Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.24
      1  1.24       cgd /*	$NetBSD: kern_time.c,v 1.24 1996/12/22 10:21:11 cgd Exp $	*/
      2   1.9       cgd 
      3   1.1       cgd /*
      4   1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.8       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Redistribution and use in source and binary forms, with or without
      8   1.1       cgd  * modification, are permitted provided that the following conditions
      9   1.1       cgd  * are met:
     10   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     11   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     12   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     14   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     15   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     16   1.1       cgd  *    must display the following acknowledgement:
     17   1.1       cgd  *	This product includes software developed by the University of
     18   1.1       cgd  *	California, Berkeley and its contributors.
     19   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     20   1.1       cgd  *    may be used to endorse or promote products derived from this software
     21   1.1       cgd  *    without specific prior written permission.
     22   1.1       cgd  *
     23   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1       cgd  * SUCH DAMAGE.
     34   1.1       cgd  *
     35   1.9       cgd  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36   1.1       cgd  */
     37   1.1       cgd 
     38   1.5   mycroft #include <sys/param.h>
     39   1.5   mycroft #include <sys/resourcevar.h>
     40   1.5   mycroft #include <sys/kernel.h>
     41   1.8       cgd #include <sys/systm.h>
     42   1.5   mycroft #include <sys/proc.h>
     43   1.8       cgd #include <sys/vnode.h>
     44  1.17  christos #include <sys/signalvar.h>
     45   1.1       cgd 
     46  1.11       cgd #include <sys/mount.h>
     47  1.11       cgd #include <sys/syscallargs.h>
     48  1.19  christos 
     49  1.19  christos #if defined(NFSCLIENT) || defined(NFSSERVER)
     50  1.20      fvdl #include <nfs/rpcv2.h>
     51  1.20      fvdl #include <nfs/nfsproto.h>
     52  1.19  christos #include <nfs/nfs_var.h>
     53  1.19  christos #endif
     54  1.17  christos 
     55   1.5   mycroft #include <machine/cpu.h>
     56   1.1       cgd 
     57  1.23       cgd static void	settime __P((struct timeval *));
     58  1.23       cgd 
     59  1.23       cgd /*
     60   1.1       cgd  * Time of day and interval timer support.
     61   1.1       cgd  *
     62   1.1       cgd  * These routines provide the kernel entry points to get and set
     63   1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
     64   1.1       cgd  * here provide support for adding and subtracting timeval structures
     65   1.1       cgd  * and decrementing interval timers, optionally reloading the interval
     66   1.1       cgd  * timers when they expire.
     67   1.1       cgd  */
     68   1.1       cgd 
     69  1.22       jtc 
     70  1.22       jtc /* This function is used by clock_settime and settimeofday */
     71  1.22       jtc static void
     72  1.22       jtc settime(tv)
     73  1.22       jtc 	struct timeval *tv;
     74  1.22       jtc {
     75  1.22       jtc 	struct timeval delta;
     76  1.22       jtc 	int s;
     77  1.22       jtc 
     78  1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
     79  1.22       jtc 	s = splclock();
     80  1.22       jtc 	timersub(tv, &time, &delta);
     81  1.22       jtc 	time = *tv;
     82  1.22       jtc 	(void) splsoftclock();
     83  1.22       jtc 	timeradd(&boottime, &delta, &boottime);
     84  1.22       jtc 	timeradd(&runtime, &delta, &runtime);
     85  1.22       jtc #	if defined(NFSCLIENT) || defined(NFSSERVER)
     86  1.22       jtc 		nqnfs_lease_updatetime(delta.tv_sec);
     87  1.22       jtc #	endif
     88  1.22       jtc 	splx(s);
     89  1.22       jtc 	resettodr();
     90  1.22       jtc }
     91  1.22       jtc 
     92  1.22       jtc /* ARGSUSED */
     93  1.22       jtc int
     94  1.22       jtc sys_clock_gettime(p, v, retval)
     95  1.22       jtc 	struct proc *p;
     96  1.22       jtc 	void *v;
     97  1.22       jtc 	register_t *retval;
     98  1.22       jtc {
     99  1.22       jtc 	register struct sys_clock_gettime_args /* {
    100  1.22       jtc 		syscallarg(clockid_t) clock_id;
    101  1.23       cgd 		syscallarg(struct timespec *) tp;
    102  1.23       cgd 	} */ *uap = v;
    103  1.22       jtc 	clockid_t clock_id;
    104  1.22       jtc 	struct timeval atv;
    105  1.22       jtc 	struct timespec ats;
    106  1.22       jtc 
    107  1.22       jtc 	clock_id = SCARG(uap, clock_id);
    108  1.22       jtc 	if (clock_id != CLOCK_REALTIME)
    109  1.22       jtc 		return (EINVAL);
    110  1.22       jtc 
    111  1.22       jtc 	microtime(&atv);
    112  1.22       jtc 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    113  1.22       jtc 
    114  1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    115  1.22       jtc }
    116  1.22       jtc 
    117  1.22       jtc /* ARGSUSED */
    118  1.22       jtc int
    119  1.22       jtc sys_clock_settime(p, v, retval)
    120  1.22       jtc 	struct proc *p;
    121  1.22       jtc 	void *v;
    122  1.22       jtc 	register_t *retval;
    123  1.22       jtc {
    124  1.22       jtc 	register struct sys_clock_settime_args /* {
    125  1.22       jtc 		syscallarg(clockid_t) clock_id;
    126  1.23       cgd 		syscallarg(const struct timespec *) tp;
    127  1.23       cgd 	} */ *uap = v;
    128  1.22       jtc 	clockid_t clock_id;
    129  1.22       jtc 	struct timeval atv;
    130  1.22       jtc 	struct timespec ats;
    131  1.22       jtc 	int error;
    132  1.22       jtc 
    133  1.22       jtc 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    134  1.22       jtc 		return (error);
    135  1.22       jtc 
    136  1.22       jtc 	clock_id = SCARG(uap, clock_id);
    137  1.22       jtc 	if (clock_id != CLOCK_REALTIME)
    138  1.22       jtc 		return (EINVAL);
    139  1.22       jtc 
    140  1.24       cgd 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    141  1.23       cgd 		return (error);
    142  1.22       jtc 
    143  1.22       jtc 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    144  1.22       jtc 	settime(&atv);
    145  1.22       jtc 
    146  1.22       jtc 	return 0;
    147  1.22       jtc }
    148  1.22       jtc 
    149  1.22       jtc int
    150  1.22       jtc sys_clock_getres(p, v, retval)
    151  1.22       jtc 	struct proc *p;
    152  1.22       jtc 	void *v;
    153  1.22       jtc 	register_t *retval;
    154  1.22       jtc {
    155  1.22       jtc 	register struct sys_clock_getres_args /* {
    156  1.22       jtc 		syscallarg(clockid_t) clock_id;
    157  1.23       cgd 		syscallarg(struct timespec *) tp;
    158  1.23       cgd 	} */ *uap = v;
    159  1.22       jtc 	clockid_t clock_id;
    160  1.22       jtc 	struct timespec ts;
    161  1.22       jtc 	int error = 0;
    162  1.22       jtc 
    163  1.22       jtc 	clock_id = SCARG(uap, clock_id);
    164  1.22       jtc 	if (clock_id != CLOCK_REALTIME)
    165  1.22       jtc 		return (EINVAL);
    166  1.22       jtc 
    167  1.22       jtc 	if (SCARG(uap, tp)) {
    168  1.22       jtc 		ts.tv_sec = 0;
    169  1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    170  1.22       jtc 
    171  1.24       cgd 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
    172  1.22       jtc 	}
    173  1.22       jtc 
    174  1.22       jtc 	return error;
    175  1.22       jtc }
    176  1.22       jtc 
    177  1.22       jtc 
    178   1.1       cgd /* ARGSUSED */
    179   1.3    andrew int
    180  1.16   mycroft sys_gettimeofday(p, v, retval)
    181   1.1       cgd 	struct proc *p;
    182  1.15   thorpej 	void *v;
    183  1.15   thorpej 	register_t *retval;
    184  1.15   thorpej {
    185  1.16   mycroft 	register struct sys_gettimeofday_args /* {
    186  1.11       cgd 		syscallarg(struct timeval *) tp;
    187  1.11       cgd 		syscallarg(struct timezone *) tzp;
    188  1.15   thorpej 	} */ *uap = v;
    189   1.1       cgd 	struct timeval atv;
    190   1.1       cgd 	int error = 0;
    191   1.1       cgd 
    192  1.11       cgd 	if (SCARG(uap, tp)) {
    193   1.1       cgd 		microtime(&atv);
    194  1.24       cgd 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
    195  1.17  christos 		if (error)
    196   1.1       cgd 			return (error);
    197   1.1       cgd 	}
    198  1.11       cgd 	if (SCARG(uap, tzp))
    199  1.24       cgd 		error = copyout(&tz, SCARG(uap, tzp), sizeof (tz));
    200   1.1       cgd 	return (error);
    201   1.1       cgd }
    202   1.1       cgd 
    203   1.1       cgd /* ARGSUSED */
    204   1.3    andrew int
    205  1.16   mycroft sys_settimeofday(p, v, retval)
    206   1.1       cgd 	struct proc *p;
    207  1.15   thorpej 	void *v;
    208  1.15   thorpej 	register_t *retval;
    209  1.15   thorpej {
    210  1.16   mycroft 	struct sys_settimeofday_args /* {
    211  1.24       cgd 		syscallarg(const struct timeval *) tv;
    212  1.24       cgd 		syscallarg(const struct timezone *) tzp;
    213  1.15   thorpej 	} */ *uap = v;
    214  1.22       jtc 	struct timeval atv;
    215   1.1       cgd 	struct timezone atz;
    216  1.22       jtc 	int error;
    217   1.1       cgd 
    218  1.17  christos 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    219   1.1       cgd 		return (error);
    220   1.8       cgd 	/* Verify all parameters before changing time. */
    221  1.24       cgd 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
    222  1.24       cgd 	    &atv, sizeof(atv))))
    223   1.8       cgd 		return (error);
    224  1.24       cgd 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
    225  1.24       cgd 	    &atz, sizeof(atz))))
    226   1.8       cgd 		return (error);
    227  1.22       jtc 	if (SCARG(uap, tv))
    228  1.22       jtc 		settime(&atv);
    229  1.11       cgd 	if (SCARG(uap, tzp))
    230   1.1       cgd 		tz = atz;
    231   1.8       cgd 	return (0);
    232   1.1       cgd }
    233   1.1       cgd 
    234   1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    235   1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    236   1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    237   1.1       cgd 
    238   1.1       cgd /* ARGSUSED */
    239   1.3    andrew int
    240  1.16   mycroft sys_adjtime(p, v, retval)
    241   1.1       cgd 	struct proc *p;
    242  1.15   thorpej 	void *v;
    243  1.15   thorpej 	register_t *retval;
    244  1.15   thorpej {
    245  1.16   mycroft 	register struct sys_adjtime_args /* {
    246  1.24       cgd 		syscallarg(const struct timeval *) delta;
    247  1.11       cgd 		syscallarg(struct timeval *) olddelta;
    248  1.15   thorpej 	} */ *uap = v;
    249   1.8       cgd 	struct timeval atv;
    250   1.8       cgd 	register long ndelta, ntickdelta, odelta;
    251   1.1       cgd 	int s, error;
    252   1.1       cgd 
    253  1.17  christos 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    254   1.1       cgd 		return (error);
    255  1.17  christos 
    256  1.24       cgd 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
    257  1.17  christos 	if (error)
    258   1.1       cgd 		return (error);
    259   1.8       cgd 
    260   1.8       cgd 	/*
    261   1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    262   1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    263   1.8       cgd 	 * delta, so that after some number of incremental changes in
    264   1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    265   1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    266   1.8       cgd 	 */
    267   1.1       cgd 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    268   1.8       cgd 	if (ndelta > bigadj)
    269   1.8       cgd 		ntickdelta = 10 * tickadj;
    270   1.8       cgd 	else
    271   1.8       cgd 		ntickdelta = tickadj;
    272   1.8       cgd 	if (ndelta % ntickdelta)
    273   1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    274   1.8       cgd 
    275   1.8       cgd 	/*
    276   1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    277   1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    278   1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    279   1.8       cgd 	 */
    280   1.8       cgd 	if (ndelta < 0)
    281   1.8       cgd 		ntickdelta = -ntickdelta;
    282   1.1       cgd 	s = splclock();
    283   1.8       cgd 	odelta = timedelta;
    284   1.1       cgd 	timedelta = ndelta;
    285   1.8       cgd 	tickdelta = ntickdelta;
    286   1.1       cgd 	splx(s);
    287   1.1       cgd 
    288  1.11       cgd 	if (SCARG(uap, olddelta)) {
    289   1.8       cgd 		atv.tv_sec = odelta / 1000000;
    290   1.8       cgd 		atv.tv_usec = odelta % 1000000;
    291  1.24       cgd 		(void) copyout(&atv, SCARG(uap, olddelta),
    292   1.8       cgd 		    sizeof(struct timeval));
    293   1.8       cgd 	}
    294   1.1       cgd 	return (0);
    295   1.1       cgd }
    296   1.1       cgd 
    297   1.1       cgd /*
    298   1.1       cgd  * Get value of an interval timer.  The process virtual and
    299   1.1       cgd  * profiling virtual time timers are kept in the p_stats area, since
    300   1.1       cgd  * they can be swapped out.  These are kept internally in the
    301   1.1       cgd  * way they are specified externally: in time until they expire.
    302   1.1       cgd  *
    303   1.1       cgd  * The real time interval timer is kept in the process table slot
    304   1.1       cgd  * for the process, and its value (it_value) is kept as an
    305   1.1       cgd  * absolute time rather than as a delta, so that it is easy to keep
    306   1.1       cgd  * periodic real-time signals from drifting.
    307   1.1       cgd  *
    308   1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    309   1.1       cgd  * kern_clock.c.  The real time timer is processed by a timeout
    310   1.1       cgd  * routine, called from the softclock() routine.  Since a callout
    311   1.1       cgd  * may be delayed in real time due to interrupt processing in the system,
    312   1.1       cgd  * it is possible for the real time timeout routine (realitexpire, given below),
    313   1.1       cgd  * to be delayed in real time past when it is supposed to occur.  It
    314   1.1       cgd  * does not suffice, therefore, to reload the real timer .it_value from the
    315   1.1       cgd  * real time timers .it_interval.  Rather, we compute the next time in
    316   1.1       cgd  * absolute time the timer should go off.
    317   1.1       cgd  */
    318   1.1       cgd /* ARGSUSED */
    319   1.3    andrew int
    320  1.16   mycroft sys_getitimer(p, v, retval)
    321   1.1       cgd 	struct proc *p;
    322  1.15   thorpej 	void *v;
    323  1.15   thorpej 	register_t *retval;
    324  1.15   thorpej {
    325  1.16   mycroft 	register struct sys_getitimer_args /* {
    326  1.11       cgd 		syscallarg(u_int) which;
    327  1.11       cgd 		syscallarg(struct itimerval *) itv;
    328  1.15   thorpej 	} */ *uap = v;
    329   1.1       cgd 	struct itimerval aitv;
    330   1.1       cgd 	int s;
    331   1.1       cgd 
    332  1.11       cgd 	if (SCARG(uap, which) > ITIMER_PROF)
    333   1.1       cgd 		return (EINVAL);
    334   1.1       cgd 	s = splclock();
    335  1.11       cgd 	if (SCARG(uap, which) == ITIMER_REAL) {
    336   1.1       cgd 		/*
    337  1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    338   1.1       cgd 		 * part of real time timer.  If time for real time timer
    339   1.1       cgd 		 * has passed return 0, else return difference between
    340   1.1       cgd 		 * current time and time for the timer to go off.
    341   1.1       cgd 		 */
    342   1.1       cgd 		aitv = p->p_realtimer;
    343   1.1       cgd 		if (timerisset(&aitv.it_value))
    344   1.1       cgd 			if (timercmp(&aitv.it_value, &time, <))
    345   1.1       cgd 				timerclear(&aitv.it_value);
    346   1.1       cgd 			else
    347  1.14   mycroft 				timersub(&aitv.it_value, &time, &aitv.it_value);
    348   1.1       cgd 	} else
    349  1.11       cgd 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    350   1.1       cgd 	splx(s);
    351  1.24       cgd 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
    352   1.1       cgd }
    353   1.1       cgd 
    354   1.1       cgd /* ARGSUSED */
    355   1.3    andrew int
    356  1.16   mycroft sys_setitimer(p, v, retval)
    357   1.1       cgd 	struct proc *p;
    358  1.17  christos 	register void *v;
    359  1.15   thorpej 	register_t *retval;
    360  1.15   thorpej {
    361  1.16   mycroft 	register struct sys_setitimer_args /* {
    362  1.11       cgd 		syscallarg(u_int) which;
    363  1.24       cgd 		syscallarg(const struct itimerval *) itv;
    364  1.11       cgd 		syscallarg(struct itimerval *) oitv;
    365  1.15   thorpej 	} */ *uap = v;
    366  1.21       cgd 	struct sys_getitimer_args getargs;
    367   1.1       cgd 	struct itimerval aitv;
    368  1.24       cgd 	register const struct itimerval *itvp;
    369   1.1       cgd 	int s, error;
    370   1.1       cgd 
    371  1.11       cgd 	if (SCARG(uap, which) > ITIMER_PROF)
    372   1.1       cgd 		return (EINVAL);
    373  1.11       cgd 	itvp = SCARG(uap, itv);
    374  1.24       cgd 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
    375   1.1       cgd 		return (error);
    376  1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
    377  1.21       cgd 		SCARG(&getargs, which) = SCARG(uap, which);
    378  1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    379  1.23       cgd 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
    380  1.21       cgd 			return (error);
    381  1.21       cgd 	}
    382   1.1       cgd 	if (itvp == 0)
    383   1.1       cgd 		return (0);
    384   1.1       cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    385   1.1       cgd 		return (EINVAL);
    386   1.1       cgd 	s = splclock();
    387  1.11       cgd 	if (SCARG(uap, which) == ITIMER_REAL) {
    388   1.7   mycroft 		untimeout(realitexpire, p);
    389   1.1       cgd 		if (timerisset(&aitv.it_value)) {
    390  1.14   mycroft 			timeradd(&aitv.it_value, &time, &aitv.it_value);
    391   1.7   mycroft 			timeout(realitexpire, p, hzto(&aitv.it_value));
    392   1.1       cgd 		}
    393   1.1       cgd 		p->p_realtimer = aitv;
    394   1.1       cgd 	} else
    395  1.11       cgd 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    396   1.1       cgd 	splx(s);
    397   1.1       cgd 	return (0);
    398   1.1       cgd }
    399   1.1       cgd 
    400   1.1       cgd /*
    401   1.1       cgd  * Real interval timer expired:
    402   1.1       cgd  * send process whose timer expired an alarm signal.
    403   1.1       cgd  * If time is not set up to reload, then just return.
    404   1.1       cgd  * Else compute next time timer should go off which is > current time.
    405   1.1       cgd  * This is where delay in processing this timeout causes multiple
    406   1.1       cgd  * SIGALRM calls to be compressed into one.
    407   1.1       cgd  */
    408   1.3    andrew void
    409   1.6       cgd realitexpire(arg)
    410   1.6       cgd 	void *arg;
    411   1.6       cgd {
    412   1.1       cgd 	register struct proc *p;
    413   1.1       cgd 	int s;
    414   1.1       cgd 
    415   1.6       cgd 	p = (struct proc *)arg;
    416   1.1       cgd 	psignal(p, SIGALRM);
    417   1.1       cgd 	if (!timerisset(&p->p_realtimer.it_interval)) {
    418   1.1       cgd 		timerclear(&p->p_realtimer.it_value);
    419   1.1       cgd 		return;
    420   1.1       cgd 	}
    421   1.1       cgd 	for (;;) {
    422   1.1       cgd 		s = splclock();
    423  1.14   mycroft 		timeradd(&p->p_realtimer.it_value,
    424  1.14   mycroft 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
    425   1.1       cgd 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    426   1.7   mycroft 			timeout(realitexpire, p,
    427   1.1       cgd 			    hzto(&p->p_realtimer.it_value));
    428   1.1       cgd 			splx(s);
    429   1.1       cgd 			return;
    430   1.1       cgd 		}
    431   1.1       cgd 		splx(s);
    432   1.1       cgd 	}
    433   1.1       cgd }
    434   1.1       cgd 
    435   1.1       cgd /*
    436   1.1       cgd  * Check that a proposed value to load into the .it_value or
    437   1.1       cgd  * .it_interval part of an interval timer is acceptable, and
    438   1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
    439   1.1       cgd  * than the resolution of the clock, round it up.)
    440   1.1       cgd  */
    441   1.3    andrew int
    442   1.1       cgd itimerfix(tv)
    443   1.1       cgd 	struct timeval *tv;
    444   1.1       cgd {
    445   1.1       cgd 
    446   1.1       cgd 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    447   1.1       cgd 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    448   1.1       cgd 		return (EINVAL);
    449   1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    450   1.1       cgd 		tv->tv_usec = tick;
    451   1.1       cgd 	return (0);
    452   1.1       cgd }
    453   1.1       cgd 
    454   1.1       cgd /*
    455   1.1       cgd  * Decrement an interval timer by a specified number
    456   1.1       cgd  * of microseconds, which must be less than a second,
    457   1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
    458   1.1       cgd  * it.  In this case, carry over (usec - old value) to
    459   1.8       cgd  * reduce the value reloaded into the timer so that
    460   1.1       cgd  * the timer does not drift.  This routine assumes
    461   1.1       cgd  * that it is called in a context where the timers
    462   1.1       cgd  * on which it is operating cannot change in value.
    463   1.1       cgd  */
    464   1.3    andrew int
    465   1.1       cgd itimerdecr(itp, usec)
    466   1.1       cgd 	register struct itimerval *itp;
    467   1.1       cgd 	int usec;
    468   1.1       cgd {
    469   1.1       cgd 
    470   1.1       cgd 	if (itp->it_value.tv_usec < usec) {
    471   1.1       cgd 		if (itp->it_value.tv_sec == 0) {
    472   1.1       cgd 			/* expired, and already in next interval */
    473   1.1       cgd 			usec -= itp->it_value.tv_usec;
    474   1.1       cgd 			goto expire;
    475   1.1       cgd 		}
    476   1.1       cgd 		itp->it_value.tv_usec += 1000000;
    477   1.1       cgd 		itp->it_value.tv_sec--;
    478   1.1       cgd 	}
    479   1.1       cgd 	itp->it_value.tv_usec -= usec;
    480   1.1       cgd 	usec = 0;
    481   1.1       cgd 	if (timerisset(&itp->it_value))
    482   1.1       cgd 		return (1);
    483   1.1       cgd 	/* expired, exactly at end of interval */
    484   1.1       cgd expire:
    485   1.1       cgd 	if (timerisset(&itp->it_interval)) {
    486   1.1       cgd 		itp->it_value = itp->it_interval;
    487   1.1       cgd 		itp->it_value.tv_usec -= usec;
    488   1.1       cgd 		if (itp->it_value.tv_usec < 0) {
    489   1.1       cgd 			itp->it_value.tv_usec += 1000000;
    490   1.1       cgd 			itp->it_value.tv_sec--;
    491   1.1       cgd 		}
    492   1.1       cgd 	} else
    493   1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    494   1.1       cgd 	return (0);
    495   1.1       cgd }
    496