kern_time.c revision 1.49 1 1.49 itojun /* $NetBSD: kern_time.c,v 1.49 2000/07/09 06:40:08 itojun Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.31 thorpej #include "fs_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.5 mycroft #include <sys/proc.h>
82 1.8 cgd #include <sys/vnode.h>
83 1.17 christos #include <sys/signalvar.h>
84 1.25 perry #include <sys/syslog.h>
85 1.1 cgd
86 1.11 cgd #include <sys/mount.h>
87 1.11 cgd #include <sys/syscallargs.h>
88 1.19 christos
89 1.37 thorpej #include <uvm/uvm_extern.h>
90 1.37 thorpej
91 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
92 1.20 fvdl #include <nfs/rpcv2.h>
93 1.20 fvdl #include <nfs/nfsproto.h>
94 1.19 christos #include <nfs/nfs_var.h>
95 1.19 christos #endif
96 1.17 christos
97 1.5 mycroft #include <machine/cpu.h>
98 1.23 cgd
99 1.23 cgd /*
100 1.1 cgd * Time of day and interval timer support.
101 1.1 cgd *
102 1.1 cgd * These routines provide the kernel entry points to get and set
103 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
104 1.1 cgd * here provide support for adding and subtracting timeval structures
105 1.1 cgd * and decrementing interval timers, optionally reloading the interval
106 1.1 cgd * timers when they expire.
107 1.1 cgd */
108 1.1 cgd
109 1.22 jtc /* This function is used by clock_settime and settimeofday */
110 1.39 tron int
111 1.22 jtc settime(tv)
112 1.22 jtc struct timeval *tv;
113 1.22 jtc {
114 1.22 jtc struct timeval delta;
115 1.47 thorpej struct cpu_info *ci;
116 1.22 jtc int s;
117 1.22 jtc
118 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
119 1.22 jtc s = splclock();
120 1.22 jtc timersub(tv, &time, &delta);
121 1.29 tls if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
122 1.29 tls return (EPERM);
123 1.29 tls #ifdef notyet
124 1.29 tls if ((delta.tv_sec < 86400) && securelevel > 0)
125 1.29 tls return (EPERM);
126 1.29 tls #endif
127 1.22 jtc time = *tv;
128 1.38 thorpej (void) spllowersoftclock();
129 1.22 jtc timeradd(&boottime, &delta, &boottime);
130 1.47 thorpej /*
131 1.47 thorpej * XXXSMP
132 1.47 thorpej * This is wrong. We should traverse a list of all
133 1.47 thorpej * CPUs and add the delta to the runtime of those
134 1.47 thorpej * CPUs which have a process on them.
135 1.47 thorpej */
136 1.47 thorpej ci = curcpu();
137 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
138 1.47 thorpej &ci->ci_schedstate.spc_runtime);
139 1.26 thorpej # if defined(NFS) || defined(NFSSERVER)
140 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
141 1.22 jtc # endif
142 1.22 jtc splx(s);
143 1.22 jtc resettodr();
144 1.29 tls return (0);
145 1.22 jtc }
146 1.22 jtc
147 1.22 jtc /* ARGSUSED */
148 1.22 jtc int
149 1.22 jtc sys_clock_gettime(p, v, retval)
150 1.22 jtc struct proc *p;
151 1.22 jtc void *v;
152 1.22 jtc register_t *retval;
153 1.22 jtc {
154 1.45 augustss struct sys_clock_gettime_args /* {
155 1.22 jtc syscallarg(clockid_t) clock_id;
156 1.23 cgd syscallarg(struct timespec *) tp;
157 1.23 cgd } */ *uap = v;
158 1.22 jtc clockid_t clock_id;
159 1.22 jtc struct timeval atv;
160 1.22 jtc struct timespec ats;
161 1.22 jtc
162 1.22 jtc clock_id = SCARG(uap, clock_id);
163 1.22 jtc if (clock_id != CLOCK_REALTIME)
164 1.22 jtc return (EINVAL);
165 1.22 jtc
166 1.22 jtc microtime(&atv);
167 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
168 1.22 jtc
169 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
170 1.22 jtc }
171 1.22 jtc
172 1.22 jtc /* ARGSUSED */
173 1.22 jtc int
174 1.22 jtc sys_clock_settime(p, v, retval)
175 1.22 jtc struct proc *p;
176 1.22 jtc void *v;
177 1.22 jtc register_t *retval;
178 1.22 jtc {
179 1.45 augustss struct sys_clock_settime_args /* {
180 1.22 jtc syscallarg(clockid_t) clock_id;
181 1.23 cgd syscallarg(const struct timespec *) tp;
182 1.23 cgd } */ *uap = v;
183 1.22 jtc clockid_t clock_id;
184 1.22 jtc struct timeval atv;
185 1.22 jtc struct timespec ats;
186 1.22 jtc int error;
187 1.22 jtc
188 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
189 1.22 jtc return (error);
190 1.22 jtc
191 1.22 jtc clock_id = SCARG(uap, clock_id);
192 1.22 jtc if (clock_id != CLOCK_REALTIME)
193 1.22 jtc return (EINVAL);
194 1.22 jtc
195 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
196 1.23 cgd return (error);
197 1.22 jtc
198 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
199 1.29 tls if ((error = settime(&atv)))
200 1.29 tls return (error);
201 1.22 jtc
202 1.22 jtc return 0;
203 1.22 jtc }
204 1.22 jtc
205 1.22 jtc int
206 1.22 jtc sys_clock_getres(p, v, retval)
207 1.22 jtc struct proc *p;
208 1.22 jtc void *v;
209 1.22 jtc register_t *retval;
210 1.22 jtc {
211 1.45 augustss struct sys_clock_getres_args /* {
212 1.22 jtc syscallarg(clockid_t) clock_id;
213 1.23 cgd syscallarg(struct timespec *) tp;
214 1.23 cgd } */ *uap = v;
215 1.22 jtc clockid_t clock_id;
216 1.22 jtc struct timespec ts;
217 1.22 jtc int error = 0;
218 1.22 jtc
219 1.22 jtc clock_id = SCARG(uap, clock_id);
220 1.22 jtc if (clock_id != CLOCK_REALTIME)
221 1.22 jtc return (EINVAL);
222 1.22 jtc
223 1.22 jtc if (SCARG(uap, tp)) {
224 1.22 jtc ts.tv_sec = 0;
225 1.22 jtc ts.tv_nsec = 1000000000 / hz;
226 1.22 jtc
227 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
228 1.22 jtc }
229 1.22 jtc
230 1.22 jtc return error;
231 1.22 jtc }
232 1.22 jtc
233 1.27 jtc /* ARGSUSED */
234 1.27 jtc int
235 1.27 jtc sys_nanosleep(p, v, retval)
236 1.27 jtc struct proc *p;
237 1.27 jtc void *v;
238 1.27 jtc register_t *retval;
239 1.27 jtc {
240 1.27 jtc static int nanowait;
241 1.45 augustss struct sys_nanosleep_args/* {
242 1.27 jtc syscallarg(struct timespec *) rqtp;
243 1.27 jtc syscallarg(struct timespec *) rmtp;
244 1.27 jtc } */ *uap = v;
245 1.27 jtc struct timespec rqt;
246 1.27 jtc struct timespec rmt;
247 1.27 jtc struct timeval atv, utv;
248 1.27 jtc int error, s, timo;
249 1.27 jtc
250 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
251 1.27 jtc sizeof(struct timespec));
252 1.27 jtc if (error)
253 1.27 jtc return (error);
254 1.27 jtc
255 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
256 1.27 jtc if (itimerfix(&atv))
257 1.27 jtc return (EINVAL);
258 1.27 jtc
259 1.27 jtc s = splclock();
260 1.27 jtc timeradd(&atv,&time,&atv);
261 1.27 jtc timo = hzto(&atv);
262 1.27 jtc /*
263 1.27 jtc * Avoid inadvertantly sleeping forever
264 1.27 jtc */
265 1.27 jtc if (timo == 0)
266 1.27 jtc timo = 1;
267 1.27 jtc splx(s);
268 1.27 jtc
269 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
270 1.27 jtc if (error == ERESTART)
271 1.27 jtc error = EINTR;
272 1.27 jtc if (error == EWOULDBLOCK)
273 1.27 jtc error = 0;
274 1.27 jtc
275 1.27 jtc if (SCARG(uap, rmtp)) {
276 1.28 jtc int error;
277 1.28 jtc
278 1.27 jtc s = splclock();
279 1.27 jtc utv = time;
280 1.27 jtc splx(s);
281 1.27 jtc
282 1.27 jtc timersub(&atv, &utv, &utv);
283 1.27 jtc if (utv.tv_sec < 0)
284 1.27 jtc timerclear(&utv);
285 1.27 jtc
286 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
287 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
288 1.28 jtc sizeof(rmt));
289 1.28 jtc if (error)
290 1.28 jtc return (error);
291 1.27 jtc }
292 1.27 jtc
293 1.27 jtc return error;
294 1.27 jtc }
295 1.22 jtc
296 1.1 cgd /* ARGSUSED */
297 1.3 andrew int
298 1.16 mycroft sys_gettimeofday(p, v, retval)
299 1.1 cgd struct proc *p;
300 1.15 thorpej void *v;
301 1.15 thorpej register_t *retval;
302 1.15 thorpej {
303 1.45 augustss struct sys_gettimeofday_args /* {
304 1.11 cgd syscallarg(struct timeval *) tp;
305 1.11 cgd syscallarg(struct timezone *) tzp;
306 1.15 thorpej } */ *uap = v;
307 1.1 cgd struct timeval atv;
308 1.1 cgd int error = 0;
309 1.25 perry struct timezone tzfake;
310 1.1 cgd
311 1.11 cgd if (SCARG(uap, tp)) {
312 1.1 cgd microtime(&atv);
313 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
314 1.17 christos if (error)
315 1.1 cgd return (error);
316 1.1 cgd }
317 1.25 perry if (SCARG(uap, tzp)) {
318 1.25 perry /*
319 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
320 1.25 perry * fake up a timezone struct and return it if demanded.
321 1.25 perry */
322 1.25 perry tzfake.tz_minuteswest = 0;
323 1.25 perry tzfake.tz_dsttime = 0;
324 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
325 1.25 perry }
326 1.1 cgd return (error);
327 1.1 cgd }
328 1.1 cgd
329 1.1 cgd /* ARGSUSED */
330 1.3 andrew int
331 1.16 mycroft sys_settimeofday(p, v, retval)
332 1.1 cgd struct proc *p;
333 1.15 thorpej void *v;
334 1.15 thorpej register_t *retval;
335 1.15 thorpej {
336 1.16 mycroft struct sys_settimeofday_args /* {
337 1.24 cgd syscallarg(const struct timeval *) tv;
338 1.24 cgd syscallarg(const struct timezone *) tzp;
339 1.15 thorpej } */ *uap = v;
340 1.22 jtc struct timeval atv;
341 1.1 cgd struct timezone atz;
342 1.22 jtc int error;
343 1.1 cgd
344 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
345 1.1 cgd return (error);
346 1.8 cgd /* Verify all parameters before changing time. */
347 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
348 1.24 cgd &atv, sizeof(atv))))
349 1.8 cgd return (error);
350 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
351 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
352 1.24 cgd &atz, sizeof(atz))))
353 1.8 cgd return (error);
354 1.22 jtc if (SCARG(uap, tv))
355 1.29 tls if ((error = settime(&atv)))
356 1.29 tls return (error);
357 1.25 perry /*
358 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
359 1.25 perry * obsolete program would try to set it, so we log a warning.
360 1.25 perry */
361 1.11 cgd if (SCARG(uap, tzp))
362 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
363 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
364 1.8 cgd return (0);
365 1.1 cgd }
366 1.1 cgd
367 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
368 1.1 cgd long timedelta; /* unapplied time correction, us. */
369 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
370 1.1 cgd
371 1.1 cgd /* ARGSUSED */
372 1.3 andrew int
373 1.16 mycroft sys_adjtime(p, v, retval)
374 1.1 cgd struct proc *p;
375 1.15 thorpej void *v;
376 1.15 thorpej register_t *retval;
377 1.15 thorpej {
378 1.45 augustss struct sys_adjtime_args /* {
379 1.24 cgd syscallarg(const struct timeval *) delta;
380 1.11 cgd syscallarg(struct timeval *) olddelta;
381 1.15 thorpej } */ *uap = v;
382 1.8 cgd struct timeval atv;
383 1.45 augustss long ndelta, ntickdelta, odelta;
384 1.1 cgd int s, error;
385 1.1 cgd
386 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
387 1.1 cgd return (error);
388 1.17 christos
389 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
390 1.17 christos if (error)
391 1.1 cgd return (error);
392 1.37 thorpej if (SCARG(uap, olddelta) != NULL &&
393 1.37 thorpej uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
394 1.37 thorpej B_WRITE) == FALSE)
395 1.37 thorpej return (EFAULT);
396 1.8 cgd
397 1.8 cgd /*
398 1.8 cgd * Compute the total correction and the rate at which to apply it.
399 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
400 1.8 cgd * delta, so that after some number of incremental changes in
401 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
402 1.8 cgd * overshoot and start taking us away from the desired final time.
403 1.8 cgd */
404 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
405 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
406 1.8 cgd ntickdelta = 10 * tickadj;
407 1.8 cgd else
408 1.8 cgd ntickdelta = tickadj;
409 1.8 cgd if (ndelta % ntickdelta)
410 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
411 1.8 cgd
412 1.8 cgd /*
413 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
414 1.8 cgd * if we want time to run slower; then hardclock can simply compute
415 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
416 1.8 cgd */
417 1.8 cgd if (ndelta < 0)
418 1.8 cgd ntickdelta = -ntickdelta;
419 1.1 cgd s = splclock();
420 1.8 cgd odelta = timedelta;
421 1.1 cgd timedelta = ndelta;
422 1.8 cgd tickdelta = ntickdelta;
423 1.1 cgd splx(s);
424 1.1 cgd
425 1.11 cgd if (SCARG(uap, olddelta)) {
426 1.8 cgd atv.tv_sec = odelta / 1000000;
427 1.8 cgd atv.tv_usec = odelta % 1000000;
428 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
429 1.8 cgd sizeof(struct timeval));
430 1.8 cgd }
431 1.1 cgd return (0);
432 1.1 cgd }
433 1.1 cgd
434 1.1 cgd /*
435 1.1 cgd * Get value of an interval timer. The process virtual and
436 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
437 1.1 cgd * they can be swapped out. These are kept internally in the
438 1.1 cgd * way they are specified externally: in time until they expire.
439 1.1 cgd *
440 1.1 cgd * The real time interval timer is kept in the process table slot
441 1.1 cgd * for the process, and its value (it_value) is kept as an
442 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
443 1.1 cgd * periodic real-time signals from drifting.
444 1.1 cgd *
445 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
446 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
447 1.1 cgd * routine, called from the softclock() routine. Since a callout
448 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
449 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
450 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
451 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
452 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
453 1.1 cgd * absolute time the timer should go off.
454 1.1 cgd */
455 1.1 cgd /* ARGSUSED */
456 1.3 andrew int
457 1.16 mycroft sys_getitimer(p, v, retval)
458 1.1 cgd struct proc *p;
459 1.15 thorpej void *v;
460 1.15 thorpej register_t *retval;
461 1.15 thorpej {
462 1.45 augustss struct sys_getitimer_args /* {
463 1.30 mycroft syscallarg(int) which;
464 1.11 cgd syscallarg(struct itimerval *) itv;
465 1.15 thorpej } */ *uap = v;
466 1.30 mycroft int which = SCARG(uap, which);
467 1.1 cgd struct itimerval aitv;
468 1.1 cgd int s;
469 1.1 cgd
470 1.30 mycroft if ((u_int)which > ITIMER_PROF)
471 1.1 cgd return (EINVAL);
472 1.1 cgd s = splclock();
473 1.30 mycroft if (which == ITIMER_REAL) {
474 1.1 cgd /*
475 1.12 mycroft * Convert from absolute to relative time in .it_value
476 1.1 cgd * part of real time timer. If time for real time timer
477 1.1 cgd * has passed return 0, else return difference between
478 1.1 cgd * current time and time for the timer to go off.
479 1.1 cgd */
480 1.1 cgd aitv = p->p_realtimer;
481 1.36 thorpej if (timerisset(&aitv.it_value)) {
482 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
483 1.1 cgd timerclear(&aitv.it_value);
484 1.1 cgd else
485 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
486 1.36 thorpej }
487 1.1 cgd } else
488 1.30 mycroft aitv = p->p_stats->p_timer[which];
489 1.1 cgd splx(s);
490 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
491 1.1 cgd }
492 1.1 cgd
493 1.1 cgd /* ARGSUSED */
494 1.3 andrew int
495 1.16 mycroft sys_setitimer(p, v, retval)
496 1.1 cgd struct proc *p;
497 1.45 augustss void *v;
498 1.15 thorpej register_t *retval;
499 1.15 thorpej {
500 1.45 augustss struct sys_setitimer_args /* {
501 1.30 mycroft syscallarg(int) which;
502 1.24 cgd syscallarg(const struct itimerval *) itv;
503 1.11 cgd syscallarg(struct itimerval *) oitv;
504 1.15 thorpej } */ *uap = v;
505 1.30 mycroft int which = SCARG(uap, which);
506 1.21 cgd struct sys_getitimer_args getargs;
507 1.1 cgd struct itimerval aitv;
508 1.45 augustss const struct itimerval *itvp;
509 1.1 cgd int s, error;
510 1.1 cgd
511 1.30 mycroft if ((u_int)which > ITIMER_PROF)
512 1.1 cgd return (EINVAL);
513 1.11 cgd itvp = SCARG(uap, itv);
514 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
515 1.1 cgd return (error);
516 1.21 cgd if (SCARG(uap, oitv) != NULL) {
517 1.30 mycroft SCARG(&getargs, which) = which;
518 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
519 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
520 1.21 cgd return (error);
521 1.21 cgd }
522 1.1 cgd if (itvp == 0)
523 1.1 cgd return (0);
524 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
525 1.1 cgd return (EINVAL);
526 1.1 cgd s = splclock();
527 1.30 mycroft if (which == ITIMER_REAL) {
528 1.44 thorpej callout_stop(&p->p_realit_ch);
529 1.1 cgd if (timerisset(&aitv.it_value)) {
530 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
531 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
532 1.44 thorpej realitexpire, p);
533 1.1 cgd }
534 1.1 cgd p->p_realtimer = aitv;
535 1.1 cgd } else
536 1.30 mycroft p->p_stats->p_timer[which] = aitv;
537 1.1 cgd splx(s);
538 1.1 cgd return (0);
539 1.1 cgd }
540 1.1 cgd
541 1.1 cgd /*
542 1.1 cgd * Real interval timer expired:
543 1.1 cgd * send process whose timer expired an alarm signal.
544 1.1 cgd * If time is not set up to reload, then just return.
545 1.1 cgd * Else compute next time timer should go off which is > current time.
546 1.1 cgd * This is where delay in processing this timeout causes multiple
547 1.1 cgd * SIGALRM calls to be compressed into one.
548 1.1 cgd */
549 1.3 andrew void
550 1.6 cgd realitexpire(arg)
551 1.6 cgd void *arg;
552 1.6 cgd {
553 1.45 augustss struct proc *p;
554 1.1 cgd int s;
555 1.1 cgd
556 1.6 cgd p = (struct proc *)arg;
557 1.1 cgd psignal(p, SIGALRM);
558 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
559 1.1 cgd timerclear(&p->p_realtimer.it_value);
560 1.1 cgd return;
561 1.1 cgd }
562 1.1 cgd for (;;) {
563 1.1 cgd s = splclock();
564 1.14 mycroft timeradd(&p->p_realtimer.it_value,
565 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
566 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
567 1.44 thorpej callout_reset(&p->p_realit_ch,
568 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
569 1.1 cgd splx(s);
570 1.1 cgd return;
571 1.1 cgd }
572 1.1 cgd splx(s);
573 1.1 cgd }
574 1.1 cgd }
575 1.1 cgd
576 1.1 cgd /*
577 1.1 cgd * Check that a proposed value to load into the .it_value or
578 1.1 cgd * .it_interval part of an interval timer is acceptable, and
579 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
580 1.1 cgd * than the resolution of the clock, round it up.)
581 1.1 cgd */
582 1.3 andrew int
583 1.1 cgd itimerfix(tv)
584 1.1 cgd struct timeval *tv;
585 1.1 cgd {
586 1.1 cgd
587 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
588 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
589 1.1 cgd return (EINVAL);
590 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
591 1.1 cgd tv->tv_usec = tick;
592 1.1 cgd return (0);
593 1.1 cgd }
594 1.1 cgd
595 1.1 cgd /*
596 1.1 cgd * Decrement an interval timer by a specified number
597 1.1 cgd * of microseconds, which must be less than a second,
598 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
599 1.1 cgd * it. In this case, carry over (usec - old value) to
600 1.8 cgd * reduce the value reloaded into the timer so that
601 1.1 cgd * the timer does not drift. This routine assumes
602 1.1 cgd * that it is called in a context where the timers
603 1.1 cgd * on which it is operating cannot change in value.
604 1.1 cgd */
605 1.3 andrew int
606 1.1 cgd itimerdecr(itp, usec)
607 1.45 augustss struct itimerval *itp;
608 1.1 cgd int usec;
609 1.1 cgd {
610 1.1 cgd
611 1.1 cgd if (itp->it_value.tv_usec < usec) {
612 1.1 cgd if (itp->it_value.tv_sec == 0) {
613 1.1 cgd /* expired, and already in next interval */
614 1.1 cgd usec -= itp->it_value.tv_usec;
615 1.1 cgd goto expire;
616 1.1 cgd }
617 1.1 cgd itp->it_value.tv_usec += 1000000;
618 1.1 cgd itp->it_value.tv_sec--;
619 1.1 cgd }
620 1.1 cgd itp->it_value.tv_usec -= usec;
621 1.1 cgd usec = 0;
622 1.1 cgd if (timerisset(&itp->it_value))
623 1.1 cgd return (1);
624 1.1 cgd /* expired, exactly at end of interval */
625 1.1 cgd expire:
626 1.1 cgd if (timerisset(&itp->it_interval)) {
627 1.1 cgd itp->it_value = itp->it_interval;
628 1.1 cgd itp->it_value.tv_usec -= usec;
629 1.1 cgd if (itp->it_value.tv_usec < 0) {
630 1.1 cgd itp->it_value.tv_usec += 1000000;
631 1.1 cgd itp->it_value.tv_sec--;
632 1.1 cgd }
633 1.1 cgd } else
634 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
635 1.1 cgd return (0);
636 1.42 cgd }
637 1.42 cgd
638 1.42 cgd /*
639 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
640 1.42 cgd * for usage and rationale.
641 1.42 cgd */
642 1.42 cgd int
643 1.42 cgd ratecheck(lasttime, mininterval)
644 1.42 cgd struct timeval *lasttime;
645 1.42 cgd const struct timeval *mininterval;
646 1.42 cgd {
647 1.49 itojun struct timeval tv, delta;
648 1.42 cgd int s, rv = 0;
649 1.42 cgd
650 1.42 cgd s = splclock();
651 1.49 itojun tv = mono_time;
652 1.49 itojun splx(s);
653 1.49 itojun
654 1.49 itojun timersub(&tv, lasttime, &delta);
655 1.42 cgd
656 1.42 cgd /*
657 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
658 1.42 cgd * even if interval is huge.
659 1.42 cgd */
660 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
661 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
662 1.49 itojun *lasttime = tv;
663 1.42 cgd rv = 1;
664 1.42 cgd }
665 1.42 cgd
666 1.42 cgd return (rv);
667 1.1 cgd }
668