kern_time.c revision 1.54.2.13 1 1.54.2.13 nathanw /* $NetBSD: kern_time.c,v 1.54.2.13 2002/04/12 04:52:53 nathanw Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.54.2.4 nathanw #include <sys/cdefs.h>
75 1.54.2.13 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.13 2002/04/12 04:52:53 nathanw Exp $");
76 1.54.2.4 nathanw
77 1.31 thorpej #include "fs_nfs.h"
78 1.54 bjh21 #include "opt_nfs.h"
79 1.34 thorpej #include "opt_nfsserver.h"
80 1.1 cgd
81 1.5 mycroft #include <sys/param.h>
82 1.5 mycroft #include <sys/resourcevar.h>
83 1.5 mycroft #include <sys/kernel.h>
84 1.8 cgd #include <sys/systm.h>
85 1.54.2.1 nathanw #include <sys/lwp.h>
86 1.54.2.5 nathanw #include <sys/malloc.h>
87 1.5 mycroft #include <sys/proc.h>
88 1.54.2.5 nathanw #include <sys/sa.h>
89 1.54.2.5 nathanw #include <sys/savar.h>
90 1.8 cgd #include <sys/vnode.h>
91 1.17 christos #include <sys/signalvar.h>
92 1.25 perry #include <sys/syslog.h>
93 1.1 cgd
94 1.11 cgd #include <sys/mount.h>
95 1.11 cgd #include <sys/syscallargs.h>
96 1.19 christos
97 1.37 thorpej #include <uvm/uvm_extern.h>
98 1.37 thorpej
99 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
100 1.20 fvdl #include <nfs/rpcv2.h>
101 1.20 fvdl #include <nfs/nfsproto.h>
102 1.19 christos #include <nfs/nfs_var.h>
103 1.19 christos #endif
104 1.17 christos
105 1.5 mycroft #include <machine/cpu.h>
106 1.23 cgd
107 1.54.2.5 nathanw static void realtimerupcall(struct lwp *, void *);
108 1.54.2.5 nathanw
109 1.54.2.5 nathanw
110 1.54.2.5 nathanw /* Time of day and interval timer support.
111 1.1 cgd *
112 1.1 cgd * These routines provide the kernel entry points to get and set
113 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
114 1.1 cgd * here provide support for adding and subtracting timeval structures
115 1.1 cgd * and decrementing interval timers, optionally reloading the interval
116 1.1 cgd * timers when they expire.
117 1.1 cgd */
118 1.1 cgd
119 1.22 jtc /* This function is used by clock_settime and settimeofday */
120 1.39 tron int
121 1.54.2.5 nathanw settime(struct timeval *tv)
122 1.22 jtc {
123 1.22 jtc struct timeval delta;
124 1.47 thorpej struct cpu_info *ci;
125 1.22 jtc int s;
126 1.22 jtc
127 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
128 1.22 jtc s = splclock();
129 1.22 jtc timersub(tv, &time, &delta);
130 1.54.2.2 nathanw if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
131 1.54.2.2 nathanw splx(s);
132 1.29 tls return (EPERM);
133 1.54.2.2 nathanw }
134 1.29 tls #ifdef notyet
135 1.54.2.2 nathanw if ((delta.tv_sec < 86400) && securelevel > 0) {
136 1.54.2.2 nathanw splx(s);
137 1.29 tls return (EPERM);
138 1.54.2.2 nathanw }
139 1.29 tls #endif
140 1.22 jtc time = *tv;
141 1.38 thorpej (void) spllowersoftclock();
142 1.22 jtc timeradd(&boottime, &delta, &boottime);
143 1.47 thorpej /*
144 1.47 thorpej * XXXSMP
145 1.47 thorpej * This is wrong. We should traverse a list of all
146 1.47 thorpej * CPUs and add the delta to the runtime of those
147 1.47 thorpej * CPUs which have a process on them.
148 1.47 thorpej */
149 1.47 thorpej ci = curcpu();
150 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
151 1.47 thorpej &ci->ci_schedstate.spc_runtime);
152 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
153 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
154 1.22 jtc # endif
155 1.22 jtc splx(s);
156 1.22 jtc resettodr();
157 1.29 tls return (0);
158 1.22 jtc }
159 1.22 jtc
160 1.22 jtc /* ARGSUSED */
161 1.22 jtc int
162 1.54.2.5 nathanw sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
163 1.22 jtc {
164 1.45 augustss struct sys_clock_gettime_args /* {
165 1.22 jtc syscallarg(clockid_t) clock_id;
166 1.23 cgd syscallarg(struct timespec *) tp;
167 1.23 cgd } */ *uap = v;
168 1.22 jtc clockid_t clock_id;
169 1.22 jtc struct timeval atv;
170 1.22 jtc struct timespec ats;
171 1.54.2.11 nathanw int s;
172 1.22 jtc
173 1.22 jtc clock_id = SCARG(uap, clock_id);
174 1.54.2.11 nathanw switch (clock_id) {
175 1.54.2.11 nathanw case CLOCK_REALTIME:
176 1.54.2.11 nathanw microtime(&atv);
177 1.54.2.11 nathanw TIMEVAL_TO_TIMESPEC(&atv,&ats);
178 1.54.2.11 nathanw break;
179 1.54.2.11 nathanw case CLOCK_MONOTONIC:
180 1.54.2.11 nathanw /* XXX "hz" granularity */
181 1.54.2.11 nathanw s = splclock();
182 1.54.2.11 nathanw atv = mono_time;
183 1.54.2.11 nathanw splx(s);
184 1.54.2.11 nathanw TIMEVAL_TO_TIMESPEC(&atv,&ats);
185 1.54.2.11 nathanw break;
186 1.54.2.11 nathanw default:
187 1.22 jtc return (EINVAL);
188 1.54.2.11 nathanw }
189 1.22 jtc
190 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191 1.22 jtc }
192 1.22 jtc
193 1.22 jtc /* ARGSUSED */
194 1.22 jtc int
195 1.54.2.1 nathanw sys_clock_settime(l, v, retval)
196 1.54.2.1 nathanw struct lwp *l;
197 1.22 jtc void *v;
198 1.22 jtc register_t *retval;
199 1.22 jtc {
200 1.45 augustss struct sys_clock_settime_args /* {
201 1.22 jtc syscallarg(clockid_t) clock_id;
202 1.23 cgd syscallarg(const struct timespec *) tp;
203 1.23 cgd } */ *uap = v;
204 1.54.2.1 nathanw struct proc *p = l->l_proc;
205 1.22 jtc int error;
206 1.22 jtc
207 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
208 1.22 jtc return (error);
209 1.22 jtc
210 1.54.2.6 nathanw return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
211 1.54.2.3 nathanw }
212 1.54.2.3 nathanw
213 1.54.2.3 nathanw
214 1.54.2.3 nathanw int
215 1.54.2.6 nathanw clock_settime1(clock_id, tp)
216 1.54.2.6 nathanw clockid_t clock_id;
217 1.54.2.6 nathanw const struct timespec *tp;
218 1.54.2.3 nathanw {
219 1.54.2.6 nathanw struct timespec ats;
220 1.54.2.3 nathanw struct timeval atv;
221 1.54.2.3 nathanw int error;
222 1.54.2.3 nathanw
223 1.54.2.6 nathanw if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
224 1.54.2.6 nathanw return (error);
225 1.54.2.6 nathanw
226 1.54.2.11 nathanw switch (clock_id) {
227 1.54.2.11 nathanw case CLOCK_REALTIME:
228 1.54.2.11 nathanw TIMESPEC_TO_TIMEVAL(&atv, &ats);
229 1.54.2.11 nathanw if ((error = settime(&atv)) != 0)
230 1.54.2.11 nathanw return (error);
231 1.54.2.11 nathanw break;
232 1.54.2.11 nathanw case CLOCK_MONOTONIC:
233 1.54.2.11 nathanw return (EINVAL); /* read-only clock */
234 1.54.2.11 nathanw default:
235 1.54.2.3 nathanw return (EINVAL);
236 1.54.2.11 nathanw }
237 1.22 jtc
238 1.22 jtc return 0;
239 1.22 jtc }
240 1.22 jtc
241 1.22 jtc int
242 1.54.2.5 nathanw sys_clock_getres(struct lwp *l, void *v, register_t *retval)
243 1.22 jtc {
244 1.45 augustss struct sys_clock_getres_args /* {
245 1.22 jtc syscallarg(clockid_t) clock_id;
246 1.23 cgd syscallarg(struct timespec *) tp;
247 1.23 cgd } */ *uap = v;
248 1.22 jtc clockid_t clock_id;
249 1.22 jtc struct timespec ts;
250 1.22 jtc int error = 0;
251 1.22 jtc
252 1.22 jtc clock_id = SCARG(uap, clock_id);
253 1.54.2.11 nathanw switch (clock_id) {
254 1.54.2.11 nathanw case CLOCK_REALTIME:
255 1.54.2.11 nathanw case CLOCK_MONOTONIC:
256 1.22 jtc ts.tv_sec = 0;
257 1.22 jtc ts.tv_nsec = 1000000000 / hz;
258 1.54.2.11 nathanw break;
259 1.54.2.11 nathanw default:
260 1.54.2.11 nathanw return (EINVAL);
261 1.54.2.11 nathanw }
262 1.22 jtc
263 1.54.2.11 nathanw if (SCARG(uap, tp))
264 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
265 1.22 jtc
266 1.22 jtc return error;
267 1.22 jtc }
268 1.22 jtc
269 1.27 jtc /* ARGSUSED */
270 1.27 jtc int
271 1.54.2.5 nathanw sys_nanosleep(struct lwp *l, void *v, register_t *retval)
272 1.27 jtc {
273 1.27 jtc static int nanowait;
274 1.45 augustss struct sys_nanosleep_args/* {
275 1.27 jtc syscallarg(struct timespec *) rqtp;
276 1.27 jtc syscallarg(struct timespec *) rmtp;
277 1.27 jtc } */ *uap = v;
278 1.27 jtc struct timespec rqt;
279 1.27 jtc struct timespec rmt;
280 1.27 jtc struct timeval atv, utv;
281 1.27 jtc int error, s, timo;
282 1.27 jtc
283 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
284 1.27 jtc sizeof(struct timespec));
285 1.27 jtc if (error)
286 1.27 jtc return (error);
287 1.27 jtc
288 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
289 1.54.2.4 nathanw if (itimerfix(&atv) || atv.tv_sec > 1000000000)
290 1.27 jtc return (EINVAL);
291 1.27 jtc
292 1.27 jtc s = splclock();
293 1.27 jtc timeradd(&atv,&time,&atv);
294 1.27 jtc timo = hzto(&atv);
295 1.27 jtc /*
296 1.27 jtc * Avoid inadvertantly sleeping forever
297 1.27 jtc */
298 1.27 jtc if (timo == 0)
299 1.27 jtc timo = 1;
300 1.27 jtc splx(s);
301 1.27 jtc
302 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
303 1.27 jtc if (error == ERESTART)
304 1.27 jtc error = EINTR;
305 1.27 jtc if (error == EWOULDBLOCK)
306 1.27 jtc error = 0;
307 1.27 jtc
308 1.27 jtc if (SCARG(uap, rmtp)) {
309 1.28 jtc int error;
310 1.28 jtc
311 1.27 jtc s = splclock();
312 1.27 jtc utv = time;
313 1.27 jtc splx(s);
314 1.27 jtc
315 1.27 jtc timersub(&atv, &utv, &utv);
316 1.27 jtc if (utv.tv_sec < 0)
317 1.27 jtc timerclear(&utv);
318 1.27 jtc
319 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
320 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
321 1.28 jtc sizeof(rmt));
322 1.28 jtc if (error)
323 1.28 jtc return (error);
324 1.27 jtc }
325 1.27 jtc
326 1.27 jtc return error;
327 1.27 jtc }
328 1.22 jtc
329 1.1 cgd /* ARGSUSED */
330 1.3 andrew int
331 1.54.2.5 nathanw sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
332 1.15 thorpej {
333 1.45 augustss struct sys_gettimeofday_args /* {
334 1.11 cgd syscallarg(struct timeval *) tp;
335 1.11 cgd syscallarg(struct timezone *) tzp;
336 1.15 thorpej } */ *uap = v;
337 1.1 cgd struct timeval atv;
338 1.1 cgd int error = 0;
339 1.25 perry struct timezone tzfake;
340 1.1 cgd
341 1.11 cgd if (SCARG(uap, tp)) {
342 1.1 cgd microtime(&atv);
343 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
344 1.17 christos if (error)
345 1.1 cgd return (error);
346 1.1 cgd }
347 1.25 perry if (SCARG(uap, tzp)) {
348 1.25 perry /*
349 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
350 1.25 perry * fake up a timezone struct and return it if demanded.
351 1.25 perry */
352 1.25 perry tzfake.tz_minuteswest = 0;
353 1.25 perry tzfake.tz_dsttime = 0;
354 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
355 1.25 perry }
356 1.1 cgd return (error);
357 1.1 cgd }
358 1.1 cgd
359 1.1 cgd /* ARGSUSED */
360 1.3 andrew int
361 1.54.2.5 nathanw sys_settimeofday(struct lwp *l, void *v, register_t *retval)
362 1.15 thorpej {
363 1.16 mycroft struct sys_settimeofday_args /* {
364 1.24 cgd syscallarg(const struct timeval *) tv;
365 1.24 cgd syscallarg(const struct timezone *) tzp;
366 1.15 thorpej } */ *uap = v;
367 1.54.2.1 nathanw struct proc *p = l->l_proc;
368 1.54.2.6 nathanw int error;
369 1.54.2.6 nathanw
370 1.54.2.6 nathanw if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
371 1.54.2.6 nathanw return (error);
372 1.54.2.6 nathanw
373 1.54.2.6 nathanw return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
374 1.54.2.6 nathanw }
375 1.54.2.6 nathanw
376 1.54.2.6 nathanw int
377 1.54.2.6 nathanw settimeofday1(utv, utzp, p)
378 1.54.2.6 nathanw const struct timeval *utv;
379 1.54.2.6 nathanw const struct timezone *utzp;
380 1.54.2.6 nathanw struct proc *p;
381 1.54.2.6 nathanw {
382 1.22 jtc struct timeval atv;
383 1.1 cgd struct timezone atz;
384 1.54.2.3 nathanw struct timeval *tv = NULL;
385 1.54.2.3 nathanw struct timezone *tzp = NULL;
386 1.22 jtc int error;
387 1.1 cgd
388 1.8 cgd /* Verify all parameters before changing time. */
389 1.54.2.6 nathanw if (utv) {
390 1.54.2.6 nathanw if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
391 1.54.2.3 nathanw return (error);
392 1.54.2.3 nathanw tv = &atv;
393 1.54.2.3 nathanw }
394 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
395 1.54.2.6 nathanw if (utzp) {
396 1.54.2.6 nathanw if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
397 1.54.2.3 nathanw return (error);
398 1.54.2.3 nathanw tzp = &atz;
399 1.54.2.3 nathanw }
400 1.54.2.3 nathanw
401 1.54.2.3 nathanw if (tv)
402 1.54.2.3 nathanw if ((error = settime(tv)) != 0)
403 1.29 tls return (error);
404 1.25 perry /*
405 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
406 1.25 perry * obsolete program would try to set it, so we log a warning.
407 1.25 perry */
408 1.54.2.3 nathanw if (tzp)
409 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
410 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
411 1.8 cgd return (0);
412 1.1 cgd }
413 1.1 cgd
414 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
415 1.1 cgd long timedelta; /* unapplied time correction, us. */
416 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
417 1.1 cgd
418 1.1 cgd /* ARGSUSED */
419 1.3 andrew int
420 1.54.2.5 nathanw sys_adjtime(struct lwp *l, void *v, register_t *retval)
421 1.15 thorpej {
422 1.45 augustss struct sys_adjtime_args /* {
423 1.24 cgd syscallarg(const struct timeval *) delta;
424 1.11 cgd syscallarg(struct timeval *) olddelta;
425 1.15 thorpej } */ *uap = v;
426 1.54.2.1 nathanw struct proc *p = l->l_proc;
427 1.54.2.3 nathanw int error;
428 1.1 cgd
429 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
430 1.1 cgd return (error);
431 1.17 christos
432 1.54.2.6 nathanw return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
433 1.54.2.3 nathanw }
434 1.54.2.3 nathanw
435 1.54.2.3 nathanw int
436 1.54.2.6 nathanw adjtime1(delta, olddelta, p)
437 1.54.2.6 nathanw const struct timeval *delta;
438 1.54.2.6 nathanw struct timeval *olddelta;
439 1.54.2.6 nathanw struct proc *p;
440 1.54.2.3 nathanw {
441 1.54.2.6 nathanw struct timeval atv;
442 1.54.2.6 nathanw struct timeval *oatv = NULL;
443 1.54.2.3 nathanw long ndelta, ntickdelta, odelta;
444 1.54.2.6 nathanw int error;
445 1.54.2.3 nathanw int s;
446 1.8 cgd
447 1.54.2.6 nathanw error = copyin(delta, &atv, sizeof(struct timeval));
448 1.54.2.6 nathanw if (error)
449 1.54.2.6 nathanw return (error);
450 1.54.2.6 nathanw
451 1.54.2.6 nathanw if (olddelta != NULL) {
452 1.54.2.6 nathanw if (uvm_useracc((caddr_t)olddelta,
453 1.54.2.6 nathanw sizeof(struct timeval), B_WRITE) == FALSE)
454 1.54.2.6 nathanw return (EFAULT);
455 1.54.2.6 nathanw oatv = olddelta;
456 1.54.2.6 nathanw }
457 1.54.2.6 nathanw
458 1.8 cgd /*
459 1.8 cgd * Compute the total correction and the rate at which to apply it.
460 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
461 1.8 cgd * delta, so that after some number of incremental changes in
462 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
463 1.8 cgd * overshoot and start taking us away from the desired final time.
464 1.8 cgd */
465 1.54.2.6 nathanw ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
466 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
467 1.8 cgd ntickdelta = 10 * tickadj;
468 1.8 cgd else
469 1.8 cgd ntickdelta = tickadj;
470 1.8 cgd if (ndelta % ntickdelta)
471 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
472 1.8 cgd
473 1.8 cgd /*
474 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
475 1.8 cgd * if we want time to run slower; then hardclock can simply compute
476 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
477 1.8 cgd */
478 1.8 cgd if (ndelta < 0)
479 1.8 cgd ntickdelta = -ntickdelta;
480 1.1 cgd s = splclock();
481 1.8 cgd odelta = timedelta;
482 1.1 cgd timedelta = ndelta;
483 1.8 cgd tickdelta = ntickdelta;
484 1.1 cgd splx(s);
485 1.1 cgd
486 1.54.2.3 nathanw if (olddelta) {
487 1.54.2.6 nathanw atv.tv_sec = odelta / 1000000;
488 1.54.2.6 nathanw atv.tv_usec = odelta % 1000000;
489 1.54.2.6 nathanw (void) copyout(&atv, olddelta, sizeof(struct timeval));
490 1.8 cgd }
491 1.1 cgd return (0);
492 1.1 cgd }
493 1.1 cgd
494 1.1 cgd /*
495 1.54.2.5 nathanw * Interval timer support. Both the BSD getitimer() family and the POSIX
496 1.54.2.5 nathanw * timer_*() family of routines are supported.
497 1.54.2.5 nathanw *
498 1.54.2.5 nathanw * All timers are kept in an array pointed to by p_timers, which is
499 1.54.2.5 nathanw * allocated on demand - many processes don't use timers at all. The
500 1.54.2.5 nathanw * first three elements in this array are reserved for the BSD timers:
501 1.54.2.5 nathanw * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
502 1.54.2.5 nathanw * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
503 1.54.2.5 nathanw * syscall.
504 1.1 cgd *
505 1.54.2.5 nathanw * Realtime timers are kept in the ptimer structure as an absolute
506 1.54.2.5 nathanw * time; virtual time timers are kept as deltas. Virtual time timers
507 1.54.2.5 nathanw * are processed in the hardclock() routine of kern_clock.c. The real
508 1.54.2.5 nathanw * time timer is processed by a callout routine, called from the
509 1.54.2.5 nathanw * softclock() routine. Since a callout may be delayed in real time
510 1.54.2.5 nathanw * due to interrupt processing in the system, it is possible for the
511 1.54.2.5 nathanw * real time timeout routine (realtimeexpire, given below), to be
512 1.54.2.5 nathanw * delayed in real time past when it is supposed to occur. It does
513 1.54.2.5 nathanw * not suffice, therefore, to reload the real timer .it_value from the
514 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
515 1.54.2.5 nathanw * absolute time the timer should go off.
516 1.54.2.5 nathanw */
517 1.54.2.5 nathanw
518 1.54.2.5 nathanw /* Allocate a POSIX realtime timer. */
519 1.54.2.5 nathanw int
520 1.54.2.5 nathanw sys_timer_create(struct lwp *l, void *v, register_t *retval)
521 1.54.2.5 nathanw {
522 1.54.2.5 nathanw struct sys_timer_create_args /* {
523 1.54.2.5 nathanw syscallarg(clockid_t) clock_id;
524 1.54.2.5 nathanw syscallarg(struct sigevent *) evp;
525 1.54.2.5 nathanw syscallarg(timer_t *) timerid;
526 1.54.2.5 nathanw } */ *uap = v;
527 1.54.2.5 nathanw struct proc *p = l->l_proc;
528 1.54.2.5 nathanw clockid_t id;
529 1.54.2.5 nathanw struct sigevent *evp;
530 1.54.2.5 nathanw struct ptimer *pt;
531 1.54.2.5 nathanw int timerid, error;
532 1.54.2.5 nathanw
533 1.54.2.5 nathanw id = SCARG(uap, clock_id);
534 1.54.2.5 nathanw if (id != CLOCK_REALTIME)
535 1.54.2.5 nathanw return (EINVAL);
536 1.54.2.5 nathanw
537 1.54.2.5 nathanw if (p->p_timers == NULL)
538 1.54.2.5 nathanw timers_alloc(p);
539 1.54.2.5 nathanw
540 1.54.2.5 nathanw for (timerid = 3; timerid < TIMER_MAX; timerid++)
541 1.54.2.5 nathanw if (p->p_timers[timerid] == NULL)
542 1.54.2.5 nathanw break;
543 1.54.2.5 nathanw
544 1.54.2.5 nathanw if (timerid == TIMER_MAX)
545 1.54.2.5 nathanw return EAGAIN;
546 1.54.2.5 nathanw
547 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
548 1.54.2.5 nathanw evp = SCARG(uap, evp);
549 1.54.2.5 nathanw if (evp) {
550 1.54.2.5 nathanw if (((error =
551 1.54.2.5 nathanw copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
552 1.54.2.5 nathanw ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
553 1.54.2.7 nathanw (pt->pt_ev.sigev_notify > SIGEV_SA))) {
554 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
555 1.54.2.5 nathanw return (error ? error : EINVAL);
556 1.54.2.5 nathanw }
557 1.54.2.5 nathanw } else {
558 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
559 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGALRM;
560 1.54.2.5 nathanw pt->pt_ev.sigev_value.sival_int = timerid;
561 1.54.2.5 nathanw }
562 1.54.2.10 nathanw pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
563 1.54.2.10 nathanw pt->pt_info.si_errno = 0;
564 1.54.2.10 nathanw pt->pt_info.si_code = 0;
565 1.54.2.10 nathanw pt->pt_info.si_pid = p->p_pid;
566 1.54.2.10 nathanw pt->pt_info.si_uid = p->p_cred->p_ruid;
567 1.54.2.10 nathanw pt->pt_info.si_addr = NULL;
568 1.54.2.10 nathanw pt->pt_info.si_status = 0;
569 1.54.2.10 nathanw pt->pt_info.si_value = pt->pt_ev.sigev_value;
570 1.54.2.10 nathanw
571 1.54.2.5 nathanw callout_init(&pt->pt_ch);
572 1.54.2.5 nathanw pt->pt_type = CLOCK_REALTIME;
573 1.54.2.5 nathanw pt->pt_proc = p;
574 1.54.2.5 nathanw pt->pt_overruns = 0;
575 1.54.2.5 nathanw
576 1.54.2.5 nathanw p->p_timers[timerid] = pt;
577 1.54.2.5 nathanw
578 1.54.2.5 nathanw return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
579 1.54.2.5 nathanw }
580 1.54.2.5 nathanw
581 1.54.2.5 nathanw
582 1.54.2.5 nathanw /* Delete a POSIX realtime timer */
583 1.54.2.5 nathanw int
584 1.54.2.5 nathanw sys_timer_delete(struct lwp *l, void *v, register_t *retval)
585 1.54.2.5 nathanw {
586 1.54.2.5 nathanw struct sys_timer_delete_args /* {
587 1.54.2.5 nathanw syscallarg(timer_t) timerid;
588 1.54.2.5 nathanw } */ *uap = v;
589 1.54.2.5 nathanw struct proc *p = l->l_proc;
590 1.54.2.5 nathanw int timerid;
591 1.54.2.5 nathanw struct ptimer *pt;
592 1.54.2.5 nathanw
593 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
594 1.54.2.5 nathanw
595 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
596 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
597 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
598 1.54.2.5 nathanw return (EINVAL);
599 1.54.2.5 nathanw
600 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
601 1.54.2.5 nathanw p->p_timers[timerid] = NULL;
602 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
603 1.54.2.5 nathanw
604 1.54.2.5 nathanw return (0);
605 1.54.2.5 nathanw }
606 1.54.2.5 nathanw
607 1.54.2.5 nathanw /* Set and arm a POSIX realtime timer */
608 1.54.2.5 nathanw int
609 1.54.2.5 nathanw sys_timer_settime(struct lwp *l, void *v, register_t *retval)
610 1.54.2.5 nathanw {
611 1.54.2.5 nathanw struct sys_timer_settime_args /* {
612 1.54.2.5 nathanw syscallarg(timer_t) timerid;
613 1.54.2.5 nathanw syscallarg(int) flags;
614 1.54.2.5 nathanw syscallarg(const struct itimerspec *) value;
615 1.54.2.5 nathanw syscallarg(struct itimerspec *) ovalue;
616 1.54.2.5 nathanw } */ *uap = v;
617 1.54.2.5 nathanw struct proc *p = l->l_proc;
618 1.54.2.5 nathanw int error, s, timerid;
619 1.54.2.5 nathanw struct itimerval val, oval;
620 1.54.2.5 nathanw struct itimerspec value, ovalue;
621 1.54.2.5 nathanw struct ptimer *pt;
622 1.54.2.5 nathanw
623 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
624 1.54.2.5 nathanw
625 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
626 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
627 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
628 1.54.2.5 nathanw return (EINVAL);
629 1.54.2.5 nathanw
630 1.54.2.5 nathanw if ((error = copyin(SCARG(uap, value), &value,
631 1.54.2.5 nathanw sizeof(struct itimerspec))) != 0)
632 1.54.2.5 nathanw return (error);
633 1.54.2.5 nathanw
634 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
635 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
636 1.54.2.5 nathanw if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
637 1.54.2.5 nathanw return (EINVAL);
638 1.54.2.5 nathanw
639 1.54.2.5 nathanw oval = pt->pt_time;
640 1.54.2.5 nathanw pt->pt_time = val;
641 1.54.2.5 nathanw
642 1.54.2.5 nathanw s = splclock();
643 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
644 1.54.2.5 nathanw if (timerisset(&pt->pt_time.it_value)) {
645 1.54.2.5 nathanw if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
646 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value, &time,
647 1.54.2.5 nathanw &pt->pt_time.it_value);
648 1.54.2.5 nathanw /*
649 1.54.2.5 nathanw * Don't need to check hzto() return value, here.
650 1.54.2.5 nathanw * callout_reset() does it for us.
651 1.54.2.5 nathanw */
652 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
653 1.54.2.5 nathanw realtimerexpire, pt);
654 1.54.2.5 nathanw }
655 1.54.2.5 nathanw splx(s);
656 1.54.2.5 nathanw
657 1.54.2.5 nathanw if (SCARG(uap, ovalue)) {
658 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
659 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
660 1.54.2.5 nathanw return copyout(&ovalue, SCARG(uap, ovalue),
661 1.54.2.5 nathanw sizeof(struct itimerspec));
662 1.54.2.5 nathanw }
663 1.54.2.5 nathanw
664 1.54.2.5 nathanw return (0);
665 1.54.2.5 nathanw }
666 1.54.2.5 nathanw
667 1.54.2.5 nathanw /* Return the time remaining until a POSIX timer fires. */
668 1.54.2.5 nathanw int
669 1.54.2.5 nathanw sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
670 1.54.2.5 nathanw {
671 1.54.2.5 nathanw struct sys_timer_gettime_args /* {
672 1.54.2.5 nathanw syscallarg(timer_t) timerid;
673 1.54.2.5 nathanw syscallarg(struct itimerspec *) value;
674 1.54.2.5 nathanw } */ *uap = v;
675 1.54.2.5 nathanw struct itimerval aitv;
676 1.54.2.5 nathanw struct itimerspec its;
677 1.54.2.5 nathanw struct proc *p = l->l_proc;
678 1.54.2.5 nathanw int timerid;
679 1.54.2.5 nathanw struct ptimer *pt;
680 1.54.2.5 nathanw
681 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
682 1.54.2.5 nathanw
683 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
684 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
685 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
686 1.54.2.5 nathanw return (EINVAL);
687 1.54.2.5 nathanw
688 1.54.2.5 nathanw aitv = pt->pt_time;
689 1.54.2.5 nathanw
690 1.54.2.5 nathanw /*
691 1.54.2.5 nathanw * Real-time timers are kept in absolute time, but this interface
692 1.54.2.5 nathanw * is supposed to return a relative time.
693 1.54.2.5 nathanw */
694 1.54.2.5 nathanw if (timerisset(&aitv.it_value)) {
695 1.54.2.5 nathanw if (timercmp(&aitv.it_value, &time, <))
696 1.54.2.5 nathanw timerclear(&aitv.it_value);
697 1.54.2.5 nathanw else
698 1.54.2.5 nathanw timersub(&aitv.it_value, &time, &aitv.it_value);
699 1.54.2.5 nathanw }
700 1.54.2.5 nathanw
701 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
702 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
703 1.54.2.5 nathanw
704 1.54.2.5 nathanw return copyout(&its, SCARG(uap, value), sizeof(its));
705 1.54.2.5 nathanw }
706 1.54.2.5 nathanw
707 1.54.2.5 nathanw /*
708 1.54.2.5 nathanw * Return the count of the number of times a periodic timer expired
709 1.54.2.5 nathanw * while a notification was already pending. The counter is reset when
710 1.54.2.5 nathanw * a timer expires and a notification can be posted.
711 1.1 cgd */
712 1.54.2.5 nathanw int
713 1.54.2.5 nathanw sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
714 1.54.2.5 nathanw {
715 1.54.2.5 nathanw struct sys_timer_getoverrun_args /* {
716 1.54.2.5 nathanw syscallarg(timer_t) timerid;
717 1.54.2.5 nathanw } */ *uap = v;
718 1.54.2.5 nathanw struct proc *p = l->l_proc;
719 1.54.2.5 nathanw int timerid;
720 1.54.2.5 nathanw struct ptimer *pt;
721 1.54.2.5 nathanw
722 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
723 1.54.2.5 nathanw
724 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
725 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
726 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
727 1.54.2.5 nathanw return (EINVAL);
728 1.54.2.5 nathanw
729 1.54.2.5 nathanw *retval = pt->pt_overruns;
730 1.54.2.5 nathanw
731 1.54.2.5 nathanw return (0);
732 1.54.2.5 nathanw }
733 1.54.2.5 nathanw
734 1.54.2.5 nathanw /* Glue function that triggers an upcall; called from userret(). */
735 1.54.2.5 nathanw static void
736 1.54.2.5 nathanw realtimerupcall(struct lwp *l, void *arg)
737 1.54.2.5 nathanw {
738 1.54.2.5 nathanw struct ptimer *pt;
739 1.54.2.5 nathanw
740 1.54.2.13 nathanw /* The LWP that is running doesn't change, so we don't need
741 1.54.2.13 nathanw * to touch sa_vp.
742 1.54.2.13 nathanw */
743 1.54.2.5 nathanw pt = (struct ptimer *)arg;
744 1.54.2.10 nathanw sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(siginfo_t),
745 1.54.2.10 nathanw &pt->pt_info);
746 1.54.2.5 nathanw
747 1.54.2.5 nathanw /* The upcall should only be generated once. */
748 1.54.2.5 nathanw l->l_proc->p_userret = NULL;
749 1.54.2.5 nathanw }
750 1.54.2.5 nathanw
751 1.54.2.5 nathanw
752 1.54.2.5 nathanw /*
753 1.54.2.5 nathanw * Real interval timer expired:
754 1.54.2.5 nathanw * send process whose timer expired an alarm signal.
755 1.54.2.5 nathanw * If time is not set up to reload, then just return.
756 1.54.2.5 nathanw * Else compute next time timer should go off which is > current time.
757 1.54.2.5 nathanw * This is where delay in processing this timeout causes multiple
758 1.54.2.5 nathanw * SIGALRM calls to be compressed into one.
759 1.54.2.5 nathanw */
760 1.54.2.5 nathanw void
761 1.54.2.5 nathanw realtimerexpire(void *arg)
762 1.54.2.5 nathanw {
763 1.54.2.5 nathanw struct ptimer *pt;
764 1.54.2.5 nathanw struct proc *p;
765 1.54.2.5 nathanw int s;
766 1.54.2.5 nathanw
767 1.54.2.5 nathanw pt = (struct ptimer *)arg;
768 1.54.2.5 nathanw p = pt->pt_proc;
769 1.54.2.5 nathanw if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
770 1.54.2.5 nathanw /*
771 1.54.2.5 nathanw * No RT signal infrastructure exists at this time;
772 1.54.2.5 nathanw * just post the signal number and throw away the
773 1.54.2.5 nathanw * value.
774 1.54.2.5 nathanw */
775 1.54.2.5 nathanw if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
776 1.54.2.5 nathanw pt->pt_overruns++;
777 1.54.2.5 nathanw else {
778 1.54.2.5 nathanw pt->pt_overruns = 0;
779 1.54.2.5 nathanw psignal(p, pt->pt_ev.sigev_signo);
780 1.54.2.5 nathanw }
781 1.54.2.7 nathanw } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
782 1.54.2.8 nathanw int notified = 0;
783 1.54.2.5 nathanw /* Cause the process to generate an upcall when it returns. */
784 1.54.2.8 nathanw
785 1.54.2.8 nathanw if (p->p_nrlwps == 0) {
786 1.54.2.8 nathanw struct sadata_upcall *sd;
787 1.54.2.13 nathanw struct sadata *sa = p->p_sa;
788 1.54.2.8 nathanw struct lwp *l2;
789 1.54.2.9 nathanw int s, ret;
790 1.54.2.8 nathanw
791 1.54.2.9 nathanw SCHED_LOCK(s);
792 1.54.2.8 nathanw l2 = sa_getcachelwp(p);
793 1.54.2.8 nathanw if (l2 != NULL) {
794 1.54.2.8 nathanw sd = sadata_upcall_alloc(0);
795 1.54.2.8 nathanw cpu_setfunc(l2, sa_switchcall, NULL);
796 1.54.2.8 nathanw ret = sa_upcall0(l2, SA_UPCALL_SIGEV,
797 1.54.2.10 nathanw NULL, NULL, sizeof(siginfo_t),
798 1.54.2.10 nathanw &pt->pt_info, sd);
799 1.54.2.8 nathanw if (ret == 0) {
800 1.54.2.8 nathanw l2->l_priority = l2->l_usrpri;
801 1.54.2.8 nathanw PRELE(l2);
802 1.54.2.13 nathanw KDASSERT(sa->sa_vp == NULL);
803 1.54.2.13 nathanw sa->sa_vp = l2;
804 1.54.2.8 nathanw setrunnable(l2);
805 1.54.2.8 nathanw notified = 1;
806 1.54.2.8 nathanw } else
807 1.54.2.8 nathanw sa_putcachelwp(p, l2);
808 1.54.2.8 nathanw }
809 1.54.2.9 nathanw SCHED_UNLOCK(s);
810 1.54.2.8 nathanw } else if (p->p_userret == NULL) {
811 1.54.2.5 nathanw pt->pt_overruns = 0;
812 1.54.2.5 nathanw p->p_userret = realtimerupcall;
813 1.54.2.5 nathanw p->p_userret_arg = pt;
814 1.54.2.8 nathanw notified = 1;
815 1.54.2.8 nathanw }
816 1.54.2.8 nathanw if (notified == 0)
817 1.54.2.5 nathanw pt->pt_overruns++;
818 1.54.2.5 nathanw }
819 1.54.2.5 nathanw if (!timerisset(&pt->pt_time.it_interval)) {
820 1.54.2.5 nathanw timerclear(&pt->pt_time.it_value);
821 1.54.2.5 nathanw return;
822 1.54.2.5 nathanw }
823 1.54.2.5 nathanw for (;;) {
824 1.54.2.5 nathanw s = splclock();
825 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value,
826 1.54.2.5 nathanw &pt->pt_time.it_interval, &pt->pt_time.it_value);
827 1.54.2.5 nathanw if (timercmp(&pt->pt_time.it_value, &time, >)) {
828 1.54.2.5 nathanw /*
829 1.54.2.5 nathanw * Don't need to check hzto() return value, here.
830 1.54.2.5 nathanw * callout_reset() does it for us.
831 1.54.2.5 nathanw */
832 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
833 1.54.2.5 nathanw realtimerexpire, pt);
834 1.54.2.5 nathanw splx(s);
835 1.54.2.5 nathanw return;
836 1.54.2.5 nathanw }
837 1.54.2.5 nathanw splx(s);
838 1.54.2.5 nathanw pt->pt_overruns++;
839 1.54.2.5 nathanw }
840 1.54.2.5 nathanw }
841 1.54.2.5 nathanw
842 1.54.2.5 nathanw /* BSD routine to get the value of an interval timer. */
843 1.1 cgd /* ARGSUSED */
844 1.3 andrew int
845 1.54.2.5 nathanw sys_getitimer(struct lwp *l, void *v, register_t *retval)
846 1.15 thorpej {
847 1.45 augustss struct sys_getitimer_args /* {
848 1.30 mycroft syscallarg(int) which;
849 1.11 cgd syscallarg(struct itimerval *) itv;
850 1.15 thorpej } */ *uap = v;
851 1.54.2.1 nathanw struct proc *p = l->l_proc;
852 1.1 cgd struct itimerval aitv;
853 1.54.2.5 nathanw int s, which;
854 1.54.2.5 nathanw
855 1.54.2.5 nathanw which = SCARG(uap, which);
856 1.1 cgd
857 1.30 mycroft if ((u_int)which > ITIMER_PROF)
858 1.1 cgd return (EINVAL);
859 1.54.2.5 nathanw
860 1.54.2.5 nathanw if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
861 1.54.2.5 nathanw timerclear(&aitv.it_value);
862 1.54.2.5 nathanw timerclear(&aitv.it_interval);
863 1.54.2.5 nathanw } else {
864 1.54.2.5 nathanw s = splclock();
865 1.54.2.5 nathanw if (which == ITIMER_REAL) {
866 1.54.2.5 nathanw /*
867 1.54.2.5 nathanw * Convert from absolute to relative time in
868 1.54.2.5 nathanw * .it_value part of real time timer. If time
869 1.54.2.5 nathanw * for real time timer has passed return 0,
870 1.54.2.5 nathanw * else return difference between current time
871 1.54.2.5 nathanw * and time for the timer to go off.
872 1.54.2.5 nathanw */
873 1.54.2.5 nathanw aitv = p->p_timers[ITIMER_REAL]->pt_time;
874 1.54.2.5 nathanw if (timerisset(&aitv.it_value)) {
875 1.54.2.5 nathanw if (timercmp(&aitv.it_value, &time, <))
876 1.54.2.5 nathanw timerclear(&aitv.it_value);
877 1.54.2.5 nathanw else
878 1.54.2.5 nathanw timersub(&aitv.it_value, &time, &aitv.it_value);
879 1.54.2.5 nathanw }
880 1.54.2.5 nathanw } else
881 1.54.2.5 nathanw aitv = p->p_timers[which]->pt_time;
882 1.54.2.5 nathanw splx(s);
883 1.54.2.5 nathanw }
884 1.54.2.5 nathanw
885 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
886 1.54.2.5 nathanw
887 1.1 cgd }
888 1.1 cgd
889 1.54.2.5 nathanw /* BSD routine to set/arm an interval timer. */
890 1.1 cgd /* ARGSUSED */
891 1.3 andrew int
892 1.54.2.5 nathanw sys_setitimer(struct lwp *l, void *v, register_t *retval)
893 1.15 thorpej {
894 1.45 augustss struct sys_setitimer_args /* {
895 1.30 mycroft syscallarg(int) which;
896 1.24 cgd syscallarg(const struct itimerval *) itv;
897 1.11 cgd syscallarg(struct itimerval *) oitv;
898 1.15 thorpej } */ *uap = v;
899 1.54.2.1 nathanw struct proc *p = l->l_proc;
900 1.30 mycroft int which = SCARG(uap, which);
901 1.21 cgd struct sys_getitimer_args getargs;
902 1.1 cgd struct itimerval aitv;
903 1.45 augustss const struct itimerval *itvp;
904 1.54.2.5 nathanw struct ptimer *pt;
905 1.1 cgd int s, error;
906 1.1 cgd
907 1.30 mycroft if ((u_int)which > ITIMER_PROF)
908 1.1 cgd return (EINVAL);
909 1.11 cgd itvp = SCARG(uap, itv);
910 1.54.2.3 nathanw if (itvp &&
911 1.54.2.3 nathanw (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
912 1.1 cgd return (error);
913 1.21 cgd if (SCARG(uap, oitv) != NULL) {
914 1.30 mycroft SCARG(&getargs, which) = which;
915 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
916 1.54.2.1 nathanw if ((error = sys_getitimer(l, &getargs, retval)) != 0)
917 1.21 cgd return (error);
918 1.21 cgd }
919 1.1 cgd if (itvp == 0)
920 1.1 cgd return (0);
921 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
922 1.1 cgd return (EINVAL);
923 1.54.2.5 nathanw
924 1.54.2.5 nathanw /*
925 1.54.2.5 nathanw * Don't bother allocating data structures if the process just
926 1.54.2.5 nathanw * wants to clear the timer.
927 1.54.2.5 nathanw */
928 1.54.2.5 nathanw if (!timerisset(&aitv.it_value) &&
929 1.54.2.5 nathanw ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
930 1.54.2.5 nathanw return (0);
931 1.54.2.5 nathanw
932 1.54.2.5 nathanw if (p->p_timers == NULL)
933 1.54.2.5 nathanw timers_alloc(p);
934 1.54.2.5 nathanw if (p->p_timers[which] == NULL) {
935 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
936 1.54.2.5 nathanw callout_init(&pt->pt_ch);
937 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
938 1.54.2.5 nathanw pt->pt_overruns = 0;
939 1.54.2.5 nathanw pt->pt_proc = p;
940 1.54.2.5 nathanw pt->pt_type = which;
941 1.54.2.5 nathanw switch (which) {
942 1.54.2.5 nathanw case ITIMER_REAL:
943 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGALRM;
944 1.54.2.5 nathanw break;
945 1.54.2.5 nathanw case ITIMER_VIRTUAL:
946 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGVTALRM;
947 1.54.2.5 nathanw break;
948 1.54.2.5 nathanw case ITIMER_PROF:
949 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGPROF;
950 1.54.2.5 nathanw break;
951 1.54.2.5 nathanw }
952 1.54.2.5 nathanw } else
953 1.54.2.5 nathanw pt = p->p_timers[which];
954 1.54.2.5 nathanw
955 1.54.2.5 nathanw pt->pt_time = aitv;
956 1.54.2.5 nathanw p->p_timers[which] = pt;
957 1.30 mycroft if (which == ITIMER_REAL) {
958 1.54.2.5 nathanw s = splclock();
959 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
960 1.54.2.5 nathanw if (timerisset(&pt->pt_time.it_value)) {
961 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value, &time,
962 1.54.2.5 nathanw &pt->pt_time.it_value);
963 1.52 thorpej /*
964 1.52 thorpej * Don't need to check hzto() return value, here.
965 1.52 thorpej * callout_reset() does it for us.
966 1.52 thorpej */
967 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
968 1.54.2.5 nathanw realtimerexpire, pt);
969 1.1 cgd }
970 1.54.2.5 nathanw splx(s);
971 1.54.2.5 nathanw }
972 1.54.2.5 nathanw
973 1.1 cgd return (0);
974 1.1 cgd }
975 1.1 cgd
976 1.54.2.5 nathanw /* Utility routines to manage the array of pointers to timers. */
977 1.3 andrew void
978 1.54.2.5 nathanw timers_alloc(struct proc *p)
979 1.6 cgd {
980 1.54.2.5 nathanw int i;
981 1.54.2.5 nathanw struct ptimer **pts;
982 1.1 cgd
983 1.54.2.5 nathanw pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
984 1.54.2.5 nathanw for (i = 0; i < TIMER_MAX; i++)
985 1.54.2.5 nathanw pts[i] = NULL;
986 1.54.2.5 nathanw p->p_timers = pts;
987 1.54.2.5 nathanw }
988 1.54.2.5 nathanw
989 1.54.2.5 nathanw void
990 1.54.2.5 nathanw timers_free(struct proc *p)
991 1.54.2.5 nathanw {
992 1.54.2.5 nathanw int i;
993 1.54.2.5 nathanw struct ptimer *pt, **pts;
994 1.54.2.5 nathanw
995 1.54.2.5 nathanw if (p->p_timers) {
996 1.54.2.5 nathanw pts = p->p_timers;
997 1.54.2.5 nathanw p->p_timers = NULL;
998 1.54.2.5 nathanw for (i = 0; i < TIMER_MAX; i++)
999 1.54.2.5 nathanw if ((pt = pts[i]) != NULL) {
1000 1.54.2.5 nathanw if (pt->pt_type == CLOCK_REALTIME)
1001 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
1002 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
1003 1.54.2.5 nathanw }
1004 1.54.2.5 nathanw free(pts, M_SUBPROC);
1005 1.1 cgd }
1006 1.1 cgd }
1007 1.1 cgd
1008 1.1 cgd /*
1009 1.1 cgd * Check that a proposed value to load into the .it_value or
1010 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1011 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1012 1.1 cgd * than the resolution of the clock, round it up.)
1013 1.1 cgd */
1014 1.3 andrew int
1015 1.54.2.5 nathanw itimerfix(struct timeval *tv)
1016 1.1 cgd {
1017 1.1 cgd
1018 1.54.2.4 nathanw if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1019 1.1 cgd return (EINVAL);
1020 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1021 1.1 cgd tv->tv_usec = tick;
1022 1.1 cgd return (0);
1023 1.1 cgd }
1024 1.1 cgd
1025 1.1 cgd /*
1026 1.1 cgd * Decrement an interval timer by a specified number
1027 1.1 cgd * of microseconds, which must be less than a second,
1028 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1029 1.1 cgd * it. In this case, carry over (usec - old value) to
1030 1.8 cgd * reduce the value reloaded into the timer so that
1031 1.1 cgd * the timer does not drift. This routine assumes
1032 1.1 cgd * that it is called in a context where the timers
1033 1.1 cgd * on which it is operating cannot change in value.
1034 1.1 cgd */
1035 1.3 andrew int
1036 1.54.2.5 nathanw itimerdecr(struct itimerval *itp, int usec)
1037 1.1 cgd {
1038 1.1 cgd
1039 1.1 cgd if (itp->it_value.tv_usec < usec) {
1040 1.1 cgd if (itp->it_value.tv_sec == 0) {
1041 1.1 cgd /* expired, and already in next interval */
1042 1.1 cgd usec -= itp->it_value.tv_usec;
1043 1.1 cgd goto expire;
1044 1.1 cgd }
1045 1.1 cgd itp->it_value.tv_usec += 1000000;
1046 1.1 cgd itp->it_value.tv_sec--;
1047 1.1 cgd }
1048 1.1 cgd itp->it_value.tv_usec -= usec;
1049 1.1 cgd usec = 0;
1050 1.1 cgd if (timerisset(&itp->it_value))
1051 1.1 cgd return (1);
1052 1.1 cgd /* expired, exactly at end of interval */
1053 1.1 cgd expire:
1054 1.1 cgd if (timerisset(&itp->it_interval)) {
1055 1.1 cgd itp->it_value = itp->it_interval;
1056 1.1 cgd itp->it_value.tv_usec -= usec;
1057 1.1 cgd if (itp->it_value.tv_usec < 0) {
1058 1.1 cgd itp->it_value.tv_usec += 1000000;
1059 1.1 cgd itp->it_value.tv_sec--;
1060 1.1 cgd }
1061 1.1 cgd } else
1062 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1063 1.1 cgd return (0);
1064 1.42 cgd }
1065 1.42 cgd
1066 1.42 cgd /*
1067 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1068 1.42 cgd * for usage and rationale.
1069 1.42 cgd */
1070 1.42 cgd int
1071 1.54.2.5 nathanw ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1072 1.42 cgd {
1073 1.49 itojun struct timeval tv, delta;
1074 1.42 cgd int s, rv = 0;
1075 1.42 cgd
1076 1.42 cgd s = splclock();
1077 1.49 itojun tv = mono_time;
1078 1.49 itojun splx(s);
1079 1.49 itojun
1080 1.49 itojun timersub(&tv, lasttime, &delta);
1081 1.42 cgd
1082 1.42 cgd /*
1083 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1084 1.42 cgd * even if interval is huge.
1085 1.42 cgd */
1086 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1087 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1088 1.49 itojun *lasttime = tv;
1089 1.42 cgd rv = 1;
1090 1.42 cgd }
1091 1.50 itojun
1092 1.50 itojun return (rv);
1093 1.50 itojun }
1094 1.50 itojun
1095 1.50 itojun /*
1096 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1097 1.50 itojun */
1098 1.50 itojun int
1099 1.54.2.5 nathanw ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1100 1.50 itojun {
1101 1.50 itojun struct timeval tv, delta;
1102 1.50 itojun int s, rv;
1103 1.50 itojun
1104 1.50 itojun s = splclock();
1105 1.50 itojun tv = mono_time;
1106 1.50 itojun splx(s);
1107 1.50 itojun
1108 1.50 itojun timersub(&tv, lasttime, &delta);
1109 1.50 itojun
1110 1.50 itojun /*
1111 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1112 1.50 itojun * if more than one second have passed since the last update of
1113 1.50 itojun * lasttime, reset the counter.
1114 1.50 itojun *
1115 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1116 1.50 itojun * try to use *curpps for stat purposes as well.
1117 1.50 itojun */
1118 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1119 1.50 itojun delta.tv_sec >= 1) {
1120 1.50 itojun *lasttime = tv;
1121 1.50 itojun *curpps = 0;
1122 1.50 itojun rv = 1;
1123 1.53 itojun } else if (maxpps < 0)
1124 1.53 itojun rv = 1;
1125 1.53 itojun else if (*curpps < maxpps)
1126 1.50 itojun rv = 1;
1127 1.50 itojun else
1128 1.50 itojun rv = 0;
1129 1.50 itojun
1130 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1131 1.50 itojun /* be careful about wrap-around */
1132 1.50 itojun if (*curpps + 1 > *curpps)
1133 1.50 itojun *curpps = *curpps + 1;
1134 1.50 itojun #else
1135 1.50 itojun /*
1136 1.50 itojun * assume that there's not too many calls to this function.
1137 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1138 1.50 itojun * behavior, not the behavior of this function.
1139 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1140 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1141 1.50 itojun */
1142 1.50 itojun *curpps = *curpps + 1;
1143 1.50 itojun #endif
1144 1.42 cgd
1145 1.42 cgd return (rv);
1146 1.1 cgd }
1147