kern_time.c revision 1.36 1 1.36 thorpej /* $NetBSD: kern_time.c,v 1.36 1998/08/18 06:27:01 thorpej Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
36 1.1 cgd */
37 1.31 thorpej
38 1.31 thorpej #include "fs_nfs.h"
39 1.34 thorpej #include "opt_nfsserver.h"
40 1.1 cgd
41 1.5 mycroft #include <sys/param.h>
42 1.5 mycroft #include <sys/resourcevar.h>
43 1.5 mycroft #include <sys/kernel.h>
44 1.8 cgd #include <sys/systm.h>
45 1.5 mycroft #include <sys/proc.h>
46 1.8 cgd #include <sys/vnode.h>
47 1.17 christos #include <sys/signalvar.h>
48 1.25 perry #include <sys/syslog.h>
49 1.1 cgd
50 1.11 cgd #include <sys/mount.h>
51 1.11 cgd #include <sys/syscallargs.h>
52 1.19 christos
53 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
54 1.20 fvdl #include <nfs/rpcv2.h>
55 1.20 fvdl #include <nfs/nfsproto.h>
56 1.19 christos #include <nfs/nfs_var.h>
57 1.19 christos #endif
58 1.17 christos
59 1.5 mycroft #include <machine/cpu.h>
60 1.1 cgd
61 1.29 tls static int settime __P((struct timeval *));
62 1.23 cgd
63 1.23 cgd /*
64 1.1 cgd * Time of day and interval timer support.
65 1.1 cgd *
66 1.1 cgd * These routines provide the kernel entry points to get and set
67 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
68 1.1 cgd * here provide support for adding and subtracting timeval structures
69 1.1 cgd * and decrementing interval timers, optionally reloading the interval
70 1.1 cgd * timers when they expire.
71 1.1 cgd */
72 1.1 cgd
73 1.22 jtc /* This function is used by clock_settime and settimeofday */
74 1.29 tls static int
75 1.22 jtc settime(tv)
76 1.22 jtc struct timeval *tv;
77 1.22 jtc {
78 1.22 jtc struct timeval delta;
79 1.22 jtc int s;
80 1.22 jtc
81 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
82 1.22 jtc s = splclock();
83 1.22 jtc timersub(tv, &time, &delta);
84 1.29 tls if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
85 1.29 tls return (EPERM);
86 1.29 tls #ifdef notyet
87 1.29 tls if ((delta.tv_sec < 86400) && securelevel > 0)
88 1.29 tls return (EPERM);
89 1.29 tls #endif
90 1.22 jtc time = *tv;
91 1.22 jtc (void) splsoftclock();
92 1.22 jtc timeradd(&boottime, &delta, &boottime);
93 1.22 jtc timeradd(&runtime, &delta, &runtime);
94 1.26 thorpej # if defined(NFS) || defined(NFSSERVER)
95 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
96 1.22 jtc # endif
97 1.22 jtc splx(s);
98 1.22 jtc resettodr();
99 1.29 tls return (0);
100 1.22 jtc }
101 1.22 jtc
102 1.22 jtc /* ARGSUSED */
103 1.22 jtc int
104 1.22 jtc sys_clock_gettime(p, v, retval)
105 1.22 jtc struct proc *p;
106 1.22 jtc void *v;
107 1.22 jtc register_t *retval;
108 1.22 jtc {
109 1.22 jtc register struct sys_clock_gettime_args /* {
110 1.22 jtc syscallarg(clockid_t) clock_id;
111 1.23 cgd syscallarg(struct timespec *) tp;
112 1.23 cgd } */ *uap = v;
113 1.22 jtc clockid_t clock_id;
114 1.22 jtc struct timeval atv;
115 1.22 jtc struct timespec ats;
116 1.22 jtc
117 1.22 jtc clock_id = SCARG(uap, clock_id);
118 1.22 jtc if (clock_id != CLOCK_REALTIME)
119 1.22 jtc return (EINVAL);
120 1.22 jtc
121 1.22 jtc microtime(&atv);
122 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
123 1.22 jtc
124 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
125 1.22 jtc }
126 1.22 jtc
127 1.22 jtc /* ARGSUSED */
128 1.22 jtc int
129 1.22 jtc sys_clock_settime(p, v, retval)
130 1.22 jtc struct proc *p;
131 1.22 jtc void *v;
132 1.22 jtc register_t *retval;
133 1.22 jtc {
134 1.22 jtc register struct sys_clock_settime_args /* {
135 1.22 jtc syscallarg(clockid_t) clock_id;
136 1.23 cgd syscallarg(const struct timespec *) tp;
137 1.23 cgd } */ *uap = v;
138 1.22 jtc clockid_t clock_id;
139 1.22 jtc struct timeval atv;
140 1.22 jtc struct timespec ats;
141 1.22 jtc int error;
142 1.22 jtc
143 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
144 1.22 jtc return (error);
145 1.22 jtc
146 1.22 jtc clock_id = SCARG(uap, clock_id);
147 1.22 jtc if (clock_id != CLOCK_REALTIME)
148 1.22 jtc return (EINVAL);
149 1.22 jtc
150 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
151 1.23 cgd return (error);
152 1.22 jtc
153 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
154 1.29 tls if ((error = settime(&atv)))
155 1.29 tls return (error);
156 1.22 jtc
157 1.22 jtc return 0;
158 1.22 jtc }
159 1.22 jtc
160 1.22 jtc int
161 1.22 jtc sys_clock_getres(p, v, retval)
162 1.22 jtc struct proc *p;
163 1.22 jtc void *v;
164 1.22 jtc register_t *retval;
165 1.22 jtc {
166 1.22 jtc register struct sys_clock_getres_args /* {
167 1.22 jtc syscallarg(clockid_t) clock_id;
168 1.23 cgd syscallarg(struct timespec *) tp;
169 1.23 cgd } */ *uap = v;
170 1.22 jtc clockid_t clock_id;
171 1.22 jtc struct timespec ts;
172 1.22 jtc int error = 0;
173 1.22 jtc
174 1.22 jtc clock_id = SCARG(uap, clock_id);
175 1.22 jtc if (clock_id != CLOCK_REALTIME)
176 1.22 jtc return (EINVAL);
177 1.22 jtc
178 1.22 jtc if (SCARG(uap, tp)) {
179 1.22 jtc ts.tv_sec = 0;
180 1.22 jtc ts.tv_nsec = 1000000000 / hz;
181 1.22 jtc
182 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
183 1.22 jtc }
184 1.22 jtc
185 1.22 jtc return error;
186 1.22 jtc }
187 1.22 jtc
188 1.27 jtc /* ARGSUSED */
189 1.27 jtc int
190 1.27 jtc sys_nanosleep(p, v, retval)
191 1.27 jtc struct proc *p;
192 1.27 jtc void *v;
193 1.27 jtc register_t *retval;
194 1.27 jtc {
195 1.27 jtc static int nanowait;
196 1.27 jtc register struct sys_nanosleep_args/* {
197 1.27 jtc syscallarg(struct timespec *) rqtp;
198 1.27 jtc syscallarg(struct timespec *) rmtp;
199 1.27 jtc } */ *uap = v;
200 1.27 jtc struct timespec rqt;
201 1.27 jtc struct timespec rmt;
202 1.27 jtc struct timeval atv, utv;
203 1.27 jtc int error, s, timo;
204 1.27 jtc
205 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
206 1.27 jtc sizeof(struct timespec));
207 1.27 jtc if (error)
208 1.27 jtc return (error);
209 1.27 jtc
210 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
211 1.27 jtc if (itimerfix(&atv))
212 1.27 jtc return (EINVAL);
213 1.27 jtc
214 1.27 jtc s = splclock();
215 1.27 jtc timeradd(&atv,&time,&atv);
216 1.27 jtc timo = hzto(&atv);
217 1.27 jtc /*
218 1.27 jtc * Avoid inadvertantly sleeping forever
219 1.27 jtc */
220 1.27 jtc if (timo == 0)
221 1.27 jtc timo = 1;
222 1.27 jtc splx(s);
223 1.27 jtc
224 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
225 1.27 jtc if (error == ERESTART)
226 1.27 jtc error = EINTR;
227 1.27 jtc if (error == EWOULDBLOCK)
228 1.27 jtc error = 0;
229 1.27 jtc
230 1.27 jtc if (SCARG(uap, rmtp)) {
231 1.28 jtc int error;
232 1.28 jtc
233 1.27 jtc s = splclock();
234 1.27 jtc utv = time;
235 1.27 jtc splx(s);
236 1.27 jtc
237 1.27 jtc timersub(&atv, &utv, &utv);
238 1.27 jtc if (utv.tv_sec < 0)
239 1.27 jtc timerclear(&utv);
240 1.27 jtc
241 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
242 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
243 1.28 jtc sizeof(rmt));
244 1.28 jtc if (error)
245 1.28 jtc return (error);
246 1.27 jtc }
247 1.27 jtc
248 1.27 jtc return error;
249 1.27 jtc }
250 1.22 jtc
251 1.1 cgd /* ARGSUSED */
252 1.3 andrew int
253 1.16 mycroft sys_gettimeofday(p, v, retval)
254 1.1 cgd struct proc *p;
255 1.15 thorpej void *v;
256 1.15 thorpej register_t *retval;
257 1.15 thorpej {
258 1.16 mycroft register struct sys_gettimeofday_args /* {
259 1.11 cgd syscallarg(struct timeval *) tp;
260 1.11 cgd syscallarg(struct timezone *) tzp;
261 1.15 thorpej } */ *uap = v;
262 1.1 cgd struct timeval atv;
263 1.1 cgd int error = 0;
264 1.25 perry struct timezone tzfake;
265 1.1 cgd
266 1.11 cgd if (SCARG(uap, tp)) {
267 1.1 cgd microtime(&atv);
268 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
269 1.17 christos if (error)
270 1.1 cgd return (error);
271 1.1 cgd }
272 1.25 perry if (SCARG(uap, tzp)) {
273 1.25 perry /*
274 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
275 1.25 perry * fake up a timezone struct and return it if demanded.
276 1.25 perry */
277 1.25 perry tzfake.tz_minuteswest = 0;
278 1.25 perry tzfake.tz_dsttime = 0;
279 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
280 1.25 perry }
281 1.1 cgd return (error);
282 1.1 cgd }
283 1.1 cgd
284 1.1 cgd /* ARGSUSED */
285 1.3 andrew int
286 1.16 mycroft sys_settimeofday(p, v, retval)
287 1.1 cgd struct proc *p;
288 1.15 thorpej void *v;
289 1.15 thorpej register_t *retval;
290 1.15 thorpej {
291 1.16 mycroft struct sys_settimeofday_args /* {
292 1.24 cgd syscallarg(const struct timeval *) tv;
293 1.24 cgd syscallarg(const struct timezone *) tzp;
294 1.15 thorpej } */ *uap = v;
295 1.22 jtc struct timeval atv;
296 1.1 cgd struct timezone atz;
297 1.22 jtc int error;
298 1.1 cgd
299 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
300 1.1 cgd return (error);
301 1.8 cgd /* Verify all parameters before changing time. */
302 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
303 1.24 cgd &atv, sizeof(atv))))
304 1.8 cgd return (error);
305 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
306 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
307 1.24 cgd &atz, sizeof(atz))))
308 1.8 cgd return (error);
309 1.22 jtc if (SCARG(uap, tv))
310 1.29 tls if ((error = settime(&atv)))
311 1.29 tls return (error);
312 1.25 perry /*
313 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
314 1.25 perry * obsolete program would try to set it, so we log a warning.
315 1.25 perry */
316 1.11 cgd if (SCARG(uap, tzp))
317 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
318 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
319 1.8 cgd return (0);
320 1.1 cgd }
321 1.1 cgd
322 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
323 1.1 cgd long timedelta; /* unapplied time correction, us. */
324 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
325 1.1 cgd
326 1.1 cgd /* ARGSUSED */
327 1.3 andrew int
328 1.16 mycroft sys_adjtime(p, v, retval)
329 1.1 cgd struct proc *p;
330 1.15 thorpej void *v;
331 1.15 thorpej register_t *retval;
332 1.15 thorpej {
333 1.16 mycroft register struct sys_adjtime_args /* {
334 1.24 cgd syscallarg(const struct timeval *) delta;
335 1.11 cgd syscallarg(struct timeval *) olddelta;
336 1.15 thorpej } */ *uap = v;
337 1.8 cgd struct timeval atv;
338 1.8 cgd register long ndelta, ntickdelta, odelta;
339 1.1 cgd int s, error;
340 1.1 cgd
341 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
342 1.1 cgd return (error);
343 1.17 christos
344 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
345 1.17 christos if (error)
346 1.1 cgd return (error);
347 1.8 cgd
348 1.8 cgd /*
349 1.8 cgd * Compute the total correction and the rate at which to apply it.
350 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
351 1.8 cgd * delta, so that after some number of incremental changes in
352 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
353 1.8 cgd * overshoot and start taking us away from the desired final time.
354 1.8 cgd */
355 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
356 1.8 cgd if (ndelta > bigadj)
357 1.8 cgd ntickdelta = 10 * tickadj;
358 1.8 cgd else
359 1.8 cgd ntickdelta = tickadj;
360 1.8 cgd if (ndelta % ntickdelta)
361 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
362 1.8 cgd
363 1.8 cgd /*
364 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
365 1.8 cgd * if we want time to run slower; then hardclock can simply compute
366 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
367 1.8 cgd */
368 1.8 cgd if (ndelta < 0)
369 1.8 cgd ntickdelta = -ntickdelta;
370 1.1 cgd s = splclock();
371 1.8 cgd odelta = timedelta;
372 1.1 cgd timedelta = ndelta;
373 1.8 cgd tickdelta = ntickdelta;
374 1.1 cgd splx(s);
375 1.1 cgd
376 1.11 cgd if (SCARG(uap, olddelta)) {
377 1.8 cgd atv.tv_sec = odelta / 1000000;
378 1.8 cgd atv.tv_usec = odelta % 1000000;
379 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
380 1.8 cgd sizeof(struct timeval));
381 1.8 cgd }
382 1.1 cgd return (0);
383 1.1 cgd }
384 1.1 cgd
385 1.1 cgd /*
386 1.1 cgd * Get value of an interval timer. The process virtual and
387 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
388 1.1 cgd * they can be swapped out. These are kept internally in the
389 1.1 cgd * way they are specified externally: in time until they expire.
390 1.1 cgd *
391 1.1 cgd * The real time interval timer is kept in the process table slot
392 1.1 cgd * for the process, and its value (it_value) is kept as an
393 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
394 1.1 cgd * periodic real-time signals from drifting.
395 1.1 cgd *
396 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
397 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
398 1.1 cgd * routine, called from the softclock() routine. Since a callout
399 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
400 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
401 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
402 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
403 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
404 1.1 cgd * absolute time the timer should go off.
405 1.1 cgd */
406 1.1 cgd /* ARGSUSED */
407 1.3 andrew int
408 1.16 mycroft sys_getitimer(p, v, retval)
409 1.1 cgd struct proc *p;
410 1.15 thorpej void *v;
411 1.15 thorpej register_t *retval;
412 1.15 thorpej {
413 1.16 mycroft register struct sys_getitimer_args /* {
414 1.30 mycroft syscallarg(int) which;
415 1.11 cgd syscallarg(struct itimerval *) itv;
416 1.15 thorpej } */ *uap = v;
417 1.30 mycroft int which = SCARG(uap, which);
418 1.1 cgd struct itimerval aitv;
419 1.1 cgd int s;
420 1.1 cgd
421 1.30 mycroft if ((u_int)which > ITIMER_PROF)
422 1.1 cgd return (EINVAL);
423 1.1 cgd s = splclock();
424 1.30 mycroft if (which == ITIMER_REAL) {
425 1.1 cgd /*
426 1.12 mycroft * Convert from absolute to relative time in .it_value
427 1.1 cgd * part of real time timer. If time for real time timer
428 1.1 cgd * has passed return 0, else return difference between
429 1.1 cgd * current time and time for the timer to go off.
430 1.1 cgd */
431 1.1 cgd aitv = p->p_realtimer;
432 1.36 thorpej if (timerisset(&aitv.it_value)) {
433 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
434 1.1 cgd timerclear(&aitv.it_value);
435 1.1 cgd else
436 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
437 1.36 thorpej }
438 1.1 cgd } else
439 1.30 mycroft aitv = p->p_stats->p_timer[which];
440 1.1 cgd splx(s);
441 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
442 1.1 cgd }
443 1.1 cgd
444 1.1 cgd /* ARGSUSED */
445 1.3 andrew int
446 1.16 mycroft sys_setitimer(p, v, retval)
447 1.1 cgd struct proc *p;
448 1.17 christos register void *v;
449 1.15 thorpej register_t *retval;
450 1.15 thorpej {
451 1.16 mycroft register struct sys_setitimer_args /* {
452 1.30 mycroft syscallarg(int) which;
453 1.24 cgd syscallarg(const struct itimerval *) itv;
454 1.11 cgd syscallarg(struct itimerval *) oitv;
455 1.15 thorpej } */ *uap = v;
456 1.30 mycroft int which = SCARG(uap, which);
457 1.21 cgd struct sys_getitimer_args getargs;
458 1.1 cgd struct itimerval aitv;
459 1.24 cgd register const struct itimerval *itvp;
460 1.1 cgd int s, error;
461 1.1 cgd
462 1.30 mycroft if ((u_int)which > ITIMER_PROF)
463 1.1 cgd return (EINVAL);
464 1.11 cgd itvp = SCARG(uap, itv);
465 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
466 1.1 cgd return (error);
467 1.21 cgd if (SCARG(uap, oitv) != NULL) {
468 1.30 mycroft SCARG(&getargs, which) = which;
469 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
470 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
471 1.21 cgd return (error);
472 1.21 cgd }
473 1.1 cgd if (itvp == 0)
474 1.1 cgd return (0);
475 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
476 1.1 cgd return (EINVAL);
477 1.1 cgd s = splclock();
478 1.30 mycroft if (which == ITIMER_REAL) {
479 1.7 mycroft untimeout(realitexpire, p);
480 1.1 cgd if (timerisset(&aitv.it_value)) {
481 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
482 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
483 1.1 cgd }
484 1.1 cgd p->p_realtimer = aitv;
485 1.1 cgd } else
486 1.30 mycroft p->p_stats->p_timer[which] = aitv;
487 1.1 cgd splx(s);
488 1.1 cgd return (0);
489 1.1 cgd }
490 1.1 cgd
491 1.1 cgd /*
492 1.1 cgd * Real interval timer expired:
493 1.1 cgd * send process whose timer expired an alarm signal.
494 1.1 cgd * If time is not set up to reload, then just return.
495 1.1 cgd * Else compute next time timer should go off which is > current time.
496 1.1 cgd * This is where delay in processing this timeout causes multiple
497 1.1 cgd * SIGALRM calls to be compressed into one.
498 1.1 cgd */
499 1.3 andrew void
500 1.6 cgd realitexpire(arg)
501 1.6 cgd void *arg;
502 1.6 cgd {
503 1.1 cgd register struct proc *p;
504 1.1 cgd int s;
505 1.1 cgd
506 1.6 cgd p = (struct proc *)arg;
507 1.1 cgd psignal(p, SIGALRM);
508 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
509 1.1 cgd timerclear(&p->p_realtimer.it_value);
510 1.1 cgd return;
511 1.1 cgd }
512 1.1 cgd for (;;) {
513 1.1 cgd s = splclock();
514 1.14 mycroft timeradd(&p->p_realtimer.it_value,
515 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
516 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
517 1.7 mycroft timeout(realitexpire, p,
518 1.1 cgd hzto(&p->p_realtimer.it_value));
519 1.1 cgd splx(s);
520 1.1 cgd return;
521 1.1 cgd }
522 1.1 cgd splx(s);
523 1.1 cgd }
524 1.1 cgd }
525 1.1 cgd
526 1.1 cgd /*
527 1.1 cgd * Check that a proposed value to load into the .it_value or
528 1.1 cgd * .it_interval part of an interval timer is acceptable, and
529 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
530 1.1 cgd * than the resolution of the clock, round it up.)
531 1.1 cgd */
532 1.3 andrew int
533 1.1 cgd itimerfix(tv)
534 1.1 cgd struct timeval *tv;
535 1.1 cgd {
536 1.1 cgd
537 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
538 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
539 1.1 cgd return (EINVAL);
540 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
541 1.1 cgd tv->tv_usec = tick;
542 1.1 cgd return (0);
543 1.1 cgd }
544 1.1 cgd
545 1.1 cgd /*
546 1.1 cgd * Decrement an interval timer by a specified number
547 1.1 cgd * of microseconds, which must be less than a second,
548 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
549 1.1 cgd * it. In this case, carry over (usec - old value) to
550 1.8 cgd * reduce the value reloaded into the timer so that
551 1.1 cgd * the timer does not drift. This routine assumes
552 1.1 cgd * that it is called in a context where the timers
553 1.1 cgd * on which it is operating cannot change in value.
554 1.1 cgd */
555 1.3 andrew int
556 1.1 cgd itimerdecr(itp, usec)
557 1.1 cgd register struct itimerval *itp;
558 1.1 cgd int usec;
559 1.1 cgd {
560 1.1 cgd
561 1.1 cgd if (itp->it_value.tv_usec < usec) {
562 1.1 cgd if (itp->it_value.tv_sec == 0) {
563 1.1 cgd /* expired, and already in next interval */
564 1.1 cgd usec -= itp->it_value.tv_usec;
565 1.1 cgd goto expire;
566 1.1 cgd }
567 1.1 cgd itp->it_value.tv_usec += 1000000;
568 1.1 cgd itp->it_value.tv_sec--;
569 1.1 cgd }
570 1.1 cgd itp->it_value.tv_usec -= usec;
571 1.1 cgd usec = 0;
572 1.1 cgd if (timerisset(&itp->it_value))
573 1.1 cgd return (1);
574 1.1 cgd /* expired, exactly at end of interval */
575 1.1 cgd expire:
576 1.1 cgd if (timerisset(&itp->it_interval)) {
577 1.1 cgd itp->it_value = itp->it_interval;
578 1.1 cgd itp->it_value.tv_usec -= usec;
579 1.1 cgd if (itp->it_value.tv_usec < 0) {
580 1.1 cgd itp->it_value.tv_usec += 1000000;
581 1.1 cgd itp->it_value.tv_sec--;
582 1.1 cgd }
583 1.1 cgd } else
584 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
585 1.1 cgd return (0);
586 1.1 cgd }
587