kern_time.c revision 1.37 1 1.37 thorpej /* $NetBSD: kern_time.c,v 1.37 1999/06/07 22:33:53 thorpej Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
36 1.1 cgd */
37 1.31 thorpej
38 1.31 thorpej #include "fs_nfs.h"
39 1.34 thorpej #include "opt_nfsserver.h"
40 1.1 cgd
41 1.5 mycroft #include <sys/param.h>
42 1.5 mycroft #include <sys/resourcevar.h>
43 1.5 mycroft #include <sys/kernel.h>
44 1.8 cgd #include <sys/systm.h>
45 1.5 mycroft #include <sys/proc.h>
46 1.8 cgd #include <sys/vnode.h>
47 1.17 christos #include <sys/signalvar.h>
48 1.25 perry #include <sys/syslog.h>
49 1.1 cgd
50 1.11 cgd #include <sys/mount.h>
51 1.11 cgd #include <sys/syscallargs.h>
52 1.19 christos
53 1.37 thorpej #include <vm/vm.h>
54 1.37 thorpej #include <uvm/uvm_extern.h>
55 1.37 thorpej
56 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
57 1.20 fvdl #include <nfs/rpcv2.h>
58 1.20 fvdl #include <nfs/nfsproto.h>
59 1.19 christos #include <nfs/nfs_var.h>
60 1.19 christos #endif
61 1.17 christos
62 1.5 mycroft #include <machine/cpu.h>
63 1.1 cgd
64 1.29 tls static int settime __P((struct timeval *));
65 1.23 cgd
66 1.23 cgd /*
67 1.1 cgd * Time of day and interval timer support.
68 1.1 cgd *
69 1.1 cgd * These routines provide the kernel entry points to get and set
70 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
71 1.1 cgd * here provide support for adding and subtracting timeval structures
72 1.1 cgd * and decrementing interval timers, optionally reloading the interval
73 1.1 cgd * timers when they expire.
74 1.1 cgd */
75 1.1 cgd
76 1.22 jtc /* This function is used by clock_settime and settimeofday */
77 1.29 tls static int
78 1.22 jtc settime(tv)
79 1.22 jtc struct timeval *tv;
80 1.22 jtc {
81 1.22 jtc struct timeval delta;
82 1.22 jtc int s;
83 1.22 jtc
84 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
85 1.22 jtc s = splclock();
86 1.22 jtc timersub(tv, &time, &delta);
87 1.29 tls if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
88 1.29 tls return (EPERM);
89 1.29 tls #ifdef notyet
90 1.29 tls if ((delta.tv_sec < 86400) && securelevel > 0)
91 1.29 tls return (EPERM);
92 1.29 tls #endif
93 1.22 jtc time = *tv;
94 1.22 jtc (void) splsoftclock();
95 1.22 jtc timeradd(&boottime, &delta, &boottime);
96 1.22 jtc timeradd(&runtime, &delta, &runtime);
97 1.26 thorpej # if defined(NFS) || defined(NFSSERVER)
98 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
99 1.22 jtc # endif
100 1.22 jtc splx(s);
101 1.22 jtc resettodr();
102 1.29 tls return (0);
103 1.22 jtc }
104 1.22 jtc
105 1.22 jtc /* ARGSUSED */
106 1.22 jtc int
107 1.22 jtc sys_clock_gettime(p, v, retval)
108 1.22 jtc struct proc *p;
109 1.22 jtc void *v;
110 1.22 jtc register_t *retval;
111 1.22 jtc {
112 1.22 jtc register struct sys_clock_gettime_args /* {
113 1.22 jtc syscallarg(clockid_t) clock_id;
114 1.23 cgd syscallarg(struct timespec *) tp;
115 1.23 cgd } */ *uap = v;
116 1.22 jtc clockid_t clock_id;
117 1.22 jtc struct timeval atv;
118 1.22 jtc struct timespec ats;
119 1.22 jtc
120 1.22 jtc clock_id = SCARG(uap, clock_id);
121 1.22 jtc if (clock_id != CLOCK_REALTIME)
122 1.22 jtc return (EINVAL);
123 1.22 jtc
124 1.22 jtc microtime(&atv);
125 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
126 1.22 jtc
127 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
128 1.22 jtc }
129 1.22 jtc
130 1.22 jtc /* ARGSUSED */
131 1.22 jtc int
132 1.22 jtc sys_clock_settime(p, v, retval)
133 1.22 jtc struct proc *p;
134 1.22 jtc void *v;
135 1.22 jtc register_t *retval;
136 1.22 jtc {
137 1.22 jtc register struct sys_clock_settime_args /* {
138 1.22 jtc syscallarg(clockid_t) clock_id;
139 1.23 cgd syscallarg(const struct timespec *) tp;
140 1.23 cgd } */ *uap = v;
141 1.22 jtc clockid_t clock_id;
142 1.22 jtc struct timeval atv;
143 1.22 jtc struct timespec ats;
144 1.22 jtc int error;
145 1.22 jtc
146 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
147 1.22 jtc return (error);
148 1.22 jtc
149 1.22 jtc clock_id = SCARG(uap, clock_id);
150 1.22 jtc if (clock_id != CLOCK_REALTIME)
151 1.22 jtc return (EINVAL);
152 1.22 jtc
153 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
154 1.23 cgd return (error);
155 1.22 jtc
156 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
157 1.29 tls if ((error = settime(&atv)))
158 1.29 tls return (error);
159 1.22 jtc
160 1.22 jtc return 0;
161 1.22 jtc }
162 1.22 jtc
163 1.22 jtc int
164 1.22 jtc sys_clock_getres(p, v, retval)
165 1.22 jtc struct proc *p;
166 1.22 jtc void *v;
167 1.22 jtc register_t *retval;
168 1.22 jtc {
169 1.22 jtc register struct sys_clock_getres_args /* {
170 1.22 jtc syscallarg(clockid_t) clock_id;
171 1.23 cgd syscallarg(struct timespec *) tp;
172 1.23 cgd } */ *uap = v;
173 1.22 jtc clockid_t clock_id;
174 1.22 jtc struct timespec ts;
175 1.22 jtc int error = 0;
176 1.22 jtc
177 1.22 jtc clock_id = SCARG(uap, clock_id);
178 1.22 jtc if (clock_id != CLOCK_REALTIME)
179 1.22 jtc return (EINVAL);
180 1.22 jtc
181 1.22 jtc if (SCARG(uap, tp)) {
182 1.22 jtc ts.tv_sec = 0;
183 1.22 jtc ts.tv_nsec = 1000000000 / hz;
184 1.22 jtc
185 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
186 1.22 jtc }
187 1.22 jtc
188 1.22 jtc return error;
189 1.22 jtc }
190 1.22 jtc
191 1.27 jtc /* ARGSUSED */
192 1.27 jtc int
193 1.27 jtc sys_nanosleep(p, v, retval)
194 1.27 jtc struct proc *p;
195 1.27 jtc void *v;
196 1.27 jtc register_t *retval;
197 1.27 jtc {
198 1.27 jtc static int nanowait;
199 1.27 jtc register struct sys_nanosleep_args/* {
200 1.27 jtc syscallarg(struct timespec *) rqtp;
201 1.27 jtc syscallarg(struct timespec *) rmtp;
202 1.27 jtc } */ *uap = v;
203 1.27 jtc struct timespec rqt;
204 1.27 jtc struct timespec rmt;
205 1.27 jtc struct timeval atv, utv;
206 1.27 jtc int error, s, timo;
207 1.27 jtc
208 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
209 1.27 jtc sizeof(struct timespec));
210 1.27 jtc if (error)
211 1.27 jtc return (error);
212 1.27 jtc
213 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
214 1.27 jtc if (itimerfix(&atv))
215 1.27 jtc return (EINVAL);
216 1.27 jtc
217 1.27 jtc s = splclock();
218 1.27 jtc timeradd(&atv,&time,&atv);
219 1.27 jtc timo = hzto(&atv);
220 1.27 jtc /*
221 1.27 jtc * Avoid inadvertantly sleeping forever
222 1.27 jtc */
223 1.27 jtc if (timo == 0)
224 1.27 jtc timo = 1;
225 1.27 jtc splx(s);
226 1.27 jtc
227 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
228 1.27 jtc if (error == ERESTART)
229 1.27 jtc error = EINTR;
230 1.27 jtc if (error == EWOULDBLOCK)
231 1.27 jtc error = 0;
232 1.27 jtc
233 1.27 jtc if (SCARG(uap, rmtp)) {
234 1.28 jtc int error;
235 1.28 jtc
236 1.27 jtc s = splclock();
237 1.27 jtc utv = time;
238 1.27 jtc splx(s);
239 1.27 jtc
240 1.27 jtc timersub(&atv, &utv, &utv);
241 1.27 jtc if (utv.tv_sec < 0)
242 1.27 jtc timerclear(&utv);
243 1.27 jtc
244 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
245 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
246 1.28 jtc sizeof(rmt));
247 1.28 jtc if (error)
248 1.28 jtc return (error);
249 1.27 jtc }
250 1.27 jtc
251 1.27 jtc return error;
252 1.27 jtc }
253 1.22 jtc
254 1.1 cgd /* ARGSUSED */
255 1.3 andrew int
256 1.16 mycroft sys_gettimeofday(p, v, retval)
257 1.1 cgd struct proc *p;
258 1.15 thorpej void *v;
259 1.15 thorpej register_t *retval;
260 1.15 thorpej {
261 1.16 mycroft register struct sys_gettimeofday_args /* {
262 1.11 cgd syscallarg(struct timeval *) tp;
263 1.11 cgd syscallarg(struct timezone *) tzp;
264 1.15 thorpej } */ *uap = v;
265 1.1 cgd struct timeval atv;
266 1.1 cgd int error = 0;
267 1.25 perry struct timezone tzfake;
268 1.1 cgd
269 1.11 cgd if (SCARG(uap, tp)) {
270 1.1 cgd microtime(&atv);
271 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
272 1.17 christos if (error)
273 1.1 cgd return (error);
274 1.1 cgd }
275 1.25 perry if (SCARG(uap, tzp)) {
276 1.25 perry /*
277 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
278 1.25 perry * fake up a timezone struct and return it if demanded.
279 1.25 perry */
280 1.25 perry tzfake.tz_minuteswest = 0;
281 1.25 perry tzfake.tz_dsttime = 0;
282 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
283 1.25 perry }
284 1.1 cgd return (error);
285 1.1 cgd }
286 1.1 cgd
287 1.1 cgd /* ARGSUSED */
288 1.3 andrew int
289 1.16 mycroft sys_settimeofday(p, v, retval)
290 1.1 cgd struct proc *p;
291 1.15 thorpej void *v;
292 1.15 thorpej register_t *retval;
293 1.15 thorpej {
294 1.16 mycroft struct sys_settimeofday_args /* {
295 1.24 cgd syscallarg(const struct timeval *) tv;
296 1.24 cgd syscallarg(const struct timezone *) tzp;
297 1.15 thorpej } */ *uap = v;
298 1.22 jtc struct timeval atv;
299 1.1 cgd struct timezone atz;
300 1.22 jtc int error;
301 1.1 cgd
302 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
303 1.1 cgd return (error);
304 1.8 cgd /* Verify all parameters before changing time. */
305 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
306 1.24 cgd &atv, sizeof(atv))))
307 1.8 cgd return (error);
308 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
309 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
310 1.24 cgd &atz, sizeof(atz))))
311 1.8 cgd return (error);
312 1.22 jtc if (SCARG(uap, tv))
313 1.29 tls if ((error = settime(&atv)))
314 1.29 tls return (error);
315 1.25 perry /*
316 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
317 1.25 perry * obsolete program would try to set it, so we log a warning.
318 1.25 perry */
319 1.11 cgd if (SCARG(uap, tzp))
320 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
321 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
322 1.8 cgd return (0);
323 1.1 cgd }
324 1.1 cgd
325 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
326 1.1 cgd long timedelta; /* unapplied time correction, us. */
327 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
328 1.1 cgd
329 1.1 cgd /* ARGSUSED */
330 1.3 andrew int
331 1.16 mycroft sys_adjtime(p, v, retval)
332 1.1 cgd struct proc *p;
333 1.15 thorpej void *v;
334 1.15 thorpej register_t *retval;
335 1.15 thorpej {
336 1.16 mycroft register struct sys_adjtime_args /* {
337 1.24 cgd syscallarg(const struct timeval *) delta;
338 1.11 cgd syscallarg(struct timeval *) olddelta;
339 1.15 thorpej } */ *uap = v;
340 1.8 cgd struct timeval atv;
341 1.8 cgd register long ndelta, ntickdelta, odelta;
342 1.1 cgd int s, error;
343 1.1 cgd
344 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
345 1.1 cgd return (error);
346 1.17 christos
347 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
348 1.17 christos if (error)
349 1.1 cgd return (error);
350 1.37 thorpej if (SCARG(uap, olddelta) != NULL &&
351 1.37 thorpej uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
352 1.37 thorpej B_WRITE) == FALSE)
353 1.37 thorpej return (EFAULT);
354 1.8 cgd
355 1.8 cgd /*
356 1.8 cgd * Compute the total correction and the rate at which to apply it.
357 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
358 1.8 cgd * delta, so that after some number of incremental changes in
359 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
360 1.8 cgd * overshoot and start taking us away from the desired final time.
361 1.8 cgd */
362 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
363 1.8 cgd if (ndelta > bigadj)
364 1.8 cgd ntickdelta = 10 * tickadj;
365 1.8 cgd else
366 1.8 cgd ntickdelta = tickadj;
367 1.8 cgd if (ndelta % ntickdelta)
368 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
369 1.8 cgd
370 1.8 cgd /*
371 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
372 1.8 cgd * if we want time to run slower; then hardclock can simply compute
373 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
374 1.8 cgd */
375 1.8 cgd if (ndelta < 0)
376 1.8 cgd ntickdelta = -ntickdelta;
377 1.1 cgd s = splclock();
378 1.8 cgd odelta = timedelta;
379 1.1 cgd timedelta = ndelta;
380 1.8 cgd tickdelta = ntickdelta;
381 1.1 cgd splx(s);
382 1.1 cgd
383 1.11 cgd if (SCARG(uap, olddelta)) {
384 1.8 cgd atv.tv_sec = odelta / 1000000;
385 1.8 cgd atv.tv_usec = odelta % 1000000;
386 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
387 1.8 cgd sizeof(struct timeval));
388 1.8 cgd }
389 1.1 cgd return (0);
390 1.1 cgd }
391 1.1 cgd
392 1.1 cgd /*
393 1.1 cgd * Get value of an interval timer. The process virtual and
394 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
395 1.1 cgd * they can be swapped out. These are kept internally in the
396 1.1 cgd * way they are specified externally: in time until they expire.
397 1.1 cgd *
398 1.1 cgd * The real time interval timer is kept in the process table slot
399 1.1 cgd * for the process, and its value (it_value) is kept as an
400 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
401 1.1 cgd * periodic real-time signals from drifting.
402 1.1 cgd *
403 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
404 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
405 1.1 cgd * routine, called from the softclock() routine. Since a callout
406 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
407 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
408 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
409 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
410 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
411 1.1 cgd * absolute time the timer should go off.
412 1.1 cgd */
413 1.1 cgd /* ARGSUSED */
414 1.3 andrew int
415 1.16 mycroft sys_getitimer(p, v, retval)
416 1.1 cgd struct proc *p;
417 1.15 thorpej void *v;
418 1.15 thorpej register_t *retval;
419 1.15 thorpej {
420 1.16 mycroft register struct sys_getitimer_args /* {
421 1.30 mycroft syscallarg(int) which;
422 1.11 cgd syscallarg(struct itimerval *) itv;
423 1.15 thorpej } */ *uap = v;
424 1.30 mycroft int which = SCARG(uap, which);
425 1.1 cgd struct itimerval aitv;
426 1.1 cgd int s;
427 1.1 cgd
428 1.30 mycroft if ((u_int)which > ITIMER_PROF)
429 1.1 cgd return (EINVAL);
430 1.1 cgd s = splclock();
431 1.30 mycroft if (which == ITIMER_REAL) {
432 1.1 cgd /*
433 1.12 mycroft * Convert from absolute to relative time in .it_value
434 1.1 cgd * part of real time timer. If time for real time timer
435 1.1 cgd * has passed return 0, else return difference between
436 1.1 cgd * current time and time for the timer to go off.
437 1.1 cgd */
438 1.1 cgd aitv = p->p_realtimer;
439 1.36 thorpej if (timerisset(&aitv.it_value)) {
440 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
441 1.1 cgd timerclear(&aitv.it_value);
442 1.1 cgd else
443 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
444 1.36 thorpej }
445 1.1 cgd } else
446 1.30 mycroft aitv = p->p_stats->p_timer[which];
447 1.1 cgd splx(s);
448 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
449 1.1 cgd }
450 1.1 cgd
451 1.1 cgd /* ARGSUSED */
452 1.3 andrew int
453 1.16 mycroft sys_setitimer(p, v, retval)
454 1.1 cgd struct proc *p;
455 1.17 christos register void *v;
456 1.15 thorpej register_t *retval;
457 1.15 thorpej {
458 1.16 mycroft register struct sys_setitimer_args /* {
459 1.30 mycroft syscallarg(int) which;
460 1.24 cgd syscallarg(const struct itimerval *) itv;
461 1.11 cgd syscallarg(struct itimerval *) oitv;
462 1.15 thorpej } */ *uap = v;
463 1.30 mycroft int which = SCARG(uap, which);
464 1.21 cgd struct sys_getitimer_args getargs;
465 1.1 cgd struct itimerval aitv;
466 1.24 cgd register const struct itimerval *itvp;
467 1.1 cgd int s, error;
468 1.1 cgd
469 1.30 mycroft if ((u_int)which > ITIMER_PROF)
470 1.1 cgd return (EINVAL);
471 1.11 cgd itvp = SCARG(uap, itv);
472 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
473 1.1 cgd return (error);
474 1.21 cgd if (SCARG(uap, oitv) != NULL) {
475 1.30 mycroft SCARG(&getargs, which) = which;
476 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
477 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
478 1.21 cgd return (error);
479 1.21 cgd }
480 1.1 cgd if (itvp == 0)
481 1.1 cgd return (0);
482 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
483 1.1 cgd return (EINVAL);
484 1.1 cgd s = splclock();
485 1.30 mycroft if (which == ITIMER_REAL) {
486 1.7 mycroft untimeout(realitexpire, p);
487 1.1 cgd if (timerisset(&aitv.it_value)) {
488 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
489 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
490 1.1 cgd }
491 1.1 cgd p->p_realtimer = aitv;
492 1.1 cgd } else
493 1.30 mycroft p->p_stats->p_timer[which] = aitv;
494 1.1 cgd splx(s);
495 1.1 cgd return (0);
496 1.1 cgd }
497 1.1 cgd
498 1.1 cgd /*
499 1.1 cgd * Real interval timer expired:
500 1.1 cgd * send process whose timer expired an alarm signal.
501 1.1 cgd * If time is not set up to reload, then just return.
502 1.1 cgd * Else compute next time timer should go off which is > current time.
503 1.1 cgd * This is where delay in processing this timeout causes multiple
504 1.1 cgd * SIGALRM calls to be compressed into one.
505 1.1 cgd */
506 1.3 andrew void
507 1.6 cgd realitexpire(arg)
508 1.6 cgd void *arg;
509 1.6 cgd {
510 1.1 cgd register struct proc *p;
511 1.1 cgd int s;
512 1.1 cgd
513 1.6 cgd p = (struct proc *)arg;
514 1.1 cgd psignal(p, SIGALRM);
515 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
516 1.1 cgd timerclear(&p->p_realtimer.it_value);
517 1.1 cgd return;
518 1.1 cgd }
519 1.1 cgd for (;;) {
520 1.1 cgd s = splclock();
521 1.14 mycroft timeradd(&p->p_realtimer.it_value,
522 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
523 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
524 1.7 mycroft timeout(realitexpire, p,
525 1.1 cgd hzto(&p->p_realtimer.it_value));
526 1.1 cgd splx(s);
527 1.1 cgd return;
528 1.1 cgd }
529 1.1 cgd splx(s);
530 1.1 cgd }
531 1.1 cgd }
532 1.1 cgd
533 1.1 cgd /*
534 1.1 cgd * Check that a proposed value to load into the .it_value or
535 1.1 cgd * .it_interval part of an interval timer is acceptable, and
536 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
537 1.1 cgd * than the resolution of the clock, round it up.)
538 1.1 cgd */
539 1.3 andrew int
540 1.1 cgd itimerfix(tv)
541 1.1 cgd struct timeval *tv;
542 1.1 cgd {
543 1.1 cgd
544 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
545 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
546 1.1 cgd return (EINVAL);
547 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
548 1.1 cgd tv->tv_usec = tick;
549 1.1 cgd return (0);
550 1.1 cgd }
551 1.1 cgd
552 1.1 cgd /*
553 1.1 cgd * Decrement an interval timer by a specified number
554 1.1 cgd * of microseconds, which must be less than a second,
555 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
556 1.1 cgd * it. In this case, carry over (usec - old value) to
557 1.8 cgd * reduce the value reloaded into the timer so that
558 1.1 cgd * the timer does not drift. This routine assumes
559 1.1 cgd * that it is called in a context where the timers
560 1.1 cgd * on which it is operating cannot change in value.
561 1.1 cgd */
562 1.3 andrew int
563 1.1 cgd itimerdecr(itp, usec)
564 1.1 cgd register struct itimerval *itp;
565 1.1 cgd int usec;
566 1.1 cgd {
567 1.1 cgd
568 1.1 cgd if (itp->it_value.tv_usec < usec) {
569 1.1 cgd if (itp->it_value.tv_sec == 0) {
570 1.1 cgd /* expired, and already in next interval */
571 1.1 cgd usec -= itp->it_value.tv_usec;
572 1.1 cgd goto expire;
573 1.1 cgd }
574 1.1 cgd itp->it_value.tv_usec += 1000000;
575 1.1 cgd itp->it_value.tv_sec--;
576 1.1 cgd }
577 1.1 cgd itp->it_value.tv_usec -= usec;
578 1.1 cgd usec = 0;
579 1.1 cgd if (timerisset(&itp->it_value))
580 1.1 cgd return (1);
581 1.1 cgd /* expired, exactly at end of interval */
582 1.1 cgd expire:
583 1.1 cgd if (timerisset(&itp->it_interval)) {
584 1.1 cgd itp->it_value = itp->it_interval;
585 1.1 cgd itp->it_value.tv_usec -= usec;
586 1.1 cgd if (itp->it_value.tv_usec < 0) {
587 1.1 cgd itp->it_value.tv_usec += 1000000;
588 1.1 cgd itp->it_value.tv_sec--;
589 1.1 cgd }
590 1.1 cgd } else
591 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
592 1.1 cgd return (0);
593 1.1 cgd }
594