Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.54.2.10
      1  1.54.2.10   nathanw /*	$NetBSD: kern_time.c,v 1.54.2.10 2002/02/19 23:25:10 nathanw Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4       1.42       cgd  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19       1.42       cgd  *    must display the following acknowledgement:
     20       1.42       cgd  *	This product includes software developed by the NetBSD
     21       1.42       cgd  *	Foundation, Inc. and its contributors.
     22       1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.42       cgd  *    contributors may be used to endorse or promote products derived
     24       1.42       cgd  *    from this software without specific prior written permission.
     25       1.42       cgd  *
     26       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37       1.42       cgd  */
     38        1.9       cgd 
     39        1.1       cgd /*
     40        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42        1.1       cgd  *
     43        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44        1.1       cgd  * modification, are permitted provided that the following conditions
     45        1.1       cgd  * are met:
     46        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51        1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     52        1.1       cgd  *    must display the following acknowledgement:
     53        1.1       cgd  *	This product includes software developed by the University of
     54        1.1       cgd  *	California, Berkeley and its contributors.
     55        1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     56        1.1       cgd  *    may be used to endorse or promote products derived from this software
     57        1.1       cgd  *    without specific prior written permission.
     58        1.1       cgd  *
     59        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69        1.1       cgd  * SUCH DAMAGE.
     70        1.1       cgd  *
     71       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72        1.1       cgd  */
     73       1.31   thorpej 
     74   1.54.2.4   nathanw #include <sys/cdefs.h>
     75  1.54.2.10   nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.10 2002/02/19 23:25:10 nathanw Exp $");
     76   1.54.2.4   nathanw 
     77       1.31   thorpej #include "fs_nfs.h"
     78       1.54     bjh21 #include "opt_nfs.h"
     79       1.34   thorpej #include "opt_nfsserver.h"
     80        1.1       cgd 
     81        1.5   mycroft #include <sys/param.h>
     82        1.5   mycroft #include <sys/resourcevar.h>
     83        1.5   mycroft #include <sys/kernel.h>
     84        1.8       cgd #include <sys/systm.h>
     85   1.54.2.1   nathanw #include <sys/lwp.h>
     86   1.54.2.5   nathanw #include <sys/malloc.h>
     87        1.5   mycroft #include <sys/proc.h>
     88   1.54.2.5   nathanw #include <sys/sa.h>
     89   1.54.2.5   nathanw #include <sys/savar.h>
     90        1.8       cgd #include <sys/vnode.h>
     91       1.17  christos #include <sys/signalvar.h>
     92       1.25     perry #include <sys/syslog.h>
     93        1.1       cgd 
     94       1.11       cgd #include <sys/mount.h>
     95       1.11       cgd #include <sys/syscallargs.h>
     96       1.19  christos 
     97       1.37   thorpej #include <uvm/uvm_extern.h>
     98       1.37   thorpej 
     99       1.26   thorpej #if defined(NFS) || defined(NFSSERVER)
    100       1.20      fvdl #include <nfs/rpcv2.h>
    101       1.20      fvdl #include <nfs/nfsproto.h>
    102       1.19  christos #include <nfs/nfs_var.h>
    103       1.19  christos #endif
    104       1.17  christos 
    105        1.5   mycroft #include <machine/cpu.h>
    106       1.23       cgd 
    107   1.54.2.5   nathanw static void realtimerupcall(struct lwp *, void *);
    108   1.54.2.5   nathanw 
    109   1.54.2.5   nathanw 
    110   1.54.2.5   nathanw /* Time of day and interval timer support.
    111        1.1       cgd  *
    112        1.1       cgd  * These routines provide the kernel entry points to get and set
    113        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    114        1.1       cgd  * here provide support for adding and subtracting timeval structures
    115        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    116        1.1       cgd  * timers when they expire.
    117        1.1       cgd  */
    118        1.1       cgd 
    119       1.22       jtc /* This function is used by clock_settime and settimeofday */
    120       1.39      tron int
    121   1.54.2.5   nathanw settime(struct timeval *tv)
    122       1.22       jtc {
    123       1.22       jtc 	struct timeval delta;
    124       1.47   thorpej 	struct cpu_info *ci;
    125       1.22       jtc 	int s;
    126       1.22       jtc 
    127       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    128       1.22       jtc 	s = splclock();
    129       1.22       jtc 	timersub(tv, &time, &delta);
    130   1.54.2.2   nathanw 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    131   1.54.2.2   nathanw 		splx(s);
    132       1.29       tls 		return (EPERM);
    133   1.54.2.2   nathanw 	}
    134       1.29       tls #ifdef notyet
    135   1.54.2.2   nathanw 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    136   1.54.2.2   nathanw 		splx(s);
    137       1.29       tls 		return (EPERM);
    138   1.54.2.2   nathanw 	}
    139       1.29       tls #endif
    140       1.22       jtc 	time = *tv;
    141       1.38   thorpej 	(void) spllowersoftclock();
    142       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    143       1.47   thorpej 	/*
    144       1.47   thorpej 	 * XXXSMP
    145       1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    146       1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    147       1.47   thorpej 	 * CPUs which have a process on them.
    148       1.47   thorpej 	 */
    149       1.47   thorpej 	ci = curcpu();
    150       1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    151       1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    152       1.54     bjh21 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    153       1.22       jtc 		nqnfs_lease_updatetime(delta.tv_sec);
    154       1.22       jtc #	endif
    155       1.22       jtc 	splx(s);
    156       1.22       jtc 	resettodr();
    157       1.29       tls 	return (0);
    158       1.22       jtc }
    159       1.22       jtc 
    160       1.22       jtc /* ARGSUSED */
    161       1.22       jtc int
    162   1.54.2.5   nathanw sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    163       1.22       jtc {
    164       1.45  augustss 	struct sys_clock_gettime_args /* {
    165       1.22       jtc 		syscallarg(clockid_t) clock_id;
    166       1.23       cgd 		syscallarg(struct timespec *) tp;
    167       1.23       cgd 	} */ *uap = v;
    168       1.22       jtc 	clockid_t clock_id;
    169       1.22       jtc 	struct timeval atv;
    170       1.22       jtc 	struct timespec ats;
    171       1.22       jtc 
    172       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    173       1.22       jtc 	if (clock_id != CLOCK_REALTIME)
    174       1.22       jtc 		return (EINVAL);
    175       1.22       jtc 
    176       1.22       jtc 	microtime(&atv);
    177       1.22       jtc 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    178       1.22       jtc 
    179       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    180       1.22       jtc }
    181       1.22       jtc 
    182       1.22       jtc /* ARGSUSED */
    183       1.22       jtc int
    184   1.54.2.1   nathanw sys_clock_settime(l, v, retval)
    185   1.54.2.1   nathanw 	struct lwp *l;
    186       1.22       jtc 	void *v;
    187       1.22       jtc 	register_t *retval;
    188       1.22       jtc {
    189       1.45  augustss 	struct sys_clock_settime_args /* {
    190       1.22       jtc 		syscallarg(clockid_t) clock_id;
    191       1.23       cgd 		syscallarg(const struct timespec *) tp;
    192       1.23       cgd 	} */ *uap = v;
    193   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    194       1.22       jtc 	int error;
    195       1.22       jtc 
    196       1.22       jtc 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    197       1.22       jtc 		return (error);
    198       1.22       jtc 
    199   1.54.2.6   nathanw 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    200   1.54.2.3   nathanw }
    201   1.54.2.3   nathanw 
    202   1.54.2.3   nathanw 
    203   1.54.2.3   nathanw int
    204   1.54.2.6   nathanw clock_settime1(clock_id, tp)
    205   1.54.2.6   nathanw 	clockid_t clock_id;
    206   1.54.2.6   nathanw 	const struct timespec *tp;
    207   1.54.2.3   nathanw {
    208   1.54.2.6   nathanw 	struct timespec ats;
    209   1.54.2.3   nathanw 	struct timeval atv;
    210   1.54.2.3   nathanw 	int error;
    211   1.54.2.3   nathanw 
    212   1.54.2.6   nathanw 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    213   1.54.2.6   nathanw 		return (error);
    214   1.54.2.6   nathanw 
    215   1.54.2.3   nathanw 	if (clock_id != CLOCK_REALTIME)
    216   1.54.2.3   nathanw 		return (EINVAL);
    217   1.54.2.3   nathanw 
    218   1.54.2.6   nathanw 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
    219   1.54.2.3   nathanw 	if ((error = settime(&atv)) != 0)
    220       1.29       tls 		return (error);
    221       1.22       jtc 
    222       1.22       jtc 	return 0;
    223       1.22       jtc }
    224       1.22       jtc 
    225       1.22       jtc int
    226   1.54.2.5   nathanw sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    227       1.22       jtc {
    228       1.45  augustss 	struct sys_clock_getres_args /* {
    229       1.22       jtc 		syscallarg(clockid_t) clock_id;
    230       1.23       cgd 		syscallarg(struct timespec *) tp;
    231       1.23       cgd 	} */ *uap = v;
    232       1.22       jtc 	clockid_t clock_id;
    233       1.22       jtc 	struct timespec ts;
    234       1.22       jtc 	int error = 0;
    235       1.22       jtc 
    236       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    237       1.22       jtc 	if (clock_id != CLOCK_REALTIME)
    238       1.22       jtc 		return (EINVAL);
    239       1.22       jtc 
    240       1.22       jtc 	if (SCARG(uap, tp)) {
    241       1.22       jtc 		ts.tv_sec = 0;
    242       1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    243       1.22       jtc 
    244       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    245       1.22       jtc 	}
    246       1.22       jtc 
    247       1.22       jtc 	return error;
    248       1.22       jtc }
    249       1.22       jtc 
    250       1.27       jtc /* ARGSUSED */
    251       1.27       jtc int
    252   1.54.2.5   nathanw sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    253       1.27       jtc {
    254       1.27       jtc 	static int nanowait;
    255       1.45  augustss 	struct sys_nanosleep_args/* {
    256       1.27       jtc 		syscallarg(struct timespec *) rqtp;
    257       1.27       jtc 		syscallarg(struct timespec *) rmtp;
    258       1.27       jtc 	} */ *uap = v;
    259       1.27       jtc 	struct timespec rqt;
    260       1.27       jtc 	struct timespec rmt;
    261       1.27       jtc 	struct timeval atv, utv;
    262       1.27       jtc 	int error, s, timo;
    263       1.27       jtc 
    264       1.27       jtc 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    265       1.27       jtc 		       sizeof(struct timespec));
    266       1.27       jtc 	if (error)
    267       1.27       jtc 		return (error);
    268       1.27       jtc 
    269       1.27       jtc 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    270   1.54.2.4   nathanw 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    271       1.27       jtc 		return (EINVAL);
    272       1.27       jtc 
    273       1.27       jtc 	s = splclock();
    274       1.27       jtc 	timeradd(&atv,&time,&atv);
    275       1.27       jtc 	timo = hzto(&atv);
    276       1.27       jtc 	/*
    277       1.27       jtc 	 * Avoid inadvertantly sleeping forever
    278       1.27       jtc 	 */
    279       1.27       jtc 	if (timo == 0)
    280       1.27       jtc 		timo = 1;
    281       1.27       jtc 	splx(s);
    282       1.27       jtc 
    283       1.27       jtc 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    284       1.27       jtc 	if (error == ERESTART)
    285       1.27       jtc 		error = EINTR;
    286       1.27       jtc 	if (error == EWOULDBLOCK)
    287       1.27       jtc 		error = 0;
    288       1.27       jtc 
    289       1.27       jtc 	if (SCARG(uap, rmtp)) {
    290       1.28       jtc 		int error;
    291       1.28       jtc 
    292       1.27       jtc 		s = splclock();
    293       1.27       jtc 		utv = time;
    294       1.27       jtc 		splx(s);
    295       1.27       jtc 
    296       1.27       jtc 		timersub(&atv, &utv, &utv);
    297       1.27       jtc 		if (utv.tv_sec < 0)
    298       1.27       jtc 			timerclear(&utv);
    299       1.27       jtc 
    300       1.27       jtc 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    301       1.27       jtc 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    302       1.28       jtc 			sizeof(rmt));
    303       1.28       jtc 		if (error)
    304       1.28       jtc 			return (error);
    305       1.27       jtc 	}
    306       1.27       jtc 
    307       1.27       jtc 	return error;
    308       1.27       jtc }
    309       1.22       jtc 
    310        1.1       cgd /* ARGSUSED */
    311        1.3    andrew int
    312   1.54.2.5   nathanw sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    313       1.15   thorpej {
    314       1.45  augustss 	struct sys_gettimeofday_args /* {
    315       1.11       cgd 		syscallarg(struct timeval *) tp;
    316       1.11       cgd 		syscallarg(struct timezone *) tzp;
    317       1.15   thorpej 	} */ *uap = v;
    318        1.1       cgd 	struct timeval atv;
    319        1.1       cgd 	int error = 0;
    320       1.25     perry 	struct timezone tzfake;
    321        1.1       cgd 
    322       1.11       cgd 	if (SCARG(uap, tp)) {
    323        1.1       cgd 		microtime(&atv);
    324       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    325       1.17  christos 		if (error)
    326        1.1       cgd 			return (error);
    327        1.1       cgd 	}
    328       1.25     perry 	if (SCARG(uap, tzp)) {
    329       1.25     perry 		/*
    330       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    331       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    332       1.25     perry 		 */
    333       1.25     perry 		tzfake.tz_minuteswest = 0;
    334       1.25     perry 		tzfake.tz_dsttime = 0;
    335       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    336       1.25     perry 	}
    337        1.1       cgd 	return (error);
    338        1.1       cgd }
    339        1.1       cgd 
    340        1.1       cgd /* ARGSUSED */
    341        1.3    andrew int
    342   1.54.2.5   nathanw sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    343       1.15   thorpej {
    344       1.16   mycroft 	struct sys_settimeofday_args /* {
    345       1.24       cgd 		syscallarg(const struct timeval *) tv;
    346       1.24       cgd 		syscallarg(const struct timezone *) tzp;
    347       1.15   thorpej 	} */ *uap = v;
    348   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    349   1.54.2.6   nathanw 	int error;
    350   1.54.2.6   nathanw 
    351   1.54.2.6   nathanw 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    352   1.54.2.6   nathanw 		return (error);
    353   1.54.2.6   nathanw 
    354   1.54.2.6   nathanw 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    355   1.54.2.6   nathanw }
    356   1.54.2.6   nathanw 
    357   1.54.2.6   nathanw int
    358   1.54.2.6   nathanw settimeofday1(utv, utzp, p)
    359   1.54.2.6   nathanw 	const struct timeval *utv;
    360   1.54.2.6   nathanw 	const struct timezone *utzp;
    361   1.54.2.6   nathanw 	struct proc *p;
    362   1.54.2.6   nathanw {
    363       1.22       jtc 	struct timeval atv;
    364        1.1       cgd 	struct timezone atz;
    365   1.54.2.3   nathanw 	struct timeval *tv = NULL;
    366   1.54.2.3   nathanw 	struct timezone *tzp = NULL;
    367       1.22       jtc 	int error;
    368        1.1       cgd 
    369        1.8       cgd 	/* Verify all parameters before changing time. */
    370   1.54.2.6   nathanw 	if (utv) {
    371   1.54.2.6   nathanw 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    372   1.54.2.3   nathanw 			return (error);
    373   1.54.2.3   nathanw 		tv = &atv;
    374   1.54.2.3   nathanw 	}
    375       1.25     perry 	/* XXX since we don't use tz, probably no point in doing copyin. */
    376   1.54.2.6   nathanw 	if (utzp) {
    377   1.54.2.6   nathanw 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    378   1.54.2.3   nathanw 			return (error);
    379   1.54.2.3   nathanw 		tzp = &atz;
    380   1.54.2.3   nathanw 	}
    381   1.54.2.3   nathanw 
    382   1.54.2.3   nathanw 	if (tv)
    383   1.54.2.3   nathanw 		if ((error = settime(tv)) != 0)
    384       1.29       tls 			return (error);
    385       1.25     perry 	/*
    386       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    387       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    388       1.25     perry 	 */
    389   1.54.2.3   nathanw 	if (tzp)
    390       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    391       1.32   mycroft 		    "(obsolete) kernel time zone\n", p->p_pid);
    392        1.8       cgd 	return (0);
    393        1.1       cgd }
    394        1.1       cgd 
    395        1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    396        1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    397        1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    398        1.1       cgd 
    399        1.1       cgd /* ARGSUSED */
    400        1.3    andrew int
    401   1.54.2.5   nathanw sys_adjtime(struct lwp *l, void *v, register_t *retval)
    402       1.15   thorpej {
    403       1.45  augustss 	struct sys_adjtime_args /* {
    404       1.24       cgd 		syscallarg(const struct timeval *) delta;
    405       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    406       1.15   thorpej 	} */ *uap = v;
    407   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    408   1.54.2.3   nathanw 	int error;
    409        1.1       cgd 
    410       1.17  christos 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    411        1.1       cgd 		return (error);
    412       1.17  christos 
    413   1.54.2.6   nathanw 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    414   1.54.2.3   nathanw }
    415   1.54.2.3   nathanw 
    416   1.54.2.3   nathanw int
    417   1.54.2.6   nathanw adjtime1(delta, olddelta, p)
    418   1.54.2.6   nathanw 	const struct timeval *delta;
    419   1.54.2.6   nathanw 	struct timeval *olddelta;
    420   1.54.2.6   nathanw 	struct proc *p;
    421   1.54.2.3   nathanw {
    422   1.54.2.6   nathanw 	struct timeval atv;
    423   1.54.2.6   nathanw 	struct timeval *oatv = NULL;
    424   1.54.2.3   nathanw 	long ndelta, ntickdelta, odelta;
    425   1.54.2.6   nathanw 	int error;
    426   1.54.2.3   nathanw 	int s;
    427        1.8       cgd 
    428   1.54.2.6   nathanw 	error = copyin(delta, &atv, sizeof(struct timeval));
    429   1.54.2.6   nathanw 	if (error)
    430   1.54.2.6   nathanw 		return (error);
    431   1.54.2.6   nathanw 
    432   1.54.2.6   nathanw 	if (olddelta != NULL) {
    433   1.54.2.6   nathanw 		if (uvm_useracc((caddr_t)olddelta,
    434   1.54.2.6   nathanw 		    sizeof(struct timeval), B_WRITE) == FALSE)
    435   1.54.2.6   nathanw 			return (EFAULT);
    436   1.54.2.6   nathanw 		oatv = olddelta;
    437   1.54.2.6   nathanw 	}
    438   1.54.2.6   nathanw 
    439        1.8       cgd 	/*
    440        1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    441        1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    442        1.8       cgd 	 * delta, so that after some number of incremental changes in
    443        1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    444        1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    445        1.8       cgd 	 */
    446   1.54.2.6   nathanw 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    447       1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    448        1.8       cgd 		ntickdelta = 10 * tickadj;
    449        1.8       cgd 	else
    450        1.8       cgd 		ntickdelta = tickadj;
    451        1.8       cgd 	if (ndelta % ntickdelta)
    452        1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    453        1.8       cgd 
    454        1.8       cgd 	/*
    455        1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    456        1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    457        1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    458        1.8       cgd 	 */
    459        1.8       cgd 	if (ndelta < 0)
    460        1.8       cgd 		ntickdelta = -ntickdelta;
    461        1.1       cgd 	s = splclock();
    462        1.8       cgd 	odelta = timedelta;
    463        1.1       cgd 	timedelta = ndelta;
    464        1.8       cgd 	tickdelta = ntickdelta;
    465        1.1       cgd 	splx(s);
    466        1.1       cgd 
    467   1.54.2.3   nathanw 	if (olddelta) {
    468   1.54.2.6   nathanw 		atv.tv_sec = odelta / 1000000;
    469   1.54.2.6   nathanw 		atv.tv_usec = odelta % 1000000;
    470   1.54.2.6   nathanw 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    471        1.8       cgd 	}
    472        1.1       cgd 	return (0);
    473        1.1       cgd }
    474        1.1       cgd 
    475        1.1       cgd /*
    476   1.54.2.5   nathanw  * Interval timer support. Both the BSD getitimer() family and the POSIX
    477   1.54.2.5   nathanw  * timer_*() family of routines are supported.
    478   1.54.2.5   nathanw  *
    479   1.54.2.5   nathanw  * All timers are kept in an array pointed to by p_timers, which is
    480   1.54.2.5   nathanw  * allocated on demand - many processes don't use timers at all. The
    481   1.54.2.5   nathanw  * first three elements in this array are reserved for the BSD timers:
    482   1.54.2.5   nathanw  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    483   1.54.2.5   nathanw  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    484   1.54.2.5   nathanw  * syscall.
    485        1.1       cgd  *
    486   1.54.2.5   nathanw  * Realtime timers are kept in the ptimer structure as an absolute
    487   1.54.2.5   nathanw  * time; virtual time timers are kept as deltas.  Virtual time timers
    488   1.54.2.5   nathanw  * are processed in the hardclock() routine of kern_clock.c.  The real
    489   1.54.2.5   nathanw  * time timer is processed by a callout routine, called from the
    490   1.54.2.5   nathanw  * softclock() routine.  Since a callout may be delayed in real time
    491   1.54.2.5   nathanw  * due to interrupt processing in the system, it is possible for the
    492   1.54.2.5   nathanw  * real time timeout routine (realtimeexpire, given below), to be
    493   1.54.2.5   nathanw  * delayed in real time past when it is supposed to occur.  It does
    494   1.54.2.5   nathanw  * not suffice, therefore, to reload the real timer .it_value from the
    495        1.1       cgd  * real time timers .it_interval.  Rather, we compute the next time in
    496   1.54.2.5   nathanw  * absolute time the timer should go off.
    497   1.54.2.5   nathanw  */
    498   1.54.2.5   nathanw 
    499   1.54.2.5   nathanw /* Allocate a POSIX realtime timer. */
    500   1.54.2.5   nathanw int
    501   1.54.2.5   nathanw sys_timer_create(struct lwp *l, void *v, register_t *retval)
    502   1.54.2.5   nathanw {
    503   1.54.2.5   nathanw 	struct sys_timer_create_args /* {
    504   1.54.2.5   nathanw 		syscallarg(clockid_t) clock_id;
    505   1.54.2.5   nathanw 		syscallarg(struct sigevent *) evp;
    506   1.54.2.5   nathanw 		syscallarg(timer_t *) timerid;
    507   1.54.2.5   nathanw 	} */ *uap = v;
    508   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    509   1.54.2.5   nathanw 	clockid_t id;
    510   1.54.2.5   nathanw 	struct sigevent *evp;
    511   1.54.2.5   nathanw 	struct ptimer *pt;
    512   1.54.2.5   nathanw 	int timerid, error;
    513   1.54.2.5   nathanw 
    514   1.54.2.5   nathanw 	id = SCARG(uap, clock_id);
    515   1.54.2.5   nathanw 	if (id != CLOCK_REALTIME)
    516   1.54.2.5   nathanw 		return (EINVAL);
    517   1.54.2.5   nathanw 
    518   1.54.2.5   nathanw 	if (p->p_timers == NULL)
    519   1.54.2.5   nathanw 		timers_alloc(p);
    520   1.54.2.5   nathanw 
    521   1.54.2.5   nathanw 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    522   1.54.2.5   nathanw 		if (p->p_timers[timerid] == NULL)
    523   1.54.2.5   nathanw 			break;
    524   1.54.2.5   nathanw 
    525   1.54.2.5   nathanw 	if (timerid == TIMER_MAX)
    526   1.54.2.5   nathanw 		return EAGAIN;
    527   1.54.2.5   nathanw 
    528   1.54.2.5   nathanw 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    529   1.54.2.5   nathanw 	evp = SCARG(uap, evp);
    530   1.54.2.5   nathanw 	if (evp) {
    531   1.54.2.5   nathanw 		if (((error =
    532   1.54.2.5   nathanw 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    533   1.54.2.5   nathanw 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    534   1.54.2.7   nathanw 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    535   1.54.2.5   nathanw 			pool_put(&ptimer_pool, pt);
    536   1.54.2.5   nathanw 			return (error ? error : EINVAL);
    537   1.54.2.5   nathanw 		}
    538   1.54.2.5   nathanw 	} else {
    539   1.54.2.5   nathanw 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    540   1.54.2.5   nathanw 		pt->pt_ev.sigev_signo = SIGALRM;
    541   1.54.2.5   nathanw 		pt->pt_ev.sigev_value.sival_int = timerid;
    542   1.54.2.5   nathanw 	}
    543  1.54.2.10   nathanw 	pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
    544  1.54.2.10   nathanw 	pt->pt_info.si_errno = 0;
    545  1.54.2.10   nathanw 	pt->pt_info.si_code = 0;
    546  1.54.2.10   nathanw 	pt->pt_info.si_pid = p->p_pid;
    547  1.54.2.10   nathanw 	pt->pt_info.si_uid = p->p_cred->p_ruid;
    548  1.54.2.10   nathanw 	pt->pt_info.si_addr = NULL;
    549  1.54.2.10   nathanw 	pt->pt_info.si_status = 0;
    550  1.54.2.10   nathanw 	pt->pt_info.si_value = pt->pt_ev.sigev_value;
    551  1.54.2.10   nathanw 
    552   1.54.2.5   nathanw 	callout_init(&pt->pt_ch);
    553   1.54.2.5   nathanw 	pt->pt_type = CLOCK_REALTIME;
    554   1.54.2.5   nathanw 	pt->pt_proc = p;
    555   1.54.2.5   nathanw 	pt->pt_overruns = 0;
    556   1.54.2.5   nathanw 
    557   1.54.2.5   nathanw 	p->p_timers[timerid] = pt;
    558   1.54.2.5   nathanw 
    559   1.54.2.5   nathanw 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    560   1.54.2.5   nathanw }
    561   1.54.2.5   nathanw 
    562   1.54.2.5   nathanw 
    563   1.54.2.5   nathanw /* Delete a POSIX realtime timer */
    564   1.54.2.5   nathanw int
    565   1.54.2.5   nathanw sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    566   1.54.2.5   nathanw {
    567   1.54.2.5   nathanw 	struct sys_timer_delete_args /*  {
    568   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    569   1.54.2.5   nathanw 	} */ *uap = v;
    570   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    571   1.54.2.5   nathanw 	int timerid;
    572   1.54.2.5   nathanw 	struct ptimer *pt;
    573   1.54.2.5   nathanw 
    574   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    575   1.54.2.5   nathanw 
    576   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    577   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    578   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    579   1.54.2.5   nathanw 		return (EINVAL);
    580   1.54.2.5   nathanw 
    581   1.54.2.5   nathanw 	callout_stop(&pt->pt_ch);
    582   1.54.2.5   nathanw 	p->p_timers[timerid] = NULL;
    583   1.54.2.5   nathanw 	pool_put(&ptimer_pool, pt);
    584   1.54.2.5   nathanw 
    585   1.54.2.5   nathanw 	return (0);
    586   1.54.2.5   nathanw }
    587   1.54.2.5   nathanw 
    588   1.54.2.5   nathanw /* Set and arm a POSIX realtime timer */
    589   1.54.2.5   nathanw int
    590   1.54.2.5   nathanw sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    591   1.54.2.5   nathanw {
    592   1.54.2.5   nathanw 	struct sys_timer_settime_args /* {
    593   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    594   1.54.2.5   nathanw 		syscallarg(int) flags;
    595   1.54.2.5   nathanw 		syscallarg(const struct itimerspec *) value;
    596   1.54.2.5   nathanw 		syscallarg(struct itimerspec *) ovalue;
    597   1.54.2.5   nathanw 	} */ *uap = v;
    598   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    599   1.54.2.5   nathanw 	int error, s, timerid;
    600   1.54.2.5   nathanw 	struct itimerval val, oval;
    601   1.54.2.5   nathanw 	struct itimerspec value, ovalue;
    602   1.54.2.5   nathanw 	struct ptimer *pt;
    603   1.54.2.5   nathanw 
    604   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    605   1.54.2.5   nathanw 
    606   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    607   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    608   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    609   1.54.2.5   nathanw 		return (EINVAL);
    610   1.54.2.5   nathanw 
    611   1.54.2.5   nathanw 	if ((error = copyin(SCARG(uap, value), &value,
    612   1.54.2.5   nathanw 	    sizeof(struct itimerspec))) != 0)
    613   1.54.2.5   nathanw 		return (error);
    614   1.54.2.5   nathanw 
    615   1.54.2.5   nathanw 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    616   1.54.2.5   nathanw 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    617   1.54.2.5   nathanw 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    618   1.54.2.5   nathanw 		return (EINVAL);
    619   1.54.2.5   nathanw 
    620   1.54.2.5   nathanw 	oval = pt->pt_time;
    621   1.54.2.5   nathanw 	pt->pt_time = val;
    622   1.54.2.5   nathanw 
    623   1.54.2.5   nathanw 	s = splclock();
    624   1.54.2.5   nathanw 	callout_stop(&pt->pt_ch);
    625   1.54.2.5   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    626   1.54.2.5   nathanw 		if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
    627   1.54.2.5   nathanw 			timeradd(&pt->pt_time.it_value, &time,
    628   1.54.2.5   nathanw 			    &pt->pt_time.it_value);
    629   1.54.2.5   nathanw 		/*
    630   1.54.2.5   nathanw 		 * Don't need to check hzto() return value, here.
    631   1.54.2.5   nathanw 		 * callout_reset() does it for us.
    632   1.54.2.5   nathanw 		 */
    633   1.54.2.5   nathanw 		callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    634   1.54.2.5   nathanw 		    realtimerexpire, pt);
    635   1.54.2.5   nathanw 	}
    636   1.54.2.5   nathanw 	splx(s);
    637   1.54.2.5   nathanw 
    638   1.54.2.5   nathanw 	if (SCARG(uap, ovalue)) {
    639   1.54.2.5   nathanw 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    640   1.54.2.5   nathanw 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    641   1.54.2.5   nathanw 		return copyout(&ovalue, SCARG(uap, ovalue),
    642   1.54.2.5   nathanw 		    sizeof(struct itimerspec));
    643   1.54.2.5   nathanw 	}
    644   1.54.2.5   nathanw 
    645   1.54.2.5   nathanw 	return (0);
    646   1.54.2.5   nathanw }
    647   1.54.2.5   nathanw 
    648   1.54.2.5   nathanw /* Return the time remaining until a POSIX timer fires. */
    649   1.54.2.5   nathanw int
    650   1.54.2.5   nathanw sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    651   1.54.2.5   nathanw {
    652   1.54.2.5   nathanw 	struct sys_timer_gettime_args /* {
    653   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    654   1.54.2.5   nathanw 		syscallarg(struct itimerspec *) value;
    655   1.54.2.5   nathanw 	} */ *uap = v;
    656   1.54.2.5   nathanw 	struct itimerval aitv;
    657   1.54.2.5   nathanw 	struct itimerspec its;
    658   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    659   1.54.2.5   nathanw 	int timerid;
    660   1.54.2.5   nathanw 	struct ptimer *pt;
    661   1.54.2.5   nathanw 
    662   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    663   1.54.2.5   nathanw 
    664   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    665   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    666   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    667   1.54.2.5   nathanw 		return (EINVAL);
    668   1.54.2.5   nathanw 
    669   1.54.2.5   nathanw 	aitv = pt->pt_time;
    670   1.54.2.5   nathanw 
    671   1.54.2.5   nathanw 	/*
    672   1.54.2.5   nathanw 	 * Real-time timers are kept in absolute time, but this interface
    673   1.54.2.5   nathanw 	 * is supposed to return a relative time.
    674   1.54.2.5   nathanw 	 */
    675   1.54.2.5   nathanw 	if (timerisset(&aitv.it_value)) {
    676   1.54.2.5   nathanw 		if (timercmp(&aitv.it_value, &time, <))
    677   1.54.2.5   nathanw 			timerclear(&aitv.it_value);
    678   1.54.2.5   nathanw 		else
    679   1.54.2.5   nathanw 			timersub(&aitv.it_value, &time, &aitv.it_value);
    680   1.54.2.5   nathanw 	}
    681   1.54.2.5   nathanw 
    682   1.54.2.5   nathanw 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    683   1.54.2.5   nathanw 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    684   1.54.2.5   nathanw 
    685   1.54.2.5   nathanw 	return copyout(&its, SCARG(uap, value), sizeof(its));
    686   1.54.2.5   nathanw }
    687   1.54.2.5   nathanw 
    688   1.54.2.5   nathanw /*
    689   1.54.2.5   nathanw  * Return the count of the number of times a periodic timer expired
    690   1.54.2.5   nathanw  * while a notification was already pending. The counter is reset when
    691   1.54.2.5   nathanw  * a timer expires and a notification can be posted.
    692        1.1       cgd  */
    693   1.54.2.5   nathanw int
    694   1.54.2.5   nathanw sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    695   1.54.2.5   nathanw {
    696   1.54.2.5   nathanw 	struct sys_timer_getoverrun_args /* {
    697   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    698   1.54.2.5   nathanw 	} */ *uap = v;
    699   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    700   1.54.2.5   nathanw 	int timerid;
    701   1.54.2.5   nathanw 	struct ptimer *pt;
    702   1.54.2.5   nathanw 
    703   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    704   1.54.2.5   nathanw 
    705   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    706   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    707   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    708   1.54.2.5   nathanw 		return (EINVAL);
    709   1.54.2.5   nathanw 
    710   1.54.2.5   nathanw 	*retval = pt->pt_overruns;
    711   1.54.2.5   nathanw 
    712   1.54.2.5   nathanw 	return (0);
    713   1.54.2.5   nathanw }
    714   1.54.2.5   nathanw 
    715   1.54.2.5   nathanw /* Glue function that triggers an upcall; called from userret(). */
    716   1.54.2.5   nathanw static void
    717   1.54.2.5   nathanw realtimerupcall(struct lwp *l, void *arg)
    718   1.54.2.5   nathanw {
    719   1.54.2.5   nathanw 	struct ptimer *pt;
    720   1.54.2.5   nathanw 
    721   1.54.2.5   nathanw 	pt = (struct ptimer *)arg;
    722  1.54.2.10   nathanw 	sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(siginfo_t),
    723  1.54.2.10   nathanw 	    &pt->pt_info);
    724   1.54.2.5   nathanw 
    725   1.54.2.5   nathanw 	/* The upcall should only be generated once. */
    726   1.54.2.5   nathanw 	l->l_proc->p_userret = NULL;
    727   1.54.2.5   nathanw }
    728   1.54.2.5   nathanw 
    729   1.54.2.5   nathanw 
    730   1.54.2.5   nathanw /*
    731   1.54.2.5   nathanw  * Real interval timer expired:
    732   1.54.2.5   nathanw  * send process whose timer expired an alarm signal.
    733   1.54.2.5   nathanw  * If time is not set up to reload, then just return.
    734   1.54.2.5   nathanw  * Else compute next time timer should go off which is > current time.
    735   1.54.2.5   nathanw  * This is where delay in processing this timeout causes multiple
    736   1.54.2.5   nathanw  * SIGALRM calls to be compressed into one.
    737   1.54.2.5   nathanw  */
    738   1.54.2.5   nathanw void
    739   1.54.2.5   nathanw realtimerexpire(void *arg)
    740   1.54.2.5   nathanw {
    741   1.54.2.5   nathanw 	struct ptimer *pt;
    742   1.54.2.5   nathanw 	struct proc *p;
    743   1.54.2.5   nathanw 	int s;
    744   1.54.2.5   nathanw 
    745   1.54.2.5   nathanw 	pt = (struct ptimer *)arg;
    746   1.54.2.5   nathanw 	p = pt->pt_proc;
    747   1.54.2.5   nathanw 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
    748   1.54.2.5   nathanw 		/*
    749   1.54.2.5   nathanw 		 * No RT signal infrastructure exists at this time;
    750   1.54.2.5   nathanw 		 * just post the signal number and throw away the
    751   1.54.2.5   nathanw 		 * value.
    752   1.54.2.5   nathanw 		 */
    753   1.54.2.5   nathanw 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
    754   1.54.2.5   nathanw 			pt->pt_overruns++;
    755   1.54.2.5   nathanw 		else {
    756   1.54.2.5   nathanw 			pt->pt_overruns = 0;
    757   1.54.2.5   nathanw 			psignal(p, pt->pt_ev.sigev_signo);
    758   1.54.2.5   nathanw 		}
    759   1.54.2.7   nathanw 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
    760   1.54.2.8   nathanw 		int notified = 0;
    761   1.54.2.5   nathanw 		/* Cause the process to generate an upcall when it returns. */
    762   1.54.2.8   nathanw 
    763   1.54.2.8   nathanw 		if (p->p_nrlwps == 0) {
    764   1.54.2.8   nathanw 			struct sadata_upcall *sd;
    765   1.54.2.8   nathanw 			struct lwp *l2;
    766   1.54.2.9   nathanw 			int s, ret;
    767   1.54.2.8   nathanw 
    768   1.54.2.9   nathanw 			SCHED_LOCK(s);
    769   1.54.2.8   nathanw 			l2 = sa_getcachelwp(p);
    770   1.54.2.8   nathanw 			if (l2 != NULL) {
    771   1.54.2.8   nathanw 				sd = sadata_upcall_alloc(0);
    772   1.54.2.8   nathanw 				cpu_setfunc(l2, sa_switchcall, NULL);
    773   1.54.2.8   nathanw 				ret = sa_upcall0(l2, SA_UPCALL_SIGEV,
    774  1.54.2.10   nathanw 				    NULL, NULL, sizeof(siginfo_t),
    775  1.54.2.10   nathanw 				    &pt->pt_info, sd);
    776   1.54.2.8   nathanw 				if (ret == 0) {
    777   1.54.2.8   nathanw 					p->p_nrlwps++;
    778   1.54.2.8   nathanw 					l2->l_priority = l2->l_usrpri;
    779   1.54.2.8   nathanw 					PRELE(l2);
    780   1.54.2.8   nathanw 					setrunnable(l2);
    781   1.54.2.8   nathanw 					notified = 1;
    782   1.54.2.8   nathanw 				} else
    783   1.54.2.8   nathanw 					sa_putcachelwp(p, l2);
    784   1.54.2.8   nathanw 			}
    785   1.54.2.9   nathanw 			SCHED_UNLOCK(s);
    786   1.54.2.8   nathanw 		} else if (p->p_userret == NULL) {
    787   1.54.2.5   nathanw 			pt->pt_overruns = 0;
    788   1.54.2.5   nathanw 			p->p_userret = realtimerupcall;
    789   1.54.2.5   nathanw 			p->p_userret_arg = pt;
    790   1.54.2.8   nathanw 			notified = 1;
    791   1.54.2.8   nathanw 		}
    792   1.54.2.8   nathanw 		if (notified == 0)
    793   1.54.2.5   nathanw 			pt->pt_overruns++;
    794   1.54.2.5   nathanw 	}
    795   1.54.2.5   nathanw 	if (!timerisset(&pt->pt_time.it_interval)) {
    796   1.54.2.5   nathanw 		timerclear(&pt->pt_time.it_value);
    797   1.54.2.5   nathanw 		return;
    798   1.54.2.5   nathanw 	}
    799   1.54.2.5   nathanw 	for (;;) {
    800   1.54.2.5   nathanw 		s = splclock();
    801   1.54.2.5   nathanw 		timeradd(&pt->pt_time.it_value,
    802   1.54.2.5   nathanw 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    803   1.54.2.5   nathanw 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    804   1.54.2.5   nathanw 			/*
    805   1.54.2.5   nathanw 			 * Don't need to check hzto() return value, here.
    806   1.54.2.5   nathanw 			 * callout_reset() does it for us.
    807   1.54.2.5   nathanw 			 */
    808   1.54.2.5   nathanw 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    809   1.54.2.5   nathanw 			    realtimerexpire, pt);
    810   1.54.2.5   nathanw 			splx(s);
    811   1.54.2.5   nathanw 			return;
    812   1.54.2.5   nathanw 		}
    813   1.54.2.5   nathanw 		splx(s);
    814   1.54.2.5   nathanw 		pt->pt_overruns++;
    815   1.54.2.5   nathanw 	}
    816   1.54.2.5   nathanw }
    817   1.54.2.5   nathanw 
    818   1.54.2.5   nathanw /* BSD routine to get the value of an interval timer. */
    819        1.1       cgd /* ARGSUSED */
    820        1.3    andrew int
    821   1.54.2.5   nathanw sys_getitimer(struct lwp *l, void *v, register_t *retval)
    822       1.15   thorpej {
    823       1.45  augustss 	struct sys_getitimer_args /* {
    824       1.30   mycroft 		syscallarg(int) which;
    825       1.11       cgd 		syscallarg(struct itimerval *) itv;
    826       1.15   thorpej 	} */ *uap = v;
    827   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    828        1.1       cgd 	struct itimerval aitv;
    829   1.54.2.5   nathanw 	int s, which;
    830   1.54.2.5   nathanw 
    831   1.54.2.5   nathanw 	which = SCARG(uap, which);
    832        1.1       cgd 
    833       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    834        1.1       cgd 		return (EINVAL);
    835   1.54.2.5   nathanw 
    836   1.54.2.5   nathanw 	if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
    837   1.54.2.5   nathanw 		timerclear(&aitv.it_value);
    838   1.54.2.5   nathanw 		timerclear(&aitv.it_interval);
    839   1.54.2.5   nathanw 	} else {
    840   1.54.2.5   nathanw 		s = splclock();
    841   1.54.2.5   nathanw 		if (which == ITIMER_REAL) {
    842   1.54.2.5   nathanw 			/*
    843   1.54.2.5   nathanw 			 * Convert from absolute to relative time in
    844   1.54.2.5   nathanw 			 * .it_value part of real time timer.  If time
    845   1.54.2.5   nathanw 			 * for real time timer has passed return 0,
    846   1.54.2.5   nathanw 			 * else return difference between current time
    847   1.54.2.5   nathanw 			 * and time for the timer to go off.
    848   1.54.2.5   nathanw 			 */
    849   1.54.2.5   nathanw 			aitv = p->p_timers[ITIMER_REAL]->pt_time;
    850   1.54.2.5   nathanw 			if (timerisset(&aitv.it_value)) {
    851   1.54.2.5   nathanw 				if (timercmp(&aitv.it_value, &time, <))
    852   1.54.2.5   nathanw 					timerclear(&aitv.it_value);
    853   1.54.2.5   nathanw 				else
    854   1.54.2.5   nathanw 					timersub(&aitv.it_value, &time, &aitv.it_value);
    855   1.54.2.5   nathanw 			}
    856   1.54.2.5   nathanw 		} else
    857   1.54.2.5   nathanw 			aitv = p->p_timers[which]->pt_time;
    858   1.54.2.5   nathanw 		splx(s);
    859   1.54.2.5   nathanw 	}
    860   1.54.2.5   nathanw 
    861       1.35     perry 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    862   1.54.2.5   nathanw 
    863        1.1       cgd }
    864        1.1       cgd 
    865   1.54.2.5   nathanw /* BSD routine to set/arm an interval timer. */
    866        1.1       cgd /* ARGSUSED */
    867        1.3    andrew int
    868   1.54.2.5   nathanw sys_setitimer(struct lwp *l, void *v, register_t *retval)
    869       1.15   thorpej {
    870       1.45  augustss 	struct sys_setitimer_args /* {
    871       1.30   mycroft 		syscallarg(int) which;
    872       1.24       cgd 		syscallarg(const struct itimerval *) itv;
    873       1.11       cgd 		syscallarg(struct itimerval *) oitv;
    874       1.15   thorpej 	} */ *uap = v;
    875   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    876       1.30   mycroft 	int which = SCARG(uap, which);
    877       1.21       cgd 	struct sys_getitimer_args getargs;
    878        1.1       cgd 	struct itimerval aitv;
    879       1.45  augustss 	const struct itimerval *itvp;
    880   1.54.2.5   nathanw 	struct ptimer *pt;
    881        1.1       cgd 	int s, error;
    882        1.1       cgd 
    883       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    884        1.1       cgd 		return (EINVAL);
    885       1.11       cgd 	itvp = SCARG(uap, itv);
    886   1.54.2.3   nathanw 	if (itvp &&
    887   1.54.2.3   nathanw 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    888        1.1       cgd 		return (error);
    889       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
    890       1.30   mycroft 		SCARG(&getargs, which) = which;
    891       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    892   1.54.2.1   nathanw 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    893       1.21       cgd 			return (error);
    894       1.21       cgd 	}
    895        1.1       cgd 	if (itvp == 0)
    896        1.1       cgd 		return (0);
    897        1.1       cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    898        1.1       cgd 		return (EINVAL);
    899   1.54.2.5   nathanw 
    900   1.54.2.5   nathanw 	/*
    901   1.54.2.5   nathanw 	 * Don't bother allocating data structures if the process just
    902   1.54.2.5   nathanw 	 * wants to clear the timer.
    903   1.54.2.5   nathanw 	 */
    904   1.54.2.5   nathanw 	if (!timerisset(&aitv.it_value) &&
    905   1.54.2.5   nathanw 	    ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
    906   1.54.2.5   nathanw 		return (0);
    907   1.54.2.5   nathanw 
    908   1.54.2.5   nathanw 	if (p->p_timers == NULL)
    909   1.54.2.5   nathanw 		timers_alloc(p);
    910   1.54.2.5   nathanw 	if (p->p_timers[which] == NULL) {
    911   1.54.2.5   nathanw 		pt = pool_get(&ptimer_pool, PR_WAITOK);
    912   1.54.2.5   nathanw 		callout_init(&pt->pt_ch);
    913   1.54.2.5   nathanw 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    914   1.54.2.5   nathanw 		pt->pt_overruns = 0;
    915   1.54.2.5   nathanw 		pt->pt_proc = p;
    916   1.54.2.5   nathanw 		pt->pt_type = which;
    917   1.54.2.5   nathanw 		switch (which) {
    918   1.54.2.5   nathanw 		case ITIMER_REAL:
    919   1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGALRM;
    920   1.54.2.5   nathanw 			break;
    921   1.54.2.5   nathanw 		case ITIMER_VIRTUAL:
    922   1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGVTALRM;
    923   1.54.2.5   nathanw 			break;
    924   1.54.2.5   nathanw 		case ITIMER_PROF:
    925   1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGPROF;
    926   1.54.2.5   nathanw 			break;
    927   1.54.2.5   nathanw 		}
    928   1.54.2.5   nathanw 	} else
    929   1.54.2.5   nathanw 		pt = p->p_timers[which];
    930   1.54.2.5   nathanw 
    931   1.54.2.5   nathanw 	pt->pt_time = aitv;
    932   1.54.2.5   nathanw 	p->p_timers[which] = pt;
    933       1.30   mycroft 	if (which == ITIMER_REAL) {
    934   1.54.2.5   nathanw 		s = splclock();
    935   1.54.2.5   nathanw 		callout_stop(&pt->pt_ch);
    936   1.54.2.5   nathanw 		if (timerisset(&pt->pt_time.it_value)) {
    937   1.54.2.5   nathanw 			timeradd(&pt->pt_time.it_value, &time,
    938   1.54.2.5   nathanw 			    &pt->pt_time.it_value);
    939       1.52   thorpej 			/*
    940       1.52   thorpej 			 * Don't need to check hzto() return value, here.
    941       1.52   thorpej 			 * callout_reset() does it for us.
    942       1.52   thorpej 			 */
    943   1.54.2.5   nathanw 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    944   1.54.2.5   nathanw 			    realtimerexpire, pt);
    945        1.1       cgd 		}
    946   1.54.2.5   nathanw 		splx(s);
    947   1.54.2.5   nathanw 	}
    948   1.54.2.5   nathanw 
    949        1.1       cgd 	return (0);
    950        1.1       cgd }
    951        1.1       cgd 
    952   1.54.2.5   nathanw /* Utility routines to manage the array of pointers to timers. */
    953        1.3    andrew void
    954   1.54.2.5   nathanw timers_alloc(struct proc *p)
    955        1.6       cgd {
    956   1.54.2.5   nathanw 	int i;
    957   1.54.2.5   nathanw 	struct ptimer **pts;
    958        1.1       cgd 
    959   1.54.2.5   nathanw 	pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
    960   1.54.2.5   nathanw 	for (i = 0; i < TIMER_MAX; i++)
    961   1.54.2.5   nathanw 		pts[i] = NULL;
    962   1.54.2.5   nathanw 	p->p_timers = pts;
    963   1.54.2.5   nathanw }
    964   1.54.2.5   nathanw 
    965   1.54.2.5   nathanw void
    966   1.54.2.5   nathanw timers_free(struct proc *p)
    967   1.54.2.5   nathanw {
    968   1.54.2.5   nathanw 	int i;
    969   1.54.2.5   nathanw 	struct ptimer *pt, **pts;
    970   1.54.2.5   nathanw 
    971   1.54.2.5   nathanw 	if (p->p_timers) {
    972   1.54.2.5   nathanw 		pts = p->p_timers;
    973   1.54.2.5   nathanw 		p->p_timers = NULL;
    974   1.54.2.5   nathanw 		for (i = 0; i < TIMER_MAX; i++)
    975   1.54.2.5   nathanw 			if ((pt = pts[i]) != NULL) {
    976   1.54.2.5   nathanw 				if (pt->pt_type == CLOCK_REALTIME)
    977   1.54.2.5   nathanw 					callout_stop(&pt->pt_ch);
    978   1.54.2.5   nathanw 				pool_put(&ptimer_pool, pt);
    979   1.54.2.5   nathanw 			}
    980   1.54.2.5   nathanw 		free(pts, M_SUBPROC);
    981        1.1       cgd 	}
    982        1.1       cgd }
    983        1.1       cgd 
    984        1.1       cgd /*
    985        1.1       cgd  * Check that a proposed value to load into the .it_value or
    986        1.1       cgd  * .it_interval part of an interval timer is acceptable, and
    987        1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
    988        1.1       cgd  * than the resolution of the clock, round it up.)
    989        1.1       cgd  */
    990        1.3    andrew int
    991   1.54.2.5   nathanw itimerfix(struct timeval *tv)
    992        1.1       cgd {
    993        1.1       cgd 
    994   1.54.2.4   nathanw 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    995        1.1       cgd 		return (EINVAL);
    996        1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    997        1.1       cgd 		tv->tv_usec = tick;
    998        1.1       cgd 	return (0);
    999        1.1       cgd }
   1000        1.1       cgd 
   1001        1.1       cgd /*
   1002        1.1       cgd  * Decrement an interval timer by a specified number
   1003        1.1       cgd  * of microseconds, which must be less than a second,
   1004        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1005        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1006        1.8       cgd  * reduce the value reloaded into the timer so that
   1007        1.1       cgd  * the timer does not drift.  This routine assumes
   1008        1.1       cgd  * that it is called in a context where the timers
   1009        1.1       cgd  * on which it is operating cannot change in value.
   1010        1.1       cgd  */
   1011        1.3    andrew int
   1012   1.54.2.5   nathanw itimerdecr(struct itimerval *itp, int usec)
   1013        1.1       cgd {
   1014        1.1       cgd 
   1015        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1016        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1017        1.1       cgd 			/* expired, and already in next interval */
   1018        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1019        1.1       cgd 			goto expire;
   1020        1.1       cgd 		}
   1021        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1022        1.1       cgd 		itp->it_value.tv_sec--;
   1023        1.1       cgd 	}
   1024        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1025        1.1       cgd 	usec = 0;
   1026        1.1       cgd 	if (timerisset(&itp->it_value))
   1027        1.1       cgd 		return (1);
   1028        1.1       cgd 	/* expired, exactly at end of interval */
   1029        1.1       cgd expire:
   1030        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1031        1.1       cgd 		itp->it_value = itp->it_interval;
   1032        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1033        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1034        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1035        1.1       cgd 			itp->it_value.tv_sec--;
   1036        1.1       cgd 		}
   1037        1.1       cgd 	} else
   1038        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1039        1.1       cgd 	return (0);
   1040       1.42       cgd }
   1041       1.42       cgd 
   1042       1.42       cgd /*
   1043       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1044       1.42       cgd  * for usage and rationale.
   1045       1.42       cgd  */
   1046       1.42       cgd int
   1047   1.54.2.5   nathanw ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1048       1.42       cgd {
   1049       1.49    itojun 	struct timeval tv, delta;
   1050       1.42       cgd 	int s, rv = 0;
   1051       1.42       cgd 
   1052       1.42       cgd 	s = splclock();
   1053       1.49    itojun 	tv = mono_time;
   1054       1.49    itojun 	splx(s);
   1055       1.49    itojun 
   1056       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1057       1.42       cgd 
   1058       1.42       cgd 	/*
   1059       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1060       1.42       cgd 	 * even if interval is huge.
   1061       1.42       cgd 	 */
   1062       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1063       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1064       1.49    itojun 		*lasttime = tv;
   1065       1.42       cgd 		rv = 1;
   1066       1.42       cgd 	}
   1067       1.50    itojun 
   1068       1.50    itojun 	return (rv);
   1069       1.50    itojun }
   1070       1.50    itojun 
   1071       1.50    itojun /*
   1072       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1073       1.50    itojun  */
   1074       1.50    itojun int
   1075   1.54.2.5   nathanw ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1076       1.50    itojun {
   1077       1.50    itojun 	struct timeval tv, delta;
   1078       1.50    itojun 	int s, rv;
   1079       1.50    itojun 
   1080       1.50    itojun 	s = splclock();
   1081       1.50    itojun 	tv = mono_time;
   1082       1.50    itojun 	splx(s);
   1083       1.50    itojun 
   1084       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1085       1.50    itojun 
   1086       1.50    itojun 	/*
   1087       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1088       1.50    itojun 	 * if more than one second have passed since the last update of
   1089       1.50    itojun 	 * lasttime, reset the counter.
   1090       1.50    itojun 	 *
   1091       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1092       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1093       1.50    itojun 	 */
   1094       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1095       1.50    itojun 	    delta.tv_sec >= 1) {
   1096       1.50    itojun 		*lasttime = tv;
   1097       1.50    itojun 		*curpps = 0;
   1098       1.50    itojun 		rv = 1;
   1099       1.53    itojun 	} else if (maxpps < 0)
   1100       1.53    itojun 		rv = 1;
   1101       1.53    itojun 	else if (*curpps < maxpps)
   1102       1.50    itojun 		rv = 1;
   1103       1.50    itojun 	else
   1104       1.50    itojun 		rv = 0;
   1105       1.50    itojun 
   1106       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1107       1.50    itojun 	/* be careful about wrap-around */
   1108       1.50    itojun 	if (*curpps + 1 > *curpps)
   1109       1.50    itojun 		*curpps = *curpps + 1;
   1110       1.50    itojun #else
   1111       1.50    itojun 	/*
   1112       1.50    itojun 	 * assume that there's not too many calls to this function.
   1113       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1114       1.50    itojun 	 * behavior, not the behavior of this function.
   1115       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1116       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1117       1.50    itojun 	 */
   1118       1.50    itojun 	*curpps = *curpps + 1;
   1119       1.50    itojun #endif
   1120       1.42       cgd 
   1121       1.42       cgd 	return (rv);
   1122        1.1       cgd }
   1123