kern_time.c revision 1.41 1 1.41 hwr /* $NetBSD: kern_time.c,v 1.41 1999/10/10 18:41:53 hwr Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
36 1.1 cgd */
37 1.31 thorpej
38 1.31 thorpej #include "fs_nfs.h"
39 1.34 thorpej #include "opt_nfsserver.h"
40 1.1 cgd
41 1.5 mycroft #include <sys/param.h>
42 1.5 mycroft #include <sys/resourcevar.h>
43 1.5 mycroft #include <sys/kernel.h>
44 1.8 cgd #include <sys/systm.h>
45 1.5 mycroft #include <sys/proc.h>
46 1.8 cgd #include <sys/vnode.h>
47 1.17 christos #include <sys/signalvar.h>
48 1.25 perry #include <sys/syslog.h>
49 1.1 cgd
50 1.11 cgd #include <sys/mount.h>
51 1.11 cgd #include <sys/syscallargs.h>
52 1.19 christos
53 1.37 thorpej #include <vm/vm.h>
54 1.37 thorpej #include <uvm/uvm_extern.h>
55 1.37 thorpej
56 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
57 1.20 fvdl #include <nfs/rpcv2.h>
58 1.20 fvdl #include <nfs/nfsproto.h>
59 1.19 christos #include <nfs/nfs_var.h>
60 1.19 christos #endif
61 1.17 christos
62 1.5 mycroft #include <machine/cpu.h>
63 1.23 cgd
64 1.23 cgd /*
65 1.1 cgd * Time of day and interval timer support.
66 1.1 cgd *
67 1.1 cgd * These routines provide the kernel entry points to get and set
68 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
69 1.1 cgd * here provide support for adding and subtracting timeval structures
70 1.1 cgd * and decrementing interval timers, optionally reloading the interval
71 1.1 cgd * timers when they expire.
72 1.1 cgd */
73 1.1 cgd
74 1.22 jtc /* This function is used by clock_settime and settimeofday */
75 1.39 tron int
76 1.22 jtc settime(tv)
77 1.22 jtc struct timeval *tv;
78 1.22 jtc {
79 1.22 jtc struct timeval delta;
80 1.22 jtc int s;
81 1.22 jtc
82 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
83 1.22 jtc s = splclock();
84 1.22 jtc timersub(tv, &time, &delta);
85 1.29 tls if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
86 1.29 tls return (EPERM);
87 1.29 tls #ifdef notyet
88 1.29 tls if ((delta.tv_sec < 86400) && securelevel > 0)
89 1.29 tls return (EPERM);
90 1.29 tls #endif
91 1.22 jtc time = *tv;
92 1.38 thorpej (void) spllowersoftclock();
93 1.22 jtc timeradd(&boottime, &delta, &boottime);
94 1.22 jtc timeradd(&runtime, &delta, &runtime);
95 1.26 thorpej # if defined(NFS) || defined(NFSSERVER)
96 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
97 1.22 jtc # endif
98 1.22 jtc splx(s);
99 1.22 jtc resettodr();
100 1.29 tls return (0);
101 1.22 jtc }
102 1.22 jtc
103 1.22 jtc /* ARGSUSED */
104 1.22 jtc int
105 1.22 jtc sys_clock_gettime(p, v, retval)
106 1.22 jtc struct proc *p;
107 1.22 jtc void *v;
108 1.22 jtc register_t *retval;
109 1.22 jtc {
110 1.22 jtc register struct sys_clock_gettime_args /* {
111 1.22 jtc syscallarg(clockid_t) clock_id;
112 1.23 cgd syscallarg(struct timespec *) tp;
113 1.23 cgd } */ *uap = v;
114 1.22 jtc clockid_t clock_id;
115 1.22 jtc struct timeval atv;
116 1.22 jtc struct timespec ats;
117 1.22 jtc
118 1.22 jtc clock_id = SCARG(uap, clock_id);
119 1.22 jtc if (clock_id != CLOCK_REALTIME)
120 1.22 jtc return (EINVAL);
121 1.22 jtc
122 1.22 jtc microtime(&atv);
123 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
124 1.22 jtc
125 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
126 1.22 jtc }
127 1.22 jtc
128 1.22 jtc /* ARGSUSED */
129 1.22 jtc int
130 1.22 jtc sys_clock_settime(p, v, retval)
131 1.22 jtc struct proc *p;
132 1.22 jtc void *v;
133 1.22 jtc register_t *retval;
134 1.22 jtc {
135 1.22 jtc register struct sys_clock_settime_args /* {
136 1.22 jtc syscallarg(clockid_t) clock_id;
137 1.23 cgd syscallarg(const struct timespec *) tp;
138 1.23 cgd } */ *uap = v;
139 1.22 jtc clockid_t clock_id;
140 1.22 jtc struct timeval atv;
141 1.22 jtc struct timespec ats;
142 1.22 jtc int error;
143 1.22 jtc
144 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
145 1.22 jtc return (error);
146 1.22 jtc
147 1.22 jtc clock_id = SCARG(uap, clock_id);
148 1.22 jtc if (clock_id != CLOCK_REALTIME)
149 1.22 jtc return (EINVAL);
150 1.22 jtc
151 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
152 1.23 cgd return (error);
153 1.22 jtc
154 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
155 1.29 tls if ((error = settime(&atv)))
156 1.29 tls return (error);
157 1.22 jtc
158 1.22 jtc return 0;
159 1.22 jtc }
160 1.22 jtc
161 1.22 jtc int
162 1.22 jtc sys_clock_getres(p, v, retval)
163 1.22 jtc struct proc *p;
164 1.22 jtc void *v;
165 1.22 jtc register_t *retval;
166 1.22 jtc {
167 1.22 jtc register struct sys_clock_getres_args /* {
168 1.22 jtc syscallarg(clockid_t) clock_id;
169 1.23 cgd syscallarg(struct timespec *) tp;
170 1.23 cgd } */ *uap = v;
171 1.22 jtc clockid_t clock_id;
172 1.22 jtc struct timespec ts;
173 1.22 jtc int error = 0;
174 1.22 jtc
175 1.22 jtc clock_id = SCARG(uap, clock_id);
176 1.22 jtc if (clock_id != CLOCK_REALTIME)
177 1.22 jtc return (EINVAL);
178 1.22 jtc
179 1.22 jtc if (SCARG(uap, tp)) {
180 1.22 jtc ts.tv_sec = 0;
181 1.22 jtc ts.tv_nsec = 1000000000 / hz;
182 1.22 jtc
183 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
184 1.22 jtc }
185 1.22 jtc
186 1.22 jtc return error;
187 1.22 jtc }
188 1.22 jtc
189 1.27 jtc /* ARGSUSED */
190 1.27 jtc int
191 1.27 jtc sys_nanosleep(p, v, retval)
192 1.27 jtc struct proc *p;
193 1.27 jtc void *v;
194 1.27 jtc register_t *retval;
195 1.27 jtc {
196 1.27 jtc static int nanowait;
197 1.27 jtc register struct sys_nanosleep_args/* {
198 1.27 jtc syscallarg(struct timespec *) rqtp;
199 1.27 jtc syscallarg(struct timespec *) rmtp;
200 1.27 jtc } */ *uap = v;
201 1.27 jtc struct timespec rqt;
202 1.27 jtc struct timespec rmt;
203 1.27 jtc struct timeval atv, utv;
204 1.27 jtc int error, s, timo;
205 1.27 jtc
206 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
207 1.27 jtc sizeof(struct timespec));
208 1.27 jtc if (error)
209 1.27 jtc return (error);
210 1.27 jtc
211 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
212 1.27 jtc if (itimerfix(&atv))
213 1.27 jtc return (EINVAL);
214 1.27 jtc
215 1.27 jtc s = splclock();
216 1.27 jtc timeradd(&atv,&time,&atv);
217 1.27 jtc timo = hzto(&atv);
218 1.27 jtc /*
219 1.27 jtc * Avoid inadvertantly sleeping forever
220 1.27 jtc */
221 1.27 jtc if (timo == 0)
222 1.27 jtc timo = 1;
223 1.27 jtc splx(s);
224 1.27 jtc
225 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
226 1.27 jtc if (error == ERESTART)
227 1.27 jtc error = EINTR;
228 1.27 jtc if (error == EWOULDBLOCK)
229 1.27 jtc error = 0;
230 1.27 jtc
231 1.27 jtc if (SCARG(uap, rmtp)) {
232 1.28 jtc int error;
233 1.28 jtc
234 1.27 jtc s = splclock();
235 1.27 jtc utv = time;
236 1.27 jtc splx(s);
237 1.27 jtc
238 1.27 jtc timersub(&atv, &utv, &utv);
239 1.27 jtc if (utv.tv_sec < 0)
240 1.27 jtc timerclear(&utv);
241 1.27 jtc
242 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
243 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
244 1.28 jtc sizeof(rmt));
245 1.28 jtc if (error)
246 1.28 jtc return (error);
247 1.27 jtc }
248 1.27 jtc
249 1.27 jtc return error;
250 1.27 jtc }
251 1.22 jtc
252 1.1 cgd /* ARGSUSED */
253 1.3 andrew int
254 1.16 mycroft sys_gettimeofday(p, v, retval)
255 1.1 cgd struct proc *p;
256 1.15 thorpej void *v;
257 1.15 thorpej register_t *retval;
258 1.15 thorpej {
259 1.16 mycroft register struct sys_gettimeofday_args /* {
260 1.11 cgd syscallarg(struct timeval *) tp;
261 1.11 cgd syscallarg(struct timezone *) tzp;
262 1.15 thorpej } */ *uap = v;
263 1.1 cgd struct timeval atv;
264 1.1 cgd int error = 0;
265 1.25 perry struct timezone tzfake;
266 1.1 cgd
267 1.11 cgd if (SCARG(uap, tp)) {
268 1.1 cgd microtime(&atv);
269 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
270 1.17 christos if (error)
271 1.1 cgd return (error);
272 1.1 cgd }
273 1.25 perry if (SCARG(uap, tzp)) {
274 1.25 perry /*
275 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
276 1.25 perry * fake up a timezone struct and return it if demanded.
277 1.25 perry */
278 1.25 perry tzfake.tz_minuteswest = 0;
279 1.25 perry tzfake.tz_dsttime = 0;
280 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
281 1.25 perry }
282 1.1 cgd return (error);
283 1.1 cgd }
284 1.1 cgd
285 1.1 cgd /* ARGSUSED */
286 1.3 andrew int
287 1.16 mycroft sys_settimeofday(p, v, retval)
288 1.1 cgd struct proc *p;
289 1.15 thorpej void *v;
290 1.15 thorpej register_t *retval;
291 1.15 thorpej {
292 1.16 mycroft struct sys_settimeofday_args /* {
293 1.24 cgd syscallarg(const struct timeval *) tv;
294 1.24 cgd syscallarg(const struct timezone *) tzp;
295 1.15 thorpej } */ *uap = v;
296 1.22 jtc struct timeval atv;
297 1.1 cgd struct timezone atz;
298 1.22 jtc int error;
299 1.1 cgd
300 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
301 1.1 cgd return (error);
302 1.8 cgd /* Verify all parameters before changing time. */
303 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
304 1.24 cgd &atv, sizeof(atv))))
305 1.8 cgd return (error);
306 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
307 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
308 1.24 cgd &atz, sizeof(atz))))
309 1.8 cgd return (error);
310 1.22 jtc if (SCARG(uap, tv))
311 1.29 tls if ((error = settime(&atv)))
312 1.29 tls return (error);
313 1.25 perry /*
314 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
315 1.25 perry * obsolete program would try to set it, so we log a warning.
316 1.25 perry */
317 1.11 cgd if (SCARG(uap, tzp))
318 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
319 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
320 1.8 cgd return (0);
321 1.1 cgd }
322 1.1 cgd
323 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
324 1.1 cgd long timedelta; /* unapplied time correction, us. */
325 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
326 1.1 cgd
327 1.1 cgd /* ARGSUSED */
328 1.3 andrew int
329 1.16 mycroft sys_adjtime(p, v, retval)
330 1.1 cgd struct proc *p;
331 1.15 thorpej void *v;
332 1.15 thorpej register_t *retval;
333 1.15 thorpej {
334 1.16 mycroft register struct sys_adjtime_args /* {
335 1.24 cgd syscallarg(const struct timeval *) delta;
336 1.11 cgd syscallarg(struct timeval *) olddelta;
337 1.15 thorpej } */ *uap = v;
338 1.8 cgd struct timeval atv;
339 1.8 cgd register long ndelta, ntickdelta, odelta;
340 1.1 cgd int s, error;
341 1.1 cgd
342 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
343 1.1 cgd return (error);
344 1.17 christos
345 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
346 1.17 christos if (error)
347 1.1 cgd return (error);
348 1.37 thorpej if (SCARG(uap, olddelta) != NULL &&
349 1.37 thorpej uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
350 1.37 thorpej B_WRITE) == FALSE)
351 1.37 thorpej return (EFAULT);
352 1.8 cgd
353 1.8 cgd /*
354 1.8 cgd * Compute the total correction and the rate at which to apply it.
355 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
356 1.8 cgd * delta, so that after some number of incremental changes in
357 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
358 1.8 cgd * overshoot and start taking us away from the desired final time.
359 1.8 cgd */
360 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
361 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
362 1.8 cgd ntickdelta = 10 * tickadj;
363 1.8 cgd else
364 1.8 cgd ntickdelta = tickadj;
365 1.8 cgd if (ndelta % ntickdelta)
366 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
367 1.8 cgd
368 1.8 cgd /*
369 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
370 1.8 cgd * if we want time to run slower; then hardclock can simply compute
371 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
372 1.8 cgd */
373 1.8 cgd if (ndelta < 0)
374 1.8 cgd ntickdelta = -ntickdelta;
375 1.1 cgd s = splclock();
376 1.8 cgd odelta = timedelta;
377 1.1 cgd timedelta = ndelta;
378 1.8 cgd tickdelta = ntickdelta;
379 1.1 cgd splx(s);
380 1.1 cgd
381 1.11 cgd if (SCARG(uap, olddelta)) {
382 1.8 cgd atv.tv_sec = odelta / 1000000;
383 1.8 cgd atv.tv_usec = odelta % 1000000;
384 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
385 1.8 cgd sizeof(struct timeval));
386 1.8 cgd }
387 1.1 cgd return (0);
388 1.1 cgd }
389 1.1 cgd
390 1.1 cgd /*
391 1.1 cgd * Get value of an interval timer. The process virtual and
392 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
393 1.1 cgd * they can be swapped out. These are kept internally in the
394 1.1 cgd * way they are specified externally: in time until they expire.
395 1.1 cgd *
396 1.1 cgd * The real time interval timer is kept in the process table slot
397 1.1 cgd * for the process, and its value (it_value) is kept as an
398 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
399 1.1 cgd * periodic real-time signals from drifting.
400 1.1 cgd *
401 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
402 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
403 1.1 cgd * routine, called from the softclock() routine. Since a callout
404 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
405 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
406 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
407 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
408 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
409 1.1 cgd * absolute time the timer should go off.
410 1.1 cgd */
411 1.1 cgd /* ARGSUSED */
412 1.3 andrew int
413 1.16 mycroft sys_getitimer(p, v, retval)
414 1.1 cgd struct proc *p;
415 1.15 thorpej void *v;
416 1.15 thorpej register_t *retval;
417 1.15 thorpej {
418 1.16 mycroft register struct sys_getitimer_args /* {
419 1.30 mycroft syscallarg(int) which;
420 1.11 cgd syscallarg(struct itimerval *) itv;
421 1.15 thorpej } */ *uap = v;
422 1.30 mycroft int which = SCARG(uap, which);
423 1.1 cgd struct itimerval aitv;
424 1.1 cgd int s;
425 1.1 cgd
426 1.30 mycroft if ((u_int)which > ITIMER_PROF)
427 1.1 cgd return (EINVAL);
428 1.1 cgd s = splclock();
429 1.30 mycroft if (which == ITIMER_REAL) {
430 1.1 cgd /*
431 1.12 mycroft * Convert from absolute to relative time in .it_value
432 1.1 cgd * part of real time timer. If time for real time timer
433 1.1 cgd * has passed return 0, else return difference between
434 1.1 cgd * current time and time for the timer to go off.
435 1.1 cgd */
436 1.1 cgd aitv = p->p_realtimer;
437 1.36 thorpej if (timerisset(&aitv.it_value)) {
438 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
439 1.1 cgd timerclear(&aitv.it_value);
440 1.1 cgd else
441 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
442 1.36 thorpej }
443 1.1 cgd } else
444 1.30 mycroft aitv = p->p_stats->p_timer[which];
445 1.1 cgd splx(s);
446 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
447 1.1 cgd }
448 1.1 cgd
449 1.1 cgd /* ARGSUSED */
450 1.3 andrew int
451 1.16 mycroft sys_setitimer(p, v, retval)
452 1.1 cgd struct proc *p;
453 1.17 christos register void *v;
454 1.15 thorpej register_t *retval;
455 1.15 thorpej {
456 1.16 mycroft register struct sys_setitimer_args /* {
457 1.30 mycroft syscallarg(int) which;
458 1.24 cgd syscallarg(const struct itimerval *) itv;
459 1.11 cgd syscallarg(struct itimerval *) oitv;
460 1.15 thorpej } */ *uap = v;
461 1.30 mycroft int which = SCARG(uap, which);
462 1.21 cgd struct sys_getitimer_args getargs;
463 1.1 cgd struct itimerval aitv;
464 1.24 cgd register const struct itimerval *itvp;
465 1.1 cgd int s, error;
466 1.1 cgd
467 1.30 mycroft if ((u_int)which > ITIMER_PROF)
468 1.1 cgd return (EINVAL);
469 1.11 cgd itvp = SCARG(uap, itv);
470 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
471 1.1 cgd return (error);
472 1.21 cgd if (SCARG(uap, oitv) != NULL) {
473 1.30 mycroft SCARG(&getargs, which) = which;
474 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
475 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
476 1.21 cgd return (error);
477 1.21 cgd }
478 1.1 cgd if (itvp == 0)
479 1.1 cgd return (0);
480 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
481 1.1 cgd return (EINVAL);
482 1.1 cgd s = splclock();
483 1.30 mycroft if (which == ITIMER_REAL) {
484 1.7 mycroft untimeout(realitexpire, p);
485 1.1 cgd if (timerisset(&aitv.it_value)) {
486 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
487 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
488 1.1 cgd }
489 1.1 cgd p->p_realtimer = aitv;
490 1.1 cgd } else
491 1.30 mycroft p->p_stats->p_timer[which] = aitv;
492 1.1 cgd splx(s);
493 1.1 cgd return (0);
494 1.1 cgd }
495 1.1 cgd
496 1.1 cgd /*
497 1.1 cgd * Real interval timer expired:
498 1.1 cgd * send process whose timer expired an alarm signal.
499 1.1 cgd * If time is not set up to reload, then just return.
500 1.1 cgd * Else compute next time timer should go off which is > current time.
501 1.1 cgd * This is where delay in processing this timeout causes multiple
502 1.1 cgd * SIGALRM calls to be compressed into one.
503 1.1 cgd */
504 1.3 andrew void
505 1.6 cgd realitexpire(arg)
506 1.6 cgd void *arg;
507 1.6 cgd {
508 1.1 cgd register struct proc *p;
509 1.1 cgd int s;
510 1.1 cgd
511 1.6 cgd p = (struct proc *)arg;
512 1.1 cgd psignal(p, SIGALRM);
513 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
514 1.1 cgd timerclear(&p->p_realtimer.it_value);
515 1.1 cgd return;
516 1.1 cgd }
517 1.1 cgd for (;;) {
518 1.1 cgd s = splclock();
519 1.14 mycroft timeradd(&p->p_realtimer.it_value,
520 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
521 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
522 1.7 mycroft timeout(realitexpire, p,
523 1.1 cgd hzto(&p->p_realtimer.it_value));
524 1.1 cgd splx(s);
525 1.1 cgd return;
526 1.1 cgd }
527 1.1 cgd splx(s);
528 1.1 cgd }
529 1.1 cgd }
530 1.1 cgd
531 1.1 cgd /*
532 1.1 cgd * Check that a proposed value to load into the .it_value or
533 1.1 cgd * .it_interval part of an interval timer is acceptable, and
534 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
535 1.1 cgd * than the resolution of the clock, round it up.)
536 1.1 cgd */
537 1.3 andrew int
538 1.1 cgd itimerfix(tv)
539 1.1 cgd struct timeval *tv;
540 1.1 cgd {
541 1.1 cgd
542 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
543 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
544 1.1 cgd return (EINVAL);
545 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
546 1.1 cgd tv->tv_usec = tick;
547 1.1 cgd return (0);
548 1.1 cgd }
549 1.1 cgd
550 1.1 cgd /*
551 1.1 cgd * Decrement an interval timer by a specified number
552 1.1 cgd * of microseconds, which must be less than a second,
553 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
554 1.1 cgd * it. In this case, carry over (usec - old value) to
555 1.8 cgd * reduce the value reloaded into the timer so that
556 1.1 cgd * the timer does not drift. This routine assumes
557 1.1 cgd * that it is called in a context where the timers
558 1.1 cgd * on which it is operating cannot change in value.
559 1.1 cgd */
560 1.3 andrew int
561 1.1 cgd itimerdecr(itp, usec)
562 1.1 cgd register struct itimerval *itp;
563 1.1 cgd int usec;
564 1.1 cgd {
565 1.1 cgd
566 1.1 cgd if (itp->it_value.tv_usec < usec) {
567 1.1 cgd if (itp->it_value.tv_sec == 0) {
568 1.1 cgd /* expired, and already in next interval */
569 1.1 cgd usec -= itp->it_value.tv_usec;
570 1.1 cgd goto expire;
571 1.1 cgd }
572 1.1 cgd itp->it_value.tv_usec += 1000000;
573 1.1 cgd itp->it_value.tv_sec--;
574 1.1 cgd }
575 1.1 cgd itp->it_value.tv_usec -= usec;
576 1.1 cgd usec = 0;
577 1.1 cgd if (timerisset(&itp->it_value))
578 1.1 cgd return (1);
579 1.1 cgd /* expired, exactly at end of interval */
580 1.1 cgd expire:
581 1.1 cgd if (timerisset(&itp->it_interval)) {
582 1.1 cgd itp->it_value = itp->it_interval;
583 1.1 cgd itp->it_value.tv_usec -= usec;
584 1.1 cgd if (itp->it_value.tv_usec < 0) {
585 1.1 cgd itp->it_value.tv_usec += 1000000;
586 1.1 cgd itp->it_value.tv_sec--;
587 1.1 cgd }
588 1.1 cgd } else
589 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
590 1.1 cgd return (0);
591 1.1 cgd }
592