kern_time.c revision 1.36.6.3 1 1.36.6.3 he /* $NetBSD: kern_time.c,v 1.36.6.3 2000/02/18 20:25:34 he Exp $ */
2 1.36.6.3 he
3 1.36.6.3 he /*-
4 1.36.6.3 he * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.36.6.3 he * All rights reserved.
6 1.36.6.3 he *
7 1.36.6.3 he * This code is derived from software contributed to The NetBSD Foundation
8 1.36.6.3 he * by Christopher G. Demetriou.
9 1.36.6.3 he *
10 1.36.6.3 he * Redistribution and use in source and binary forms, with or without
11 1.36.6.3 he * modification, are permitted provided that the following conditions
12 1.36.6.3 he * are met:
13 1.36.6.3 he * 1. Redistributions of source code must retain the above copyright
14 1.36.6.3 he * notice, this list of conditions and the following disclaimer.
15 1.36.6.3 he * 2. Redistributions in binary form must reproduce the above copyright
16 1.36.6.3 he * notice, this list of conditions and the following disclaimer in the
17 1.36.6.3 he * documentation and/or other materials provided with the distribution.
18 1.36.6.3 he * 3. All advertising materials mentioning features or use of this software
19 1.36.6.3 he * must display the following acknowledgement:
20 1.36.6.3 he * This product includes software developed by the NetBSD
21 1.36.6.3 he * Foundation, Inc. and its contributors.
22 1.36.6.3 he * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.36.6.3 he * contributors may be used to endorse or promote products derived
24 1.36.6.3 he * from this software without specific prior written permission.
25 1.36.6.3 he *
26 1.36.6.3 he * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.36.6.3 he * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.36.6.3 he * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.36.6.3 he * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.36.6.3 he * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.36.6.3 he * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.36.6.3 he * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.36.6.3 he * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.36.6.3 he * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.36.6.3 he * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.36.6.3 he * POSSIBILITY OF SUCH DAMAGE.
37 1.36.6.3 he */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.31 thorpej #include "fs_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.5 mycroft #include <sys/proc.h>
82 1.8 cgd #include <sys/vnode.h>
83 1.17 christos #include <sys/signalvar.h>
84 1.25 perry #include <sys/syslog.h>
85 1.1 cgd
86 1.11 cgd #include <sys/mount.h>
87 1.11 cgd #include <sys/syscallargs.h>
88 1.19 christos
89 1.36.6.1 perry #include <vm/vm.h>
90 1.36.6.1 perry #include <uvm/uvm_extern.h>
91 1.36.6.1 perry
92 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
93 1.20 fvdl #include <nfs/rpcv2.h>
94 1.20 fvdl #include <nfs/nfsproto.h>
95 1.19 christos #include <nfs/nfs_var.h>
96 1.19 christos #endif
97 1.17 christos
98 1.5 mycroft #include <machine/cpu.h>
99 1.1 cgd
100 1.29 tls static int settime __P((struct timeval *));
101 1.23 cgd
102 1.23 cgd /*
103 1.1 cgd * Time of day and interval timer support.
104 1.1 cgd *
105 1.1 cgd * These routines provide the kernel entry points to get and set
106 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
107 1.1 cgd * here provide support for adding and subtracting timeval structures
108 1.1 cgd * and decrementing interval timers, optionally reloading the interval
109 1.1 cgd * timers when they expire.
110 1.1 cgd */
111 1.1 cgd
112 1.22 jtc /* This function is used by clock_settime and settimeofday */
113 1.29 tls static int
114 1.22 jtc settime(tv)
115 1.22 jtc struct timeval *tv;
116 1.22 jtc {
117 1.22 jtc struct timeval delta;
118 1.22 jtc int s;
119 1.22 jtc
120 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
121 1.22 jtc s = splclock();
122 1.22 jtc timersub(tv, &time, &delta);
123 1.29 tls if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
124 1.29 tls return (EPERM);
125 1.29 tls #ifdef notyet
126 1.29 tls if ((delta.tv_sec < 86400) && securelevel > 0)
127 1.29 tls return (EPERM);
128 1.29 tls #endif
129 1.22 jtc time = *tv;
130 1.22 jtc (void) splsoftclock();
131 1.22 jtc timeradd(&boottime, &delta, &boottime);
132 1.22 jtc timeradd(&runtime, &delta, &runtime);
133 1.26 thorpej # if defined(NFS) || defined(NFSSERVER)
134 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
135 1.22 jtc # endif
136 1.22 jtc splx(s);
137 1.22 jtc resettodr();
138 1.29 tls return (0);
139 1.22 jtc }
140 1.22 jtc
141 1.22 jtc /* ARGSUSED */
142 1.22 jtc int
143 1.22 jtc sys_clock_gettime(p, v, retval)
144 1.22 jtc struct proc *p;
145 1.22 jtc void *v;
146 1.22 jtc register_t *retval;
147 1.22 jtc {
148 1.22 jtc register struct sys_clock_gettime_args /* {
149 1.22 jtc syscallarg(clockid_t) clock_id;
150 1.23 cgd syscallarg(struct timespec *) tp;
151 1.23 cgd } */ *uap = v;
152 1.22 jtc clockid_t clock_id;
153 1.22 jtc struct timeval atv;
154 1.22 jtc struct timespec ats;
155 1.22 jtc
156 1.22 jtc clock_id = SCARG(uap, clock_id);
157 1.22 jtc if (clock_id != CLOCK_REALTIME)
158 1.22 jtc return (EINVAL);
159 1.22 jtc
160 1.22 jtc microtime(&atv);
161 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
162 1.22 jtc
163 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
164 1.22 jtc }
165 1.22 jtc
166 1.22 jtc /* ARGSUSED */
167 1.22 jtc int
168 1.22 jtc sys_clock_settime(p, v, retval)
169 1.22 jtc struct proc *p;
170 1.22 jtc void *v;
171 1.22 jtc register_t *retval;
172 1.22 jtc {
173 1.22 jtc register struct sys_clock_settime_args /* {
174 1.22 jtc syscallarg(clockid_t) clock_id;
175 1.23 cgd syscallarg(const struct timespec *) tp;
176 1.23 cgd } */ *uap = v;
177 1.22 jtc clockid_t clock_id;
178 1.22 jtc struct timeval atv;
179 1.22 jtc struct timespec ats;
180 1.22 jtc int error;
181 1.22 jtc
182 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
183 1.22 jtc return (error);
184 1.22 jtc
185 1.22 jtc clock_id = SCARG(uap, clock_id);
186 1.22 jtc if (clock_id != CLOCK_REALTIME)
187 1.22 jtc return (EINVAL);
188 1.22 jtc
189 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
190 1.23 cgd return (error);
191 1.22 jtc
192 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
193 1.29 tls if ((error = settime(&atv)))
194 1.29 tls return (error);
195 1.22 jtc
196 1.22 jtc return 0;
197 1.22 jtc }
198 1.22 jtc
199 1.22 jtc int
200 1.22 jtc sys_clock_getres(p, v, retval)
201 1.22 jtc struct proc *p;
202 1.22 jtc void *v;
203 1.22 jtc register_t *retval;
204 1.22 jtc {
205 1.22 jtc register struct sys_clock_getres_args /* {
206 1.22 jtc syscallarg(clockid_t) clock_id;
207 1.23 cgd syscallarg(struct timespec *) tp;
208 1.23 cgd } */ *uap = v;
209 1.22 jtc clockid_t clock_id;
210 1.22 jtc struct timespec ts;
211 1.22 jtc int error = 0;
212 1.22 jtc
213 1.22 jtc clock_id = SCARG(uap, clock_id);
214 1.22 jtc if (clock_id != CLOCK_REALTIME)
215 1.22 jtc return (EINVAL);
216 1.22 jtc
217 1.22 jtc if (SCARG(uap, tp)) {
218 1.22 jtc ts.tv_sec = 0;
219 1.22 jtc ts.tv_nsec = 1000000000 / hz;
220 1.22 jtc
221 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
222 1.22 jtc }
223 1.22 jtc
224 1.22 jtc return error;
225 1.22 jtc }
226 1.22 jtc
227 1.27 jtc /* ARGSUSED */
228 1.27 jtc int
229 1.27 jtc sys_nanosleep(p, v, retval)
230 1.27 jtc struct proc *p;
231 1.27 jtc void *v;
232 1.27 jtc register_t *retval;
233 1.27 jtc {
234 1.27 jtc static int nanowait;
235 1.27 jtc register struct sys_nanosleep_args/* {
236 1.27 jtc syscallarg(struct timespec *) rqtp;
237 1.27 jtc syscallarg(struct timespec *) rmtp;
238 1.27 jtc } */ *uap = v;
239 1.27 jtc struct timespec rqt;
240 1.27 jtc struct timespec rmt;
241 1.27 jtc struct timeval atv, utv;
242 1.27 jtc int error, s, timo;
243 1.27 jtc
244 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
245 1.27 jtc sizeof(struct timespec));
246 1.27 jtc if (error)
247 1.27 jtc return (error);
248 1.27 jtc
249 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
250 1.27 jtc if (itimerfix(&atv))
251 1.27 jtc return (EINVAL);
252 1.27 jtc
253 1.27 jtc s = splclock();
254 1.27 jtc timeradd(&atv,&time,&atv);
255 1.27 jtc timo = hzto(&atv);
256 1.27 jtc /*
257 1.27 jtc * Avoid inadvertantly sleeping forever
258 1.27 jtc */
259 1.27 jtc if (timo == 0)
260 1.27 jtc timo = 1;
261 1.27 jtc splx(s);
262 1.27 jtc
263 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
264 1.27 jtc if (error == ERESTART)
265 1.27 jtc error = EINTR;
266 1.27 jtc if (error == EWOULDBLOCK)
267 1.27 jtc error = 0;
268 1.27 jtc
269 1.27 jtc if (SCARG(uap, rmtp)) {
270 1.28 jtc int error;
271 1.28 jtc
272 1.27 jtc s = splclock();
273 1.27 jtc utv = time;
274 1.27 jtc splx(s);
275 1.27 jtc
276 1.27 jtc timersub(&atv, &utv, &utv);
277 1.27 jtc if (utv.tv_sec < 0)
278 1.27 jtc timerclear(&utv);
279 1.27 jtc
280 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
281 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
282 1.28 jtc sizeof(rmt));
283 1.28 jtc if (error)
284 1.28 jtc return (error);
285 1.27 jtc }
286 1.27 jtc
287 1.27 jtc return error;
288 1.27 jtc }
289 1.22 jtc
290 1.1 cgd /* ARGSUSED */
291 1.3 andrew int
292 1.16 mycroft sys_gettimeofday(p, v, retval)
293 1.1 cgd struct proc *p;
294 1.15 thorpej void *v;
295 1.15 thorpej register_t *retval;
296 1.15 thorpej {
297 1.16 mycroft register struct sys_gettimeofday_args /* {
298 1.11 cgd syscallarg(struct timeval *) tp;
299 1.11 cgd syscallarg(struct timezone *) tzp;
300 1.15 thorpej } */ *uap = v;
301 1.1 cgd struct timeval atv;
302 1.1 cgd int error = 0;
303 1.25 perry struct timezone tzfake;
304 1.1 cgd
305 1.11 cgd if (SCARG(uap, tp)) {
306 1.1 cgd microtime(&atv);
307 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
308 1.17 christos if (error)
309 1.1 cgd return (error);
310 1.1 cgd }
311 1.25 perry if (SCARG(uap, tzp)) {
312 1.25 perry /*
313 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
314 1.25 perry * fake up a timezone struct and return it if demanded.
315 1.25 perry */
316 1.25 perry tzfake.tz_minuteswest = 0;
317 1.25 perry tzfake.tz_dsttime = 0;
318 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
319 1.25 perry }
320 1.1 cgd return (error);
321 1.1 cgd }
322 1.1 cgd
323 1.1 cgd /* ARGSUSED */
324 1.3 andrew int
325 1.16 mycroft sys_settimeofday(p, v, retval)
326 1.1 cgd struct proc *p;
327 1.15 thorpej void *v;
328 1.15 thorpej register_t *retval;
329 1.15 thorpej {
330 1.16 mycroft struct sys_settimeofday_args /* {
331 1.24 cgd syscallarg(const struct timeval *) tv;
332 1.24 cgd syscallarg(const struct timezone *) tzp;
333 1.15 thorpej } */ *uap = v;
334 1.22 jtc struct timeval atv;
335 1.1 cgd struct timezone atz;
336 1.22 jtc int error;
337 1.1 cgd
338 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
339 1.1 cgd return (error);
340 1.8 cgd /* Verify all parameters before changing time. */
341 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
342 1.24 cgd &atv, sizeof(atv))))
343 1.8 cgd return (error);
344 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
345 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
346 1.24 cgd &atz, sizeof(atz))))
347 1.8 cgd return (error);
348 1.22 jtc if (SCARG(uap, tv))
349 1.29 tls if ((error = settime(&atv)))
350 1.29 tls return (error);
351 1.25 perry /*
352 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
353 1.25 perry * obsolete program would try to set it, so we log a warning.
354 1.25 perry */
355 1.11 cgd if (SCARG(uap, tzp))
356 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
357 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
358 1.8 cgd return (0);
359 1.1 cgd }
360 1.1 cgd
361 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
362 1.1 cgd long timedelta; /* unapplied time correction, us. */
363 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
364 1.1 cgd
365 1.1 cgd /* ARGSUSED */
366 1.3 andrew int
367 1.16 mycroft sys_adjtime(p, v, retval)
368 1.1 cgd struct proc *p;
369 1.15 thorpej void *v;
370 1.15 thorpej register_t *retval;
371 1.15 thorpej {
372 1.16 mycroft register struct sys_adjtime_args /* {
373 1.24 cgd syscallarg(const struct timeval *) delta;
374 1.11 cgd syscallarg(struct timeval *) olddelta;
375 1.15 thorpej } */ *uap = v;
376 1.8 cgd struct timeval atv;
377 1.8 cgd register long ndelta, ntickdelta, odelta;
378 1.1 cgd int s, error;
379 1.1 cgd
380 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
381 1.1 cgd return (error);
382 1.17 christos
383 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
384 1.17 christos if (error)
385 1.1 cgd return (error);
386 1.36.6.1 perry if (SCARG(uap, olddelta) != NULL &&
387 1.36.6.1 perry uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
388 1.36.6.1 perry B_WRITE) == FALSE)
389 1.36.6.1 perry return (EFAULT);
390 1.8 cgd
391 1.8 cgd /*
392 1.8 cgd * Compute the total correction and the rate at which to apply it.
393 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
394 1.8 cgd * delta, so that after some number of incremental changes in
395 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
396 1.8 cgd * overshoot and start taking us away from the desired final time.
397 1.8 cgd */
398 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
399 1.36.6.2 he if (ndelta > bigadj || ndelta < -bigadj)
400 1.8 cgd ntickdelta = 10 * tickadj;
401 1.8 cgd else
402 1.8 cgd ntickdelta = tickadj;
403 1.8 cgd if (ndelta % ntickdelta)
404 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
405 1.8 cgd
406 1.8 cgd /*
407 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
408 1.8 cgd * if we want time to run slower; then hardclock can simply compute
409 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
410 1.8 cgd */
411 1.8 cgd if (ndelta < 0)
412 1.8 cgd ntickdelta = -ntickdelta;
413 1.1 cgd s = splclock();
414 1.8 cgd odelta = timedelta;
415 1.1 cgd timedelta = ndelta;
416 1.8 cgd tickdelta = ntickdelta;
417 1.1 cgd splx(s);
418 1.1 cgd
419 1.11 cgd if (SCARG(uap, olddelta)) {
420 1.8 cgd atv.tv_sec = odelta / 1000000;
421 1.8 cgd atv.tv_usec = odelta % 1000000;
422 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
423 1.8 cgd sizeof(struct timeval));
424 1.8 cgd }
425 1.1 cgd return (0);
426 1.1 cgd }
427 1.1 cgd
428 1.1 cgd /*
429 1.1 cgd * Get value of an interval timer. The process virtual and
430 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
431 1.1 cgd * they can be swapped out. These are kept internally in the
432 1.1 cgd * way they are specified externally: in time until they expire.
433 1.1 cgd *
434 1.1 cgd * The real time interval timer is kept in the process table slot
435 1.1 cgd * for the process, and its value (it_value) is kept as an
436 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
437 1.1 cgd * periodic real-time signals from drifting.
438 1.1 cgd *
439 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
440 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
441 1.1 cgd * routine, called from the softclock() routine. Since a callout
442 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
443 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
444 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
445 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
446 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
447 1.1 cgd * absolute time the timer should go off.
448 1.1 cgd */
449 1.1 cgd /* ARGSUSED */
450 1.3 andrew int
451 1.16 mycroft sys_getitimer(p, v, retval)
452 1.1 cgd struct proc *p;
453 1.15 thorpej void *v;
454 1.15 thorpej register_t *retval;
455 1.15 thorpej {
456 1.16 mycroft register struct sys_getitimer_args /* {
457 1.30 mycroft syscallarg(int) which;
458 1.11 cgd syscallarg(struct itimerval *) itv;
459 1.15 thorpej } */ *uap = v;
460 1.30 mycroft int which = SCARG(uap, which);
461 1.1 cgd struct itimerval aitv;
462 1.1 cgd int s;
463 1.1 cgd
464 1.30 mycroft if ((u_int)which > ITIMER_PROF)
465 1.1 cgd return (EINVAL);
466 1.1 cgd s = splclock();
467 1.30 mycroft if (which == ITIMER_REAL) {
468 1.1 cgd /*
469 1.12 mycroft * Convert from absolute to relative time in .it_value
470 1.1 cgd * part of real time timer. If time for real time timer
471 1.1 cgd * has passed return 0, else return difference between
472 1.1 cgd * current time and time for the timer to go off.
473 1.1 cgd */
474 1.1 cgd aitv = p->p_realtimer;
475 1.36 thorpej if (timerisset(&aitv.it_value)) {
476 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
477 1.1 cgd timerclear(&aitv.it_value);
478 1.1 cgd else
479 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
480 1.36 thorpej }
481 1.1 cgd } else
482 1.30 mycroft aitv = p->p_stats->p_timer[which];
483 1.1 cgd splx(s);
484 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
485 1.1 cgd }
486 1.1 cgd
487 1.1 cgd /* ARGSUSED */
488 1.3 andrew int
489 1.16 mycroft sys_setitimer(p, v, retval)
490 1.1 cgd struct proc *p;
491 1.17 christos register void *v;
492 1.15 thorpej register_t *retval;
493 1.15 thorpej {
494 1.16 mycroft register struct sys_setitimer_args /* {
495 1.30 mycroft syscallarg(int) which;
496 1.24 cgd syscallarg(const struct itimerval *) itv;
497 1.11 cgd syscallarg(struct itimerval *) oitv;
498 1.15 thorpej } */ *uap = v;
499 1.30 mycroft int which = SCARG(uap, which);
500 1.21 cgd struct sys_getitimer_args getargs;
501 1.1 cgd struct itimerval aitv;
502 1.24 cgd register const struct itimerval *itvp;
503 1.1 cgd int s, error;
504 1.1 cgd
505 1.30 mycroft if ((u_int)which > ITIMER_PROF)
506 1.1 cgd return (EINVAL);
507 1.11 cgd itvp = SCARG(uap, itv);
508 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
509 1.1 cgd return (error);
510 1.21 cgd if (SCARG(uap, oitv) != NULL) {
511 1.30 mycroft SCARG(&getargs, which) = which;
512 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
513 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
514 1.21 cgd return (error);
515 1.21 cgd }
516 1.1 cgd if (itvp == 0)
517 1.1 cgd return (0);
518 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
519 1.1 cgd return (EINVAL);
520 1.1 cgd s = splclock();
521 1.30 mycroft if (which == ITIMER_REAL) {
522 1.7 mycroft untimeout(realitexpire, p);
523 1.1 cgd if (timerisset(&aitv.it_value)) {
524 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
525 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
526 1.1 cgd }
527 1.1 cgd p->p_realtimer = aitv;
528 1.1 cgd } else
529 1.30 mycroft p->p_stats->p_timer[which] = aitv;
530 1.1 cgd splx(s);
531 1.1 cgd return (0);
532 1.1 cgd }
533 1.1 cgd
534 1.1 cgd /*
535 1.1 cgd * Real interval timer expired:
536 1.1 cgd * send process whose timer expired an alarm signal.
537 1.1 cgd * If time is not set up to reload, then just return.
538 1.1 cgd * Else compute next time timer should go off which is > current time.
539 1.1 cgd * This is where delay in processing this timeout causes multiple
540 1.1 cgd * SIGALRM calls to be compressed into one.
541 1.1 cgd */
542 1.3 andrew void
543 1.6 cgd realitexpire(arg)
544 1.6 cgd void *arg;
545 1.6 cgd {
546 1.1 cgd register struct proc *p;
547 1.1 cgd int s;
548 1.1 cgd
549 1.6 cgd p = (struct proc *)arg;
550 1.1 cgd psignal(p, SIGALRM);
551 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
552 1.1 cgd timerclear(&p->p_realtimer.it_value);
553 1.1 cgd return;
554 1.1 cgd }
555 1.1 cgd for (;;) {
556 1.1 cgd s = splclock();
557 1.14 mycroft timeradd(&p->p_realtimer.it_value,
558 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
559 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
560 1.7 mycroft timeout(realitexpire, p,
561 1.1 cgd hzto(&p->p_realtimer.it_value));
562 1.1 cgd splx(s);
563 1.1 cgd return;
564 1.1 cgd }
565 1.1 cgd splx(s);
566 1.1 cgd }
567 1.1 cgd }
568 1.1 cgd
569 1.1 cgd /*
570 1.1 cgd * Check that a proposed value to load into the .it_value or
571 1.1 cgd * .it_interval part of an interval timer is acceptable, and
572 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
573 1.1 cgd * than the resolution of the clock, round it up.)
574 1.1 cgd */
575 1.3 andrew int
576 1.1 cgd itimerfix(tv)
577 1.1 cgd struct timeval *tv;
578 1.1 cgd {
579 1.1 cgd
580 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
581 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
582 1.1 cgd return (EINVAL);
583 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
584 1.1 cgd tv->tv_usec = tick;
585 1.1 cgd return (0);
586 1.1 cgd }
587 1.1 cgd
588 1.1 cgd /*
589 1.1 cgd * Decrement an interval timer by a specified number
590 1.1 cgd * of microseconds, which must be less than a second,
591 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
592 1.1 cgd * it. In this case, carry over (usec - old value) to
593 1.8 cgd * reduce the value reloaded into the timer so that
594 1.1 cgd * the timer does not drift. This routine assumes
595 1.1 cgd * that it is called in a context where the timers
596 1.1 cgd * on which it is operating cannot change in value.
597 1.1 cgd */
598 1.3 andrew int
599 1.1 cgd itimerdecr(itp, usec)
600 1.1 cgd register struct itimerval *itp;
601 1.1 cgd int usec;
602 1.1 cgd {
603 1.1 cgd
604 1.1 cgd if (itp->it_value.tv_usec < usec) {
605 1.1 cgd if (itp->it_value.tv_sec == 0) {
606 1.1 cgd /* expired, and already in next interval */
607 1.1 cgd usec -= itp->it_value.tv_usec;
608 1.1 cgd goto expire;
609 1.1 cgd }
610 1.1 cgd itp->it_value.tv_usec += 1000000;
611 1.1 cgd itp->it_value.tv_sec--;
612 1.1 cgd }
613 1.1 cgd itp->it_value.tv_usec -= usec;
614 1.1 cgd usec = 0;
615 1.1 cgd if (timerisset(&itp->it_value))
616 1.1 cgd return (1);
617 1.1 cgd /* expired, exactly at end of interval */
618 1.1 cgd expire:
619 1.1 cgd if (timerisset(&itp->it_interval)) {
620 1.1 cgd itp->it_value = itp->it_interval;
621 1.1 cgd itp->it_value.tv_usec -= usec;
622 1.1 cgd if (itp->it_value.tv_usec < 0) {
623 1.1 cgd itp->it_value.tv_usec += 1000000;
624 1.1 cgd itp->it_value.tv_sec--;
625 1.1 cgd }
626 1.1 cgd } else
627 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
628 1.1 cgd return (0);
629 1.36.6.3 he }
630 1.36.6.3 he
631 1.36.6.3 he /*
632 1.36.6.3 he * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
633 1.36.6.3 he * for usage and rationale.
634 1.36.6.3 he */
635 1.36.6.3 he int
636 1.36.6.3 he ratecheck(lasttime, mininterval)
637 1.36.6.3 he struct timeval *lasttime;
638 1.36.6.3 he const struct timeval *mininterval;
639 1.36.6.3 he {
640 1.36.6.3 he struct timeval delta;
641 1.36.6.3 he int s, rv = 0;
642 1.36.6.3 he
643 1.36.6.3 he s = splclock();
644 1.36.6.3 he timersub(&mono_time, lasttime, &delta);
645 1.36.6.3 he
646 1.36.6.3 he /*
647 1.36.6.3 he * check for 0,0 is so that the message will be seen at least once,
648 1.36.6.3 he * even if interval is huge.
649 1.36.6.3 he */
650 1.36.6.3 he if (timercmp(&delta, mininterval, >=) ||
651 1.36.6.3 he (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
652 1.36.6.3 he *lasttime = mono_time;
653 1.36.6.3 he rv = 1;
654 1.36.6.3 he }
655 1.36.6.3 he splx(s);
656 1.36.6.3 he
657 1.36.6.3 he return (rv);
658 1.1 cgd }
659