kern_time.c revision 1.228 1 1.228 pho /* $NetBSD: kern_time.c,v 1.228 2025/03/19 14:27:05 pho Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.207 thorpej * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 1.207 thorpej * The NetBSD Foundation, Inc.
6 1.42 cgd * All rights reserved.
7 1.42 cgd *
8 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
9 1.207 thorpej * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 1.42 cgd *
11 1.42 cgd * Redistribution and use in source and binary forms, with or without
12 1.42 cgd * modification, are permitted provided that the following conditions
13 1.42 cgd * are met:
14 1.42 cgd * 1. Redistributions of source code must retain the above copyright
15 1.42 cgd * notice, this list of conditions and the following disclaimer.
16 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
17 1.42 cgd * notice, this list of conditions and the following disclaimer in the
18 1.42 cgd * documentation and/or other materials provided with the distribution.
19 1.42 cgd *
20 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
31 1.42 cgd */
32 1.9 cgd
33 1.1 cgd /*
34 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
35 1.8 cgd * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.72 agc * 3. Neither the name of the University nor the names of its contributors
46 1.1 cgd * may be used to endorse or promote products derived from this software
47 1.1 cgd * without specific prior written permission.
48 1.1 cgd *
49 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 cgd * SUCH DAMAGE.
60 1.1 cgd *
61 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 1.1 cgd */
63 1.58 lukem
64 1.58 lukem #include <sys/cdefs.h>
65 1.228 pho __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.228 2025/03/19 14:27:05 pho Exp $");
66 1.1 cgd
67 1.5 mycroft #include <sys/param.h>
68 1.225 riastrad #include <sys/types.h>
69 1.225 riastrad
70 1.225 riastrad #include <sys/callout.h>
71 1.225 riastrad #include <sys/cpu.h>
72 1.225 riastrad #include <sys/errno.h>
73 1.225 riastrad #include <sys/intr.h>
74 1.225 riastrad #include <sys/kauth.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.225 riastrad #include <sys/kmem.h>
77 1.225 riastrad #include <sys/lwp.h>
78 1.225 riastrad #include <sys/mount.h>
79 1.225 riastrad #include <sys/mutex.h>
80 1.5 mycroft #include <sys/proc.h>
81 1.225 riastrad #include <sys/queue.h>
82 1.225 riastrad #include <sys/resourcevar.h>
83 1.225 riastrad #include <sys/signal.h>
84 1.17 christos #include <sys/signalvar.h>
85 1.225 riastrad #include <sys/syscallargs.h>
86 1.25 perry #include <sys/syslog.h>
87 1.225 riastrad #include <sys/systm.h>
88 1.101 kardel #include <sys/timetc.h>
89 1.218 riastrad #include <sys/timevar.h>
90 1.143 ad #include <sys/timex.h>
91 1.225 riastrad #include <sys/vnode.h>
92 1.225 riastrad
93 1.225 riastrad #include <machine/limits.h>
94 1.19 christos
95 1.210 thorpej kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */
96 1.207 thorpej static struct itlist itimer_realtime_changed_notify;
97 1.142 ad
98 1.220 riastrad static void itimer_callout(void *);
99 1.207 thorpej static void ptimer_intr(void *);
100 1.207 thorpej static void *ptimer_sih __read_mostly;
101 1.210 thorpej static TAILQ_HEAD(, ptimer) ptimer_queue;
102 1.97 simonb
103 1.168 yamt #define CLOCK_VIRTUAL_P(clockid) \
104 1.168 yamt ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
105 1.168 yamt
106 1.168 yamt CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
107 1.168 yamt CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
108 1.168 yamt CTASSERT(ITIMER_PROF == CLOCK_PROF);
109 1.170 christos CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
110 1.168 yamt
111 1.131 ad /*
112 1.131 ad * Initialize timekeeping.
113 1.131 ad */
114 1.131 ad void
115 1.131 ad time_init(void)
116 1.131 ad {
117 1.131 ad
118 1.207 thorpej mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
119 1.207 thorpej LIST_INIT(&itimer_realtime_changed_notify);
120 1.207 thorpej
121 1.207 thorpej TAILQ_INIT(&ptimer_queue);
122 1.207 thorpej ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
123 1.207 thorpej ptimer_intr, NULL);
124 1.207 thorpej }
125 1.207 thorpej
126 1.207 thorpej /*
127 1.207 thorpej * Check if the time will wrap if set to ts.
128 1.207 thorpej *
129 1.207 thorpej * ts - timespec describing the new time
130 1.207 thorpej * delta - the delta between the current time and ts
131 1.207 thorpej */
132 1.207 thorpej bool
133 1.207 thorpej time_wraps(struct timespec *ts, struct timespec *delta)
134 1.207 thorpej {
135 1.207 thorpej
136 1.207 thorpej /*
137 1.207 thorpej * Don't allow the time to be set forward so far it
138 1.207 thorpej * will wrap and become negative, thus allowing an
139 1.207 thorpej * attacker to bypass the next check below. The
140 1.207 thorpej * cutoff is 1 year before rollover occurs, so even
141 1.207 thorpej * if the attacker uses adjtime(2) to move the time
142 1.207 thorpej * past the cutoff, it will take a very long time
143 1.207 thorpej * to get to the wrap point.
144 1.207 thorpej */
145 1.207 thorpej if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
146 1.207 thorpej (delta->tv_sec < 0 || delta->tv_nsec < 0))
147 1.207 thorpej return true;
148 1.207 thorpej
149 1.207 thorpej return false;
150 1.207 thorpej }
151 1.207 thorpej
152 1.207 thorpej /*
153 1.207 thorpej * itimer_lock:
154 1.207 thorpej *
155 1.207 thorpej * Acquire the interval timer data lock.
156 1.207 thorpej */
157 1.207 thorpej void
158 1.207 thorpej itimer_lock(void)
159 1.207 thorpej {
160 1.207 thorpej mutex_spin_enter(&itimer_mutex);
161 1.131 ad }
162 1.131 ad
163 1.207 thorpej /*
164 1.207 thorpej * itimer_unlock:
165 1.207 thorpej *
166 1.207 thorpej * Release the interval timer data lock.
167 1.207 thorpej */
168 1.142 ad void
169 1.207 thorpej itimer_unlock(void)
170 1.142 ad {
171 1.207 thorpej mutex_spin_exit(&itimer_mutex);
172 1.207 thorpej }
173 1.142 ad
174 1.207 thorpej /*
175 1.207 thorpej * itimer_lock_held:
176 1.207 thorpej *
177 1.207 thorpej * Check that the interval timer lock is held for diagnostic
178 1.207 thorpej * assertions.
179 1.207 thorpej */
180 1.210 thorpej inline bool __diagused
181 1.207 thorpej itimer_lock_held(void)
182 1.207 thorpej {
183 1.207 thorpej return mutex_owned(&itimer_mutex);
184 1.142 ad }
185 1.142 ad
186 1.207 thorpej /*
187 1.207 thorpej * Time of day and interval timer support.
188 1.1 cgd *
189 1.1 cgd * These routines provide the kernel entry points to get and set
190 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
191 1.1 cgd * here provide support for adding and subtracting timeval structures
192 1.1 cgd * and decrementing interval timers, optionally reloading the interval
193 1.1 cgd * timers when they expire.
194 1.1 cgd */
195 1.1 cgd
196 1.22 jtc /* This function is used by clock_settime and settimeofday */
197 1.132 elad static int
198 1.156 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
199 1.22 jtc {
200 1.156 christos struct timespec delta, now;
201 1.22 jtc
202 1.206 nia /*
203 1.206 nia * The time being set to an unreasonable value will cause
204 1.206 nia * unreasonable system behaviour.
205 1.206 nia */
206 1.206 nia if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
207 1.217 riastrad return EINVAL;
208 1.206 nia
209 1.156 christos nanotime(&now);
210 1.156 christos timespecsub(ts, &now, &delta);
211 1.132 elad
212 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
213 1.156 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
214 1.156 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
215 1.217 riastrad return EPERM;
216 1.55 tron }
217 1.132 elad
218 1.29 tls #ifdef notyet
219 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
220 1.217 riastrad return EPERM;
221 1.55 tron }
222 1.29 tls #endif
223 1.103 kardel
224 1.156 christos tc_setclock(ts);
225 1.103 kardel
226 1.22 jtc resettodr();
227 1.129 ad
228 1.207 thorpej /*
229 1.207 thorpej * Notify pending CLOCK_REALTIME timers about the real time change.
230 1.207 thorpej * There may be inactive timers on this list, but this happens
231 1.207 thorpej * comparatively less often than timers firing, and so it's better
232 1.207 thorpej * to put the extra checks here than to complicate the other code
233 1.207 thorpej * path.
234 1.207 thorpej */
235 1.207 thorpej struct itimer *it;
236 1.207 thorpej itimer_lock();
237 1.207 thorpej LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
238 1.207 thorpej KASSERT(it->it_ops->ito_realtime_changed != NULL);
239 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
240 1.207 thorpej (*it->it_ops->ito_realtime_changed)(it);
241 1.207 thorpej }
242 1.207 thorpej }
243 1.207 thorpej itimer_unlock();
244 1.207 thorpej
245 1.217 riastrad return 0;
246 1.22 jtc }
247 1.22 jtc
248 1.132 elad int
249 1.132 elad settime(struct proc *p, struct timespec *ts)
250 1.132 elad {
251 1.217 riastrad return settime1(p, ts, true);
252 1.132 elad }
253 1.132 elad
254 1.22 jtc /* ARGSUSED */
255 1.22 jtc int
256 1.156 christos sys___clock_gettime50(struct lwp *l,
257 1.156 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
258 1.22 jtc {
259 1.135 dsl /* {
260 1.22 jtc syscallarg(clockid_t) clock_id;
261 1.23 cgd syscallarg(struct timespec *) tp;
262 1.135 dsl } */
263 1.165 njoly int error;
264 1.22 jtc struct timespec ats;
265 1.22 jtc
266 1.165 njoly error = clock_gettime1(SCARG(uap, clock_id), &ats);
267 1.165 njoly if (error != 0)
268 1.165 njoly return error;
269 1.165 njoly
270 1.165 njoly return copyout(&ats, SCARG(uap, tp), sizeof(ats));
271 1.165 njoly }
272 1.165 njoly
273 1.22 jtc /* ARGSUSED */
274 1.22 jtc int
275 1.156 christos sys___clock_settime50(struct lwp *l,
276 1.156 christos const struct sys___clock_settime50_args *uap, register_t *retval)
277 1.22 jtc {
278 1.135 dsl /* {
279 1.22 jtc syscallarg(clockid_t) clock_id;
280 1.23 cgd syscallarg(const struct timespec *) tp;
281 1.135 dsl } */
282 1.156 christos int error;
283 1.156 christos struct timespec ats;
284 1.22 jtc
285 1.156 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
286 1.156 christos return error;
287 1.156 christos
288 1.156 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
289 1.56 manu }
290 1.56 manu
291 1.56 manu
292 1.56 manu int
293 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
294 1.132 elad bool check_kauth)
295 1.56 manu {
296 1.56 manu int error;
297 1.56 manu
298 1.201 kamil if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
299 1.201 kamil return EINVAL;
300 1.201 kamil
301 1.61 simonb switch (clock_id) {
302 1.61 simonb case CLOCK_REALTIME:
303 1.156 christos if ((error = settime1(p, tp, check_kauth)) != 0)
304 1.217 riastrad return error;
305 1.61 simonb break;
306 1.61 simonb case CLOCK_MONOTONIC:
307 1.217 riastrad return EINVAL; /* read-only clock */
308 1.61 simonb default:
309 1.217 riastrad return EINVAL;
310 1.61 simonb }
311 1.22 jtc
312 1.22 jtc return 0;
313 1.22 jtc }
314 1.22 jtc
315 1.22 jtc int
316 1.156 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
317 1.140 yamt register_t *retval)
318 1.22 jtc {
319 1.135 dsl /* {
320 1.22 jtc syscallarg(clockid_t) clock_id;
321 1.23 cgd syscallarg(struct timespec *) tp;
322 1.135 dsl } */
323 1.22 jtc struct timespec ts;
324 1.180 maxv int error;
325 1.22 jtc
326 1.164 njoly if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
327 1.164 njoly return error;
328 1.164 njoly
329 1.164 njoly if (SCARG(uap, tp))
330 1.164 njoly error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
331 1.164 njoly
332 1.164 njoly return error;
333 1.164 njoly }
334 1.164 njoly
335 1.164 njoly int
336 1.164 njoly clock_getres1(clockid_t clock_id, struct timespec *ts)
337 1.164 njoly {
338 1.164 njoly
339 1.61 simonb switch (clock_id) {
340 1.61 simonb case CLOCK_REALTIME:
341 1.61 simonb case CLOCK_MONOTONIC:
342 1.228 pho case CLOCK_PROCESS_CPUTIME_ID:
343 1.228 pho case CLOCK_THREAD_CPUTIME_ID:
344 1.164 njoly ts->tv_sec = 0;
345 1.102 kardel if (tc_getfrequency() > 1000000000)
346 1.164 njoly ts->tv_nsec = 1;
347 1.102 kardel else
348 1.164 njoly ts->tv_nsec = 1000000000 / tc_getfrequency();
349 1.61 simonb break;
350 1.61 simonb default:
351 1.164 njoly return EINVAL;
352 1.61 simonb }
353 1.22 jtc
354 1.164 njoly return 0;
355 1.22 jtc }
356 1.22 jtc
357 1.27 jtc /* ARGSUSED */
358 1.27 jtc int
359 1.156 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
360 1.140 yamt register_t *retval)
361 1.27 jtc {
362 1.135 dsl /* {
363 1.101 kardel syscallarg(struct timespec *) rqtp;
364 1.101 kardel syscallarg(struct timespec *) rmtp;
365 1.135 dsl } */
366 1.101 kardel struct timespec rmt, rqt;
367 1.120 dsl int error, error1;
368 1.101 kardel
369 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
370 1.101 kardel if (error)
371 1.217 riastrad return error;
372 1.101 kardel
373 1.175 christos error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
374 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
375 1.175 christos if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
376 1.175 christos return error;
377 1.175 christos
378 1.175 christos error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
379 1.175 christos return error1 ? error1 : error;
380 1.175 christos }
381 1.175 christos
382 1.175 christos /* ARGSUSED */
383 1.175 christos int
384 1.175 christos sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
385 1.175 christos register_t *retval)
386 1.175 christos {
387 1.175 christos /* {
388 1.175 christos syscallarg(clockid_t) clock_id;
389 1.175 christos syscallarg(int) flags;
390 1.175 christos syscallarg(struct timespec *) rqtp;
391 1.175 christos syscallarg(struct timespec *) rmtp;
392 1.175 christos } */
393 1.175 christos struct timespec rmt, rqt;
394 1.175 christos int error, error1;
395 1.175 christos
396 1.175 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
397 1.175 christos if (error)
398 1.181 christos goto out;
399 1.175 christos
400 1.175 christos error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
401 1.175 christos SCARG(uap, rmtp) ? &rmt : NULL);
402 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
403 1.181 christos goto out;
404 1.120 dsl
405 1.189 njoly if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
406 1.189 njoly (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
407 1.181 christos error = error1;
408 1.181 christos out:
409 1.181 christos *retval = error;
410 1.181 christos return 0;
411 1.120 dsl }
412 1.120 dsl
413 1.120 dsl int
414 1.175 christos nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
415 1.175 christos struct timespec *rmt)
416 1.120 dsl {
417 1.141 yamt struct timespec rmtstart;
418 1.120 dsl int error, timo;
419 1.120 dsl
420 1.184 uwe if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
421 1.184 uwe if (error == ETIMEDOUT) {
422 1.184 uwe error = 0;
423 1.184 uwe if (rmt != NULL)
424 1.184 uwe rmt->tv_sec = rmt->tv_nsec = 0;
425 1.184 uwe }
426 1.184 uwe return error;
427 1.184 uwe }
428 1.101 kardel
429 1.101 kardel /*
430 1.175 christos * Avoid inadvertently sleeping forever
431 1.101 kardel */
432 1.101 kardel if (timo == 0)
433 1.101 kardel timo = 1;
434 1.141 yamt again:
435 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
436 1.197 kre if (error == EWOULDBLOCK)
437 1.197 kre error = 0;
438 1.141 yamt if (rmt != NULL || error == 0) {
439 1.141 yamt struct timespec rmtend;
440 1.141 yamt struct timespec t0;
441 1.141 yamt struct timespec *t;
442 1.204 maxv int err;
443 1.204 maxv
444 1.204 maxv err = clock_gettime1(clock_id, &rmtend);
445 1.204 maxv if (err != 0)
446 1.204 maxv return err;
447 1.101 kardel
448 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
449 1.179 christos if (flags & TIMER_ABSTIME) {
450 1.179 christos timespecsub(rqt, &rmtend, t);
451 1.179 christos } else {
452 1.213 riastrad if (timespeccmp(&rmtend, &rmtstart, <))
453 1.213 riastrad timespecclear(t); /* clock wound back */
454 1.213 riastrad else
455 1.213 riastrad timespecsub(&rmtend, &rmtstart, t);
456 1.213 riastrad if (timespeccmp(rqt, t, <))
457 1.213 riastrad timespecclear(t);
458 1.213 riastrad else
459 1.213 riastrad timespecsub(rqt, t, t);
460 1.179 christos }
461 1.141 yamt if (t->tv_sec < 0)
462 1.141 yamt timespecclear(t);
463 1.141 yamt if (error == 0) {
464 1.141 yamt timo = tstohz(t);
465 1.141 yamt if (timo > 0)
466 1.141 yamt goto again;
467 1.141 yamt }
468 1.141 yamt }
469 1.104 kardel
470 1.101 kardel if (error == ERESTART)
471 1.101 kardel error = EINTR;
472 1.101 kardel
473 1.101 kardel return error;
474 1.27 jtc }
475 1.22 jtc
476 1.186 christos int
477 1.186 christos sys_clock_getcpuclockid2(struct lwp *l,
478 1.186 christos const struct sys_clock_getcpuclockid2_args *uap,
479 1.186 christos register_t *retval)
480 1.186 christos {
481 1.186 christos /* {
482 1.186 christos syscallarg(idtype_t idtype;
483 1.186 christos syscallarg(id_t id);
484 1.186 christos syscallarg(clockid_t *)clock_id;
485 1.186 christos } */
486 1.186 christos pid_t pid;
487 1.186 christos lwpid_t lid;
488 1.186 christos clockid_t clock_id;
489 1.186 christos id_t id = SCARG(uap, id);
490 1.186 christos
491 1.186 christos switch (SCARG(uap, idtype)) {
492 1.186 christos case P_PID:
493 1.188 msaitoh pid = id == 0 ? l->l_proc->p_pid : id;
494 1.186 christos clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
495 1.186 christos break;
496 1.186 christos case P_LWPID:
497 1.186 christos lid = id == 0 ? l->l_lid : id;
498 1.186 christos clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
499 1.186 christos break;
500 1.186 christos default:
501 1.186 christos return EINVAL;
502 1.186 christos }
503 1.186 christos return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
504 1.186 christos }
505 1.186 christos
506 1.1 cgd /* ARGSUSED */
507 1.3 andrew int
508 1.156 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
509 1.140 yamt register_t *retval)
510 1.15 thorpej {
511 1.135 dsl /* {
512 1.11 cgd syscallarg(struct timeval *) tp;
513 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
514 1.135 dsl } */
515 1.1 cgd struct timeval atv;
516 1.1 cgd int error = 0;
517 1.25 perry struct timezone tzfake;
518 1.1 cgd
519 1.11 cgd if (SCARG(uap, tp)) {
520 1.190 maxv memset(&atv, 0, sizeof(atv));
521 1.1 cgd microtime(&atv);
522 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
523 1.17 christos if (error)
524 1.217 riastrad return error;
525 1.1 cgd }
526 1.25 perry if (SCARG(uap, tzp)) {
527 1.25 perry /*
528 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
529 1.25 perry * fake up a timezone struct and return it if demanded.
530 1.25 perry */
531 1.25 perry tzfake.tz_minuteswest = 0;
532 1.25 perry tzfake.tz_dsttime = 0;
533 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
534 1.25 perry }
535 1.217 riastrad return error;
536 1.1 cgd }
537 1.1 cgd
538 1.1 cgd /* ARGSUSED */
539 1.3 andrew int
540 1.156 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
541 1.140 yamt register_t *retval)
542 1.15 thorpej {
543 1.135 dsl /* {
544 1.24 cgd syscallarg(const struct timeval *) tv;
545 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
546 1.135 dsl } */
547 1.60 manu
548 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
549 1.60 manu }
550 1.60 manu
551 1.60 manu int
552 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
553 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
554 1.60 manu {
555 1.22 jtc struct timeval atv;
556 1.98 christos struct timespec ts;
557 1.22 jtc int error;
558 1.1 cgd
559 1.8 cgd /* Verify all parameters before changing time. */
560 1.119 dsl
561 1.25 perry /*
562 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
563 1.25 perry * obsolete program would try to set it, so we log a warning.
564 1.25 perry */
565 1.98 christos if (utzp)
566 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
567 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
568 1.98 christos
569 1.217 riastrad if (utv == NULL)
570 1.98 christos return 0;
571 1.98 christos
572 1.119 dsl if (userspace) {
573 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
574 1.119 dsl return error;
575 1.119 dsl utv = &atv;
576 1.119 dsl }
577 1.119 dsl
578 1.200 kamil if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
579 1.200 kamil return EINVAL;
580 1.200 kamil
581 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
582 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
583 1.1 cgd }
584 1.1 cgd
585 1.68 dsl int time_adjusted; /* set if an adjustment is made */
586 1.1 cgd
587 1.1 cgd /* ARGSUSED */
588 1.3 andrew int
589 1.156 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
590 1.140 yamt register_t *retval)
591 1.15 thorpej {
592 1.135 dsl /* {
593 1.24 cgd syscallarg(const struct timeval *) delta;
594 1.11 cgd syscallarg(struct timeval *) olddelta;
595 1.135 dsl } */
596 1.180 maxv int error;
597 1.156 christos struct timeval atv, oldatv;
598 1.1 cgd
599 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
600 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
601 1.156 christos return error;
602 1.17 christos
603 1.156 christos if (SCARG(uap, delta)) {
604 1.156 christos error = copyin(SCARG(uap, delta), &atv,
605 1.156 christos sizeof(*SCARG(uap, delta)));
606 1.156 christos if (error)
607 1.217 riastrad return error;
608 1.156 christos }
609 1.156 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
610 1.156 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
611 1.156 christos if (SCARG(uap, olddelta))
612 1.156 christos error = copyout(&oldatv, SCARG(uap, olddelta),
613 1.156 christos sizeof(*SCARG(uap, olddelta)));
614 1.156 christos return error;
615 1.56 manu }
616 1.56 manu
617 1.156 christos void
618 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
619 1.56 manu {
620 1.101 kardel
621 1.101 kardel if (olddelta) {
622 1.194 maxv memset(olddelta, 0, sizeof(*olddelta));
623 1.143 ad mutex_spin_enter(&timecounter_lock);
624 1.156 christos olddelta->tv_sec = time_adjtime / 1000000;
625 1.156 christos olddelta->tv_usec = time_adjtime % 1000000;
626 1.156 christos if (olddelta->tv_usec < 0) {
627 1.156 christos olddelta->tv_usec += 1000000;
628 1.156 christos olddelta->tv_sec--;
629 1.101 kardel }
630 1.157 christos mutex_spin_exit(&timecounter_lock);
631 1.101 kardel }
632 1.212 riastrad
633 1.101 kardel if (delta) {
634 1.156 christos mutex_spin_enter(&timecounter_lock);
635 1.212 riastrad /*
636 1.212 riastrad * XXX This should maybe just report failure to
637 1.212 riastrad * userland for nonsense deltas.
638 1.212 riastrad */
639 1.212 riastrad if (delta->tv_sec > INT64_MAX/1000000 - 1) {
640 1.212 riastrad time_adjtime = INT64_MAX;
641 1.214 riastrad } else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
642 1.214 riastrad time_adjtime = INT64_MIN;
643 1.212 riastrad } else {
644 1.214 riastrad time_adjtime = delta->tv_sec * 1000000
645 1.214 riastrad + MAX(-999999, MIN(999999, delta->tv_usec));
646 1.212 riastrad }
647 1.101 kardel
648 1.143 ad if (time_adjtime) {
649 1.101 kardel /* We need to save the system time during shutdown */
650 1.101 kardel time_adjusted |= 1;
651 1.143 ad }
652 1.143 ad mutex_spin_exit(&timecounter_lock);
653 1.101 kardel }
654 1.1 cgd }
655 1.1 cgd
656 1.1 cgd /*
657 1.207 thorpej * Interval timer support.
658 1.207 thorpej *
659 1.207 thorpej * The itimer_*() routines provide generic support for interval timers,
660 1.207 thorpej * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
661 1.207 thorpej * CLOCK_PROF).
662 1.207 thorpej *
663 1.207 thorpej * Real timers keep their deadline as an absolute time, and are fired
664 1.207 thorpej * by a callout. Virtual timers are kept as a linked-list of deltas,
665 1.207 thorpej * and are processed by hardclock().
666 1.1 cgd *
667 1.207 thorpej * Because the real time timer callout may be delayed in real time due
668 1.207 thorpej * to interrupt processing on the system, it is possible for the real
669 1.207 thorpej * time timeout routine (itimer_callout()) run past after its deadline.
670 1.207 thorpej * It does not suffice, therefore, to reload the real timer .it_value
671 1.207 thorpej * from the timer's .it_interval. Rather, we compute the next deadline
672 1.207 thorpej * in absolute time based on the current time and the .it_interval value,
673 1.207 thorpej * and report any overruns.
674 1.1 cgd *
675 1.207 thorpej * Note that while the virtual timers are supported in a generic fashion
676 1.207 thorpej * here, they only (currently) make sense as per-process timers, and thus
677 1.207 thorpej * only really work for that case.
678 1.207 thorpej */
679 1.63 thorpej
680 1.207 thorpej /*
681 1.207 thorpej * itimer_init:
682 1.207 thorpej *
683 1.207 thorpej * Initialize the common data for an interval timer.
684 1.207 thorpej */
685 1.210 thorpej void
686 1.207 thorpej itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
687 1.207 thorpej clockid_t const id, struct itlist * const itl)
688 1.63 thorpej {
689 1.92 cube
690 1.207 thorpej KASSERT(itimer_lock_held());
691 1.207 thorpej KASSERT(ops != NULL);
692 1.207 thorpej
693 1.207 thorpej timespecclear(&it->it_time.it_value);
694 1.207 thorpej it->it_ops = ops;
695 1.207 thorpej it->it_clockid = id;
696 1.207 thorpej it->it_overruns = 0;
697 1.207 thorpej it->it_dying = false;
698 1.207 thorpej if (!CLOCK_VIRTUAL_P(id)) {
699 1.207 thorpej KASSERT(itl == NULL);
700 1.207 thorpej callout_init(&it->it_ch, CALLOUT_MPSAFE);
701 1.220 riastrad callout_setfunc(&it->it_ch, itimer_callout, it);
702 1.207 thorpej if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
703 1.207 thorpej LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
704 1.207 thorpej it, it_rtchgq);
705 1.207 thorpej }
706 1.207 thorpej } else {
707 1.207 thorpej KASSERT(itl != NULL);
708 1.207 thorpej it->it_vlist = itl;
709 1.207 thorpej it->it_active = false;
710 1.207 thorpej }
711 1.92 cube }
712 1.92 cube
713 1.207 thorpej /*
714 1.210 thorpej * itimer_poison:
715 1.207 thorpej *
716 1.210 thorpej * Poison an interval timer, preventing it from being scheduled
717 1.210 thorpej * or processed, in preparation for freeing the timer.
718 1.207 thorpej */
719 1.210 thorpej void
720 1.210 thorpej itimer_poison(struct itimer * const it)
721 1.92 cube {
722 1.105 ad
723 1.207 thorpej KASSERT(itimer_lock_held());
724 1.63 thorpej
725 1.207 thorpej it->it_dying = true;
726 1.63 thorpej
727 1.207 thorpej /*
728 1.207 thorpej * For non-virtual timers, stop the callout, or wait for it to
729 1.207 thorpej * run if it has already fired. It cannot restart again after
730 1.207 thorpej * this point: the callout won't restart itself when dying, no
731 1.207 thorpej * other users holding the lock can restart it, and any other
732 1.207 thorpej * users waiting for callout_halt concurrently (itimer_settime)
733 1.207 thorpej * will restart from the top.
734 1.207 thorpej */
735 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
736 1.207 thorpej callout_halt(&it->it_ch, &itimer_mutex);
737 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME &&
738 1.207 thorpej it->it_ops->ito_realtime_changed != NULL) {
739 1.207 thorpej LIST_REMOVE(it, it_rtchgq);
740 1.207 thorpej }
741 1.207 thorpej }
742 1.210 thorpej }
743 1.210 thorpej
744 1.210 thorpej /*
745 1.210 thorpej * itimer_fini:
746 1.210 thorpej *
747 1.210 thorpej * Release resources used by an interval timer.
748 1.210 thorpej *
749 1.210 thorpej * N.B. itimer_lock must be held on entry, and is released on exit.
750 1.210 thorpej */
751 1.210 thorpej void
752 1.210 thorpej itimer_fini(struct itimer * const it)
753 1.210 thorpej {
754 1.63 thorpej
755 1.210 thorpej KASSERT(itimer_lock_held());
756 1.142 ad
757 1.210 thorpej /* All done with the global state. */
758 1.207 thorpej itimer_unlock();
759 1.207 thorpej
760 1.207 thorpej /* Destroy the callout, if needed. */
761 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid))
762 1.207 thorpej callout_destroy(&it->it_ch);
763 1.207 thorpej }
764 1.207 thorpej
765 1.207 thorpej /*
766 1.207 thorpej * itimer_decr:
767 1.207 thorpej *
768 1.207 thorpej * Decrement an interval timer by a specified number of nanoseconds,
769 1.207 thorpej * which must be less than a second, i.e. < 1000000000. If the timer
770 1.207 thorpej * expires, then reload it. In this case, carry over (nsec - old value)
771 1.207 thorpej * to reduce the value reloaded into the timer so that the timer does
772 1.207 thorpej * not drift. This routine assumes that it is called in a context where
773 1.207 thorpej * the timers on which it is operating cannot change in value.
774 1.207 thorpej *
775 1.207 thorpej * Returns true if the timer has expired.
776 1.207 thorpej */
777 1.207 thorpej static bool
778 1.207 thorpej itimer_decr(struct itimer *it, int nsec)
779 1.207 thorpej {
780 1.207 thorpej struct itimerspec *itp;
781 1.207 thorpej int error __diagused;
782 1.207 thorpej
783 1.207 thorpej KASSERT(itimer_lock_held());
784 1.207 thorpej KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
785 1.207 thorpej
786 1.207 thorpej itp = &it->it_time;
787 1.207 thorpej if (itp->it_value.tv_nsec < nsec) {
788 1.207 thorpej if (itp->it_value.tv_sec == 0) {
789 1.207 thorpej /* expired, and already in next interval */
790 1.207 thorpej nsec -= itp->it_value.tv_nsec;
791 1.207 thorpej goto expire;
792 1.207 thorpej }
793 1.207 thorpej itp->it_value.tv_nsec += 1000000000;
794 1.207 thorpej itp->it_value.tv_sec--;
795 1.142 ad }
796 1.207 thorpej itp->it_value.tv_nsec -= nsec;
797 1.207 thorpej nsec = 0;
798 1.207 thorpej if (timespecisset(&itp->it_value))
799 1.207 thorpej return false;
800 1.207 thorpej /* expired, exactly at end of interval */
801 1.207 thorpej expire:
802 1.207 thorpej if (timespecisset(&itp->it_interval)) {
803 1.207 thorpej itp->it_value = itp->it_interval;
804 1.207 thorpej itp->it_value.tv_nsec -= nsec;
805 1.207 thorpej if (itp->it_value.tv_nsec < 0) {
806 1.207 thorpej itp->it_value.tv_nsec += 1000000000;
807 1.207 thorpej itp->it_value.tv_sec--;
808 1.63 thorpej }
809 1.207 thorpej error = itimer_settime(it);
810 1.207 thorpej KASSERT(error == 0); /* virtual, never fails */
811 1.207 thorpej } else
812 1.207 thorpej itp->it_value.tv_nsec = 0; /* sec is already 0 */
813 1.207 thorpej return true;
814 1.207 thorpej }
815 1.207 thorpej
816 1.207 thorpej /*
817 1.207 thorpej * itimer_arm_real:
818 1.207 thorpej *
819 1.207 thorpej * Arm a non-virtual timer.
820 1.207 thorpej */
821 1.207 thorpej static void
822 1.207 thorpej itimer_arm_real(struct itimer * const it)
823 1.207 thorpej {
824 1.221 riastrad
825 1.219 thorpej KASSERT(!it->it_dying);
826 1.221 riastrad KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
827 1.221 riastrad KASSERT(!callout_pending(&it->it_ch));
828 1.219 thorpej
829 1.207 thorpej /*
830 1.207 thorpej * Don't need to check tshzto() return value, here.
831 1.220 riastrad * callout_schedule() does it for us.
832 1.207 thorpej */
833 1.220 riastrad callout_schedule(&it->it_ch,
834 1.207 thorpej (it->it_clockid == CLOCK_MONOTONIC
835 1.207 thorpej ? tshztoup(&it->it_time.it_value)
836 1.220 riastrad : tshzto(&it->it_time.it_value)));
837 1.63 thorpej }
838 1.63 thorpej
839 1.207 thorpej /*
840 1.207 thorpej * itimer_callout:
841 1.207 thorpej *
842 1.207 thorpej * Callout to expire a non-virtual timer. Queue it up for processing,
843 1.207 thorpej * and then reload, if it is configured to do so.
844 1.207 thorpej *
845 1.207 thorpej * N.B. A delay in processing this callout causes multiple
846 1.207 thorpej * SIGALRM calls to be compressed into one.
847 1.207 thorpej */
848 1.207 thorpej static void
849 1.207 thorpej itimer_callout(void *arg)
850 1.15 thorpej {
851 1.207 thorpej struct timespec now, next;
852 1.207 thorpej struct itimer * const it = arg;
853 1.227 riastrad int overruns;
854 1.1 cgd
855 1.207 thorpej itimer_lock();
856 1.207 thorpej (*it->it_ops->ito_fire)(it);
857 1.63 thorpej
858 1.207 thorpej if (!timespecisset(&it->it_time.it_interval)) {
859 1.207 thorpej timespecclear(&it->it_time.it_value);
860 1.207 thorpej itimer_unlock();
861 1.207 thorpej return;
862 1.142 ad }
863 1.207 thorpej
864 1.207 thorpej if (it->it_clockid == CLOCK_MONOTONIC) {
865 1.207 thorpej getnanouptime(&now);
866 1.207 thorpej } else {
867 1.207 thorpej getnanotime(&now);
868 1.63 thorpej }
869 1.216 riastrad
870 1.227 riastrad /*
871 1.227 riastrad * Given the current itimer value and interval and the time
872 1.227 riastrad * now, compute the next itimer value and count overruns.
873 1.227 riastrad */
874 1.227 riastrad itimer_transition(&it->it_time, &now, &next, &overruns);
875 1.227 riastrad it->it_time.it_value = next;
876 1.227 riastrad it->it_overruns += overruns;
877 1.63 thorpej
878 1.207 thorpej /*
879 1.207 thorpej * Reset the callout, if it's not going away.
880 1.207 thorpej */
881 1.207 thorpej if (!it->it_dying)
882 1.207 thorpej itimer_arm_real(it);
883 1.207 thorpej itimer_unlock();
884 1.63 thorpej }
885 1.63 thorpej
886 1.63 thorpej /*
887 1.207 thorpej * itimer_settime:
888 1.207 thorpej *
889 1.207 thorpej * Set up the given interval timer. The value in it->it_time.it_value
890 1.207 thorpej * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
891 1.207 thorpej * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
892 1.198 riastrad *
893 1.207 thorpej * If the callout had already fired but not yet run, fails with
894 1.207 thorpej * ERESTART -- caller must restart from the top to look up a timer.
895 1.224 riastrad *
896 1.224 riastrad * Caller is responsible for validating it->it_value and
897 1.224 riastrad * it->it_interval, e.g. with itimerfix or itimespecfix.
898 1.63 thorpej */
899 1.198 riastrad int
900 1.207 thorpej itimer_settime(struct itimer *it)
901 1.63 thorpej {
902 1.207 thorpej struct itimer *itn, *pitn;
903 1.207 thorpej struct itlist *itl;
904 1.63 thorpej
905 1.207 thorpej KASSERT(itimer_lock_held());
906 1.221 riastrad KASSERT(!it->it_dying);
907 1.224 riastrad KASSERT(it->it_time.it_value.tv_sec >= 0);
908 1.224 riastrad KASSERT(it->it_time.it_value.tv_nsec >= 0);
909 1.224 riastrad KASSERT(it->it_time.it_value.tv_nsec < 1000000000);
910 1.224 riastrad KASSERT(it->it_time.it_interval.tv_sec >= 0);
911 1.224 riastrad KASSERT(it->it_time.it_interval.tv_nsec >= 0);
912 1.224 riastrad KASSERT(it->it_time.it_interval.tv_nsec < 1000000000);
913 1.142 ad
914 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
915 1.198 riastrad /*
916 1.198 riastrad * Try to stop the callout. However, if it had already
917 1.198 riastrad * fired, we have to drop the lock to wait for it, so
918 1.198 riastrad * the world may have changed and pt may not be there
919 1.198 riastrad * any more. In that case, tell the caller to start
920 1.198 riastrad * over from the top.
921 1.198 riastrad */
922 1.207 thorpej if (callout_halt(&it->it_ch, &itimer_mutex))
923 1.198 riastrad return ERESTART;
924 1.221 riastrad KASSERT(!it->it_dying);
925 1.198 riastrad
926 1.207 thorpej /* Now we can touch it and start it up again. */
927 1.207 thorpej if (timespecisset(&it->it_time.it_value))
928 1.207 thorpej itimer_arm_real(it);
929 1.63 thorpej } else {
930 1.207 thorpej if (it->it_active) {
931 1.207 thorpej itn = LIST_NEXT(it, it_list);
932 1.207 thorpej LIST_REMOVE(it, it_list);
933 1.207 thorpej for ( ; itn; itn = LIST_NEXT(itn, it_list))
934 1.207 thorpej timespecadd(&it->it_time.it_value,
935 1.207 thorpej &itn->it_time.it_value,
936 1.207 thorpej &itn->it_time.it_value);
937 1.207 thorpej }
938 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
939 1.207 thorpej itl = it->it_vlist;
940 1.207 thorpej for (itn = LIST_FIRST(itl), pitn = NULL;
941 1.207 thorpej itn && timespeccmp(&it->it_time.it_value,
942 1.207 thorpej &itn->it_time.it_value, >);
943 1.207 thorpej pitn = itn, itn = LIST_NEXT(itn, it_list))
944 1.207 thorpej timespecsub(&it->it_time.it_value,
945 1.207 thorpej &itn->it_time.it_value,
946 1.207 thorpej &it->it_time.it_value);
947 1.207 thorpej
948 1.207 thorpej if (pitn)
949 1.207 thorpej LIST_INSERT_AFTER(pitn, it, it_list);
950 1.63 thorpej else
951 1.207 thorpej LIST_INSERT_HEAD(itl, it, it_list);
952 1.63 thorpej
953 1.207 thorpej for ( ; itn ; itn = LIST_NEXT(itn, it_list))
954 1.207 thorpej timespecsub(&itn->it_time.it_value,
955 1.207 thorpej &it->it_time.it_value,
956 1.207 thorpej &itn->it_time.it_value);
957 1.63 thorpej
958 1.207 thorpej it->it_active = true;
959 1.207 thorpej } else {
960 1.207 thorpej it->it_active = false;
961 1.207 thorpej }
962 1.63 thorpej }
963 1.198 riastrad
964 1.198 riastrad /* Success! */
965 1.198 riastrad return 0;
966 1.63 thorpej }
967 1.63 thorpej
968 1.207 thorpej /*
969 1.207 thorpej * itimer_gettime:
970 1.207 thorpej *
971 1.207 thorpej * Return the remaining time of an interval timer.
972 1.207 thorpej */
973 1.63 thorpej void
974 1.207 thorpej itimer_gettime(const struct itimer *it, struct itimerspec *aits)
975 1.63 thorpej {
976 1.150 christos struct timespec now;
977 1.207 thorpej struct itimer *itn;
978 1.63 thorpej
979 1.207 thorpej KASSERT(itimer_lock_held());
980 1.221 riastrad KASSERT(!it->it_dying);
981 1.142 ad
982 1.207 thorpej *aits = it->it_time;
983 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
984 1.1 cgd /*
985 1.12 mycroft * Convert from absolute to relative time in .it_value
986 1.63 thorpej * part of real time timer. If time for real time
987 1.63 thorpej * timer has passed return 0, else return difference
988 1.63 thorpej * between current time and time for the timer to go
989 1.63 thorpej * off.
990 1.1 cgd */
991 1.150 christos if (timespecisset(&aits->it_value)) {
992 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME) {
993 1.168 yamt getnanotime(&now);
994 1.168 yamt } else { /* CLOCK_MONOTONIC */
995 1.168 yamt getnanouptime(&now);
996 1.168 yamt }
997 1.150 christos if (timespeccmp(&aits->it_value, &now, <))
998 1.150 christos timespecclear(&aits->it_value);
999 1.101 kardel else
1000 1.150 christos timespecsub(&aits->it_value, &now,
1001 1.150 christos &aits->it_value);
1002 1.36 thorpej }
1003 1.207 thorpej } else if (it->it_active) {
1004 1.207 thorpej for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
1005 1.207 thorpej itn = LIST_NEXT(itn, it_list))
1006 1.150 christos timespecadd(&aits->it_value,
1007 1.207 thorpej &itn->it_time.it_value, &aits->it_value);
1008 1.207 thorpej KASSERT(itn != NULL); /* it should be findable on the list */
1009 1.1 cgd } else
1010 1.150 christos timespecclear(&aits->it_value);
1011 1.63 thorpej }
1012 1.63 thorpej
1013 1.207 thorpej /*
1014 1.207 thorpej * Per-process timer support.
1015 1.207 thorpej *
1016 1.207 thorpej * Both the BSD getitimer() family and the POSIX timer_*() family of
1017 1.207 thorpej * routines are supported.
1018 1.207 thorpej *
1019 1.207 thorpej * All timers are kept in an array pointed to by p_timers, which is
1020 1.207 thorpej * allocated on demand - many processes don't use timers at all. The
1021 1.207 thorpej * first four elements in this array are reserved for the BSD timers:
1022 1.207 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1023 1.207 thorpej * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1024 1.207 thorpej * allocated by the timer_create() syscall.
1025 1.207 thorpej *
1026 1.207 thorpej * These timers are a "sub-class" of interval timer.
1027 1.207 thorpej */
1028 1.207 thorpej
1029 1.207 thorpej /*
1030 1.207 thorpej * ptimer_free:
1031 1.207 thorpej *
1032 1.207 thorpej * Free the per-process timer at the specified index.
1033 1.207 thorpej */
1034 1.207 thorpej static void
1035 1.207 thorpej ptimer_free(struct ptimers *pts, int index)
1036 1.207 thorpej {
1037 1.207 thorpej struct itimer *it;
1038 1.207 thorpej struct ptimer *pt;
1039 1.207 thorpej
1040 1.207 thorpej KASSERT(itimer_lock_held());
1041 1.207 thorpej
1042 1.207 thorpej it = pts->pts_timers[index];
1043 1.207 thorpej pt = container_of(it, struct ptimer, pt_itimer);
1044 1.207 thorpej pts->pts_timers[index] = NULL;
1045 1.210 thorpej itimer_poison(it);
1046 1.210 thorpej
1047 1.210 thorpej /*
1048 1.210 thorpej * Remove it from the queue to be signalled. Must be done
1049 1.210 thorpej * after itimer is poisoned, because we may have had to wait
1050 1.210 thorpej * for the callout to complete.
1051 1.210 thorpej */
1052 1.210 thorpej if (pt->pt_queued) {
1053 1.210 thorpej TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1054 1.210 thorpej pt->pt_queued = false;
1055 1.210 thorpej }
1056 1.210 thorpej
1057 1.207 thorpej itimer_fini(it); /* releases itimer_lock */
1058 1.207 thorpej kmem_free(pt, sizeof(*pt));
1059 1.207 thorpej }
1060 1.207 thorpej
1061 1.207 thorpej /*
1062 1.207 thorpej * ptimers_alloc:
1063 1.207 thorpej *
1064 1.207 thorpej * Allocate a ptimers for the specified process.
1065 1.207 thorpej */
1066 1.207 thorpej static struct ptimers *
1067 1.207 thorpej ptimers_alloc(struct proc *p)
1068 1.207 thorpej {
1069 1.207 thorpej struct ptimers *pts;
1070 1.207 thorpej int i;
1071 1.207 thorpej
1072 1.207 thorpej pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1073 1.207 thorpej LIST_INIT(&pts->pts_virtual);
1074 1.207 thorpej LIST_INIT(&pts->pts_prof);
1075 1.207 thorpej for (i = 0; i < TIMER_MAX; i++)
1076 1.207 thorpej pts->pts_timers[i] = NULL;
1077 1.207 thorpej itimer_lock();
1078 1.207 thorpej if (p->p_timers == NULL) {
1079 1.207 thorpej p->p_timers = pts;
1080 1.207 thorpej itimer_unlock();
1081 1.207 thorpej return pts;
1082 1.207 thorpej }
1083 1.207 thorpej itimer_unlock();
1084 1.207 thorpej kmem_free(pts, sizeof(*pts));
1085 1.207 thorpej return p->p_timers;
1086 1.207 thorpej }
1087 1.207 thorpej
1088 1.207 thorpej /*
1089 1.207 thorpej * ptimers_free:
1090 1.207 thorpej *
1091 1.207 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1092 1.207 thorpej * then clean up all timers and free all the data structures. If
1093 1.207 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1094 1.207 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1095 1.207 thorpej * structure if none of those remain.
1096 1.207 thorpej *
1097 1.207 thorpej * This function is exported because it is needed in the exec and
1098 1.207 thorpej * exit code paths.
1099 1.207 thorpej */
1100 1.207 thorpej void
1101 1.207 thorpej ptimers_free(struct proc *p, int which)
1102 1.207 thorpej {
1103 1.207 thorpej struct ptimers *pts;
1104 1.207 thorpej struct itimer *itn;
1105 1.207 thorpej struct timespec ts;
1106 1.207 thorpej int i;
1107 1.207 thorpej
1108 1.207 thorpej if (p->p_timers == NULL)
1109 1.207 thorpej return;
1110 1.207 thorpej
1111 1.207 thorpej pts = p->p_timers;
1112 1.207 thorpej itimer_lock();
1113 1.207 thorpej if (which == TIMERS_ALL) {
1114 1.207 thorpej p->p_timers = NULL;
1115 1.207 thorpej i = 0;
1116 1.207 thorpej } else {
1117 1.207 thorpej timespecclear(&ts);
1118 1.207 thorpej for (itn = LIST_FIRST(&pts->pts_virtual);
1119 1.207 thorpej itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1120 1.207 thorpej itn = LIST_NEXT(itn, it_list)) {
1121 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1122 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value, &ts);
1123 1.207 thorpej }
1124 1.207 thorpej LIST_FIRST(&pts->pts_virtual) = NULL;
1125 1.207 thorpej if (itn) {
1126 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1127 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value,
1128 1.207 thorpej &itn->it_time.it_value);
1129 1.207 thorpej LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1130 1.207 thorpej }
1131 1.207 thorpej timespecclear(&ts);
1132 1.207 thorpej for (itn = LIST_FIRST(&pts->pts_prof);
1133 1.207 thorpej itn && itn != pts->pts_timers[ITIMER_PROF];
1134 1.207 thorpej itn = LIST_NEXT(itn, it_list)) {
1135 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_PROF);
1136 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value, &ts);
1137 1.207 thorpej }
1138 1.207 thorpej LIST_FIRST(&pts->pts_prof) = NULL;
1139 1.207 thorpej if (itn) {
1140 1.207 thorpej KASSERT(itn->it_clockid == CLOCK_PROF);
1141 1.207 thorpej timespecadd(&ts, &itn->it_time.it_value,
1142 1.207 thorpej &itn->it_time.it_value);
1143 1.207 thorpej LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1144 1.207 thorpej }
1145 1.207 thorpej i = TIMER_MIN;
1146 1.207 thorpej }
1147 1.207 thorpej for ( ; i < TIMER_MAX; i++) {
1148 1.207 thorpej if (pts->pts_timers[i] != NULL) {
1149 1.207 thorpej /* Free the timer and release the lock. */
1150 1.207 thorpej ptimer_free(pts, i);
1151 1.207 thorpej /* Reacquire the lock for the next one. */
1152 1.207 thorpej itimer_lock();
1153 1.207 thorpej }
1154 1.207 thorpej }
1155 1.207 thorpej if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1156 1.207 thorpej pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1157 1.207 thorpej p->p_timers = NULL;
1158 1.207 thorpej itimer_unlock();
1159 1.207 thorpej kmem_free(pts, sizeof(*pts));
1160 1.207 thorpej } else
1161 1.207 thorpej itimer_unlock();
1162 1.207 thorpej }
1163 1.207 thorpej
1164 1.207 thorpej /*
1165 1.207 thorpej * ptimer_fire:
1166 1.207 thorpej *
1167 1.207 thorpej * Fire a per-process timer.
1168 1.207 thorpej */
1169 1.207 thorpej static void
1170 1.207 thorpej ptimer_fire(struct itimer *it)
1171 1.207 thorpej {
1172 1.207 thorpej struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1173 1.207 thorpej
1174 1.207 thorpej KASSERT(itimer_lock_held());
1175 1.207 thorpej
1176 1.207 thorpej /*
1177 1.207 thorpej * XXX Can overrun, but we don't do signal queueing yet, anyway.
1178 1.207 thorpej * XXX Relying on the clock interrupt is stupid.
1179 1.207 thorpej */
1180 1.207 thorpej if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1181 1.207 thorpej return;
1182 1.207 thorpej }
1183 1.210 thorpej
1184 1.210 thorpej if (!pt->pt_queued) {
1185 1.210 thorpej TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1186 1.210 thorpej pt->pt_queued = true;
1187 1.210 thorpej softint_schedule(ptimer_sih);
1188 1.210 thorpej }
1189 1.207 thorpej }
1190 1.207 thorpej
1191 1.207 thorpej /*
1192 1.207 thorpej * Operations vector for per-process timers (BSD and POSIX).
1193 1.207 thorpej */
1194 1.207 thorpej static const struct itimer_ops ptimer_itimer_ops = {
1195 1.210 thorpej .ito_fire = ptimer_fire,
1196 1.207 thorpej };
1197 1.207 thorpej
1198 1.207 thorpej /*
1199 1.207 thorpej * sys_timer_create:
1200 1.207 thorpej *
1201 1.207 thorpej * System call to create a POSIX timer.
1202 1.207 thorpej */
1203 1.207 thorpej int
1204 1.207 thorpej sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1205 1.207 thorpej register_t *retval)
1206 1.207 thorpej {
1207 1.207 thorpej /* {
1208 1.207 thorpej syscallarg(clockid_t) clock_id;
1209 1.207 thorpej syscallarg(struct sigevent *) evp;
1210 1.207 thorpej syscallarg(timer_t *) timerid;
1211 1.207 thorpej } */
1212 1.207 thorpej
1213 1.207 thorpej return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1214 1.207 thorpej SCARG(uap, evp), copyin, l);
1215 1.207 thorpej }
1216 1.207 thorpej
1217 1.207 thorpej int
1218 1.207 thorpej timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1219 1.207 thorpej copyin_t fetch_event, struct lwp *l)
1220 1.207 thorpej {
1221 1.207 thorpej int error;
1222 1.207 thorpej timer_t timerid;
1223 1.207 thorpej struct itlist *itl;
1224 1.207 thorpej struct ptimers *pts;
1225 1.207 thorpej struct ptimer *pt;
1226 1.207 thorpej struct proc *p;
1227 1.63 thorpej
1228 1.207 thorpej p = l->l_proc;
1229 1.63 thorpej
1230 1.207 thorpej if ((u_int)id > CLOCK_MONOTONIC)
1231 1.217 riastrad return EINVAL;
1232 1.207 thorpej
1233 1.207 thorpej if ((pts = p->p_timers) == NULL)
1234 1.207 thorpej pts = ptimers_alloc(p);
1235 1.207 thorpej
1236 1.207 thorpej pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1237 1.207 thorpej if (evp != NULL) {
1238 1.207 thorpej if (((error =
1239 1.207 thorpej (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1240 1.207 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1241 1.207 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1242 1.207 thorpej (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1243 1.207 thorpej (pt->pt_ev.sigev_signo <= 0 ||
1244 1.207 thorpej pt->pt_ev.sigev_signo >= NSIG))) {
1245 1.207 thorpej kmem_free(pt, sizeof(*pt));
1246 1.207 thorpej return (error ? error : EINVAL);
1247 1.207 thorpej }
1248 1.207 thorpej }
1249 1.207 thorpej
1250 1.207 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
1251 1.207 thorpej itimer_lock();
1252 1.207 thorpej for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1253 1.207 thorpej if (pts->pts_timers[timerid] == NULL)
1254 1.207 thorpej break;
1255 1.207 thorpej if (timerid == TIMER_MAX) {
1256 1.207 thorpej itimer_unlock();
1257 1.207 thorpej kmem_free(pt, sizeof(*pt));
1258 1.207 thorpej return EAGAIN;
1259 1.207 thorpej }
1260 1.207 thorpej if (evp == NULL) {
1261 1.207 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1262 1.207 thorpej switch (id) {
1263 1.207 thorpej case CLOCK_REALTIME:
1264 1.207 thorpej case CLOCK_MONOTONIC:
1265 1.207 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1266 1.207 thorpej break;
1267 1.207 thorpej case CLOCK_VIRTUAL:
1268 1.207 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1269 1.207 thorpej break;
1270 1.207 thorpej case CLOCK_PROF:
1271 1.207 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1272 1.207 thorpej break;
1273 1.207 thorpej }
1274 1.207 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
1275 1.207 thorpej }
1276 1.207 thorpej
1277 1.207 thorpej switch (id) {
1278 1.207 thorpej case CLOCK_VIRTUAL:
1279 1.208 thorpej itl = &pts->pts_virtual;
1280 1.207 thorpej break;
1281 1.207 thorpej case CLOCK_PROF:
1282 1.208 thorpej itl = &pts->pts_prof;
1283 1.207 thorpej break;
1284 1.207 thorpej default:
1285 1.207 thorpej itl = NULL;
1286 1.207 thorpej }
1287 1.207 thorpej
1288 1.207 thorpej itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1289 1.207 thorpej pt->pt_proc = p;
1290 1.207 thorpej pt->pt_poverruns = 0;
1291 1.207 thorpej pt->pt_entry = timerid;
1292 1.210 thorpej pt->pt_queued = false;
1293 1.207 thorpej
1294 1.207 thorpej pts->pts_timers[timerid] = &pt->pt_itimer;
1295 1.207 thorpej itimer_unlock();
1296 1.207 thorpej
1297 1.207 thorpej return copyout(&timerid, tid, sizeof(timerid));
1298 1.207 thorpej }
1299 1.207 thorpej
1300 1.207 thorpej /*
1301 1.207 thorpej * sys_timer_delete:
1302 1.207 thorpej *
1303 1.207 thorpej * System call to delete a POSIX timer.
1304 1.207 thorpej */
1305 1.207 thorpej int
1306 1.207 thorpej sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1307 1.207 thorpej register_t *retval)
1308 1.207 thorpej {
1309 1.207 thorpej /* {
1310 1.207 thorpej syscallarg(timer_t) timerid;
1311 1.207 thorpej } */
1312 1.207 thorpej struct proc *p = l->l_proc;
1313 1.207 thorpej timer_t timerid;
1314 1.207 thorpej struct ptimers *pts;
1315 1.207 thorpej struct itimer *it, *itn;
1316 1.207 thorpej
1317 1.207 thorpej timerid = SCARG(uap, timerid);
1318 1.207 thorpej pts = p->p_timers;
1319 1.217 riastrad
1320 1.207 thorpej if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1321 1.217 riastrad return EINVAL;
1322 1.207 thorpej
1323 1.207 thorpej itimer_lock();
1324 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1325 1.207 thorpej itimer_unlock();
1326 1.217 riastrad return EINVAL;
1327 1.207 thorpej }
1328 1.207 thorpej
1329 1.207 thorpej if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1330 1.207 thorpej if (it->it_active) {
1331 1.207 thorpej itn = LIST_NEXT(it, it_list);
1332 1.207 thorpej LIST_REMOVE(it, it_list);
1333 1.207 thorpej for ( ; itn; itn = LIST_NEXT(itn, it_list))
1334 1.207 thorpej timespecadd(&it->it_time.it_value,
1335 1.207 thorpej &itn->it_time.it_value,
1336 1.207 thorpej &itn->it_time.it_value);
1337 1.207 thorpej it->it_active = false;
1338 1.207 thorpej }
1339 1.207 thorpej }
1340 1.207 thorpej
1341 1.207 thorpej /* Free the timer and release the lock. */
1342 1.207 thorpej ptimer_free(pts, timerid);
1343 1.207 thorpej
1344 1.217 riastrad return 0;
1345 1.207 thorpej }
1346 1.207 thorpej
1347 1.207 thorpej /*
1348 1.207 thorpej * sys___timer_settime50:
1349 1.207 thorpej *
1350 1.207 thorpej * System call to set/arm a POSIX timer.
1351 1.207 thorpej */
1352 1.63 thorpej int
1353 1.156 christos sys___timer_settime50(struct lwp *l,
1354 1.156 christos const struct sys___timer_settime50_args *uap,
1355 1.140 yamt register_t *retval)
1356 1.63 thorpej {
1357 1.135 dsl /* {
1358 1.63 thorpej syscallarg(timer_t) timerid;
1359 1.63 thorpej syscallarg(int) flags;
1360 1.63 thorpej syscallarg(const struct itimerspec *) value;
1361 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
1362 1.135 dsl } */
1363 1.92 cube int error;
1364 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
1365 1.92 cube
1366 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
1367 1.92 cube sizeof(struct itimerspec))) != 0)
1368 1.217 riastrad return error;
1369 1.92 cube
1370 1.92 cube if (SCARG(uap, ovalue))
1371 1.92 cube ovp = &ovalue;
1372 1.92 cube
1373 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1374 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
1375 1.92 cube return error;
1376 1.92 cube
1377 1.92 cube if (ovp)
1378 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
1379 1.92 cube sizeof(struct itimerspec));
1380 1.92 cube return 0;
1381 1.92 cube }
1382 1.92 cube
1383 1.92 cube int
1384 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
1385 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
1386 1.92 cube {
1387 1.150 christos struct timespec now;
1388 1.223 riastrad struct itimerspec val;
1389 1.142 ad struct ptimers *pts;
1390 1.207 thorpej struct itimer *it;
1391 1.160 christos int error;
1392 1.63 thorpej
1393 1.142 ad pts = p->p_timers;
1394 1.63 thorpej
1395 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1396 1.142 ad return EINVAL;
1397 1.150 christos val = *value;
1398 1.222 riastrad if (itimespecfix(&val.it_value) != 0 ||
1399 1.222 riastrad itimespecfix(&val.it_interval) != 0)
1400 1.222 riastrad return EINVAL;
1401 1.63 thorpej
1402 1.207 thorpej itimer_lock();
1403 1.207 thorpej restart:
1404 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1405 1.207 thorpej itimer_unlock();
1406 1.150 christos return EINVAL;
1407 1.142 ad }
1408 1.142 ad
1409 1.223 riastrad if (ovalue)
1410 1.223 riastrad itimer_gettime(it, ovalue);
1411 1.207 thorpej it->it_time = val;
1412 1.63 thorpej
1413 1.67 nathanw /*
1414 1.67 nathanw * If we've been passed a relative time for a realtime timer,
1415 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
1416 1.67 nathanw * timer, convert it to relative and make sure we don't set it
1417 1.67 nathanw * to zero, which would cancel the timer, or let it go
1418 1.67 nathanw * negative, which would confuse the comparison tests.
1419 1.67 nathanw */
1420 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
1421 1.207 thorpej if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1422 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
1423 1.207 thorpej if (it->it_clockid == CLOCK_REALTIME) {
1424 1.168 yamt getnanotime(&now);
1425 1.168 yamt } else { /* CLOCK_MONOTONIC */
1426 1.168 yamt getnanouptime(&now);
1427 1.168 yamt }
1428 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1429 1.207 thorpej &it->it_time.it_value);
1430 1.101 kardel }
1431 1.67 nathanw } else {
1432 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
1433 1.150 christos getnanotime(&now);
1434 1.207 thorpej timespecsub(&it->it_time.it_value, &now,
1435 1.207 thorpej &it->it_time.it_value);
1436 1.207 thorpej if (!timespecisset(&it->it_time.it_value) ||
1437 1.207 thorpej it->it_time.it_value.tv_sec < 0) {
1438 1.207 thorpej it->it_time.it_value.tv_sec = 0;
1439 1.207 thorpej it->it_time.it_value.tv_nsec = 1;
1440 1.67 nathanw }
1441 1.67 nathanw }
1442 1.67 nathanw }
1443 1.67 nathanw }
1444 1.67 nathanw
1445 1.207 thorpej error = itimer_settime(it);
1446 1.198 riastrad if (error == ERESTART) {
1447 1.207 thorpej KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1448 1.198 riastrad goto restart;
1449 1.198 riastrad }
1450 1.198 riastrad KASSERT(error == 0);
1451 1.207 thorpej itimer_unlock();
1452 1.63 thorpej
1453 1.217 riastrad return 0;
1454 1.63 thorpej }
1455 1.63 thorpej
1456 1.207 thorpej /*
1457 1.207 thorpej * sys___timer_gettime50:
1458 1.207 thorpej *
1459 1.207 thorpej * System call to return the time remaining until a POSIX timer fires.
1460 1.207 thorpej */
1461 1.63 thorpej int
1462 1.156 christos sys___timer_gettime50(struct lwp *l,
1463 1.156 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
1464 1.63 thorpej {
1465 1.135 dsl /* {
1466 1.63 thorpej syscallarg(timer_t) timerid;
1467 1.63 thorpej syscallarg(struct itimerspec *) value;
1468 1.135 dsl } */
1469 1.63 thorpej struct itimerspec its;
1470 1.92 cube int error;
1471 1.92 cube
1472 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1473 1.92 cube &its)) != 0)
1474 1.92 cube return error;
1475 1.92 cube
1476 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
1477 1.92 cube }
1478 1.92 cube
1479 1.92 cube int
1480 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1481 1.92 cube {
1482 1.207 thorpej struct itimer *it;
1483 1.142 ad struct ptimers *pts;
1484 1.63 thorpej
1485 1.142 ad pts = p->p_timers;
1486 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1487 1.217 riastrad return EINVAL;
1488 1.207 thorpej itimer_lock();
1489 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1490 1.207 thorpej itimer_unlock();
1491 1.217 riastrad return EINVAL;
1492 1.142 ad }
1493 1.207 thorpej itimer_gettime(it, its);
1494 1.207 thorpej itimer_unlock();
1495 1.63 thorpej
1496 1.92 cube return 0;
1497 1.63 thorpej }
1498 1.63 thorpej
1499 1.63 thorpej /*
1500 1.207 thorpej * sys_timer_getoverrun:
1501 1.207 thorpej *
1502 1.207 thorpej * System call to return the number of times a POSIX timer has
1503 1.207 thorpej * expired while a notification was already pending. The counter
1504 1.207 thorpej * is reset when a timer expires and a notification can be posted.
1505 1.63 thorpej */
1506 1.63 thorpej int
1507 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1508 1.140 yamt register_t *retval)
1509 1.63 thorpej {
1510 1.135 dsl /* {
1511 1.63 thorpej syscallarg(timer_t) timerid;
1512 1.135 dsl } */
1513 1.63 thorpej struct proc *p = l->l_proc;
1514 1.142 ad struct ptimers *pts;
1515 1.63 thorpej int timerid;
1516 1.207 thorpej struct itimer *it;
1517 1.63 thorpej struct ptimer *pt;
1518 1.63 thorpej
1519 1.63 thorpej timerid = SCARG(uap, timerid);
1520 1.63 thorpej
1521 1.142 ad pts = p->p_timers;
1522 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1523 1.217 riastrad return EINVAL;
1524 1.207 thorpej itimer_lock();
1525 1.207 thorpej if ((it = pts->pts_timers[timerid]) == NULL) {
1526 1.207 thorpej itimer_unlock();
1527 1.217 riastrad return EINVAL;
1528 1.142 ad }
1529 1.207 thorpej pt = container_of(it, struct ptimer, pt_itimer);
1530 1.63 thorpej *retval = pt->pt_poverruns;
1531 1.187 christos if (*retval >= DELAYTIMER_MAX)
1532 1.187 christos *retval = DELAYTIMER_MAX;
1533 1.207 thorpej itimer_unlock();
1534 1.63 thorpej
1535 1.217 riastrad return 0;
1536 1.63 thorpej }
1537 1.63 thorpej
1538 1.63 thorpej /*
1539 1.207 thorpej * sys___getitimer50:
1540 1.207 thorpej *
1541 1.207 thorpej * System call to get the time remaining before a BSD timer fires.
1542 1.63 thorpej */
1543 1.63 thorpej int
1544 1.156 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1545 1.140 yamt register_t *retval)
1546 1.63 thorpej {
1547 1.135 dsl /* {
1548 1.63 thorpej syscallarg(int) which;
1549 1.63 thorpej syscallarg(struct itimerval *) itv;
1550 1.135 dsl } */
1551 1.63 thorpej struct proc *p = l->l_proc;
1552 1.63 thorpej struct itimerval aitv;
1553 1.91 cube int error;
1554 1.91 cube
1555 1.191 maxv memset(&aitv, 0, sizeof(aitv));
1556 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1557 1.91 cube if (error)
1558 1.91 cube return error;
1559 1.217 riastrad return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
1560 1.91 cube }
1561 1.63 thorpej
1562 1.91 cube int
1563 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1564 1.91 cube {
1565 1.142 ad struct ptimers *pts;
1566 1.207 thorpej struct itimer *it;
1567 1.150 christos struct itimerspec its;
1568 1.63 thorpej
1569 1.170 christos if ((u_int)which > ITIMER_MONOTONIC)
1570 1.217 riastrad return EINVAL;
1571 1.63 thorpej
1572 1.207 thorpej itimer_lock();
1573 1.142 ad pts = p->p_timers;
1574 1.207 thorpej if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1575 1.91 cube timerclear(&itvp->it_value);
1576 1.91 cube timerclear(&itvp->it_interval);
1577 1.150 christos } else {
1578 1.207 thorpej itimer_gettime(it, &its);
1579 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1580 1.151 christos TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1581 1.150 christos }
1582 1.207 thorpej itimer_unlock();
1583 1.63 thorpej
1584 1.91 cube return 0;
1585 1.1 cgd }
1586 1.1 cgd
1587 1.207 thorpej /*
1588 1.207 thorpej * sys___setitimer50:
1589 1.207 thorpej *
1590 1.207 thorpej * System call to set/arm a BSD timer.
1591 1.207 thorpej */
1592 1.3 andrew int
1593 1.156 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1594 1.140 yamt register_t *retval)
1595 1.15 thorpej {
1596 1.135 dsl /* {
1597 1.30 mycroft syscallarg(int) which;
1598 1.24 cgd syscallarg(const struct itimerval *) itv;
1599 1.11 cgd syscallarg(struct itimerval *) oitv;
1600 1.135 dsl } */
1601 1.63 thorpej struct proc *p = l->l_proc;
1602 1.30 mycroft int which = SCARG(uap, which);
1603 1.156 christos struct sys___getitimer50_args getargs;
1604 1.91 cube const struct itimerval *itvp;
1605 1.1 cgd struct itimerval aitv;
1606 1.91 cube int error;
1607 1.1 cgd
1608 1.11 cgd itvp = SCARG(uap, itv);
1609 1.63 thorpej if (itvp &&
1610 1.174 dholland (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1611 1.217 riastrad return error;
1612 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1613 1.30 mycroft SCARG(&getargs, which) = which;
1614 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1615 1.156 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1616 1.217 riastrad return error;
1617 1.21 cgd }
1618 1.1 cgd if (itvp == 0)
1619 1.217 riastrad return 0;
1620 1.91 cube
1621 1.91 cube return dosetitimer(p, which, &aitv);
1622 1.91 cube }
1623 1.91 cube
1624 1.91 cube int
1625 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1626 1.91 cube {
1627 1.150 christos struct timespec now;
1628 1.142 ad struct ptimers *pts;
1629 1.207 thorpej struct ptimer *spare;
1630 1.207 thorpej struct itimer *it;
1631 1.207 thorpej struct itlist *itl;
1632 1.198 riastrad int error;
1633 1.91 cube
1634 1.211 simonb if ((u_int)which > ITIMER_MONOTONIC)
1635 1.217 riastrad return EINVAL;
1636 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1637 1.217 riastrad return EINVAL;
1638 1.63 thorpej
1639 1.63 thorpej /*
1640 1.63 thorpej * Don't bother allocating data structures if the process just
1641 1.63 thorpej * wants to clear the timer.
1642 1.63 thorpej */
1643 1.142 ad spare = NULL;
1644 1.142 ad pts = p->p_timers;
1645 1.142 ad retry:
1646 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1647 1.142 ad pts->pts_timers[which] == NULL))
1648 1.217 riastrad return 0;
1649 1.142 ad if (pts == NULL)
1650 1.207 thorpej pts = ptimers_alloc(p);
1651 1.207 thorpej itimer_lock();
1652 1.207 thorpej restart:
1653 1.207 thorpej it = pts->pts_timers[which];
1654 1.207 thorpej if (it == NULL) {
1655 1.207 thorpej struct ptimer *pt;
1656 1.207 thorpej
1657 1.142 ad if (spare == NULL) {
1658 1.207 thorpej itimer_unlock();
1659 1.207 thorpej spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1660 1.142 ad goto retry;
1661 1.142 ad }
1662 1.142 ad pt = spare;
1663 1.142 ad spare = NULL;
1664 1.207 thorpej
1665 1.207 thorpej it = &pt->pt_itimer;
1666 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1667 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1668 1.149 christos
1669 1.63 thorpej switch (which) {
1670 1.63 thorpej case ITIMER_REAL:
1671 1.170 christos case ITIMER_MONOTONIC:
1672 1.207 thorpej itl = NULL;
1673 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1674 1.63 thorpej break;
1675 1.63 thorpej case ITIMER_VIRTUAL:
1676 1.208 thorpej itl = &pts->pts_virtual;
1677 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1678 1.63 thorpej break;
1679 1.63 thorpej case ITIMER_PROF:
1680 1.208 thorpej itl = &pts->pts_prof;
1681 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1682 1.63 thorpej break;
1683 1.209 christos default:
1684 1.209 christos panic("%s: can't happen %d", __func__, which);
1685 1.1 cgd }
1686 1.207 thorpej itimer_init(it, &ptimer_itimer_ops, which, itl);
1687 1.207 thorpej pt->pt_proc = p;
1688 1.207 thorpej pt->pt_entry = which;
1689 1.207 thorpej
1690 1.207 thorpej pts->pts_timers[which] = it;
1691 1.142 ad }
1692 1.63 thorpej
1693 1.207 thorpej TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1694 1.207 thorpej TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1695 1.150 christos
1696 1.215 riastrad error = 0;
1697 1.207 thorpej if (timespecisset(&it->it_time.it_value)) {
1698 1.67 nathanw /* Convert to absolute time */
1699 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1700 1.170 christos switch (which) {
1701 1.170 christos case ITIMER_REAL:
1702 1.170 christos getnanotime(&now);
1703 1.215 riastrad if (!timespecaddok(&it->it_time.it_value, &now)) {
1704 1.215 riastrad error = EINVAL;
1705 1.215 riastrad goto out;
1706 1.215 riastrad }
1707 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1708 1.207 thorpej &it->it_time.it_value);
1709 1.170 christos break;
1710 1.170 christos case ITIMER_MONOTONIC:
1711 1.170 christos getnanouptime(&now);
1712 1.215 riastrad if (!timespecaddok(&it->it_time.it_value, &now)) {
1713 1.215 riastrad error = EINVAL;
1714 1.215 riastrad goto out;
1715 1.215 riastrad }
1716 1.207 thorpej timespecadd(&it->it_time.it_value, &now,
1717 1.207 thorpej &it->it_time.it_value);
1718 1.170 christos break;
1719 1.170 christos default:
1720 1.170 christos break;
1721 1.170 christos }
1722 1.67 nathanw }
1723 1.215 riastrad
1724 1.207 thorpej error = itimer_settime(it);
1725 1.198 riastrad if (error == ERESTART) {
1726 1.207 thorpej KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1727 1.198 riastrad goto restart;
1728 1.198 riastrad }
1729 1.198 riastrad KASSERT(error == 0);
1730 1.215 riastrad out:
1731 1.207 thorpej itimer_unlock();
1732 1.142 ad if (spare != NULL)
1733 1.207 thorpej kmem_free(spare, sizeof(*spare));
1734 1.63 thorpej
1735 1.215 riastrad return error;
1736 1.1 cgd }
1737 1.1 cgd
1738 1.1 cgd /*
1739 1.207 thorpej * ptimer_tick:
1740 1.207 thorpej *
1741 1.207 thorpej * Called from hardclock() to decrement per-process virtual timers.
1742 1.1 cgd */
1743 1.3 andrew void
1744 1.207 thorpej ptimer_tick(lwp_t *l, bool user)
1745 1.6 cgd {
1746 1.63 thorpej struct ptimers *pts;
1747 1.207 thorpej struct itimer *it;
1748 1.142 ad proc_t *p;
1749 1.142 ad
1750 1.142 ad p = l->l_proc;
1751 1.142 ad if (p->p_timers == NULL)
1752 1.142 ad return;
1753 1.142 ad
1754 1.207 thorpej itimer_lock();
1755 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1756 1.63 thorpej /*
1757 1.142 ad * Run current process's virtual and profile time, as needed.
1758 1.63 thorpej */
1759 1.207 thorpej if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1760 1.207 thorpej if (itimer_decr(it, tick * 1000))
1761 1.207 thorpej (*it->it_ops->ito_fire)(it);
1762 1.207 thorpej if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1763 1.207 thorpej if (itimer_decr(it, tick * 1000))
1764 1.207 thorpej (*it->it_ops->ito_fire)(it);
1765 1.142 ad }
1766 1.207 thorpej itimer_unlock();
1767 1.142 ad }
1768 1.142 ad
1769 1.207 thorpej /*
1770 1.207 thorpej * ptimer_intr:
1771 1.207 thorpej *
1772 1.207 thorpej * Software interrupt handler for processing per-process
1773 1.207 thorpej * timer expiration.
1774 1.207 thorpej */
1775 1.142 ad static void
1776 1.207 thorpej ptimer_intr(void *cookie)
1777 1.142 ad {
1778 1.142 ad ksiginfo_t ksi;
1779 1.207 thorpej struct itimer *it;
1780 1.142 ad struct ptimer *pt;
1781 1.142 ad proc_t *p;
1782 1.217 riastrad
1783 1.205 ad mutex_enter(&proc_lock);
1784 1.207 thorpej itimer_lock();
1785 1.210 thorpej while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1786 1.210 thorpej it = &pt->pt_itimer;
1787 1.142 ad
1788 1.210 thorpej TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1789 1.210 thorpej KASSERT(pt->pt_queued);
1790 1.210 thorpej pt->pt_queued = false;
1791 1.207 thorpej
1792 1.207 thorpej p = pt->pt_proc;
1793 1.207 thorpej if (p->p_timers == NULL) {
1794 1.154 wrstuden /* Process is dying. */
1795 1.142 ad continue;
1796 1.154 wrstuden }
1797 1.172 rmind if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1798 1.142 ad continue;
1799 1.142 ad }
1800 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1801 1.207 thorpej it->it_overruns++;
1802 1.142 ad continue;
1803 1.64 nathanw }
1804 1.142 ad
1805 1.142 ad KSI_INIT(&ksi);
1806 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1807 1.142 ad ksi.ksi_code = SI_TIMER;
1808 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1809 1.207 thorpej pt->pt_poverruns = it->it_overruns;
1810 1.207 thorpej it->it_overruns = 0;
1811 1.207 thorpej itimer_unlock();
1812 1.142 ad kpsignal(p, &ksi, NULL);
1813 1.207 thorpej itimer_lock();
1814 1.63 thorpej }
1815 1.207 thorpej itimer_unlock();
1816 1.205 ad mutex_exit(&proc_lock);
1817 1.63 thorpej }
1818