kern_time.c revision 1.22 1 1.22 jtc /* $NetBSD: kern_time.c,v 1.22 1996/11/15 22:44:26 jtc Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.9 cgd * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 1.1 cgd */
37 1.1 cgd
38 1.5 mycroft #include <sys/param.h>
39 1.5 mycroft #include <sys/resourcevar.h>
40 1.5 mycroft #include <sys/kernel.h>
41 1.8 cgd #include <sys/systm.h>
42 1.5 mycroft #include <sys/proc.h>
43 1.8 cgd #include <sys/vnode.h>
44 1.17 christos #include <sys/signalvar.h>
45 1.1 cgd
46 1.11 cgd #include <sys/mount.h>
47 1.11 cgd #include <sys/syscallargs.h>
48 1.19 christos
49 1.19 christos #if defined(NFSCLIENT) || defined(NFSSERVER)
50 1.20 fvdl #include <nfs/rpcv2.h>
51 1.20 fvdl #include <nfs/nfsproto.h>
52 1.19 christos #include <nfs/nfs_var.h>
53 1.19 christos #endif
54 1.17 christos
55 1.5 mycroft #include <machine/cpu.h>
56 1.1 cgd
57 1.1 cgd /*
58 1.1 cgd * Time of day and interval timer support.
59 1.1 cgd *
60 1.1 cgd * These routines provide the kernel entry points to get and set
61 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
62 1.1 cgd * here provide support for adding and subtracting timeval structures
63 1.1 cgd * and decrementing interval timers, optionally reloading the interval
64 1.1 cgd * timers when they expire.
65 1.1 cgd */
66 1.1 cgd
67 1.22 jtc
68 1.22 jtc /* This function is used by clock_settime and settimeofday */
69 1.22 jtc static void
70 1.22 jtc settime(tv)
71 1.22 jtc struct timeval *tv;
72 1.22 jtc {
73 1.22 jtc struct timeval delta;
74 1.22 jtc int s;
75 1.22 jtc
76 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
77 1.22 jtc s = splclock();
78 1.22 jtc timersub(tv, &time, &delta);
79 1.22 jtc time = *tv;
80 1.22 jtc (void) splsoftclock();
81 1.22 jtc timeradd(&boottime, &delta, &boottime);
82 1.22 jtc timeradd(&runtime, &delta, &runtime);
83 1.22 jtc # if defined(NFSCLIENT) || defined(NFSSERVER)
84 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
85 1.22 jtc # endif
86 1.22 jtc splx(s);
87 1.22 jtc resettodr();
88 1.22 jtc }
89 1.22 jtc
90 1.22 jtc /* ARGSUSED */
91 1.22 jtc int
92 1.22 jtc sys_clock_gettime(p, v, retval)
93 1.22 jtc struct proc *p;
94 1.22 jtc void *v;
95 1.22 jtc register_t *retval;
96 1.22 jtc {
97 1.22 jtc register struct sys_clock_gettime_args /* {
98 1.22 jtc syscallarg(clockid_t) clock_id;
99 1.22 jtc syscallarg(struct timespec *) tp;
100 1.22 jtc } */ *uap = v;
101 1.22 jtc clockid_t clock_id;
102 1.22 jtc struct timeval atv;
103 1.22 jtc struct timespec ats;
104 1.22 jtc
105 1.22 jtc clock_id = SCARG(uap, clock_id);
106 1.22 jtc if (clock_id != CLOCK_REALTIME)
107 1.22 jtc return (EINVAL);
108 1.22 jtc
109 1.22 jtc microtime(&atv);
110 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
111 1.22 jtc
112 1.22 jtc return copyout((caddr_t)&ats, SCARG(uap, tp), sizeof(ats));
113 1.22 jtc }
114 1.22 jtc
115 1.22 jtc /* ARGSUSED */
116 1.22 jtc int
117 1.22 jtc sys_clock_settime(p, v, retval)
118 1.22 jtc struct proc *p;
119 1.22 jtc void *v;
120 1.22 jtc register_t *retval;
121 1.22 jtc {
122 1.22 jtc register struct sys_clock_settime_args /* {
123 1.22 jtc syscallarg(clockid_t) clock_id;
124 1.22 jtc syscallarg(struct timespec *) tp;
125 1.22 jtc } */ *uap = v;
126 1.22 jtc clockid_t clock_id;
127 1.22 jtc struct timeval atv;
128 1.22 jtc struct timespec ats;
129 1.22 jtc int error;
130 1.22 jtc
131 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
132 1.22 jtc return (error);
133 1.22 jtc
134 1.22 jtc clock_id = SCARG(uap, clock_id);
135 1.22 jtc if (clock_id != CLOCK_REALTIME)
136 1.22 jtc return (EINVAL);
137 1.22 jtc
138 1.22 jtc if (error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ats, sizeof(ats)))
139 1.22 jtc return (error);
140 1.22 jtc
141 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
142 1.22 jtc settime(&atv);
143 1.22 jtc
144 1.22 jtc return 0;
145 1.22 jtc }
146 1.22 jtc
147 1.22 jtc int
148 1.22 jtc sys_clock_getres(p, v, retval)
149 1.22 jtc struct proc *p;
150 1.22 jtc void *v;
151 1.22 jtc register_t *retval;
152 1.22 jtc {
153 1.22 jtc register struct sys_clock_getres_args /* {
154 1.22 jtc syscallarg(clockid_t) clock_id;
155 1.22 jtc syscallarg(struct timespec *) tp;
156 1.22 jtc } */ *uap = v;
157 1.22 jtc clockid_t clock_id;
158 1.22 jtc struct timespec ts;
159 1.22 jtc int error = 0;
160 1.22 jtc
161 1.22 jtc clock_id = SCARG(uap, clock_id);
162 1.22 jtc if (clock_id != CLOCK_REALTIME)
163 1.22 jtc return (EINVAL);
164 1.22 jtc
165 1.22 jtc if (SCARG(uap, tp)) {
166 1.22 jtc ts.tv_sec = 0;
167 1.22 jtc ts.tv_nsec = 1000000000 / hz;
168 1.22 jtc
169 1.22 jtc error = copyout((caddr_t)&ts, (caddr_t)SCARG(uap, tp),
170 1.22 jtc sizeof (ts));
171 1.22 jtc }
172 1.22 jtc
173 1.22 jtc return error;
174 1.22 jtc }
175 1.22 jtc
176 1.22 jtc
177 1.1 cgd /* ARGSUSED */
178 1.3 andrew int
179 1.16 mycroft sys_gettimeofday(p, v, retval)
180 1.1 cgd struct proc *p;
181 1.15 thorpej void *v;
182 1.15 thorpej register_t *retval;
183 1.15 thorpej {
184 1.16 mycroft register struct sys_gettimeofday_args /* {
185 1.11 cgd syscallarg(struct timeval *) tp;
186 1.11 cgd syscallarg(struct timezone *) tzp;
187 1.15 thorpej } */ *uap = v;
188 1.1 cgd struct timeval atv;
189 1.1 cgd int error = 0;
190 1.1 cgd
191 1.11 cgd if (SCARG(uap, tp)) {
192 1.1 cgd microtime(&atv);
193 1.17 christos error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
194 1.17 christos sizeof (atv));
195 1.17 christos if (error)
196 1.1 cgd return (error);
197 1.1 cgd }
198 1.11 cgd if (SCARG(uap, tzp))
199 1.11 cgd error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
200 1.1 cgd sizeof (tz));
201 1.1 cgd return (error);
202 1.1 cgd }
203 1.1 cgd
204 1.1 cgd /* ARGSUSED */
205 1.3 andrew int
206 1.16 mycroft sys_settimeofday(p, v, retval)
207 1.1 cgd struct proc *p;
208 1.15 thorpej void *v;
209 1.15 thorpej register_t *retval;
210 1.15 thorpej {
211 1.16 mycroft struct sys_settimeofday_args /* {
212 1.11 cgd syscallarg(struct timeval *) tv;
213 1.11 cgd syscallarg(struct timezone *) tzp;
214 1.15 thorpej } */ *uap = v;
215 1.22 jtc struct timeval atv;
216 1.1 cgd struct timezone atz;
217 1.22 jtc int error;
218 1.1 cgd
219 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
220 1.1 cgd return (error);
221 1.8 cgd /* Verify all parameters before changing time. */
222 1.11 cgd if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
223 1.11 cgd (caddr_t)&atv, sizeof(atv))))
224 1.8 cgd return (error);
225 1.11 cgd if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
226 1.11 cgd (caddr_t)&atz, sizeof(atz))))
227 1.8 cgd return (error);
228 1.22 jtc if (SCARG(uap, tv))
229 1.22 jtc settime(&atv);
230 1.11 cgd if (SCARG(uap, tzp))
231 1.1 cgd tz = atz;
232 1.8 cgd return (0);
233 1.1 cgd }
234 1.1 cgd
235 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
236 1.1 cgd long timedelta; /* unapplied time correction, us. */
237 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
238 1.1 cgd
239 1.1 cgd /* ARGSUSED */
240 1.3 andrew int
241 1.16 mycroft sys_adjtime(p, v, retval)
242 1.1 cgd struct proc *p;
243 1.15 thorpej void *v;
244 1.15 thorpej register_t *retval;
245 1.15 thorpej {
246 1.16 mycroft register struct sys_adjtime_args /* {
247 1.11 cgd syscallarg(struct timeval *) delta;
248 1.11 cgd syscallarg(struct timeval *) olddelta;
249 1.15 thorpej } */ *uap = v;
250 1.8 cgd struct timeval atv;
251 1.8 cgd register long ndelta, ntickdelta, odelta;
252 1.1 cgd int s, error;
253 1.1 cgd
254 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
255 1.1 cgd return (error);
256 1.17 christos
257 1.17 christos error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
258 1.17 christos sizeof(struct timeval));
259 1.17 christos if (error)
260 1.1 cgd return (error);
261 1.8 cgd
262 1.8 cgd /*
263 1.8 cgd * Compute the total correction and the rate at which to apply it.
264 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
265 1.8 cgd * delta, so that after some number of incremental changes in
266 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
267 1.8 cgd * overshoot and start taking us away from the desired final time.
268 1.8 cgd */
269 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
270 1.8 cgd if (ndelta > bigadj)
271 1.8 cgd ntickdelta = 10 * tickadj;
272 1.8 cgd else
273 1.8 cgd ntickdelta = tickadj;
274 1.8 cgd if (ndelta % ntickdelta)
275 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
276 1.8 cgd
277 1.8 cgd /*
278 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
279 1.8 cgd * if we want time to run slower; then hardclock can simply compute
280 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
281 1.8 cgd */
282 1.8 cgd if (ndelta < 0)
283 1.8 cgd ntickdelta = -ntickdelta;
284 1.1 cgd s = splclock();
285 1.8 cgd odelta = timedelta;
286 1.1 cgd timedelta = ndelta;
287 1.8 cgd tickdelta = ntickdelta;
288 1.1 cgd splx(s);
289 1.1 cgd
290 1.11 cgd if (SCARG(uap, olddelta)) {
291 1.8 cgd atv.tv_sec = odelta / 1000000;
292 1.8 cgd atv.tv_usec = odelta % 1000000;
293 1.11 cgd (void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
294 1.8 cgd sizeof(struct timeval));
295 1.8 cgd }
296 1.1 cgd return (0);
297 1.1 cgd }
298 1.1 cgd
299 1.1 cgd /*
300 1.1 cgd * Get value of an interval timer. The process virtual and
301 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
302 1.1 cgd * they can be swapped out. These are kept internally in the
303 1.1 cgd * way they are specified externally: in time until they expire.
304 1.1 cgd *
305 1.1 cgd * The real time interval timer is kept in the process table slot
306 1.1 cgd * for the process, and its value (it_value) is kept as an
307 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
308 1.1 cgd * periodic real-time signals from drifting.
309 1.1 cgd *
310 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
311 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
312 1.1 cgd * routine, called from the softclock() routine. Since a callout
313 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
314 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
315 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
316 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
317 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
318 1.1 cgd * absolute time the timer should go off.
319 1.1 cgd */
320 1.1 cgd /* ARGSUSED */
321 1.3 andrew int
322 1.16 mycroft sys_getitimer(p, v, retval)
323 1.1 cgd struct proc *p;
324 1.15 thorpej void *v;
325 1.15 thorpej register_t *retval;
326 1.15 thorpej {
327 1.16 mycroft register struct sys_getitimer_args /* {
328 1.11 cgd syscallarg(u_int) which;
329 1.11 cgd syscallarg(struct itimerval *) itv;
330 1.15 thorpej } */ *uap = v;
331 1.1 cgd struct itimerval aitv;
332 1.1 cgd int s;
333 1.1 cgd
334 1.11 cgd if (SCARG(uap, which) > ITIMER_PROF)
335 1.1 cgd return (EINVAL);
336 1.1 cgd s = splclock();
337 1.11 cgd if (SCARG(uap, which) == ITIMER_REAL) {
338 1.1 cgd /*
339 1.12 mycroft * Convert from absolute to relative time in .it_value
340 1.1 cgd * part of real time timer. If time for real time timer
341 1.1 cgd * has passed return 0, else return difference between
342 1.1 cgd * current time and time for the timer to go off.
343 1.1 cgd */
344 1.1 cgd aitv = p->p_realtimer;
345 1.1 cgd if (timerisset(&aitv.it_value))
346 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
347 1.1 cgd timerclear(&aitv.it_value);
348 1.1 cgd else
349 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
350 1.1 cgd } else
351 1.11 cgd aitv = p->p_stats->p_timer[SCARG(uap, which)];
352 1.1 cgd splx(s);
353 1.11 cgd return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
354 1.1 cgd sizeof (struct itimerval)));
355 1.1 cgd }
356 1.1 cgd
357 1.1 cgd /* ARGSUSED */
358 1.3 andrew int
359 1.16 mycroft sys_setitimer(p, v, retval)
360 1.1 cgd struct proc *p;
361 1.17 christos register void *v;
362 1.15 thorpej register_t *retval;
363 1.15 thorpej {
364 1.16 mycroft register struct sys_setitimer_args /* {
365 1.11 cgd syscallarg(u_int) which;
366 1.11 cgd syscallarg(struct itimerval *) itv;
367 1.11 cgd syscallarg(struct itimerval *) oitv;
368 1.15 thorpej } */ *uap = v;
369 1.21 cgd struct sys_getitimer_args getargs;
370 1.1 cgd struct itimerval aitv;
371 1.1 cgd register struct itimerval *itvp;
372 1.1 cgd int s, error;
373 1.1 cgd
374 1.11 cgd if (SCARG(uap, which) > ITIMER_PROF)
375 1.1 cgd return (EINVAL);
376 1.11 cgd itvp = SCARG(uap, itv);
377 1.1 cgd if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
378 1.1 cgd sizeof(struct itimerval))))
379 1.1 cgd return (error);
380 1.21 cgd if (SCARG(uap, oitv) != NULL) {
381 1.21 cgd SCARG(&getargs, which) = SCARG(uap, which);
382 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
383 1.21 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
384 1.21 cgd return (error);
385 1.21 cgd }
386 1.1 cgd if (itvp == 0)
387 1.1 cgd return (0);
388 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
389 1.1 cgd return (EINVAL);
390 1.1 cgd s = splclock();
391 1.11 cgd if (SCARG(uap, which) == ITIMER_REAL) {
392 1.7 mycroft untimeout(realitexpire, p);
393 1.1 cgd if (timerisset(&aitv.it_value)) {
394 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
395 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
396 1.1 cgd }
397 1.1 cgd p->p_realtimer = aitv;
398 1.1 cgd } else
399 1.11 cgd p->p_stats->p_timer[SCARG(uap, which)] = aitv;
400 1.1 cgd splx(s);
401 1.1 cgd return (0);
402 1.1 cgd }
403 1.1 cgd
404 1.1 cgd /*
405 1.1 cgd * Real interval timer expired:
406 1.1 cgd * send process whose timer expired an alarm signal.
407 1.1 cgd * If time is not set up to reload, then just return.
408 1.1 cgd * Else compute next time timer should go off which is > current time.
409 1.1 cgd * This is where delay in processing this timeout causes multiple
410 1.1 cgd * SIGALRM calls to be compressed into one.
411 1.1 cgd */
412 1.3 andrew void
413 1.6 cgd realitexpire(arg)
414 1.6 cgd void *arg;
415 1.6 cgd {
416 1.1 cgd register struct proc *p;
417 1.1 cgd int s;
418 1.1 cgd
419 1.6 cgd p = (struct proc *)arg;
420 1.1 cgd psignal(p, SIGALRM);
421 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
422 1.1 cgd timerclear(&p->p_realtimer.it_value);
423 1.1 cgd return;
424 1.1 cgd }
425 1.1 cgd for (;;) {
426 1.1 cgd s = splclock();
427 1.14 mycroft timeradd(&p->p_realtimer.it_value,
428 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
429 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
430 1.7 mycroft timeout(realitexpire, p,
431 1.1 cgd hzto(&p->p_realtimer.it_value));
432 1.1 cgd splx(s);
433 1.1 cgd return;
434 1.1 cgd }
435 1.1 cgd splx(s);
436 1.1 cgd }
437 1.1 cgd }
438 1.1 cgd
439 1.1 cgd /*
440 1.1 cgd * Check that a proposed value to load into the .it_value or
441 1.1 cgd * .it_interval part of an interval timer is acceptable, and
442 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
443 1.1 cgd * than the resolution of the clock, round it up.)
444 1.1 cgd */
445 1.3 andrew int
446 1.1 cgd itimerfix(tv)
447 1.1 cgd struct timeval *tv;
448 1.1 cgd {
449 1.1 cgd
450 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
451 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
452 1.1 cgd return (EINVAL);
453 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
454 1.1 cgd tv->tv_usec = tick;
455 1.1 cgd return (0);
456 1.1 cgd }
457 1.1 cgd
458 1.1 cgd /*
459 1.1 cgd * Decrement an interval timer by a specified number
460 1.1 cgd * of microseconds, which must be less than a second,
461 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
462 1.1 cgd * it. In this case, carry over (usec - old value) to
463 1.8 cgd * reduce the value reloaded into the timer so that
464 1.1 cgd * the timer does not drift. This routine assumes
465 1.1 cgd * that it is called in a context where the timers
466 1.1 cgd * on which it is operating cannot change in value.
467 1.1 cgd */
468 1.3 andrew int
469 1.1 cgd itimerdecr(itp, usec)
470 1.1 cgd register struct itimerval *itp;
471 1.1 cgd int usec;
472 1.1 cgd {
473 1.1 cgd
474 1.1 cgd if (itp->it_value.tv_usec < usec) {
475 1.1 cgd if (itp->it_value.tv_sec == 0) {
476 1.1 cgd /* expired, and already in next interval */
477 1.1 cgd usec -= itp->it_value.tv_usec;
478 1.1 cgd goto expire;
479 1.1 cgd }
480 1.1 cgd itp->it_value.tv_usec += 1000000;
481 1.1 cgd itp->it_value.tv_sec--;
482 1.1 cgd }
483 1.1 cgd itp->it_value.tv_usec -= usec;
484 1.1 cgd usec = 0;
485 1.1 cgd if (timerisset(&itp->it_value))
486 1.1 cgd return (1);
487 1.1 cgd /* expired, exactly at end of interval */
488 1.1 cgd expire:
489 1.1 cgd if (timerisset(&itp->it_interval)) {
490 1.1 cgd itp->it_value = itp->it_interval;
491 1.1 cgd itp->it_value.tv_usec -= usec;
492 1.1 cgd if (itp->it_value.tv_usec < 0) {
493 1.1 cgd itp->it_value.tv_usec += 1000000;
494 1.1 cgd itp->it_value.tv_sec--;
495 1.1 cgd }
496 1.1 cgd } else
497 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
498 1.1 cgd return (0);
499 1.1 cgd }
500