej }
1814