kern_time.c revision 1.54.2.14 1 1.54.2.14 nathanw /* $NetBSD: kern_time.c,v 1.54.2.14 2002/07/12 01:40:20 nathanw Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.54.2.4 nathanw #include <sys/cdefs.h>
75 1.54.2.14 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.14 2002/07/12 01:40:20 nathanw Exp $");
76 1.54.2.4 nathanw
77 1.31 thorpej #include "fs_nfs.h"
78 1.54 bjh21 #include "opt_nfs.h"
79 1.34 thorpej #include "opt_nfsserver.h"
80 1.1 cgd
81 1.5 mycroft #include <sys/param.h>
82 1.5 mycroft #include <sys/resourcevar.h>
83 1.5 mycroft #include <sys/kernel.h>
84 1.8 cgd #include <sys/systm.h>
85 1.54.2.5 nathanw #include <sys/malloc.h>
86 1.5 mycroft #include <sys/proc.h>
87 1.54.2.5 nathanw #include <sys/sa.h>
88 1.54.2.5 nathanw #include <sys/savar.h>
89 1.8 cgd #include <sys/vnode.h>
90 1.17 christos #include <sys/signalvar.h>
91 1.25 perry #include <sys/syslog.h>
92 1.1 cgd
93 1.11 cgd #include <sys/mount.h>
94 1.11 cgd #include <sys/syscallargs.h>
95 1.19 christos
96 1.37 thorpej #include <uvm/uvm_extern.h>
97 1.37 thorpej
98 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
99 1.20 fvdl #include <nfs/rpcv2.h>
100 1.20 fvdl #include <nfs/nfsproto.h>
101 1.19 christos #include <nfs/nfs_var.h>
102 1.19 christos #endif
103 1.17 christos
104 1.5 mycroft #include <machine/cpu.h>
105 1.23 cgd
106 1.54.2.5 nathanw static void realtimerupcall(struct lwp *, void *);
107 1.54.2.5 nathanw
108 1.54.2.5 nathanw
109 1.54.2.5 nathanw /* Time of day and interval timer support.
110 1.1 cgd *
111 1.1 cgd * These routines provide the kernel entry points to get and set
112 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
113 1.1 cgd * here provide support for adding and subtracting timeval structures
114 1.1 cgd * and decrementing interval timers, optionally reloading the interval
115 1.1 cgd * timers when they expire.
116 1.1 cgd */
117 1.1 cgd
118 1.22 jtc /* This function is used by clock_settime and settimeofday */
119 1.39 tron int
120 1.54.2.5 nathanw settime(struct timeval *tv)
121 1.22 jtc {
122 1.22 jtc struct timeval delta;
123 1.47 thorpej struct cpu_info *ci;
124 1.22 jtc int s;
125 1.22 jtc
126 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
127 1.22 jtc s = splclock();
128 1.22 jtc timersub(tv, &time, &delta);
129 1.54.2.2 nathanw if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
130 1.54.2.2 nathanw splx(s);
131 1.29 tls return (EPERM);
132 1.54.2.2 nathanw }
133 1.29 tls #ifdef notyet
134 1.54.2.2 nathanw if ((delta.tv_sec < 86400) && securelevel > 0) {
135 1.54.2.2 nathanw splx(s);
136 1.29 tls return (EPERM);
137 1.54.2.2 nathanw }
138 1.29 tls #endif
139 1.22 jtc time = *tv;
140 1.38 thorpej (void) spllowersoftclock();
141 1.22 jtc timeradd(&boottime, &delta, &boottime);
142 1.47 thorpej /*
143 1.47 thorpej * XXXSMP
144 1.47 thorpej * This is wrong. We should traverse a list of all
145 1.47 thorpej * CPUs and add the delta to the runtime of those
146 1.47 thorpej * CPUs which have a process on them.
147 1.47 thorpej */
148 1.47 thorpej ci = curcpu();
149 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
150 1.47 thorpej &ci->ci_schedstate.spc_runtime);
151 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
152 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
153 1.22 jtc # endif
154 1.22 jtc splx(s);
155 1.22 jtc resettodr();
156 1.29 tls return (0);
157 1.22 jtc }
158 1.22 jtc
159 1.22 jtc /* ARGSUSED */
160 1.22 jtc int
161 1.54.2.5 nathanw sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
162 1.22 jtc {
163 1.45 augustss struct sys_clock_gettime_args /* {
164 1.22 jtc syscallarg(clockid_t) clock_id;
165 1.23 cgd syscallarg(struct timespec *) tp;
166 1.23 cgd } */ *uap = v;
167 1.22 jtc clockid_t clock_id;
168 1.22 jtc struct timeval atv;
169 1.22 jtc struct timespec ats;
170 1.54.2.11 nathanw int s;
171 1.22 jtc
172 1.22 jtc clock_id = SCARG(uap, clock_id);
173 1.54.2.11 nathanw switch (clock_id) {
174 1.54.2.11 nathanw case CLOCK_REALTIME:
175 1.54.2.11 nathanw microtime(&atv);
176 1.54.2.11 nathanw TIMEVAL_TO_TIMESPEC(&atv,&ats);
177 1.54.2.11 nathanw break;
178 1.54.2.11 nathanw case CLOCK_MONOTONIC:
179 1.54.2.11 nathanw /* XXX "hz" granularity */
180 1.54.2.11 nathanw s = splclock();
181 1.54.2.11 nathanw atv = mono_time;
182 1.54.2.11 nathanw splx(s);
183 1.54.2.11 nathanw TIMEVAL_TO_TIMESPEC(&atv,&ats);
184 1.54.2.11 nathanw break;
185 1.54.2.11 nathanw default:
186 1.22 jtc return (EINVAL);
187 1.54.2.11 nathanw }
188 1.22 jtc
189 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
190 1.22 jtc }
191 1.22 jtc
192 1.22 jtc /* ARGSUSED */
193 1.22 jtc int
194 1.54.2.1 nathanw sys_clock_settime(l, v, retval)
195 1.54.2.1 nathanw struct lwp *l;
196 1.22 jtc void *v;
197 1.22 jtc register_t *retval;
198 1.22 jtc {
199 1.45 augustss struct sys_clock_settime_args /* {
200 1.22 jtc syscallarg(clockid_t) clock_id;
201 1.23 cgd syscallarg(const struct timespec *) tp;
202 1.23 cgd } */ *uap = v;
203 1.54.2.1 nathanw struct proc *p = l->l_proc;
204 1.22 jtc int error;
205 1.22 jtc
206 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
207 1.22 jtc return (error);
208 1.22 jtc
209 1.54.2.6 nathanw return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
210 1.54.2.3 nathanw }
211 1.54.2.3 nathanw
212 1.54.2.3 nathanw
213 1.54.2.3 nathanw int
214 1.54.2.6 nathanw clock_settime1(clock_id, tp)
215 1.54.2.6 nathanw clockid_t clock_id;
216 1.54.2.6 nathanw const struct timespec *tp;
217 1.54.2.3 nathanw {
218 1.54.2.6 nathanw struct timespec ats;
219 1.54.2.3 nathanw struct timeval atv;
220 1.54.2.3 nathanw int error;
221 1.54.2.3 nathanw
222 1.54.2.6 nathanw if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
223 1.54.2.6 nathanw return (error);
224 1.54.2.6 nathanw
225 1.54.2.11 nathanw switch (clock_id) {
226 1.54.2.11 nathanw case CLOCK_REALTIME:
227 1.54.2.11 nathanw TIMESPEC_TO_TIMEVAL(&atv, &ats);
228 1.54.2.11 nathanw if ((error = settime(&atv)) != 0)
229 1.54.2.11 nathanw return (error);
230 1.54.2.11 nathanw break;
231 1.54.2.11 nathanw case CLOCK_MONOTONIC:
232 1.54.2.11 nathanw return (EINVAL); /* read-only clock */
233 1.54.2.11 nathanw default:
234 1.54.2.3 nathanw return (EINVAL);
235 1.54.2.11 nathanw }
236 1.22 jtc
237 1.22 jtc return 0;
238 1.22 jtc }
239 1.22 jtc
240 1.22 jtc int
241 1.54.2.5 nathanw sys_clock_getres(struct lwp *l, void *v, register_t *retval)
242 1.22 jtc {
243 1.45 augustss struct sys_clock_getres_args /* {
244 1.22 jtc syscallarg(clockid_t) clock_id;
245 1.23 cgd syscallarg(struct timespec *) tp;
246 1.23 cgd } */ *uap = v;
247 1.22 jtc clockid_t clock_id;
248 1.22 jtc struct timespec ts;
249 1.22 jtc int error = 0;
250 1.22 jtc
251 1.22 jtc clock_id = SCARG(uap, clock_id);
252 1.54.2.11 nathanw switch (clock_id) {
253 1.54.2.11 nathanw case CLOCK_REALTIME:
254 1.54.2.11 nathanw case CLOCK_MONOTONIC:
255 1.22 jtc ts.tv_sec = 0;
256 1.22 jtc ts.tv_nsec = 1000000000 / hz;
257 1.54.2.11 nathanw break;
258 1.54.2.11 nathanw default:
259 1.54.2.11 nathanw return (EINVAL);
260 1.54.2.11 nathanw }
261 1.22 jtc
262 1.54.2.11 nathanw if (SCARG(uap, tp))
263 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
264 1.22 jtc
265 1.22 jtc return error;
266 1.22 jtc }
267 1.22 jtc
268 1.27 jtc /* ARGSUSED */
269 1.27 jtc int
270 1.54.2.5 nathanw sys_nanosleep(struct lwp *l, void *v, register_t *retval)
271 1.27 jtc {
272 1.27 jtc static int nanowait;
273 1.45 augustss struct sys_nanosleep_args/* {
274 1.27 jtc syscallarg(struct timespec *) rqtp;
275 1.27 jtc syscallarg(struct timespec *) rmtp;
276 1.27 jtc } */ *uap = v;
277 1.27 jtc struct timespec rqt;
278 1.27 jtc struct timespec rmt;
279 1.27 jtc struct timeval atv, utv;
280 1.27 jtc int error, s, timo;
281 1.27 jtc
282 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
283 1.27 jtc sizeof(struct timespec));
284 1.27 jtc if (error)
285 1.27 jtc return (error);
286 1.27 jtc
287 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
288 1.54.2.4 nathanw if (itimerfix(&atv) || atv.tv_sec > 1000000000)
289 1.27 jtc return (EINVAL);
290 1.27 jtc
291 1.27 jtc s = splclock();
292 1.27 jtc timeradd(&atv,&time,&atv);
293 1.27 jtc timo = hzto(&atv);
294 1.27 jtc /*
295 1.27 jtc * Avoid inadvertantly sleeping forever
296 1.27 jtc */
297 1.27 jtc if (timo == 0)
298 1.27 jtc timo = 1;
299 1.27 jtc splx(s);
300 1.27 jtc
301 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
302 1.27 jtc if (error == ERESTART)
303 1.27 jtc error = EINTR;
304 1.27 jtc if (error == EWOULDBLOCK)
305 1.27 jtc error = 0;
306 1.27 jtc
307 1.27 jtc if (SCARG(uap, rmtp)) {
308 1.28 jtc int error;
309 1.28 jtc
310 1.27 jtc s = splclock();
311 1.27 jtc utv = time;
312 1.27 jtc splx(s);
313 1.27 jtc
314 1.27 jtc timersub(&atv, &utv, &utv);
315 1.27 jtc if (utv.tv_sec < 0)
316 1.27 jtc timerclear(&utv);
317 1.27 jtc
318 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
319 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
320 1.28 jtc sizeof(rmt));
321 1.28 jtc if (error)
322 1.28 jtc return (error);
323 1.27 jtc }
324 1.27 jtc
325 1.27 jtc return error;
326 1.27 jtc }
327 1.22 jtc
328 1.1 cgd /* ARGSUSED */
329 1.3 andrew int
330 1.54.2.5 nathanw sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
331 1.15 thorpej {
332 1.45 augustss struct sys_gettimeofday_args /* {
333 1.11 cgd syscallarg(struct timeval *) tp;
334 1.11 cgd syscallarg(struct timezone *) tzp;
335 1.15 thorpej } */ *uap = v;
336 1.1 cgd struct timeval atv;
337 1.1 cgd int error = 0;
338 1.25 perry struct timezone tzfake;
339 1.1 cgd
340 1.11 cgd if (SCARG(uap, tp)) {
341 1.1 cgd microtime(&atv);
342 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
343 1.17 christos if (error)
344 1.1 cgd return (error);
345 1.1 cgd }
346 1.25 perry if (SCARG(uap, tzp)) {
347 1.25 perry /*
348 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
349 1.25 perry * fake up a timezone struct and return it if demanded.
350 1.25 perry */
351 1.25 perry tzfake.tz_minuteswest = 0;
352 1.25 perry tzfake.tz_dsttime = 0;
353 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
354 1.25 perry }
355 1.1 cgd return (error);
356 1.1 cgd }
357 1.1 cgd
358 1.1 cgd /* ARGSUSED */
359 1.3 andrew int
360 1.54.2.5 nathanw sys_settimeofday(struct lwp *l, void *v, register_t *retval)
361 1.15 thorpej {
362 1.16 mycroft struct sys_settimeofday_args /* {
363 1.24 cgd syscallarg(const struct timeval *) tv;
364 1.24 cgd syscallarg(const struct timezone *) tzp;
365 1.15 thorpej } */ *uap = v;
366 1.54.2.1 nathanw struct proc *p = l->l_proc;
367 1.54.2.6 nathanw int error;
368 1.54.2.6 nathanw
369 1.54.2.6 nathanw if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 1.54.2.6 nathanw return (error);
371 1.54.2.6 nathanw
372 1.54.2.6 nathanw return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
373 1.54.2.6 nathanw }
374 1.54.2.6 nathanw
375 1.54.2.6 nathanw int
376 1.54.2.6 nathanw settimeofday1(utv, utzp, p)
377 1.54.2.6 nathanw const struct timeval *utv;
378 1.54.2.6 nathanw const struct timezone *utzp;
379 1.54.2.6 nathanw struct proc *p;
380 1.54.2.6 nathanw {
381 1.22 jtc struct timeval atv;
382 1.1 cgd struct timezone atz;
383 1.54.2.3 nathanw struct timeval *tv = NULL;
384 1.54.2.3 nathanw struct timezone *tzp = NULL;
385 1.22 jtc int error;
386 1.1 cgd
387 1.8 cgd /* Verify all parameters before changing time. */
388 1.54.2.6 nathanw if (utv) {
389 1.54.2.6 nathanw if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
390 1.54.2.3 nathanw return (error);
391 1.54.2.3 nathanw tv = &atv;
392 1.54.2.3 nathanw }
393 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
394 1.54.2.6 nathanw if (utzp) {
395 1.54.2.6 nathanw if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
396 1.54.2.3 nathanw return (error);
397 1.54.2.3 nathanw tzp = &atz;
398 1.54.2.3 nathanw }
399 1.54.2.3 nathanw
400 1.54.2.3 nathanw if (tv)
401 1.54.2.3 nathanw if ((error = settime(tv)) != 0)
402 1.29 tls return (error);
403 1.25 perry /*
404 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
405 1.25 perry * obsolete program would try to set it, so we log a warning.
406 1.25 perry */
407 1.54.2.3 nathanw if (tzp)
408 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
409 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
410 1.8 cgd return (0);
411 1.1 cgd }
412 1.1 cgd
413 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
414 1.1 cgd long timedelta; /* unapplied time correction, us. */
415 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
416 1.1 cgd
417 1.1 cgd /* ARGSUSED */
418 1.3 andrew int
419 1.54.2.5 nathanw sys_adjtime(struct lwp *l, void *v, register_t *retval)
420 1.15 thorpej {
421 1.45 augustss struct sys_adjtime_args /* {
422 1.24 cgd syscallarg(const struct timeval *) delta;
423 1.11 cgd syscallarg(struct timeval *) olddelta;
424 1.15 thorpej } */ *uap = v;
425 1.54.2.1 nathanw struct proc *p = l->l_proc;
426 1.54.2.3 nathanw int error;
427 1.1 cgd
428 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
429 1.1 cgd return (error);
430 1.17 christos
431 1.54.2.6 nathanw return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
432 1.54.2.3 nathanw }
433 1.54.2.3 nathanw
434 1.54.2.3 nathanw int
435 1.54.2.6 nathanw adjtime1(delta, olddelta, p)
436 1.54.2.6 nathanw const struct timeval *delta;
437 1.54.2.6 nathanw struct timeval *olddelta;
438 1.54.2.6 nathanw struct proc *p;
439 1.54.2.3 nathanw {
440 1.54.2.6 nathanw struct timeval atv;
441 1.54.2.6 nathanw struct timeval *oatv = NULL;
442 1.54.2.3 nathanw long ndelta, ntickdelta, odelta;
443 1.54.2.6 nathanw int error;
444 1.54.2.3 nathanw int s;
445 1.8 cgd
446 1.54.2.6 nathanw error = copyin(delta, &atv, sizeof(struct timeval));
447 1.54.2.6 nathanw if (error)
448 1.54.2.6 nathanw return (error);
449 1.54.2.6 nathanw
450 1.54.2.6 nathanw if (olddelta != NULL) {
451 1.54.2.6 nathanw if (uvm_useracc((caddr_t)olddelta,
452 1.54.2.6 nathanw sizeof(struct timeval), B_WRITE) == FALSE)
453 1.54.2.6 nathanw return (EFAULT);
454 1.54.2.6 nathanw oatv = olddelta;
455 1.54.2.6 nathanw }
456 1.54.2.6 nathanw
457 1.8 cgd /*
458 1.8 cgd * Compute the total correction and the rate at which to apply it.
459 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
460 1.8 cgd * delta, so that after some number of incremental changes in
461 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
462 1.8 cgd * overshoot and start taking us away from the desired final time.
463 1.8 cgd */
464 1.54.2.6 nathanw ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
465 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
466 1.8 cgd ntickdelta = 10 * tickadj;
467 1.8 cgd else
468 1.8 cgd ntickdelta = tickadj;
469 1.8 cgd if (ndelta % ntickdelta)
470 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
471 1.8 cgd
472 1.8 cgd /*
473 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
474 1.8 cgd * if we want time to run slower; then hardclock can simply compute
475 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
476 1.8 cgd */
477 1.8 cgd if (ndelta < 0)
478 1.8 cgd ntickdelta = -ntickdelta;
479 1.1 cgd s = splclock();
480 1.8 cgd odelta = timedelta;
481 1.1 cgd timedelta = ndelta;
482 1.8 cgd tickdelta = ntickdelta;
483 1.1 cgd splx(s);
484 1.1 cgd
485 1.54.2.3 nathanw if (olddelta) {
486 1.54.2.6 nathanw atv.tv_sec = odelta / 1000000;
487 1.54.2.6 nathanw atv.tv_usec = odelta % 1000000;
488 1.54.2.6 nathanw (void) copyout(&atv, olddelta, sizeof(struct timeval));
489 1.8 cgd }
490 1.1 cgd return (0);
491 1.1 cgd }
492 1.1 cgd
493 1.1 cgd /*
494 1.54.2.5 nathanw * Interval timer support. Both the BSD getitimer() family and the POSIX
495 1.54.2.5 nathanw * timer_*() family of routines are supported.
496 1.54.2.5 nathanw *
497 1.54.2.5 nathanw * All timers are kept in an array pointed to by p_timers, which is
498 1.54.2.5 nathanw * allocated on demand - many processes don't use timers at all. The
499 1.54.2.5 nathanw * first three elements in this array are reserved for the BSD timers:
500 1.54.2.5 nathanw * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
501 1.54.2.5 nathanw * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
502 1.54.2.5 nathanw * syscall.
503 1.1 cgd *
504 1.54.2.5 nathanw * Realtime timers are kept in the ptimer structure as an absolute
505 1.54.2.5 nathanw * time; virtual time timers are kept as deltas. Virtual time timers
506 1.54.2.5 nathanw * are processed in the hardclock() routine of kern_clock.c. The real
507 1.54.2.5 nathanw * time timer is processed by a callout routine, called from the
508 1.54.2.5 nathanw * softclock() routine. Since a callout may be delayed in real time
509 1.54.2.5 nathanw * due to interrupt processing in the system, it is possible for the
510 1.54.2.5 nathanw * real time timeout routine (realtimeexpire, given below), to be
511 1.54.2.5 nathanw * delayed in real time past when it is supposed to occur. It does
512 1.54.2.5 nathanw * not suffice, therefore, to reload the real timer .it_value from the
513 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
514 1.54.2.5 nathanw * absolute time the timer should go off.
515 1.54.2.5 nathanw */
516 1.54.2.5 nathanw
517 1.54.2.5 nathanw /* Allocate a POSIX realtime timer. */
518 1.54.2.5 nathanw int
519 1.54.2.5 nathanw sys_timer_create(struct lwp *l, void *v, register_t *retval)
520 1.54.2.5 nathanw {
521 1.54.2.5 nathanw struct sys_timer_create_args /* {
522 1.54.2.5 nathanw syscallarg(clockid_t) clock_id;
523 1.54.2.5 nathanw syscallarg(struct sigevent *) evp;
524 1.54.2.5 nathanw syscallarg(timer_t *) timerid;
525 1.54.2.5 nathanw } */ *uap = v;
526 1.54.2.5 nathanw struct proc *p = l->l_proc;
527 1.54.2.5 nathanw clockid_t id;
528 1.54.2.5 nathanw struct sigevent *evp;
529 1.54.2.5 nathanw struct ptimer *pt;
530 1.54.2.5 nathanw int timerid, error;
531 1.54.2.5 nathanw
532 1.54.2.5 nathanw id = SCARG(uap, clock_id);
533 1.54.2.5 nathanw if (id != CLOCK_REALTIME)
534 1.54.2.5 nathanw return (EINVAL);
535 1.54.2.5 nathanw
536 1.54.2.5 nathanw if (p->p_timers == NULL)
537 1.54.2.5 nathanw timers_alloc(p);
538 1.54.2.5 nathanw
539 1.54.2.5 nathanw for (timerid = 3; timerid < TIMER_MAX; timerid++)
540 1.54.2.5 nathanw if (p->p_timers[timerid] == NULL)
541 1.54.2.5 nathanw break;
542 1.54.2.5 nathanw
543 1.54.2.5 nathanw if (timerid == TIMER_MAX)
544 1.54.2.5 nathanw return EAGAIN;
545 1.54.2.5 nathanw
546 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
547 1.54.2.5 nathanw evp = SCARG(uap, evp);
548 1.54.2.5 nathanw if (evp) {
549 1.54.2.5 nathanw if (((error =
550 1.54.2.5 nathanw copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
551 1.54.2.5 nathanw ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
552 1.54.2.7 nathanw (pt->pt_ev.sigev_notify > SIGEV_SA))) {
553 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
554 1.54.2.5 nathanw return (error ? error : EINVAL);
555 1.54.2.5 nathanw }
556 1.54.2.5 nathanw } else {
557 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
558 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGALRM;
559 1.54.2.5 nathanw pt->pt_ev.sigev_value.sival_int = timerid;
560 1.54.2.5 nathanw }
561 1.54.2.10 nathanw pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
562 1.54.2.10 nathanw pt->pt_info.si_errno = 0;
563 1.54.2.10 nathanw pt->pt_info.si_code = 0;
564 1.54.2.10 nathanw pt->pt_info.si_pid = p->p_pid;
565 1.54.2.10 nathanw pt->pt_info.si_uid = p->p_cred->p_ruid;
566 1.54.2.10 nathanw pt->pt_info.si_addr = NULL;
567 1.54.2.10 nathanw pt->pt_info.si_status = 0;
568 1.54.2.10 nathanw pt->pt_info.si_value = pt->pt_ev.sigev_value;
569 1.54.2.10 nathanw
570 1.54.2.5 nathanw callout_init(&pt->pt_ch);
571 1.54.2.5 nathanw pt->pt_type = CLOCK_REALTIME;
572 1.54.2.5 nathanw pt->pt_proc = p;
573 1.54.2.5 nathanw pt->pt_overruns = 0;
574 1.54.2.5 nathanw
575 1.54.2.5 nathanw p->p_timers[timerid] = pt;
576 1.54.2.5 nathanw
577 1.54.2.5 nathanw return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
578 1.54.2.5 nathanw }
579 1.54.2.5 nathanw
580 1.54.2.5 nathanw
581 1.54.2.5 nathanw /* Delete a POSIX realtime timer */
582 1.54.2.5 nathanw int
583 1.54.2.5 nathanw sys_timer_delete(struct lwp *l, void *v, register_t *retval)
584 1.54.2.5 nathanw {
585 1.54.2.5 nathanw struct sys_timer_delete_args /* {
586 1.54.2.5 nathanw syscallarg(timer_t) timerid;
587 1.54.2.5 nathanw } */ *uap = v;
588 1.54.2.5 nathanw struct proc *p = l->l_proc;
589 1.54.2.5 nathanw int timerid;
590 1.54.2.5 nathanw struct ptimer *pt;
591 1.54.2.5 nathanw
592 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
593 1.54.2.5 nathanw
594 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
595 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
596 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
597 1.54.2.5 nathanw return (EINVAL);
598 1.54.2.5 nathanw
599 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
600 1.54.2.5 nathanw p->p_timers[timerid] = NULL;
601 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
602 1.54.2.5 nathanw
603 1.54.2.5 nathanw return (0);
604 1.54.2.5 nathanw }
605 1.54.2.5 nathanw
606 1.54.2.5 nathanw /* Set and arm a POSIX realtime timer */
607 1.54.2.5 nathanw int
608 1.54.2.5 nathanw sys_timer_settime(struct lwp *l, void *v, register_t *retval)
609 1.54.2.5 nathanw {
610 1.54.2.5 nathanw struct sys_timer_settime_args /* {
611 1.54.2.5 nathanw syscallarg(timer_t) timerid;
612 1.54.2.5 nathanw syscallarg(int) flags;
613 1.54.2.5 nathanw syscallarg(const struct itimerspec *) value;
614 1.54.2.5 nathanw syscallarg(struct itimerspec *) ovalue;
615 1.54.2.5 nathanw } */ *uap = v;
616 1.54.2.5 nathanw struct proc *p = l->l_proc;
617 1.54.2.5 nathanw int error, s, timerid;
618 1.54.2.5 nathanw struct itimerval val, oval;
619 1.54.2.5 nathanw struct itimerspec value, ovalue;
620 1.54.2.5 nathanw struct ptimer *pt;
621 1.54.2.5 nathanw
622 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
623 1.54.2.5 nathanw
624 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
625 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
626 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
627 1.54.2.5 nathanw return (EINVAL);
628 1.54.2.5 nathanw
629 1.54.2.5 nathanw if ((error = copyin(SCARG(uap, value), &value,
630 1.54.2.5 nathanw sizeof(struct itimerspec))) != 0)
631 1.54.2.5 nathanw return (error);
632 1.54.2.5 nathanw
633 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
634 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
635 1.54.2.5 nathanw if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
636 1.54.2.5 nathanw return (EINVAL);
637 1.54.2.5 nathanw
638 1.54.2.5 nathanw oval = pt->pt_time;
639 1.54.2.5 nathanw pt->pt_time = val;
640 1.54.2.5 nathanw
641 1.54.2.5 nathanw s = splclock();
642 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
643 1.54.2.5 nathanw if (timerisset(&pt->pt_time.it_value)) {
644 1.54.2.5 nathanw if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
645 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value, &time,
646 1.54.2.5 nathanw &pt->pt_time.it_value);
647 1.54.2.5 nathanw /*
648 1.54.2.5 nathanw * Don't need to check hzto() return value, here.
649 1.54.2.5 nathanw * callout_reset() does it for us.
650 1.54.2.5 nathanw */
651 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
652 1.54.2.5 nathanw realtimerexpire, pt);
653 1.54.2.5 nathanw }
654 1.54.2.5 nathanw splx(s);
655 1.54.2.5 nathanw
656 1.54.2.5 nathanw if (SCARG(uap, ovalue)) {
657 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
658 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
659 1.54.2.5 nathanw return copyout(&ovalue, SCARG(uap, ovalue),
660 1.54.2.5 nathanw sizeof(struct itimerspec));
661 1.54.2.5 nathanw }
662 1.54.2.5 nathanw
663 1.54.2.5 nathanw return (0);
664 1.54.2.5 nathanw }
665 1.54.2.5 nathanw
666 1.54.2.5 nathanw /* Return the time remaining until a POSIX timer fires. */
667 1.54.2.5 nathanw int
668 1.54.2.5 nathanw sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
669 1.54.2.5 nathanw {
670 1.54.2.5 nathanw struct sys_timer_gettime_args /* {
671 1.54.2.5 nathanw syscallarg(timer_t) timerid;
672 1.54.2.5 nathanw syscallarg(struct itimerspec *) value;
673 1.54.2.5 nathanw } */ *uap = v;
674 1.54.2.5 nathanw struct itimerval aitv;
675 1.54.2.5 nathanw struct itimerspec its;
676 1.54.2.5 nathanw struct proc *p = l->l_proc;
677 1.54.2.5 nathanw int timerid;
678 1.54.2.5 nathanw struct ptimer *pt;
679 1.54.2.5 nathanw
680 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
681 1.54.2.5 nathanw
682 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
683 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
684 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
685 1.54.2.5 nathanw return (EINVAL);
686 1.54.2.5 nathanw
687 1.54.2.5 nathanw aitv = pt->pt_time;
688 1.54.2.5 nathanw
689 1.54.2.5 nathanw /*
690 1.54.2.5 nathanw * Real-time timers are kept in absolute time, but this interface
691 1.54.2.5 nathanw * is supposed to return a relative time.
692 1.54.2.5 nathanw */
693 1.54.2.5 nathanw if (timerisset(&aitv.it_value)) {
694 1.54.2.5 nathanw if (timercmp(&aitv.it_value, &time, <))
695 1.54.2.5 nathanw timerclear(&aitv.it_value);
696 1.54.2.5 nathanw else
697 1.54.2.5 nathanw timersub(&aitv.it_value, &time, &aitv.it_value);
698 1.54.2.5 nathanw }
699 1.54.2.5 nathanw
700 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
701 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
702 1.54.2.5 nathanw
703 1.54.2.5 nathanw return copyout(&its, SCARG(uap, value), sizeof(its));
704 1.54.2.5 nathanw }
705 1.54.2.5 nathanw
706 1.54.2.5 nathanw /*
707 1.54.2.5 nathanw * Return the count of the number of times a periodic timer expired
708 1.54.2.5 nathanw * while a notification was already pending. The counter is reset when
709 1.54.2.5 nathanw * a timer expires and a notification can be posted.
710 1.1 cgd */
711 1.54.2.5 nathanw int
712 1.54.2.5 nathanw sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
713 1.54.2.5 nathanw {
714 1.54.2.5 nathanw struct sys_timer_getoverrun_args /* {
715 1.54.2.5 nathanw syscallarg(timer_t) timerid;
716 1.54.2.5 nathanw } */ *uap = v;
717 1.54.2.5 nathanw struct proc *p = l->l_proc;
718 1.54.2.5 nathanw int timerid;
719 1.54.2.5 nathanw struct ptimer *pt;
720 1.54.2.5 nathanw
721 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
722 1.54.2.5 nathanw
723 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
724 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
725 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
726 1.54.2.5 nathanw return (EINVAL);
727 1.54.2.5 nathanw
728 1.54.2.5 nathanw *retval = pt->pt_overruns;
729 1.54.2.5 nathanw
730 1.54.2.5 nathanw return (0);
731 1.54.2.5 nathanw }
732 1.54.2.5 nathanw
733 1.54.2.5 nathanw /* Glue function that triggers an upcall; called from userret(). */
734 1.54.2.5 nathanw static void
735 1.54.2.5 nathanw realtimerupcall(struct lwp *l, void *arg)
736 1.54.2.5 nathanw {
737 1.54.2.5 nathanw struct ptimer *pt;
738 1.54.2.5 nathanw
739 1.54.2.13 nathanw /* The LWP that is running doesn't change, so we don't need
740 1.54.2.13 nathanw * to touch sa_vp.
741 1.54.2.13 nathanw */
742 1.54.2.5 nathanw pt = (struct ptimer *)arg;
743 1.54.2.10 nathanw sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(siginfo_t),
744 1.54.2.10 nathanw &pt->pt_info);
745 1.54.2.5 nathanw
746 1.54.2.5 nathanw /* The upcall should only be generated once. */
747 1.54.2.5 nathanw l->l_proc->p_userret = NULL;
748 1.54.2.5 nathanw }
749 1.54.2.5 nathanw
750 1.54.2.5 nathanw
751 1.54.2.5 nathanw /*
752 1.54.2.5 nathanw * Real interval timer expired:
753 1.54.2.5 nathanw * send process whose timer expired an alarm signal.
754 1.54.2.5 nathanw * If time is not set up to reload, then just return.
755 1.54.2.5 nathanw * Else compute next time timer should go off which is > current time.
756 1.54.2.5 nathanw * This is where delay in processing this timeout causes multiple
757 1.54.2.5 nathanw * SIGALRM calls to be compressed into one.
758 1.54.2.5 nathanw */
759 1.54.2.5 nathanw void
760 1.54.2.5 nathanw realtimerexpire(void *arg)
761 1.54.2.5 nathanw {
762 1.54.2.5 nathanw struct ptimer *pt;
763 1.54.2.5 nathanw struct proc *p;
764 1.54.2.5 nathanw int s;
765 1.54.2.5 nathanw
766 1.54.2.5 nathanw pt = (struct ptimer *)arg;
767 1.54.2.5 nathanw p = pt->pt_proc;
768 1.54.2.5 nathanw if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
769 1.54.2.5 nathanw /*
770 1.54.2.5 nathanw * No RT signal infrastructure exists at this time;
771 1.54.2.5 nathanw * just post the signal number and throw away the
772 1.54.2.5 nathanw * value.
773 1.54.2.5 nathanw */
774 1.54.2.5 nathanw if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
775 1.54.2.5 nathanw pt->pt_overruns++;
776 1.54.2.5 nathanw else {
777 1.54.2.5 nathanw pt->pt_overruns = 0;
778 1.54.2.5 nathanw psignal(p, pt->pt_ev.sigev_signo);
779 1.54.2.5 nathanw }
780 1.54.2.7 nathanw } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
781 1.54.2.8 nathanw int notified = 0;
782 1.54.2.5 nathanw /* Cause the process to generate an upcall when it returns. */
783 1.54.2.8 nathanw
784 1.54.2.8 nathanw if (p->p_nrlwps == 0) {
785 1.54.2.8 nathanw struct sadata_upcall *sd;
786 1.54.2.13 nathanw struct sadata *sa = p->p_sa;
787 1.54.2.8 nathanw struct lwp *l2;
788 1.54.2.9 nathanw int s, ret;
789 1.54.2.8 nathanw
790 1.54.2.9 nathanw SCHED_LOCK(s);
791 1.54.2.8 nathanw l2 = sa_getcachelwp(p);
792 1.54.2.8 nathanw if (l2 != NULL) {
793 1.54.2.8 nathanw sd = sadata_upcall_alloc(0);
794 1.54.2.8 nathanw cpu_setfunc(l2, sa_switchcall, NULL);
795 1.54.2.8 nathanw ret = sa_upcall0(l2, SA_UPCALL_SIGEV,
796 1.54.2.10 nathanw NULL, NULL, sizeof(siginfo_t),
797 1.54.2.10 nathanw &pt->pt_info, sd);
798 1.54.2.8 nathanw if (ret == 0) {
799 1.54.2.8 nathanw l2->l_priority = l2->l_usrpri;
800 1.54.2.8 nathanw PRELE(l2);
801 1.54.2.13 nathanw KDASSERT(sa->sa_vp == NULL);
802 1.54.2.13 nathanw sa->sa_vp = l2;
803 1.54.2.8 nathanw setrunnable(l2);
804 1.54.2.8 nathanw notified = 1;
805 1.54.2.8 nathanw } else
806 1.54.2.8 nathanw sa_putcachelwp(p, l2);
807 1.54.2.8 nathanw }
808 1.54.2.9 nathanw SCHED_UNLOCK(s);
809 1.54.2.8 nathanw } else if (p->p_userret == NULL) {
810 1.54.2.5 nathanw pt->pt_overruns = 0;
811 1.54.2.5 nathanw p->p_userret = realtimerupcall;
812 1.54.2.5 nathanw p->p_userret_arg = pt;
813 1.54.2.8 nathanw notified = 1;
814 1.54.2.8 nathanw }
815 1.54.2.8 nathanw if (notified == 0)
816 1.54.2.5 nathanw pt->pt_overruns++;
817 1.54.2.5 nathanw }
818 1.54.2.5 nathanw if (!timerisset(&pt->pt_time.it_interval)) {
819 1.54.2.5 nathanw timerclear(&pt->pt_time.it_value);
820 1.54.2.5 nathanw return;
821 1.54.2.5 nathanw }
822 1.54.2.5 nathanw for (;;) {
823 1.54.2.5 nathanw s = splclock();
824 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value,
825 1.54.2.5 nathanw &pt->pt_time.it_interval, &pt->pt_time.it_value);
826 1.54.2.5 nathanw if (timercmp(&pt->pt_time.it_value, &time, >)) {
827 1.54.2.5 nathanw /*
828 1.54.2.5 nathanw * Don't need to check hzto() return value, here.
829 1.54.2.5 nathanw * callout_reset() does it for us.
830 1.54.2.5 nathanw */
831 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
832 1.54.2.5 nathanw realtimerexpire, pt);
833 1.54.2.5 nathanw splx(s);
834 1.54.2.5 nathanw return;
835 1.54.2.5 nathanw }
836 1.54.2.5 nathanw splx(s);
837 1.54.2.5 nathanw pt->pt_overruns++;
838 1.54.2.5 nathanw }
839 1.54.2.5 nathanw }
840 1.54.2.5 nathanw
841 1.54.2.5 nathanw /* BSD routine to get the value of an interval timer. */
842 1.1 cgd /* ARGSUSED */
843 1.3 andrew int
844 1.54.2.5 nathanw sys_getitimer(struct lwp *l, void *v, register_t *retval)
845 1.15 thorpej {
846 1.45 augustss struct sys_getitimer_args /* {
847 1.30 mycroft syscallarg(int) which;
848 1.11 cgd syscallarg(struct itimerval *) itv;
849 1.15 thorpej } */ *uap = v;
850 1.54.2.1 nathanw struct proc *p = l->l_proc;
851 1.1 cgd struct itimerval aitv;
852 1.54.2.5 nathanw int s, which;
853 1.54.2.5 nathanw
854 1.54.2.5 nathanw which = SCARG(uap, which);
855 1.1 cgd
856 1.30 mycroft if ((u_int)which > ITIMER_PROF)
857 1.1 cgd return (EINVAL);
858 1.54.2.5 nathanw
859 1.54.2.5 nathanw if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
860 1.54.2.5 nathanw timerclear(&aitv.it_value);
861 1.54.2.5 nathanw timerclear(&aitv.it_interval);
862 1.54.2.5 nathanw } else {
863 1.54.2.5 nathanw s = splclock();
864 1.54.2.5 nathanw if (which == ITIMER_REAL) {
865 1.54.2.5 nathanw /*
866 1.54.2.5 nathanw * Convert from absolute to relative time in
867 1.54.2.5 nathanw * .it_value part of real time timer. If time
868 1.54.2.5 nathanw * for real time timer has passed return 0,
869 1.54.2.5 nathanw * else return difference between current time
870 1.54.2.5 nathanw * and time for the timer to go off.
871 1.54.2.5 nathanw */
872 1.54.2.5 nathanw aitv = p->p_timers[ITIMER_REAL]->pt_time;
873 1.54.2.5 nathanw if (timerisset(&aitv.it_value)) {
874 1.54.2.5 nathanw if (timercmp(&aitv.it_value, &time, <))
875 1.54.2.5 nathanw timerclear(&aitv.it_value);
876 1.54.2.5 nathanw else
877 1.54.2.5 nathanw timersub(&aitv.it_value, &time, &aitv.it_value);
878 1.54.2.5 nathanw }
879 1.54.2.5 nathanw } else
880 1.54.2.5 nathanw aitv = p->p_timers[which]->pt_time;
881 1.54.2.5 nathanw splx(s);
882 1.54.2.5 nathanw }
883 1.54.2.5 nathanw
884 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
885 1.54.2.5 nathanw
886 1.1 cgd }
887 1.1 cgd
888 1.54.2.5 nathanw /* BSD routine to set/arm an interval timer. */
889 1.1 cgd /* ARGSUSED */
890 1.3 andrew int
891 1.54.2.5 nathanw sys_setitimer(struct lwp *l, void *v, register_t *retval)
892 1.15 thorpej {
893 1.45 augustss struct sys_setitimer_args /* {
894 1.30 mycroft syscallarg(int) which;
895 1.24 cgd syscallarg(const struct itimerval *) itv;
896 1.11 cgd syscallarg(struct itimerval *) oitv;
897 1.15 thorpej } */ *uap = v;
898 1.54.2.1 nathanw struct proc *p = l->l_proc;
899 1.30 mycroft int which = SCARG(uap, which);
900 1.21 cgd struct sys_getitimer_args getargs;
901 1.1 cgd struct itimerval aitv;
902 1.45 augustss const struct itimerval *itvp;
903 1.54.2.5 nathanw struct ptimer *pt;
904 1.1 cgd int s, error;
905 1.1 cgd
906 1.30 mycroft if ((u_int)which > ITIMER_PROF)
907 1.1 cgd return (EINVAL);
908 1.11 cgd itvp = SCARG(uap, itv);
909 1.54.2.3 nathanw if (itvp &&
910 1.54.2.3 nathanw (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
911 1.1 cgd return (error);
912 1.21 cgd if (SCARG(uap, oitv) != NULL) {
913 1.30 mycroft SCARG(&getargs, which) = which;
914 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
915 1.54.2.1 nathanw if ((error = sys_getitimer(l, &getargs, retval)) != 0)
916 1.21 cgd return (error);
917 1.21 cgd }
918 1.1 cgd if (itvp == 0)
919 1.1 cgd return (0);
920 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
921 1.1 cgd return (EINVAL);
922 1.54.2.5 nathanw
923 1.54.2.5 nathanw /*
924 1.54.2.5 nathanw * Don't bother allocating data structures if the process just
925 1.54.2.5 nathanw * wants to clear the timer.
926 1.54.2.5 nathanw */
927 1.54.2.5 nathanw if (!timerisset(&aitv.it_value) &&
928 1.54.2.5 nathanw ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
929 1.54.2.5 nathanw return (0);
930 1.54.2.5 nathanw
931 1.54.2.5 nathanw if (p->p_timers == NULL)
932 1.54.2.5 nathanw timers_alloc(p);
933 1.54.2.5 nathanw if (p->p_timers[which] == NULL) {
934 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
935 1.54.2.5 nathanw callout_init(&pt->pt_ch);
936 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
937 1.54.2.5 nathanw pt->pt_overruns = 0;
938 1.54.2.5 nathanw pt->pt_proc = p;
939 1.54.2.5 nathanw pt->pt_type = which;
940 1.54.2.5 nathanw switch (which) {
941 1.54.2.5 nathanw case ITIMER_REAL:
942 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGALRM;
943 1.54.2.5 nathanw break;
944 1.54.2.5 nathanw case ITIMER_VIRTUAL:
945 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGVTALRM;
946 1.54.2.5 nathanw break;
947 1.54.2.5 nathanw case ITIMER_PROF:
948 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGPROF;
949 1.54.2.5 nathanw break;
950 1.54.2.5 nathanw }
951 1.54.2.5 nathanw } else
952 1.54.2.5 nathanw pt = p->p_timers[which];
953 1.54.2.5 nathanw
954 1.54.2.5 nathanw pt->pt_time = aitv;
955 1.54.2.5 nathanw p->p_timers[which] = pt;
956 1.30 mycroft if (which == ITIMER_REAL) {
957 1.54.2.5 nathanw s = splclock();
958 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
959 1.54.2.5 nathanw if (timerisset(&pt->pt_time.it_value)) {
960 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value, &time,
961 1.54.2.5 nathanw &pt->pt_time.it_value);
962 1.52 thorpej /*
963 1.52 thorpej * Don't need to check hzto() return value, here.
964 1.52 thorpej * callout_reset() does it for us.
965 1.52 thorpej */
966 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
967 1.54.2.5 nathanw realtimerexpire, pt);
968 1.1 cgd }
969 1.54.2.5 nathanw splx(s);
970 1.54.2.5 nathanw }
971 1.54.2.5 nathanw
972 1.1 cgd return (0);
973 1.1 cgd }
974 1.1 cgd
975 1.54.2.5 nathanw /* Utility routines to manage the array of pointers to timers. */
976 1.3 andrew void
977 1.54.2.5 nathanw timers_alloc(struct proc *p)
978 1.6 cgd {
979 1.54.2.5 nathanw int i;
980 1.54.2.5 nathanw struct ptimer **pts;
981 1.1 cgd
982 1.54.2.5 nathanw pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
983 1.54.2.5 nathanw for (i = 0; i < TIMER_MAX; i++)
984 1.54.2.5 nathanw pts[i] = NULL;
985 1.54.2.5 nathanw p->p_timers = pts;
986 1.54.2.5 nathanw }
987 1.54.2.5 nathanw
988 1.54.2.5 nathanw void
989 1.54.2.5 nathanw timers_free(struct proc *p)
990 1.54.2.5 nathanw {
991 1.54.2.5 nathanw int i;
992 1.54.2.5 nathanw struct ptimer *pt, **pts;
993 1.54.2.5 nathanw
994 1.54.2.5 nathanw if (p->p_timers) {
995 1.54.2.5 nathanw pts = p->p_timers;
996 1.54.2.5 nathanw p->p_timers = NULL;
997 1.54.2.5 nathanw for (i = 0; i < TIMER_MAX; i++)
998 1.54.2.5 nathanw if ((pt = pts[i]) != NULL) {
999 1.54.2.5 nathanw if (pt->pt_type == CLOCK_REALTIME)
1000 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
1001 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
1002 1.54.2.5 nathanw }
1003 1.54.2.5 nathanw free(pts, M_SUBPROC);
1004 1.1 cgd }
1005 1.1 cgd }
1006 1.1 cgd
1007 1.1 cgd /*
1008 1.1 cgd * Check that a proposed value to load into the .it_value or
1009 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1010 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1011 1.1 cgd * than the resolution of the clock, round it up.)
1012 1.1 cgd */
1013 1.3 andrew int
1014 1.54.2.5 nathanw itimerfix(struct timeval *tv)
1015 1.1 cgd {
1016 1.1 cgd
1017 1.54.2.4 nathanw if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1018 1.1 cgd return (EINVAL);
1019 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1020 1.1 cgd tv->tv_usec = tick;
1021 1.1 cgd return (0);
1022 1.1 cgd }
1023 1.1 cgd
1024 1.1 cgd /*
1025 1.1 cgd * Decrement an interval timer by a specified number
1026 1.1 cgd * of microseconds, which must be less than a second,
1027 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1028 1.1 cgd * it. In this case, carry over (usec - old value) to
1029 1.8 cgd * reduce the value reloaded into the timer so that
1030 1.1 cgd * the timer does not drift. This routine assumes
1031 1.1 cgd * that it is called in a context where the timers
1032 1.1 cgd * on which it is operating cannot change in value.
1033 1.1 cgd */
1034 1.3 andrew int
1035 1.54.2.5 nathanw itimerdecr(struct itimerval *itp, int usec)
1036 1.1 cgd {
1037 1.1 cgd
1038 1.1 cgd if (itp->it_value.tv_usec < usec) {
1039 1.1 cgd if (itp->it_value.tv_sec == 0) {
1040 1.1 cgd /* expired, and already in next interval */
1041 1.1 cgd usec -= itp->it_value.tv_usec;
1042 1.1 cgd goto expire;
1043 1.1 cgd }
1044 1.1 cgd itp->it_value.tv_usec += 1000000;
1045 1.1 cgd itp->it_value.tv_sec--;
1046 1.1 cgd }
1047 1.1 cgd itp->it_value.tv_usec -= usec;
1048 1.1 cgd usec = 0;
1049 1.1 cgd if (timerisset(&itp->it_value))
1050 1.1 cgd return (1);
1051 1.1 cgd /* expired, exactly at end of interval */
1052 1.1 cgd expire:
1053 1.1 cgd if (timerisset(&itp->it_interval)) {
1054 1.1 cgd itp->it_value = itp->it_interval;
1055 1.1 cgd itp->it_value.tv_usec -= usec;
1056 1.1 cgd if (itp->it_value.tv_usec < 0) {
1057 1.1 cgd itp->it_value.tv_usec += 1000000;
1058 1.1 cgd itp->it_value.tv_sec--;
1059 1.1 cgd }
1060 1.1 cgd } else
1061 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1062 1.1 cgd return (0);
1063 1.42 cgd }
1064 1.42 cgd
1065 1.42 cgd /*
1066 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1067 1.42 cgd * for usage and rationale.
1068 1.42 cgd */
1069 1.42 cgd int
1070 1.54.2.5 nathanw ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1071 1.42 cgd {
1072 1.49 itojun struct timeval tv, delta;
1073 1.42 cgd int s, rv = 0;
1074 1.42 cgd
1075 1.42 cgd s = splclock();
1076 1.49 itojun tv = mono_time;
1077 1.49 itojun splx(s);
1078 1.49 itojun
1079 1.49 itojun timersub(&tv, lasttime, &delta);
1080 1.42 cgd
1081 1.42 cgd /*
1082 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1083 1.42 cgd * even if interval is huge.
1084 1.42 cgd */
1085 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1086 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1087 1.49 itojun *lasttime = tv;
1088 1.42 cgd rv = 1;
1089 1.42 cgd }
1090 1.50 itojun
1091 1.50 itojun return (rv);
1092 1.50 itojun }
1093 1.50 itojun
1094 1.50 itojun /*
1095 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1096 1.50 itojun */
1097 1.50 itojun int
1098 1.54.2.5 nathanw ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1099 1.50 itojun {
1100 1.50 itojun struct timeval tv, delta;
1101 1.50 itojun int s, rv;
1102 1.50 itojun
1103 1.50 itojun s = splclock();
1104 1.50 itojun tv = mono_time;
1105 1.50 itojun splx(s);
1106 1.50 itojun
1107 1.50 itojun timersub(&tv, lasttime, &delta);
1108 1.50 itojun
1109 1.50 itojun /*
1110 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1111 1.50 itojun * if more than one second have passed since the last update of
1112 1.50 itojun * lasttime, reset the counter.
1113 1.50 itojun *
1114 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1115 1.50 itojun * try to use *curpps for stat purposes as well.
1116 1.50 itojun */
1117 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1118 1.50 itojun delta.tv_sec >= 1) {
1119 1.50 itojun *lasttime = tv;
1120 1.50 itojun *curpps = 0;
1121 1.50 itojun rv = 1;
1122 1.53 itojun } else if (maxpps < 0)
1123 1.53 itojun rv = 1;
1124 1.53 itojun else if (*curpps < maxpps)
1125 1.50 itojun rv = 1;
1126 1.50 itojun else
1127 1.50 itojun rv = 0;
1128 1.50 itojun
1129 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1130 1.50 itojun /* be careful about wrap-around */
1131 1.50 itojun if (*curpps + 1 > *curpps)
1132 1.50 itojun *curpps = *curpps + 1;
1133 1.50 itojun #else
1134 1.50 itojun /*
1135 1.50 itojun * assume that there's not too many calls to this function.
1136 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1137 1.50 itojun * behavior, not the behavior of this function.
1138 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1139 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1140 1.50 itojun */
1141 1.50 itojun *curpps = *curpps + 1;
1142 1.50 itojun #endif
1143 1.42 cgd
1144 1.42 cgd return (rv);
1145 1.1 cgd }
1146