kern_time.c revision 1.3 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.2 cgd * from: @(#)kern_time.c 7.15 (Berkeley) 3/17/91
34 1.3 andrew * $Id: kern_time.c,v 1.3 1993/06/27 06:01:48 andrew Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #include "param.h"
38 1.3 andrew #include "systm.h"
39 1.1 cgd #include "resourcevar.h"
40 1.1 cgd #include "kernel.h"
41 1.1 cgd #include "proc.h"
42 1.1 cgd
43 1.1 cgd #include "machine/cpu.h"
44 1.1 cgd
45 1.1 cgd /*
46 1.1 cgd * Time of day and interval timer support.
47 1.1 cgd *
48 1.1 cgd * These routines provide the kernel entry points to get and set
49 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
50 1.1 cgd * here provide support for adding and subtracting timeval structures
51 1.1 cgd * and decrementing interval timers, optionally reloading the interval
52 1.1 cgd * timers when they expire.
53 1.1 cgd */
54 1.1 cgd
55 1.1 cgd /* ARGSUSED */
56 1.3 andrew int
57 1.1 cgd gettimeofday(p, uap, retval)
58 1.1 cgd struct proc *p;
59 1.1 cgd register struct args {
60 1.1 cgd struct timeval *tp;
61 1.1 cgd struct timezone *tzp;
62 1.1 cgd } *uap;
63 1.1 cgd int *retval;
64 1.1 cgd {
65 1.1 cgd struct timeval atv;
66 1.1 cgd int error = 0;
67 1.1 cgd
68 1.1 cgd if (uap->tp) {
69 1.1 cgd microtime(&atv);
70 1.1 cgd if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
71 1.1 cgd sizeof (atv)))
72 1.1 cgd return (error);
73 1.1 cgd }
74 1.1 cgd if (uap->tzp)
75 1.1 cgd error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
76 1.1 cgd sizeof (tz));
77 1.1 cgd return (error);
78 1.1 cgd }
79 1.1 cgd
80 1.1 cgd /* ARGSUSED */
81 1.3 andrew int
82 1.1 cgd settimeofday(p, uap, retval)
83 1.1 cgd struct proc *p;
84 1.1 cgd struct args {
85 1.1 cgd struct timeval *tv;
86 1.1 cgd struct timezone *tzp;
87 1.1 cgd } *uap;
88 1.1 cgd int *retval;
89 1.1 cgd {
90 1.1 cgd struct timeval atv;
91 1.1 cgd struct timezone atz;
92 1.1 cgd int error, s;
93 1.1 cgd
94 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
95 1.1 cgd return (error);
96 1.1 cgd if (uap->tv) {
97 1.1 cgd if (error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
98 1.1 cgd sizeof (struct timeval)))
99 1.1 cgd return (error);
100 1.1 cgd /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
101 1.1 cgd boottime.tv_sec += atv.tv_sec - time.tv_sec;
102 1.1 cgd s = splhigh(); time = atv; splx(s);
103 1.1 cgd resettodr();
104 1.1 cgd }
105 1.1 cgd if (uap->tzp && (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz,
106 1.1 cgd sizeof (atz))) == 0)
107 1.1 cgd tz = atz;
108 1.1 cgd return (error);
109 1.1 cgd }
110 1.1 cgd
111 1.1 cgd extern int tickadj; /* "standard" clock skew, us./tick */
112 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
113 1.1 cgd long timedelta; /* unapplied time correction, us. */
114 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
115 1.1 cgd
116 1.1 cgd /* ARGSUSED */
117 1.3 andrew int
118 1.1 cgd adjtime(p, uap, retval)
119 1.1 cgd struct proc *p;
120 1.1 cgd register struct args {
121 1.1 cgd struct timeval *delta;
122 1.1 cgd struct timeval *olddelta;
123 1.1 cgd } *uap;
124 1.1 cgd int *retval;
125 1.1 cgd {
126 1.1 cgd struct timeval atv, oatv;
127 1.1 cgd register long ndelta;
128 1.1 cgd int s, error;
129 1.1 cgd
130 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
131 1.1 cgd return (error);
132 1.1 cgd if (error =
133 1.1 cgd copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof (struct timeval)))
134 1.1 cgd return (error);
135 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
136 1.1 cgd if (timedelta == 0)
137 1.1 cgd if (ndelta > bigadj)
138 1.1 cgd tickdelta = 10 * tickadj;
139 1.1 cgd else
140 1.1 cgd tickdelta = tickadj;
141 1.1 cgd if (ndelta % tickdelta)
142 1.1 cgd ndelta = ndelta / tickadj * tickadj;
143 1.1 cgd
144 1.1 cgd s = splclock();
145 1.1 cgd if (uap->olddelta) {
146 1.1 cgd oatv.tv_sec = timedelta / 1000000;
147 1.1 cgd oatv.tv_usec = timedelta % 1000000;
148 1.1 cgd }
149 1.1 cgd timedelta = ndelta;
150 1.1 cgd splx(s);
151 1.1 cgd
152 1.1 cgd if (uap->olddelta)
153 1.1 cgd (void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta,
154 1.1 cgd sizeof (struct timeval));
155 1.1 cgd return (0);
156 1.1 cgd }
157 1.1 cgd
158 1.1 cgd /*
159 1.1 cgd * Get value of an interval timer. The process virtual and
160 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
161 1.1 cgd * they can be swapped out. These are kept internally in the
162 1.1 cgd * way they are specified externally: in time until they expire.
163 1.1 cgd *
164 1.1 cgd * The real time interval timer is kept in the process table slot
165 1.1 cgd * for the process, and its value (it_value) is kept as an
166 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
167 1.1 cgd * periodic real-time signals from drifting.
168 1.1 cgd *
169 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
170 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
171 1.1 cgd * routine, called from the softclock() routine. Since a callout
172 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
173 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
174 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
175 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
176 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
177 1.1 cgd * absolute time the timer should go off.
178 1.1 cgd */
179 1.1 cgd /* ARGSUSED */
180 1.3 andrew int
181 1.1 cgd getitimer(p, uap, retval)
182 1.1 cgd struct proc *p;
183 1.1 cgd register struct args {
184 1.1 cgd u_int which;
185 1.1 cgd struct itimerval *itv;
186 1.1 cgd } *uap;
187 1.1 cgd int *retval;
188 1.1 cgd {
189 1.1 cgd struct itimerval aitv;
190 1.1 cgd int s;
191 1.1 cgd
192 1.1 cgd if (uap->which > ITIMER_PROF)
193 1.1 cgd return (EINVAL);
194 1.1 cgd s = splclock();
195 1.1 cgd if (uap->which == ITIMER_REAL) {
196 1.1 cgd /*
197 1.1 cgd * Convert from absoulte to relative time in .it_value
198 1.1 cgd * part of real time timer. If time for real time timer
199 1.1 cgd * has passed return 0, else return difference between
200 1.1 cgd * current time and time for the timer to go off.
201 1.1 cgd */
202 1.1 cgd aitv = p->p_realtimer;
203 1.1 cgd if (timerisset(&aitv.it_value))
204 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
205 1.1 cgd timerclear(&aitv.it_value);
206 1.1 cgd else
207 1.1 cgd timevalsub(&aitv.it_value, &time);
208 1.1 cgd } else
209 1.1 cgd aitv = p->p_stats->p_timer[uap->which];
210 1.1 cgd splx(s);
211 1.1 cgd return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
212 1.1 cgd sizeof (struct itimerval)));
213 1.1 cgd }
214 1.1 cgd
215 1.1 cgd /* ARGSUSED */
216 1.3 andrew int
217 1.1 cgd setitimer(p, uap, retval)
218 1.1 cgd struct proc *p;
219 1.1 cgd register struct args {
220 1.1 cgd u_int which;
221 1.1 cgd struct itimerval *itv, *oitv;
222 1.1 cgd } *uap;
223 1.1 cgd int *retval;
224 1.1 cgd {
225 1.1 cgd struct itimerval aitv;
226 1.1 cgd register struct itimerval *itvp;
227 1.1 cgd int s, error;
228 1.1 cgd
229 1.1 cgd if (uap->which > ITIMER_PROF)
230 1.1 cgd return (EINVAL);
231 1.1 cgd itvp = uap->itv;
232 1.1 cgd if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
233 1.1 cgd sizeof(struct itimerval))))
234 1.1 cgd return (error);
235 1.1 cgd if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
236 1.1 cgd return (error);
237 1.1 cgd if (itvp == 0)
238 1.1 cgd return (0);
239 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
240 1.1 cgd return (EINVAL);
241 1.1 cgd s = splclock();
242 1.1 cgd if (uap->which == ITIMER_REAL) {
243 1.3 andrew untimeout((timeout_t)realitexpire, (caddr_t)p);
244 1.1 cgd if (timerisset(&aitv.it_value)) {
245 1.1 cgd timevaladd(&aitv.it_value, &time);
246 1.3 andrew timeout((timeout_t)realitexpire, (caddr_t)p, hzto(&aitv.it_value));
247 1.1 cgd }
248 1.1 cgd p->p_realtimer = aitv;
249 1.1 cgd } else
250 1.1 cgd p->p_stats->p_timer[uap->which] = aitv;
251 1.1 cgd splx(s);
252 1.1 cgd return (0);
253 1.1 cgd }
254 1.1 cgd
255 1.1 cgd /*
256 1.1 cgd * Real interval timer expired:
257 1.1 cgd * send process whose timer expired an alarm signal.
258 1.1 cgd * If time is not set up to reload, then just return.
259 1.1 cgd * Else compute next time timer should go off which is > current time.
260 1.1 cgd * This is where delay in processing this timeout causes multiple
261 1.1 cgd * SIGALRM calls to be compressed into one.
262 1.1 cgd */
263 1.3 andrew void
264 1.1 cgd realitexpire(p)
265 1.1 cgd register struct proc *p;
266 1.1 cgd {
267 1.1 cgd int s;
268 1.1 cgd
269 1.1 cgd psignal(p, SIGALRM);
270 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
271 1.1 cgd timerclear(&p->p_realtimer.it_value);
272 1.1 cgd return;
273 1.1 cgd }
274 1.1 cgd for (;;) {
275 1.1 cgd s = splclock();
276 1.1 cgd timevaladd(&p->p_realtimer.it_value,
277 1.1 cgd &p->p_realtimer.it_interval);
278 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
279 1.3 andrew timeout((timeout_t)realitexpire, (caddr_t)p,
280 1.1 cgd hzto(&p->p_realtimer.it_value));
281 1.1 cgd splx(s);
282 1.1 cgd return;
283 1.1 cgd }
284 1.1 cgd splx(s);
285 1.1 cgd }
286 1.1 cgd }
287 1.1 cgd
288 1.1 cgd /*
289 1.1 cgd * Check that a proposed value to load into the .it_value or
290 1.1 cgd * .it_interval part of an interval timer is acceptable, and
291 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
292 1.1 cgd * than the resolution of the clock, round it up.)
293 1.1 cgd */
294 1.3 andrew int
295 1.1 cgd itimerfix(tv)
296 1.1 cgd struct timeval *tv;
297 1.1 cgd {
298 1.1 cgd
299 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
300 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
301 1.1 cgd return (EINVAL);
302 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
303 1.1 cgd tv->tv_usec = tick;
304 1.1 cgd return (0);
305 1.1 cgd }
306 1.1 cgd
307 1.1 cgd /*
308 1.1 cgd * Decrement an interval timer by a specified number
309 1.1 cgd * of microseconds, which must be less than a second,
310 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
311 1.1 cgd * it. In this case, carry over (usec - old value) to
312 1.1 cgd * reducint the value reloaded into the timer so that
313 1.1 cgd * the timer does not drift. This routine assumes
314 1.1 cgd * that it is called in a context where the timers
315 1.1 cgd * on which it is operating cannot change in value.
316 1.1 cgd */
317 1.3 andrew int
318 1.1 cgd itimerdecr(itp, usec)
319 1.1 cgd register struct itimerval *itp;
320 1.1 cgd int usec;
321 1.1 cgd {
322 1.1 cgd
323 1.1 cgd if (itp->it_value.tv_usec < usec) {
324 1.1 cgd if (itp->it_value.tv_sec == 0) {
325 1.1 cgd /* expired, and already in next interval */
326 1.1 cgd usec -= itp->it_value.tv_usec;
327 1.1 cgd goto expire;
328 1.1 cgd }
329 1.1 cgd itp->it_value.tv_usec += 1000000;
330 1.1 cgd itp->it_value.tv_sec--;
331 1.1 cgd }
332 1.1 cgd itp->it_value.tv_usec -= usec;
333 1.1 cgd usec = 0;
334 1.1 cgd if (timerisset(&itp->it_value))
335 1.1 cgd return (1);
336 1.1 cgd /* expired, exactly at end of interval */
337 1.1 cgd expire:
338 1.1 cgd if (timerisset(&itp->it_interval)) {
339 1.1 cgd itp->it_value = itp->it_interval;
340 1.1 cgd itp->it_value.tv_usec -= usec;
341 1.1 cgd if (itp->it_value.tv_usec < 0) {
342 1.1 cgd itp->it_value.tv_usec += 1000000;
343 1.1 cgd itp->it_value.tv_sec--;
344 1.1 cgd }
345 1.1 cgd } else
346 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
347 1.1 cgd return (0);
348 1.1 cgd }
349 1.1 cgd
350 1.1 cgd /*
351 1.1 cgd * Add and subtract routines for timevals.
352 1.1 cgd * N.B.: subtract routine doesn't deal with
353 1.1 cgd * results which are before the beginning,
354 1.1 cgd * it just gets very confused in this case.
355 1.1 cgd * Caveat emptor.
356 1.1 cgd */
357 1.3 andrew void
358 1.1 cgd timevaladd(t1, t2)
359 1.1 cgd struct timeval *t1, *t2;
360 1.1 cgd {
361 1.1 cgd
362 1.1 cgd t1->tv_sec += t2->tv_sec;
363 1.1 cgd t1->tv_usec += t2->tv_usec;
364 1.1 cgd timevalfix(t1);
365 1.1 cgd }
366 1.1 cgd
367 1.3 andrew void
368 1.1 cgd timevalsub(t1, t2)
369 1.1 cgd struct timeval *t1, *t2;
370 1.1 cgd {
371 1.1 cgd
372 1.1 cgd t1->tv_sec -= t2->tv_sec;
373 1.1 cgd t1->tv_usec -= t2->tv_usec;
374 1.1 cgd timevalfix(t1);
375 1.1 cgd }
376 1.1 cgd
377 1.3 andrew void
378 1.1 cgd timevalfix(t1)
379 1.1 cgd struct timeval *t1;
380 1.1 cgd {
381 1.1 cgd
382 1.1 cgd if (t1->tv_usec < 0) {
383 1.1 cgd t1->tv_sec--;
384 1.1 cgd t1->tv_usec += 1000000;
385 1.1 cgd }
386 1.1 cgd if (t1->tv_usec >= 1000000) {
387 1.1 cgd t1->tv_sec++;
388 1.1 cgd t1->tv_usec -= 1000000;
389 1.1 cgd }
390 1.1 cgd }
391