kern_time.c revision 1.25 1 1.25 perry /* $NetBSD: kern_time.c,v 1.25 1997/01/15 01:37:53 perry Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.9 cgd * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 1.1 cgd */
37 1.1 cgd
38 1.5 mycroft #include <sys/param.h>
39 1.5 mycroft #include <sys/resourcevar.h>
40 1.5 mycroft #include <sys/kernel.h>
41 1.8 cgd #include <sys/systm.h>
42 1.5 mycroft #include <sys/proc.h>
43 1.8 cgd #include <sys/vnode.h>
44 1.17 christos #include <sys/signalvar.h>
45 1.25 perry #include <sys/syslog.h>
46 1.1 cgd
47 1.11 cgd #include <sys/mount.h>
48 1.11 cgd #include <sys/syscallargs.h>
49 1.19 christos
50 1.19 christos #if defined(NFSCLIENT) || defined(NFSSERVER)
51 1.20 fvdl #include <nfs/rpcv2.h>
52 1.20 fvdl #include <nfs/nfsproto.h>
53 1.19 christos #include <nfs/nfs_var.h>
54 1.19 christos #endif
55 1.17 christos
56 1.5 mycroft #include <machine/cpu.h>
57 1.1 cgd
58 1.23 cgd static void settime __P((struct timeval *));
59 1.23 cgd
60 1.23 cgd /*
61 1.1 cgd * Time of day and interval timer support.
62 1.1 cgd *
63 1.1 cgd * These routines provide the kernel entry points to get and set
64 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
65 1.1 cgd * here provide support for adding and subtracting timeval structures
66 1.1 cgd * and decrementing interval timers, optionally reloading the interval
67 1.1 cgd * timers when they expire.
68 1.1 cgd */
69 1.1 cgd
70 1.22 jtc
71 1.22 jtc /* This function is used by clock_settime and settimeofday */
72 1.22 jtc static void
73 1.22 jtc settime(tv)
74 1.22 jtc struct timeval *tv;
75 1.22 jtc {
76 1.22 jtc struct timeval delta;
77 1.22 jtc int s;
78 1.22 jtc
79 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
80 1.22 jtc s = splclock();
81 1.22 jtc timersub(tv, &time, &delta);
82 1.22 jtc time = *tv;
83 1.22 jtc (void) splsoftclock();
84 1.22 jtc timeradd(&boottime, &delta, &boottime);
85 1.22 jtc timeradd(&runtime, &delta, &runtime);
86 1.22 jtc # if defined(NFSCLIENT) || defined(NFSSERVER)
87 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
88 1.22 jtc # endif
89 1.22 jtc splx(s);
90 1.22 jtc resettodr();
91 1.22 jtc }
92 1.22 jtc
93 1.22 jtc /* ARGSUSED */
94 1.22 jtc int
95 1.22 jtc sys_clock_gettime(p, v, retval)
96 1.22 jtc struct proc *p;
97 1.22 jtc void *v;
98 1.22 jtc register_t *retval;
99 1.22 jtc {
100 1.22 jtc register struct sys_clock_gettime_args /* {
101 1.22 jtc syscallarg(clockid_t) clock_id;
102 1.23 cgd syscallarg(struct timespec *) tp;
103 1.23 cgd } */ *uap = v;
104 1.22 jtc clockid_t clock_id;
105 1.22 jtc struct timeval atv;
106 1.22 jtc struct timespec ats;
107 1.22 jtc
108 1.22 jtc clock_id = SCARG(uap, clock_id);
109 1.22 jtc if (clock_id != CLOCK_REALTIME)
110 1.22 jtc return (EINVAL);
111 1.22 jtc
112 1.22 jtc microtime(&atv);
113 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
114 1.22 jtc
115 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
116 1.22 jtc }
117 1.22 jtc
118 1.22 jtc /* ARGSUSED */
119 1.22 jtc int
120 1.22 jtc sys_clock_settime(p, v, retval)
121 1.22 jtc struct proc *p;
122 1.22 jtc void *v;
123 1.22 jtc register_t *retval;
124 1.22 jtc {
125 1.22 jtc register struct sys_clock_settime_args /* {
126 1.22 jtc syscallarg(clockid_t) clock_id;
127 1.23 cgd syscallarg(const struct timespec *) tp;
128 1.23 cgd } */ *uap = v;
129 1.22 jtc clockid_t clock_id;
130 1.22 jtc struct timeval atv;
131 1.22 jtc struct timespec ats;
132 1.22 jtc int error;
133 1.22 jtc
134 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
135 1.22 jtc return (error);
136 1.22 jtc
137 1.22 jtc clock_id = SCARG(uap, clock_id);
138 1.22 jtc if (clock_id != CLOCK_REALTIME)
139 1.22 jtc return (EINVAL);
140 1.22 jtc
141 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
142 1.23 cgd return (error);
143 1.22 jtc
144 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
145 1.22 jtc settime(&atv);
146 1.22 jtc
147 1.22 jtc return 0;
148 1.22 jtc }
149 1.22 jtc
150 1.22 jtc int
151 1.22 jtc sys_clock_getres(p, v, retval)
152 1.22 jtc struct proc *p;
153 1.22 jtc void *v;
154 1.22 jtc register_t *retval;
155 1.22 jtc {
156 1.22 jtc register struct sys_clock_getres_args /* {
157 1.22 jtc syscallarg(clockid_t) clock_id;
158 1.23 cgd syscallarg(struct timespec *) tp;
159 1.23 cgd } */ *uap = v;
160 1.22 jtc clockid_t clock_id;
161 1.22 jtc struct timespec ts;
162 1.22 jtc int error = 0;
163 1.22 jtc
164 1.22 jtc clock_id = SCARG(uap, clock_id);
165 1.22 jtc if (clock_id != CLOCK_REALTIME)
166 1.22 jtc return (EINVAL);
167 1.22 jtc
168 1.22 jtc if (SCARG(uap, tp)) {
169 1.22 jtc ts.tv_sec = 0;
170 1.22 jtc ts.tv_nsec = 1000000000 / hz;
171 1.22 jtc
172 1.24 cgd error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
173 1.22 jtc }
174 1.22 jtc
175 1.22 jtc return error;
176 1.22 jtc }
177 1.22 jtc
178 1.22 jtc
179 1.1 cgd /* ARGSUSED */
180 1.3 andrew int
181 1.16 mycroft sys_gettimeofday(p, v, retval)
182 1.1 cgd struct proc *p;
183 1.15 thorpej void *v;
184 1.15 thorpej register_t *retval;
185 1.15 thorpej {
186 1.16 mycroft register struct sys_gettimeofday_args /* {
187 1.11 cgd syscallarg(struct timeval *) tp;
188 1.11 cgd syscallarg(struct timezone *) tzp;
189 1.15 thorpej } */ *uap = v;
190 1.1 cgd struct timeval atv;
191 1.1 cgd int error = 0;
192 1.25 perry struct timezone tzfake;
193 1.1 cgd
194 1.11 cgd if (SCARG(uap, tp)) {
195 1.1 cgd microtime(&atv);
196 1.24 cgd error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
197 1.17 christos if (error)
198 1.1 cgd return (error);
199 1.1 cgd }
200 1.25 perry if (SCARG(uap, tzp)) {
201 1.25 perry /*
202 1.25 perry * NetBSD has no kernel notion of timezone, so we just
203 1.25 perry * fake up a timezone struct and return it if demanded.
204 1.25 perry */
205 1.25 perry tzfake.tz_minuteswest = 0;
206 1.25 perry tzfake.tz_dsttime = 0;
207 1.25 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
208 1.25 perry }
209 1.1 cgd return (error);
210 1.1 cgd }
211 1.1 cgd
212 1.1 cgd /* ARGSUSED */
213 1.3 andrew int
214 1.16 mycroft sys_settimeofday(p, v, retval)
215 1.1 cgd struct proc *p;
216 1.15 thorpej void *v;
217 1.15 thorpej register_t *retval;
218 1.15 thorpej {
219 1.16 mycroft struct sys_settimeofday_args /* {
220 1.24 cgd syscallarg(const struct timeval *) tv;
221 1.24 cgd syscallarg(const struct timezone *) tzp;
222 1.15 thorpej } */ *uap = v;
223 1.22 jtc struct timeval atv;
224 1.1 cgd struct timezone atz;
225 1.22 jtc int error;
226 1.1 cgd
227 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
228 1.1 cgd return (error);
229 1.8 cgd /* Verify all parameters before changing time. */
230 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
231 1.24 cgd &atv, sizeof(atv))))
232 1.8 cgd return (error);
233 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
234 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
235 1.24 cgd &atz, sizeof(atz))))
236 1.8 cgd return (error);
237 1.22 jtc if (SCARG(uap, tv))
238 1.22 jtc settime(&atv);
239 1.25 perry /*
240 1.25 perry * NetBSD has no kernel notion of timezone, and only an
241 1.25 perry * obsolete program would try to set it, so we log a warning.
242 1.25 perry */
243 1.11 cgd if (SCARG(uap, tzp))
244 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
245 1.25 perry "(obsolete) kernel timezone.", p->p_pid);
246 1.8 cgd return (0);
247 1.1 cgd }
248 1.1 cgd
249 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
250 1.1 cgd long timedelta; /* unapplied time correction, us. */
251 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
252 1.1 cgd
253 1.1 cgd /* ARGSUSED */
254 1.3 andrew int
255 1.16 mycroft sys_adjtime(p, v, retval)
256 1.1 cgd struct proc *p;
257 1.15 thorpej void *v;
258 1.15 thorpej register_t *retval;
259 1.15 thorpej {
260 1.16 mycroft register struct sys_adjtime_args /* {
261 1.24 cgd syscallarg(const struct timeval *) delta;
262 1.11 cgd syscallarg(struct timeval *) olddelta;
263 1.15 thorpej } */ *uap = v;
264 1.8 cgd struct timeval atv;
265 1.8 cgd register long ndelta, ntickdelta, odelta;
266 1.1 cgd int s, error;
267 1.1 cgd
268 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
269 1.1 cgd return (error);
270 1.17 christos
271 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
272 1.17 christos if (error)
273 1.1 cgd return (error);
274 1.8 cgd
275 1.8 cgd /*
276 1.8 cgd * Compute the total correction and the rate at which to apply it.
277 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
278 1.8 cgd * delta, so that after some number of incremental changes in
279 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
280 1.8 cgd * overshoot and start taking us away from the desired final time.
281 1.8 cgd */
282 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
283 1.8 cgd if (ndelta > bigadj)
284 1.8 cgd ntickdelta = 10 * tickadj;
285 1.8 cgd else
286 1.8 cgd ntickdelta = tickadj;
287 1.8 cgd if (ndelta % ntickdelta)
288 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
289 1.8 cgd
290 1.8 cgd /*
291 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
292 1.8 cgd * if we want time to run slower; then hardclock can simply compute
293 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
294 1.8 cgd */
295 1.8 cgd if (ndelta < 0)
296 1.8 cgd ntickdelta = -ntickdelta;
297 1.1 cgd s = splclock();
298 1.8 cgd odelta = timedelta;
299 1.1 cgd timedelta = ndelta;
300 1.8 cgd tickdelta = ntickdelta;
301 1.1 cgd splx(s);
302 1.1 cgd
303 1.11 cgd if (SCARG(uap, olddelta)) {
304 1.8 cgd atv.tv_sec = odelta / 1000000;
305 1.8 cgd atv.tv_usec = odelta % 1000000;
306 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
307 1.8 cgd sizeof(struct timeval));
308 1.8 cgd }
309 1.1 cgd return (0);
310 1.1 cgd }
311 1.1 cgd
312 1.1 cgd /*
313 1.1 cgd * Get value of an interval timer. The process virtual and
314 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
315 1.1 cgd * they can be swapped out. These are kept internally in the
316 1.1 cgd * way they are specified externally: in time until they expire.
317 1.1 cgd *
318 1.1 cgd * The real time interval timer is kept in the process table slot
319 1.1 cgd * for the process, and its value (it_value) is kept as an
320 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
321 1.1 cgd * periodic real-time signals from drifting.
322 1.1 cgd *
323 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
324 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
325 1.1 cgd * routine, called from the softclock() routine. Since a callout
326 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
327 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
328 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
329 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
330 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
331 1.1 cgd * absolute time the timer should go off.
332 1.1 cgd */
333 1.1 cgd /* ARGSUSED */
334 1.3 andrew int
335 1.16 mycroft sys_getitimer(p, v, retval)
336 1.1 cgd struct proc *p;
337 1.15 thorpej void *v;
338 1.15 thorpej register_t *retval;
339 1.15 thorpej {
340 1.16 mycroft register struct sys_getitimer_args /* {
341 1.11 cgd syscallarg(u_int) which;
342 1.11 cgd syscallarg(struct itimerval *) itv;
343 1.15 thorpej } */ *uap = v;
344 1.1 cgd struct itimerval aitv;
345 1.1 cgd int s;
346 1.1 cgd
347 1.11 cgd if (SCARG(uap, which) > ITIMER_PROF)
348 1.1 cgd return (EINVAL);
349 1.1 cgd s = splclock();
350 1.11 cgd if (SCARG(uap, which) == ITIMER_REAL) {
351 1.1 cgd /*
352 1.12 mycroft * Convert from absolute to relative time in .it_value
353 1.1 cgd * part of real time timer. If time for real time timer
354 1.1 cgd * has passed return 0, else return difference between
355 1.1 cgd * current time and time for the timer to go off.
356 1.1 cgd */
357 1.1 cgd aitv = p->p_realtimer;
358 1.1 cgd if (timerisset(&aitv.it_value))
359 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
360 1.1 cgd timerclear(&aitv.it_value);
361 1.1 cgd else
362 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
363 1.1 cgd } else
364 1.11 cgd aitv = p->p_stats->p_timer[SCARG(uap, which)];
365 1.1 cgd splx(s);
366 1.24 cgd return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
367 1.1 cgd }
368 1.1 cgd
369 1.1 cgd /* ARGSUSED */
370 1.3 andrew int
371 1.16 mycroft sys_setitimer(p, v, retval)
372 1.1 cgd struct proc *p;
373 1.17 christos register void *v;
374 1.15 thorpej register_t *retval;
375 1.15 thorpej {
376 1.16 mycroft register struct sys_setitimer_args /* {
377 1.11 cgd syscallarg(u_int) which;
378 1.24 cgd syscallarg(const struct itimerval *) itv;
379 1.11 cgd syscallarg(struct itimerval *) oitv;
380 1.15 thorpej } */ *uap = v;
381 1.21 cgd struct sys_getitimer_args getargs;
382 1.1 cgd struct itimerval aitv;
383 1.24 cgd register const struct itimerval *itvp;
384 1.1 cgd int s, error;
385 1.1 cgd
386 1.11 cgd if (SCARG(uap, which) > ITIMER_PROF)
387 1.1 cgd return (EINVAL);
388 1.11 cgd itvp = SCARG(uap, itv);
389 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
390 1.1 cgd return (error);
391 1.21 cgd if (SCARG(uap, oitv) != NULL) {
392 1.21 cgd SCARG(&getargs, which) = SCARG(uap, which);
393 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
394 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
395 1.21 cgd return (error);
396 1.21 cgd }
397 1.1 cgd if (itvp == 0)
398 1.1 cgd return (0);
399 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
400 1.1 cgd return (EINVAL);
401 1.1 cgd s = splclock();
402 1.11 cgd if (SCARG(uap, which) == ITIMER_REAL) {
403 1.7 mycroft untimeout(realitexpire, p);
404 1.1 cgd if (timerisset(&aitv.it_value)) {
405 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
406 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
407 1.1 cgd }
408 1.1 cgd p->p_realtimer = aitv;
409 1.1 cgd } else
410 1.11 cgd p->p_stats->p_timer[SCARG(uap, which)] = aitv;
411 1.1 cgd splx(s);
412 1.1 cgd return (0);
413 1.1 cgd }
414 1.1 cgd
415 1.1 cgd /*
416 1.1 cgd * Real interval timer expired:
417 1.1 cgd * send process whose timer expired an alarm signal.
418 1.1 cgd * If time is not set up to reload, then just return.
419 1.1 cgd * Else compute next time timer should go off which is > current time.
420 1.1 cgd * This is where delay in processing this timeout causes multiple
421 1.1 cgd * SIGALRM calls to be compressed into one.
422 1.1 cgd */
423 1.3 andrew void
424 1.6 cgd realitexpire(arg)
425 1.6 cgd void *arg;
426 1.6 cgd {
427 1.1 cgd register struct proc *p;
428 1.1 cgd int s;
429 1.1 cgd
430 1.6 cgd p = (struct proc *)arg;
431 1.1 cgd psignal(p, SIGALRM);
432 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
433 1.1 cgd timerclear(&p->p_realtimer.it_value);
434 1.1 cgd return;
435 1.1 cgd }
436 1.1 cgd for (;;) {
437 1.1 cgd s = splclock();
438 1.14 mycroft timeradd(&p->p_realtimer.it_value,
439 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
440 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
441 1.7 mycroft timeout(realitexpire, p,
442 1.1 cgd hzto(&p->p_realtimer.it_value));
443 1.1 cgd splx(s);
444 1.1 cgd return;
445 1.1 cgd }
446 1.1 cgd splx(s);
447 1.1 cgd }
448 1.1 cgd }
449 1.1 cgd
450 1.1 cgd /*
451 1.1 cgd * Check that a proposed value to load into the .it_value or
452 1.1 cgd * .it_interval part of an interval timer is acceptable, and
453 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
454 1.1 cgd * than the resolution of the clock, round it up.)
455 1.1 cgd */
456 1.3 andrew int
457 1.1 cgd itimerfix(tv)
458 1.1 cgd struct timeval *tv;
459 1.1 cgd {
460 1.1 cgd
461 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
462 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
463 1.1 cgd return (EINVAL);
464 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
465 1.1 cgd tv->tv_usec = tick;
466 1.1 cgd return (0);
467 1.1 cgd }
468 1.1 cgd
469 1.1 cgd /*
470 1.1 cgd * Decrement an interval timer by a specified number
471 1.1 cgd * of microseconds, which must be less than a second,
472 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
473 1.1 cgd * it. In this case, carry over (usec - old value) to
474 1.8 cgd * reduce the value reloaded into the timer so that
475 1.1 cgd * the timer does not drift. This routine assumes
476 1.1 cgd * that it is called in a context where the timers
477 1.1 cgd * on which it is operating cannot change in value.
478 1.1 cgd */
479 1.3 andrew int
480 1.1 cgd itimerdecr(itp, usec)
481 1.1 cgd register struct itimerval *itp;
482 1.1 cgd int usec;
483 1.1 cgd {
484 1.1 cgd
485 1.1 cgd if (itp->it_value.tv_usec < usec) {
486 1.1 cgd if (itp->it_value.tv_sec == 0) {
487 1.1 cgd /* expired, and already in next interval */
488 1.1 cgd usec -= itp->it_value.tv_usec;
489 1.1 cgd goto expire;
490 1.1 cgd }
491 1.1 cgd itp->it_value.tv_usec += 1000000;
492 1.1 cgd itp->it_value.tv_sec--;
493 1.1 cgd }
494 1.1 cgd itp->it_value.tv_usec -= usec;
495 1.1 cgd usec = 0;
496 1.1 cgd if (timerisset(&itp->it_value))
497 1.1 cgd return (1);
498 1.1 cgd /* expired, exactly at end of interval */
499 1.1 cgd expire:
500 1.1 cgd if (timerisset(&itp->it_interval)) {
501 1.1 cgd itp->it_value = itp->it_interval;
502 1.1 cgd itp->it_value.tv_usec -= usec;
503 1.1 cgd if (itp->it_value.tv_usec < 0) {
504 1.1 cgd itp->it_value.tv_usec += 1000000;
505 1.1 cgd itp->it_value.tv_sec--;
506 1.1 cgd }
507 1.1 cgd } else
508 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
509 1.1 cgd return (0);
510 1.1 cgd }
511