kern_time.c revision 1.32 1 1.32 mycroft /* $NetBSD: kern_time.c,v 1.32 1998/02/20 07:22:14 mycroft Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.9 cgd * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 1.1 cgd */
37 1.31 thorpej
38 1.31 thorpej #include "fs_nfs.h"
39 1.1 cgd
40 1.5 mycroft #include <sys/param.h>
41 1.5 mycroft #include <sys/resourcevar.h>
42 1.5 mycroft #include <sys/kernel.h>
43 1.8 cgd #include <sys/systm.h>
44 1.5 mycroft #include <sys/proc.h>
45 1.8 cgd #include <sys/vnode.h>
46 1.17 christos #include <sys/signalvar.h>
47 1.25 perry #include <sys/syslog.h>
48 1.1 cgd
49 1.11 cgd #include <sys/mount.h>
50 1.11 cgd #include <sys/syscallargs.h>
51 1.19 christos
52 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
53 1.20 fvdl #include <nfs/rpcv2.h>
54 1.20 fvdl #include <nfs/nfsproto.h>
55 1.19 christos #include <nfs/nfs_var.h>
56 1.19 christos #endif
57 1.17 christos
58 1.5 mycroft #include <machine/cpu.h>
59 1.1 cgd
60 1.29 tls static int settime __P((struct timeval *));
61 1.23 cgd
62 1.23 cgd /*
63 1.1 cgd * Time of day and interval timer support.
64 1.1 cgd *
65 1.1 cgd * These routines provide the kernel entry points to get and set
66 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
67 1.1 cgd * here provide support for adding and subtracting timeval structures
68 1.1 cgd * and decrementing interval timers, optionally reloading the interval
69 1.1 cgd * timers when they expire.
70 1.1 cgd */
71 1.1 cgd
72 1.22 jtc /* This function is used by clock_settime and settimeofday */
73 1.29 tls static int
74 1.22 jtc settime(tv)
75 1.22 jtc struct timeval *tv;
76 1.22 jtc {
77 1.22 jtc struct timeval delta;
78 1.22 jtc int s;
79 1.22 jtc
80 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
81 1.22 jtc s = splclock();
82 1.22 jtc timersub(tv, &time, &delta);
83 1.29 tls if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
84 1.29 tls return (EPERM);
85 1.29 tls #ifdef notyet
86 1.29 tls if ((delta.tv_sec < 86400) && securelevel > 0)
87 1.29 tls return (EPERM);
88 1.29 tls #endif
89 1.22 jtc time = *tv;
90 1.22 jtc (void) splsoftclock();
91 1.22 jtc timeradd(&boottime, &delta, &boottime);
92 1.22 jtc timeradd(&runtime, &delta, &runtime);
93 1.26 thorpej # if defined(NFS) || defined(NFSSERVER)
94 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
95 1.22 jtc # endif
96 1.22 jtc splx(s);
97 1.22 jtc resettodr();
98 1.29 tls return (0);
99 1.22 jtc }
100 1.22 jtc
101 1.22 jtc /* ARGSUSED */
102 1.22 jtc int
103 1.22 jtc sys_clock_gettime(p, v, retval)
104 1.22 jtc struct proc *p;
105 1.22 jtc void *v;
106 1.22 jtc register_t *retval;
107 1.22 jtc {
108 1.22 jtc register struct sys_clock_gettime_args /* {
109 1.22 jtc syscallarg(clockid_t) clock_id;
110 1.23 cgd syscallarg(struct timespec *) tp;
111 1.23 cgd } */ *uap = v;
112 1.22 jtc clockid_t clock_id;
113 1.22 jtc struct timeval atv;
114 1.22 jtc struct timespec ats;
115 1.22 jtc
116 1.22 jtc clock_id = SCARG(uap, clock_id);
117 1.22 jtc if (clock_id != CLOCK_REALTIME)
118 1.22 jtc return (EINVAL);
119 1.22 jtc
120 1.22 jtc microtime(&atv);
121 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
122 1.22 jtc
123 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
124 1.22 jtc }
125 1.22 jtc
126 1.22 jtc /* ARGSUSED */
127 1.22 jtc int
128 1.22 jtc sys_clock_settime(p, v, retval)
129 1.22 jtc struct proc *p;
130 1.22 jtc void *v;
131 1.22 jtc register_t *retval;
132 1.22 jtc {
133 1.22 jtc register struct sys_clock_settime_args /* {
134 1.22 jtc syscallarg(clockid_t) clock_id;
135 1.23 cgd syscallarg(const struct timespec *) tp;
136 1.23 cgd } */ *uap = v;
137 1.22 jtc clockid_t clock_id;
138 1.22 jtc struct timeval atv;
139 1.22 jtc struct timespec ats;
140 1.22 jtc int error;
141 1.22 jtc
142 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
143 1.22 jtc return (error);
144 1.22 jtc
145 1.22 jtc clock_id = SCARG(uap, clock_id);
146 1.22 jtc if (clock_id != CLOCK_REALTIME)
147 1.22 jtc return (EINVAL);
148 1.22 jtc
149 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
150 1.23 cgd return (error);
151 1.22 jtc
152 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
153 1.29 tls if ((error = settime(&atv)))
154 1.29 tls return (error);
155 1.22 jtc
156 1.22 jtc return 0;
157 1.22 jtc }
158 1.22 jtc
159 1.22 jtc int
160 1.22 jtc sys_clock_getres(p, v, retval)
161 1.22 jtc struct proc *p;
162 1.22 jtc void *v;
163 1.22 jtc register_t *retval;
164 1.22 jtc {
165 1.22 jtc register struct sys_clock_getres_args /* {
166 1.22 jtc syscallarg(clockid_t) clock_id;
167 1.23 cgd syscallarg(struct timespec *) tp;
168 1.23 cgd } */ *uap = v;
169 1.22 jtc clockid_t clock_id;
170 1.22 jtc struct timespec ts;
171 1.22 jtc int error = 0;
172 1.22 jtc
173 1.22 jtc clock_id = SCARG(uap, clock_id);
174 1.22 jtc if (clock_id != CLOCK_REALTIME)
175 1.22 jtc return (EINVAL);
176 1.22 jtc
177 1.22 jtc if (SCARG(uap, tp)) {
178 1.22 jtc ts.tv_sec = 0;
179 1.22 jtc ts.tv_nsec = 1000000000 / hz;
180 1.22 jtc
181 1.24 cgd error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
182 1.22 jtc }
183 1.22 jtc
184 1.22 jtc return error;
185 1.22 jtc }
186 1.22 jtc
187 1.27 jtc /* ARGSUSED */
188 1.27 jtc int
189 1.27 jtc sys_nanosleep(p, v, retval)
190 1.27 jtc struct proc *p;
191 1.27 jtc void *v;
192 1.27 jtc register_t *retval;
193 1.27 jtc {
194 1.27 jtc static int nanowait;
195 1.27 jtc register struct sys_nanosleep_args/* {
196 1.27 jtc syscallarg(struct timespec *) rqtp;
197 1.27 jtc syscallarg(struct timespec *) rmtp;
198 1.27 jtc } */ *uap = v;
199 1.27 jtc struct timespec rqt;
200 1.27 jtc struct timespec rmt;
201 1.27 jtc struct timeval atv, utv;
202 1.27 jtc int error, s, timo;
203 1.27 jtc
204 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
205 1.27 jtc sizeof(struct timespec));
206 1.27 jtc if (error)
207 1.27 jtc return (error);
208 1.27 jtc
209 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
210 1.27 jtc if (itimerfix(&atv))
211 1.27 jtc return (EINVAL);
212 1.27 jtc
213 1.27 jtc s = splclock();
214 1.27 jtc timeradd(&atv,&time,&atv);
215 1.27 jtc timo = hzto(&atv);
216 1.27 jtc /*
217 1.27 jtc * Avoid inadvertantly sleeping forever
218 1.27 jtc */
219 1.27 jtc if (timo == 0)
220 1.27 jtc timo = 1;
221 1.27 jtc splx(s);
222 1.27 jtc
223 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
224 1.27 jtc if (error == ERESTART)
225 1.27 jtc error = EINTR;
226 1.27 jtc if (error == EWOULDBLOCK)
227 1.27 jtc error = 0;
228 1.27 jtc
229 1.27 jtc if (SCARG(uap, rmtp)) {
230 1.28 jtc int error;
231 1.28 jtc
232 1.27 jtc s = splclock();
233 1.27 jtc utv = time;
234 1.27 jtc splx(s);
235 1.27 jtc
236 1.27 jtc timersub(&atv, &utv, &utv);
237 1.27 jtc if (utv.tv_sec < 0)
238 1.27 jtc timerclear(&utv);
239 1.27 jtc
240 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
241 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
242 1.28 jtc sizeof(rmt));
243 1.28 jtc if (error)
244 1.28 jtc return (error);
245 1.27 jtc }
246 1.27 jtc
247 1.27 jtc return error;
248 1.27 jtc }
249 1.22 jtc
250 1.1 cgd /* ARGSUSED */
251 1.3 andrew int
252 1.16 mycroft sys_gettimeofday(p, v, retval)
253 1.1 cgd struct proc *p;
254 1.15 thorpej void *v;
255 1.15 thorpej register_t *retval;
256 1.15 thorpej {
257 1.16 mycroft register struct sys_gettimeofday_args /* {
258 1.11 cgd syscallarg(struct timeval *) tp;
259 1.11 cgd syscallarg(struct timezone *) tzp;
260 1.15 thorpej } */ *uap = v;
261 1.1 cgd struct timeval atv;
262 1.1 cgd int error = 0;
263 1.25 perry struct timezone tzfake;
264 1.1 cgd
265 1.11 cgd if (SCARG(uap, tp)) {
266 1.1 cgd microtime(&atv);
267 1.24 cgd error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
268 1.17 christos if (error)
269 1.1 cgd return (error);
270 1.1 cgd }
271 1.25 perry if (SCARG(uap, tzp)) {
272 1.25 perry /*
273 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
274 1.25 perry * fake up a timezone struct and return it if demanded.
275 1.25 perry */
276 1.25 perry tzfake.tz_minuteswest = 0;
277 1.25 perry tzfake.tz_dsttime = 0;
278 1.25 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
279 1.25 perry }
280 1.1 cgd return (error);
281 1.1 cgd }
282 1.1 cgd
283 1.1 cgd /* ARGSUSED */
284 1.3 andrew int
285 1.16 mycroft sys_settimeofday(p, v, retval)
286 1.1 cgd struct proc *p;
287 1.15 thorpej void *v;
288 1.15 thorpej register_t *retval;
289 1.15 thorpej {
290 1.16 mycroft struct sys_settimeofday_args /* {
291 1.24 cgd syscallarg(const struct timeval *) tv;
292 1.24 cgd syscallarg(const struct timezone *) tzp;
293 1.15 thorpej } */ *uap = v;
294 1.22 jtc struct timeval atv;
295 1.1 cgd struct timezone atz;
296 1.22 jtc int error;
297 1.1 cgd
298 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
299 1.1 cgd return (error);
300 1.8 cgd /* Verify all parameters before changing time. */
301 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
302 1.24 cgd &atv, sizeof(atv))))
303 1.8 cgd return (error);
304 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
305 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
306 1.24 cgd &atz, sizeof(atz))))
307 1.8 cgd return (error);
308 1.22 jtc if (SCARG(uap, tv))
309 1.29 tls if ((error = settime(&atv)))
310 1.29 tls return (error);
311 1.25 perry /*
312 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
313 1.25 perry * obsolete program would try to set it, so we log a warning.
314 1.25 perry */
315 1.11 cgd if (SCARG(uap, tzp))
316 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
317 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
318 1.8 cgd return (0);
319 1.1 cgd }
320 1.1 cgd
321 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
322 1.1 cgd long timedelta; /* unapplied time correction, us. */
323 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
324 1.1 cgd
325 1.1 cgd /* ARGSUSED */
326 1.3 andrew int
327 1.16 mycroft sys_adjtime(p, v, retval)
328 1.1 cgd struct proc *p;
329 1.15 thorpej void *v;
330 1.15 thorpej register_t *retval;
331 1.15 thorpej {
332 1.16 mycroft register struct sys_adjtime_args /* {
333 1.24 cgd syscallarg(const struct timeval *) delta;
334 1.11 cgd syscallarg(struct timeval *) olddelta;
335 1.15 thorpej } */ *uap = v;
336 1.8 cgd struct timeval atv;
337 1.8 cgd register long ndelta, ntickdelta, odelta;
338 1.1 cgd int s, error;
339 1.1 cgd
340 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
341 1.1 cgd return (error);
342 1.17 christos
343 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
344 1.17 christos if (error)
345 1.1 cgd return (error);
346 1.8 cgd
347 1.8 cgd /*
348 1.8 cgd * Compute the total correction and the rate at which to apply it.
349 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
350 1.8 cgd * delta, so that after some number of incremental changes in
351 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
352 1.8 cgd * overshoot and start taking us away from the desired final time.
353 1.8 cgd */
354 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
355 1.8 cgd if (ndelta > bigadj)
356 1.8 cgd ntickdelta = 10 * tickadj;
357 1.8 cgd else
358 1.8 cgd ntickdelta = tickadj;
359 1.8 cgd if (ndelta % ntickdelta)
360 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
361 1.8 cgd
362 1.8 cgd /*
363 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
364 1.8 cgd * if we want time to run slower; then hardclock can simply compute
365 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
366 1.8 cgd */
367 1.8 cgd if (ndelta < 0)
368 1.8 cgd ntickdelta = -ntickdelta;
369 1.1 cgd s = splclock();
370 1.8 cgd odelta = timedelta;
371 1.1 cgd timedelta = ndelta;
372 1.8 cgd tickdelta = ntickdelta;
373 1.1 cgd splx(s);
374 1.1 cgd
375 1.11 cgd if (SCARG(uap, olddelta)) {
376 1.8 cgd atv.tv_sec = odelta / 1000000;
377 1.8 cgd atv.tv_usec = odelta % 1000000;
378 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
379 1.8 cgd sizeof(struct timeval));
380 1.8 cgd }
381 1.1 cgd return (0);
382 1.1 cgd }
383 1.1 cgd
384 1.1 cgd /*
385 1.1 cgd * Get value of an interval timer. The process virtual and
386 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
387 1.1 cgd * they can be swapped out. These are kept internally in the
388 1.1 cgd * way they are specified externally: in time until they expire.
389 1.1 cgd *
390 1.1 cgd * The real time interval timer is kept in the process table slot
391 1.1 cgd * for the process, and its value (it_value) is kept as an
392 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
393 1.1 cgd * periodic real-time signals from drifting.
394 1.1 cgd *
395 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
396 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
397 1.1 cgd * routine, called from the softclock() routine. Since a callout
398 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
399 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
400 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
401 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
402 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
403 1.1 cgd * absolute time the timer should go off.
404 1.1 cgd */
405 1.1 cgd /* ARGSUSED */
406 1.3 andrew int
407 1.16 mycroft sys_getitimer(p, v, retval)
408 1.1 cgd struct proc *p;
409 1.15 thorpej void *v;
410 1.15 thorpej register_t *retval;
411 1.15 thorpej {
412 1.16 mycroft register struct sys_getitimer_args /* {
413 1.30 mycroft syscallarg(int) which;
414 1.11 cgd syscallarg(struct itimerval *) itv;
415 1.15 thorpej } */ *uap = v;
416 1.30 mycroft int which = SCARG(uap, which);
417 1.1 cgd struct itimerval aitv;
418 1.1 cgd int s;
419 1.1 cgd
420 1.30 mycroft if ((u_int)which > ITIMER_PROF)
421 1.1 cgd return (EINVAL);
422 1.1 cgd s = splclock();
423 1.30 mycroft if (which == ITIMER_REAL) {
424 1.1 cgd /*
425 1.12 mycroft * Convert from absolute to relative time in .it_value
426 1.1 cgd * part of real time timer. If time for real time timer
427 1.1 cgd * has passed return 0, else return difference between
428 1.1 cgd * current time and time for the timer to go off.
429 1.1 cgd */
430 1.1 cgd aitv = p->p_realtimer;
431 1.1 cgd if (timerisset(&aitv.it_value))
432 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
433 1.1 cgd timerclear(&aitv.it_value);
434 1.1 cgd else
435 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
436 1.1 cgd } else
437 1.30 mycroft aitv = p->p_stats->p_timer[which];
438 1.1 cgd splx(s);
439 1.24 cgd return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
440 1.1 cgd }
441 1.1 cgd
442 1.1 cgd /* ARGSUSED */
443 1.3 andrew int
444 1.16 mycroft sys_setitimer(p, v, retval)
445 1.1 cgd struct proc *p;
446 1.17 christos register void *v;
447 1.15 thorpej register_t *retval;
448 1.15 thorpej {
449 1.16 mycroft register struct sys_setitimer_args /* {
450 1.30 mycroft syscallarg(int) which;
451 1.24 cgd syscallarg(const struct itimerval *) itv;
452 1.11 cgd syscallarg(struct itimerval *) oitv;
453 1.15 thorpej } */ *uap = v;
454 1.30 mycroft int which = SCARG(uap, which);
455 1.21 cgd struct sys_getitimer_args getargs;
456 1.1 cgd struct itimerval aitv;
457 1.24 cgd register const struct itimerval *itvp;
458 1.1 cgd int s, error;
459 1.1 cgd
460 1.30 mycroft if ((u_int)which > ITIMER_PROF)
461 1.1 cgd return (EINVAL);
462 1.11 cgd itvp = SCARG(uap, itv);
463 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
464 1.1 cgd return (error);
465 1.21 cgd if (SCARG(uap, oitv) != NULL) {
466 1.30 mycroft SCARG(&getargs, which) = which;
467 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
468 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
469 1.21 cgd return (error);
470 1.21 cgd }
471 1.1 cgd if (itvp == 0)
472 1.1 cgd return (0);
473 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
474 1.1 cgd return (EINVAL);
475 1.1 cgd s = splclock();
476 1.30 mycroft if (which == ITIMER_REAL) {
477 1.7 mycroft untimeout(realitexpire, p);
478 1.1 cgd if (timerisset(&aitv.it_value)) {
479 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
480 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
481 1.1 cgd }
482 1.1 cgd p->p_realtimer = aitv;
483 1.1 cgd } else
484 1.30 mycroft p->p_stats->p_timer[which] = aitv;
485 1.1 cgd splx(s);
486 1.1 cgd return (0);
487 1.1 cgd }
488 1.1 cgd
489 1.1 cgd /*
490 1.1 cgd * Real interval timer expired:
491 1.1 cgd * send process whose timer expired an alarm signal.
492 1.1 cgd * If time is not set up to reload, then just return.
493 1.1 cgd * Else compute next time timer should go off which is > current time.
494 1.1 cgd * This is where delay in processing this timeout causes multiple
495 1.1 cgd * SIGALRM calls to be compressed into one.
496 1.1 cgd */
497 1.3 andrew void
498 1.6 cgd realitexpire(arg)
499 1.6 cgd void *arg;
500 1.6 cgd {
501 1.1 cgd register struct proc *p;
502 1.1 cgd int s;
503 1.1 cgd
504 1.6 cgd p = (struct proc *)arg;
505 1.1 cgd psignal(p, SIGALRM);
506 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
507 1.1 cgd timerclear(&p->p_realtimer.it_value);
508 1.1 cgd return;
509 1.1 cgd }
510 1.1 cgd for (;;) {
511 1.1 cgd s = splclock();
512 1.14 mycroft timeradd(&p->p_realtimer.it_value,
513 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
514 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
515 1.7 mycroft timeout(realitexpire, p,
516 1.1 cgd hzto(&p->p_realtimer.it_value));
517 1.1 cgd splx(s);
518 1.1 cgd return;
519 1.1 cgd }
520 1.1 cgd splx(s);
521 1.1 cgd }
522 1.1 cgd }
523 1.1 cgd
524 1.1 cgd /*
525 1.1 cgd * Check that a proposed value to load into the .it_value or
526 1.1 cgd * .it_interval part of an interval timer is acceptable, and
527 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
528 1.1 cgd * than the resolution of the clock, round it up.)
529 1.1 cgd */
530 1.3 andrew int
531 1.1 cgd itimerfix(tv)
532 1.1 cgd struct timeval *tv;
533 1.1 cgd {
534 1.1 cgd
535 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
536 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
537 1.1 cgd return (EINVAL);
538 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
539 1.1 cgd tv->tv_usec = tick;
540 1.1 cgd return (0);
541 1.1 cgd }
542 1.1 cgd
543 1.1 cgd /*
544 1.1 cgd * Decrement an interval timer by a specified number
545 1.1 cgd * of microseconds, which must be less than a second,
546 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
547 1.1 cgd * it. In this case, carry over (usec - old value) to
548 1.8 cgd * reduce the value reloaded into the timer so that
549 1.1 cgd * the timer does not drift. This routine assumes
550 1.1 cgd * that it is called in a context where the timers
551 1.1 cgd * on which it is operating cannot change in value.
552 1.1 cgd */
553 1.3 andrew int
554 1.1 cgd itimerdecr(itp, usec)
555 1.1 cgd register struct itimerval *itp;
556 1.1 cgd int usec;
557 1.1 cgd {
558 1.1 cgd
559 1.1 cgd if (itp->it_value.tv_usec < usec) {
560 1.1 cgd if (itp->it_value.tv_sec == 0) {
561 1.1 cgd /* expired, and already in next interval */
562 1.1 cgd usec -= itp->it_value.tv_usec;
563 1.1 cgd goto expire;
564 1.1 cgd }
565 1.1 cgd itp->it_value.tv_usec += 1000000;
566 1.1 cgd itp->it_value.tv_sec--;
567 1.1 cgd }
568 1.1 cgd itp->it_value.tv_usec -= usec;
569 1.1 cgd usec = 0;
570 1.1 cgd if (timerisset(&itp->it_value))
571 1.1 cgd return (1);
572 1.1 cgd /* expired, exactly at end of interval */
573 1.1 cgd expire:
574 1.1 cgd if (timerisset(&itp->it_interval)) {
575 1.1 cgd itp->it_value = itp->it_interval;
576 1.1 cgd itp->it_value.tv_usec -= usec;
577 1.1 cgd if (itp->it_value.tv_usec < 0) {
578 1.1 cgd itp->it_value.tv_usec += 1000000;
579 1.1 cgd itp->it_value.tv_sec--;
580 1.1 cgd }
581 1.1 cgd } else
582 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
583 1.1 cgd return (0);
584 1.1 cgd }
585