Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.54.2.16
      1  1.54.2.16   nathanw /*	$NetBSD: kern_time.c,v 1.54.2.16 2002/07/17 19:56:54 nathanw Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4       1.42       cgd  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19       1.42       cgd  *    must display the following acknowledgement:
     20       1.42       cgd  *	This product includes software developed by the NetBSD
     21       1.42       cgd  *	Foundation, Inc. and its contributors.
     22       1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.42       cgd  *    contributors may be used to endorse or promote products derived
     24       1.42       cgd  *    from this software without specific prior written permission.
     25       1.42       cgd  *
     26       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37       1.42       cgd  */
     38        1.9       cgd 
     39        1.1       cgd /*
     40        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42        1.1       cgd  *
     43        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44        1.1       cgd  * modification, are permitted provided that the following conditions
     45        1.1       cgd  * are met:
     46        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51        1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     52        1.1       cgd  *    must display the following acknowledgement:
     53        1.1       cgd  *	This product includes software developed by the University of
     54        1.1       cgd  *	California, Berkeley and its contributors.
     55        1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     56        1.1       cgd  *    may be used to endorse or promote products derived from this software
     57        1.1       cgd  *    without specific prior written permission.
     58        1.1       cgd  *
     59        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69        1.1       cgd  * SUCH DAMAGE.
     70        1.1       cgd  *
     71       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72        1.1       cgd  */
     73       1.31   thorpej 
     74   1.54.2.4   nathanw #include <sys/cdefs.h>
     75  1.54.2.16   nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.16 2002/07/17 19:56:54 nathanw Exp $");
     76   1.54.2.4   nathanw 
     77       1.31   thorpej #include "fs_nfs.h"
     78       1.54     bjh21 #include "opt_nfs.h"
     79       1.34   thorpej #include "opt_nfsserver.h"
     80        1.1       cgd 
     81        1.5   mycroft #include <sys/param.h>
     82        1.5   mycroft #include <sys/resourcevar.h>
     83        1.5   mycroft #include <sys/kernel.h>
     84        1.8       cgd #include <sys/systm.h>
     85   1.54.2.5   nathanw #include <sys/malloc.h>
     86        1.5   mycroft #include <sys/proc.h>
     87   1.54.2.5   nathanw #include <sys/sa.h>
     88   1.54.2.5   nathanw #include <sys/savar.h>
     89        1.8       cgd #include <sys/vnode.h>
     90       1.17  christos #include <sys/signalvar.h>
     91       1.25     perry #include <sys/syslog.h>
     92        1.1       cgd 
     93       1.11       cgd #include <sys/mount.h>
     94       1.11       cgd #include <sys/syscallargs.h>
     95       1.19  christos 
     96       1.37   thorpej #include <uvm/uvm_extern.h>
     97       1.37   thorpej 
     98       1.26   thorpej #if defined(NFS) || defined(NFSSERVER)
     99       1.20      fvdl #include <nfs/rpcv2.h>
    100       1.20      fvdl #include <nfs/nfsproto.h>
    101       1.19  christos #include <nfs/nfs_var.h>
    102       1.19  christos #endif
    103       1.17  christos 
    104        1.5   mycroft #include <machine/cpu.h>
    105       1.23       cgd 
    106   1.54.2.5   nathanw static void realtimerupcall(struct lwp *, void *);
    107   1.54.2.5   nathanw 
    108   1.54.2.5   nathanw 
    109   1.54.2.5   nathanw /* Time of day and interval timer support.
    110        1.1       cgd  *
    111        1.1       cgd  * These routines provide the kernel entry points to get and set
    112        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    113        1.1       cgd  * here provide support for adding and subtracting timeval structures
    114        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    115        1.1       cgd  * timers when they expire.
    116        1.1       cgd  */
    117        1.1       cgd 
    118       1.22       jtc /* This function is used by clock_settime and settimeofday */
    119       1.39      tron int
    120   1.54.2.5   nathanw settime(struct timeval *tv)
    121       1.22       jtc {
    122       1.22       jtc 	struct timeval delta;
    123       1.47   thorpej 	struct cpu_info *ci;
    124       1.22       jtc 	int s;
    125       1.22       jtc 
    126       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    127       1.22       jtc 	s = splclock();
    128       1.22       jtc 	timersub(tv, &time, &delta);
    129   1.54.2.2   nathanw 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    130   1.54.2.2   nathanw 		splx(s);
    131       1.29       tls 		return (EPERM);
    132   1.54.2.2   nathanw 	}
    133       1.29       tls #ifdef notyet
    134   1.54.2.2   nathanw 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    135   1.54.2.2   nathanw 		splx(s);
    136       1.29       tls 		return (EPERM);
    137   1.54.2.2   nathanw 	}
    138       1.29       tls #endif
    139       1.22       jtc 	time = *tv;
    140       1.38   thorpej 	(void) spllowersoftclock();
    141       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    142       1.47   thorpej 	/*
    143       1.47   thorpej 	 * XXXSMP
    144       1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    145       1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    146       1.47   thorpej 	 * CPUs which have a process on them.
    147       1.47   thorpej 	 */
    148       1.47   thorpej 	ci = curcpu();
    149       1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    150       1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    151       1.54     bjh21 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    152       1.22       jtc 		nqnfs_lease_updatetime(delta.tv_sec);
    153       1.22       jtc #	endif
    154       1.22       jtc 	splx(s);
    155       1.22       jtc 	resettodr();
    156       1.29       tls 	return (0);
    157       1.22       jtc }
    158       1.22       jtc 
    159       1.22       jtc /* ARGSUSED */
    160       1.22       jtc int
    161   1.54.2.5   nathanw sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    162       1.22       jtc {
    163       1.45  augustss 	struct sys_clock_gettime_args /* {
    164       1.22       jtc 		syscallarg(clockid_t) clock_id;
    165       1.23       cgd 		syscallarg(struct timespec *) tp;
    166       1.23       cgd 	} */ *uap = v;
    167       1.22       jtc 	clockid_t clock_id;
    168       1.22       jtc 	struct timeval atv;
    169       1.22       jtc 	struct timespec ats;
    170  1.54.2.11   nathanw 	int s;
    171       1.22       jtc 
    172       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    173  1.54.2.11   nathanw 	switch (clock_id) {
    174  1.54.2.11   nathanw 	case CLOCK_REALTIME:
    175  1.54.2.11   nathanw 		microtime(&atv);
    176  1.54.2.11   nathanw 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    177  1.54.2.11   nathanw 		break;
    178  1.54.2.11   nathanw 	case CLOCK_MONOTONIC:
    179  1.54.2.11   nathanw 		/* XXX "hz" granularity */
    180  1.54.2.11   nathanw 		s = splclock();
    181  1.54.2.11   nathanw 		atv = mono_time;
    182  1.54.2.11   nathanw 		splx(s);
    183  1.54.2.11   nathanw 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    184  1.54.2.11   nathanw 		break;
    185  1.54.2.11   nathanw 	default:
    186       1.22       jtc 		return (EINVAL);
    187  1.54.2.11   nathanw 	}
    188       1.22       jtc 
    189       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    190       1.22       jtc }
    191       1.22       jtc 
    192       1.22       jtc /* ARGSUSED */
    193       1.22       jtc int
    194   1.54.2.1   nathanw sys_clock_settime(l, v, retval)
    195   1.54.2.1   nathanw 	struct lwp *l;
    196       1.22       jtc 	void *v;
    197       1.22       jtc 	register_t *retval;
    198       1.22       jtc {
    199       1.45  augustss 	struct sys_clock_settime_args /* {
    200       1.22       jtc 		syscallarg(clockid_t) clock_id;
    201       1.23       cgd 		syscallarg(const struct timespec *) tp;
    202       1.23       cgd 	} */ *uap = v;
    203   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    204       1.22       jtc 	int error;
    205       1.22       jtc 
    206       1.22       jtc 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    207       1.22       jtc 		return (error);
    208       1.22       jtc 
    209   1.54.2.6   nathanw 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    210   1.54.2.3   nathanw }
    211   1.54.2.3   nathanw 
    212   1.54.2.3   nathanw 
    213   1.54.2.3   nathanw int
    214   1.54.2.6   nathanw clock_settime1(clock_id, tp)
    215   1.54.2.6   nathanw 	clockid_t clock_id;
    216   1.54.2.6   nathanw 	const struct timespec *tp;
    217   1.54.2.3   nathanw {
    218   1.54.2.6   nathanw 	struct timespec ats;
    219   1.54.2.3   nathanw 	struct timeval atv;
    220   1.54.2.3   nathanw 	int error;
    221   1.54.2.3   nathanw 
    222   1.54.2.6   nathanw 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    223   1.54.2.6   nathanw 		return (error);
    224   1.54.2.6   nathanw 
    225  1.54.2.11   nathanw 	switch (clock_id) {
    226  1.54.2.11   nathanw 	case CLOCK_REALTIME:
    227  1.54.2.11   nathanw 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
    228  1.54.2.11   nathanw 		if ((error = settime(&atv)) != 0)
    229  1.54.2.11   nathanw 			return (error);
    230  1.54.2.11   nathanw 		break;
    231  1.54.2.11   nathanw 	case CLOCK_MONOTONIC:
    232  1.54.2.11   nathanw 		return (EINVAL);	/* read-only clock */
    233  1.54.2.11   nathanw 	default:
    234   1.54.2.3   nathanw 		return (EINVAL);
    235  1.54.2.11   nathanw 	}
    236       1.22       jtc 
    237       1.22       jtc 	return 0;
    238       1.22       jtc }
    239       1.22       jtc 
    240       1.22       jtc int
    241   1.54.2.5   nathanw sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    242       1.22       jtc {
    243       1.45  augustss 	struct sys_clock_getres_args /* {
    244       1.22       jtc 		syscallarg(clockid_t) clock_id;
    245       1.23       cgd 		syscallarg(struct timespec *) tp;
    246       1.23       cgd 	} */ *uap = v;
    247       1.22       jtc 	clockid_t clock_id;
    248       1.22       jtc 	struct timespec ts;
    249       1.22       jtc 	int error = 0;
    250       1.22       jtc 
    251       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    252  1.54.2.11   nathanw 	switch (clock_id) {
    253  1.54.2.11   nathanw 	case CLOCK_REALTIME:
    254  1.54.2.11   nathanw 	case CLOCK_MONOTONIC:
    255       1.22       jtc 		ts.tv_sec = 0;
    256       1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    257  1.54.2.11   nathanw 		break;
    258  1.54.2.11   nathanw 	default:
    259  1.54.2.11   nathanw 		return (EINVAL);
    260  1.54.2.11   nathanw 	}
    261       1.22       jtc 
    262  1.54.2.11   nathanw 	if (SCARG(uap, tp))
    263       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    264       1.22       jtc 
    265       1.22       jtc 	return error;
    266       1.22       jtc }
    267       1.22       jtc 
    268       1.27       jtc /* ARGSUSED */
    269       1.27       jtc int
    270   1.54.2.5   nathanw sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    271       1.27       jtc {
    272       1.27       jtc 	static int nanowait;
    273       1.45  augustss 	struct sys_nanosleep_args/* {
    274       1.27       jtc 		syscallarg(struct timespec *) rqtp;
    275       1.27       jtc 		syscallarg(struct timespec *) rmtp;
    276       1.27       jtc 	} */ *uap = v;
    277       1.27       jtc 	struct timespec rqt;
    278       1.27       jtc 	struct timespec rmt;
    279       1.27       jtc 	struct timeval atv, utv;
    280       1.27       jtc 	int error, s, timo;
    281       1.27       jtc 
    282       1.27       jtc 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    283       1.27       jtc 		       sizeof(struct timespec));
    284       1.27       jtc 	if (error)
    285       1.27       jtc 		return (error);
    286       1.27       jtc 
    287       1.27       jtc 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    288   1.54.2.4   nathanw 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    289       1.27       jtc 		return (EINVAL);
    290       1.27       jtc 
    291       1.27       jtc 	s = splclock();
    292       1.27       jtc 	timeradd(&atv,&time,&atv);
    293       1.27       jtc 	timo = hzto(&atv);
    294       1.27       jtc 	/*
    295       1.27       jtc 	 * Avoid inadvertantly sleeping forever
    296       1.27       jtc 	 */
    297       1.27       jtc 	if (timo == 0)
    298       1.27       jtc 		timo = 1;
    299       1.27       jtc 	splx(s);
    300       1.27       jtc 
    301       1.27       jtc 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    302       1.27       jtc 	if (error == ERESTART)
    303       1.27       jtc 		error = EINTR;
    304       1.27       jtc 	if (error == EWOULDBLOCK)
    305       1.27       jtc 		error = 0;
    306       1.27       jtc 
    307       1.27       jtc 	if (SCARG(uap, rmtp)) {
    308       1.28       jtc 		int error;
    309       1.28       jtc 
    310       1.27       jtc 		s = splclock();
    311       1.27       jtc 		utv = time;
    312       1.27       jtc 		splx(s);
    313       1.27       jtc 
    314       1.27       jtc 		timersub(&atv, &utv, &utv);
    315       1.27       jtc 		if (utv.tv_sec < 0)
    316       1.27       jtc 			timerclear(&utv);
    317       1.27       jtc 
    318       1.27       jtc 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    319       1.27       jtc 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    320       1.28       jtc 			sizeof(rmt));
    321       1.28       jtc 		if (error)
    322       1.28       jtc 			return (error);
    323       1.27       jtc 	}
    324       1.27       jtc 
    325       1.27       jtc 	return error;
    326       1.27       jtc }
    327       1.22       jtc 
    328        1.1       cgd /* ARGSUSED */
    329        1.3    andrew int
    330   1.54.2.5   nathanw sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    331       1.15   thorpej {
    332       1.45  augustss 	struct sys_gettimeofday_args /* {
    333       1.11       cgd 		syscallarg(struct timeval *) tp;
    334       1.11       cgd 		syscallarg(struct timezone *) tzp;
    335       1.15   thorpej 	} */ *uap = v;
    336        1.1       cgd 	struct timeval atv;
    337        1.1       cgd 	int error = 0;
    338       1.25     perry 	struct timezone tzfake;
    339        1.1       cgd 
    340       1.11       cgd 	if (SCARG(uap, tp)) {
    341        1.1       cgd 		microtime(&atv);
    342       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    343       1.17  christos 		if (error)
    344        1.1       cgd 			return (error);
    345        1.1       cgd 	}
    346       1.25     perry 	if (SCARG(uap, tzp)) {
    347       1.25     perry 		/*
    348       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    349       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    350       1.25     perry 		 */
    351       1.25     perry 		tzfake.tz_minuteswest = 0;
    352       1.25     perry 		tzfake.tz_dsttime = 0;
    353       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    354       1.25     perry 	}
    355        1.1       cgd 	return (error);
    356        1.1       cgd }
    357        1.1       cgd 
    358        1.1       cgd /* ARGSUSED */
    359        1.3    andrew int
    360   1.54.2.5   nathanw sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    361       1.15   thorpej {
    362       1.16   mycroft 	struct sys_settimeofday_args /* {
    363       1.24       cgd 		syscallarg(const struct timeval *) tv;
    364       1.24       cgd 		syscallarg(const struct timezone *) tzp;
    365       1.15   thorpej 	} */ *uap = v;
    366   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    367   1.54.2.6   nathanw 	int error;
    368   1.54.2.6   nathanw 
    369   1.54.2.6   nathanw 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    370   1.54.2.6   nathanw 		return (error);
    371   1.54.2.6   nathanw 
    372   1.54.2.6   nathanw 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    373   1.54.2.6   nathanw }
    374   1.54.2.6   nathanw 
    375   1.54.2.6   nathanw int
    376   1.54.2.6   nathanw settimeofday1(utv, utzp, p)
    377   1.54.2.6   nathanw 	const struct timeval *utv;
    378   1.54.2.6   nathanw 	const struct timezone *utzp;
    379   1.54.2.6   nathanw 	struct proc *p;
    380   1.54.2.6   nathanw {
    381       1.22       jtc 	struct timeval atv;
    382        1.1       cgd 	struct timezone atz;
    383   1.54.2.3   nathanw 	struct timeval *tv = NULL;
    384   1.54.2.3   nathanw 	struct timezone *tzp = NULL;
    385       1.22       jtc 	int error;
    386        1.1       cgd 
    387        1.8       cgd 	/* Verify all parameters before changing time. */
    388   1.54.2.6   nathanw 	if (utv) {
    389   1.54.2.6   nathanw 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    390   1.54.2.3   nathanw 			return (error);
    391   1.54.2.3   nathanw 		tv = &atv;
    392   1.54.2.3   nathanw 	}
    393       1.25     perry 	/* XXX since we don't use tz, probably no point in doing copyin. */
    394   1.54.2.6   nathanw 	if (utzp) {
    395   1.54.2.6   nathanw 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    396   1.54.2.3   nathanw 			return (error);
    397   1.54.2.3   nathanw 		tzp = &atz;
    398   1.54.2.3   nathanw 	}
    399   1.54.2.3   nathanw 
    400   1.54.2.3   nathanw 	if (tv)
    401   1.54.2.3   nathanw 		if ((error = settime(tv)) != 0)
    402       1.29       tls 			return (error);
    403       1.25     perry 	/*
    404       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    405       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    406       1.25     perry 	 */
    407   1.54.2.3   nathanw 	if (tzp)
    408       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    409       1.32   mycroft 		    "(obsolete) kernel time zone\n", p->p_pid);
    410        1.8       cgd 	return (0);
    411        1.1       cgd }
    412        1.1       cgd 
    413        1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    414        1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    415        1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    416        1.1       cgd 
    417        1.1       cgd /* ARGSUSED */
    418        1.3    andrew int
    419   1.54.2.5   nathanw sys_adjtime(struct lwp *l, void *v, register_t *retval)
    420       1.15   thorpej {
    421       1.45  augustss 	struct sys_adjtime_args /* {
    422       1.24       cgd 		syscallarg(const struct timeval *) delta;
    423       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    424       1.15   thorpej 	} */ *uap = v;
    425   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    426   1.54.2.3   nathanw 	int error;
    427        1.1       cgd 
    428       1.17  christos 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    429        1.1       cgd 		return (error);
    430       1.17  christos 
    431   1.54.2.6   nathanw 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    432   1.54.2.3   nathanw }
    433   1.54.2.3   nathanw 
    434   1.54.2.3   nathanw int
    435   1.54.2.6   nathanw adjtime1(delta, olddelta, p)
    436   1.54.2.6   nathanw 	const struct timeval *delta;
    437   1.54.2.6   nathanw 	struct timeval *olddelta;
    438   1.54.2.6   nathanw 	struct proc *p;
    439   1.54.2.3   nathanw {
    440   1.54.2.6   nathanw 	struct timeval atv;
    441   1.54.2.6   nathanw 	struct timeval *oatv = NULL;
    442   1.54.2.3   nathanw 	long ndelta, ntickdelta, odelta;
    443   1.54.2.6   nathanw 	int error;
    444   1.54.2.3   nathanw 	int s;
    445        1.8       cgd 
    446   1.54.2.6   nathanw 	error = copyin(delta, &atv, sizeof(struct timeval));
    447   1.54.2.6   nathanw 	if (error)
    448   1.54.2.6   nathanw 		return (error);
    449   1.54.2.6   nathanw 
    450   1.54.2.6   nathanw 	if (olddelta != NULL) {
    451   1.54.2.6   nathanw 		if (uvm_useracc((caddr_t)olddelta,
    452   1.54.2.6   nathanw 		    sizeof(struct timeval), B_WRITE) == FALSE)
    453   1.54.2.6   nathanw 			return (EFAULT);
    454   1.54.2.6   nathanw 		oatv = olddelta;
    455   1.54.2.6   nathanw 	}
    456   1.54.2.6   nathanw 
    457        1.8       cgd 	/*
    458        1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    459        1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    460        1.8       cgd 	 * delta, so that after some number of incremental changes in
    461        1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    462        1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    463        1.8       cgd 	 */
    464   1.54.2.6   nathanw 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    465       1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    466        1.8       cgd 		ntickdelta = 10 * tickadj;
    467        1.8       cgd 	else
    468        1.8       cgd 		ntickdelta = tickadj;
    469        1.8       cgd 	if (ndelta % ntickdelta)
    470        1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    471        1.8       cgd 
    472        1.8       cgd 	/*
    473        1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    474        1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    475        1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    476        1.8       cgd 	 */
    477        1.8       cgd 	if (ndelta < 0)
    478        1.8       cgd 		ntickdelta = -ntickdelta;
    479        1.1       cgd 	s = splclock();
    480        1.8       cgd 	odelta = timedelta;
    481        1.1       cgd 	timedelta = ndelta;
    482        1.8       cgd 	tickdelta = ntickdelta;
    483        1.1       cgd 	splx(s);
    484        1.1       cgd 
    485   1.54.2.3   nathanw 	if (olddelta) {
    486   1.54.2.6   nathanw 		atv.tv_sec = odelta / 1000000;
    487   1.54.2.6   nathanw 		atv.tv_usec = odelta % 1000000;
    488   1.54.2.6   nathanw 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    489        1.8       cgd 	}
    490        1.1       cgd 	return (0);
    491        1.1       cgd }
    492        1.1       cgd 
    493        1.1       cgd /*
    494   1.54.2.5   nathanw  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495   1.54.2.5   nathanw  * timer_*() family of routines are supported.
    496   1.54.2.5   nathanw  *
    497   1.54.2.5   nathanw  * All timers are kept in an array pointed to by p_timers, which is
    498   1.54.2.5   nathanw  * allocated on demand - many processes don't use timers at all. The
    499   1.54.2.5   nathanw  * first three elements in this array are reserved for the BSD timers:
    500   1.54.2.5   nathanw  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    501   1.54.2.5   nathanw  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    502   1.54.2.5   nathanw  * syscall.
    503        1.1       cgd  *
    504   1.54.2.5   nathanw  * Realtime timers are kept in the ptimer structure as an absolute
    505   1.54.2.5   nathanw  * time; virtual time timers are kept as deltas.  Virtual time timers
    506   1.54.2.5   nathanw  * are processed in the hardclock() routine of kern_clock.c.  The real
    507   1.54.2.5   nathanw  * time timer is processed by a callout routine, called from the
    508   1.54.2.5   nathanw  * softclock() routine.  Since a callout may be delayed in real time
    509   1.54.2.5   nathanw  * due to interrupt processing in the system, it is possible for the
    510   1.54.2.5   nathanw  * real time timeout routine (realtimeexpire, given below), to be
    511   1.54.2.5   nathanw  * delayed in real time past when it is supposed to occur.  It does
    512   1.54.2.5   nathanw  * not suffice, therefore, to reload the real timer .it_value from the
    513        1.1       cgd  * real time timers .it_interval.  Rather, we compute the next time in
    514   1.54.2.5   nathanw  * absolute time the timer should go off.
    515   1.54.2.5   nathanw  */
    516   1.54.2.5   nathanw 
    517   1.54.2.5   nathanw /* Allocate a POSIX realtime timer. */
    518   1.54.2.5   nathanw int
    519   1.54.2.5   nathanw sys_timer_create(struct lwp *l, void *v, register_t *retval)
    520   1.54.2.5   nathanw {
    521   1.54.2.5   nathanw 	struct sys_timer_create_args /* {
    522   1.54.2.5   nathanw 		syscallarg(clockid_t) clock_id;
    523   1.54.2.5   nathanw 		syscallarg(struct sigevent *) evp;
    524   1.54.2.5   nathanw 		syscallarg(timer_t *) timerid;
    525   1.54.2.5   nathanw 	} */ *uap = v;
    526   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    527   1.54.2.5   nathanw 	clockid_t id;
    528   1.54.2.5   nathanw 	struct sigevent *evp;
    529   1.54.2.5   nathanw 	struct ptimer *pt;
    530   1.54.2.5   nathanw 	int timerid, error;
    531   1.54.2.5   nathanw 
    532   1.54.2.5   nathanw 	id = SCARG(uap, clock_id);
    533   1.54.2.5   nathanw 	if (id != CLOCK_REALTIME)
    534   1.54.2.5   nathanw 		return (EINVAL);
    535   1.54.2.5   nathanw 
    536   1.54.2.5   nathanw 	if (p->p_timers == NULL)
    537   1.54.2.5   nathanw 		timers_alloc(p);
    538   1.54.2.5   nathanw 
    539   1.54.2.5   nathanw 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    540   1.54.2.5   nathanw 		if (p->p_timers[timerid] == NULL)
    541   1.54.2.5   nathanw 			break;
    542   1.54.2.5   nathanw 
    543   1.54.2.5   nathanw 	if (timerid == TIMER_MAX)
    544   1.54.2.5   nathanw 		return EAGAIN;
    545   1.54.2.5   nathanw 
    546   1.54.2.5   nathanw 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    547   1.54.2.5   nathanw 	evp = SCARG(uap, evp);
    548   1.54.2.5   nathanw 	if (evp) {
    549   1.54.2.5   nathanw 		if (((error =
    550   1.54.2.5   nathanw 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    551   1.54.2.5   nathanw 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    552   1.54.2.7   nathanw 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    553   1.54.2.5   nathanw 			pool_put(&ptimer_pool, pt);
    554   1.54.2.5   nathanw 			return (error ? error : EINVAL);
    555   1.54.2.5   nathanw 		}
    556   1.54.2.5   nathanw 	} else {
    557   1.54.2.5   nathanw 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    558   1.54.2.5   nathanw 		pt->pt_ev.sigev_signo = SIGALRM;
    559   1.54.2.5   nathanw 		pt->pt_ev.sigev_value.sival_int = timerid;
    560   1.54.2.5   nathanw 	}
    561  1.54.2.10   nathanw 	pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
    562  1.54.2.10   nathanw 	pt->pt_info.si_errno = 0;
    563  1.54.2.10   nathanw 	pt->pt_info.si_code = 0;
    564  1.54.2.10   nathanw 	pt->pt_info.si_pid = p->p_pid;
    565  1.54.2.10   nathanw 	pt->pt_info.si_uid = p->p_cred->p_ruid;
    566  1.54.2.10   nathanw 	pt->pt_info.si_addr = NULL;
    567  1.54.2.10   nathanw 	pt->pt_info.si_status = 0;
    568  1.54.2.10   nathanw 	pt->pt_info.si_value = pt->pt_ev.sigev_value;
    569  1.54.2.10   nathanw 
    570   1.54.2.5   nathanw 	callout_init(&pt->pt_ch);
    571   1.54.2.5   nathanw 	pt->pt_type = CLOCK_REALTIME;
    572   1.54.2.5   nathanw 	pt->pt_proc = p;
    573   1.54.2.5   nathanw 	pt->pt_overruns = 0;
    574   1.54.2.5   nathanw 
    575   1.54.2.5   nathanw 	p->p_timers[timerid] = pt;
    576   1.54.2.5   nathanw 
    577   1.54.2.5   nathanw 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    578   1.54.2.5   nathanw }
    579   1.54.2.5   nathanw 
    580   1.54.2.5   nathanw 
    581   1.54.2.5   nathanw /* Delete a POSIX realtime timer */
    582   1.54.2.5   nathanw int
    583   1.54.2.5   nathanw sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    584   1.54.2.5   nathanw {
    585   1.54.2.5   nathanw 	struct sys_timer_delete_args /*  {
    586   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    587   1.54.2.5   nathanw 	} */ *uap = v;
    588   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    589   1.54.2.5   nathanw 	int timerid;
    590   1.54.2.5   nathanw 	struct ptimer *pt;
    591   1.54.2.5   nathanw 
    592   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    593   1.54.2.5   nathanw 
    594   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    595   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    596   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    597   1.54.2.5   nathanw 		return (EINVAL);
    598   1.54.2.5   nathanw 
    599   1.54.2.5   nathanw 	callout_stop(&pt->pt_ch);
    600   1.54.2.5   nathanw 	p->p_timers[timerid] = NULL;
    601   1.54.2.5   nathanw 	pool_put(&ptimer_pool, pt);
    602   1.54.2.5   nathanw 
    603   1.54.2.5   nathanw 	return (0);
    604   1.54.2.5   nathanw }
    605   1.54.2.5   nathanw 
    606   1.54.2.5   nathanw /* Set and arm a POSIX realtime timer */
    607   1.54.2.5   nathanw int
    608   1.54.2.5   nathanw sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    609   1.54.2.5   nathanw {
    610   1.54.2.5   nathanw 	struct sys_timer_settime_args /* {
    611   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    612   1.54.2.5   nathanw 		syscallarg(int) flags;
    613   1.54.2.5   nathanw 		syscallarg(const struct itimerspec *) value;
    614   1.54.2.5   nathanw 		syscallarg(struct itimerspec *) ovalue;
    615   1.54.2.5   nathanw 	} */ *uap = v;
    616   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    617   1.54.2.5   nathanw 	int error, s, timerid;
    618   1.54.2.5   nathanw 	struct itimerval val, oval;
    619   1.54.2.5   nathanw 	struct itimerspec value, ovalue;
    620   1.54.2.5   nathanw 	struct ptimer *pt;
    621   1.54.2.5   nathanw 
    622   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    623   1.54.2.5   nathanw 
    624   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    625   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    626   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    627   1.54.2.5   nathanw 		return (EINVAL);
    628   1.54.2.5   nathanw 
    629   1.54.2.5   nathanw 	if ((error = copyin(SCARG(uap, value), &value,
    630   1.54.2.5   nathanw 	    sizeof(struct itimerspec))) != 0)
    631   1.54.2.5   nathanw 		return (error);
    632   1.54.2.5   nathanw 
    633   1.54.2.5   nathanw 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    634   1.54.2.5   nathanw 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    635   1.54.2.5   nathanw 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    636   1.54.2.5   nathanw 		return (EINVAL);
    637   1.54.2.5   nathanw 
    638   1.54.2.5   nathanw 	oval = pt->pt_time;
    639   1.54.2.5   nathanw 	pt->pt_time = val;
    640   1.54.2.5   nathanw 
    641   1.54.2.5   nathanw 	s = splclock();
    642   1.54.2.5   nathanw 	callout_stop(&pt->pt_ch);
    643   1.54.2.5   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    644   1.54.2.5   nathanw 		if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
    645   1.54.2.5   nathanw 			timeradd(&pt->pt_time.it_value, &time,
    646   1.54.2.5   nathanw 			    &pt->pt_time.it_value);
    647   1.54.2.5   nathanw 		/*
    648   1.54.2.5   nathanw 		 * Don't need to check hzto() return value, here.
    649   1.54.2.5   nathanw 		 * callout_reset() does it for us.
    650   1.54.2.5   nathanw 		 */
    651   1.54.2.5   nathanw 		callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    652   1.54.2.5   nathanw 		    realtimerexpire, pt);
    653   1.54.2.5   nathanw 	}
    654   1.54.2.5   nathanw 	splx(s);
    655   1.54.2.5   nathanw 
    656   1.54.2.5   nathanw 	if (SCARG(uap, ovalue)) {
    657   1.54.2.5   nathanw 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    658   1.54.2.5   nathanw 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    659   1.54.2.5   nathanw 		return copyout(&ovalue, SCARG(uap, ovalue),
    660   1.54.2.5   nathanw 		    sizeof(struct itimerspec));
    661   1.54.2.5   nathanw 	}
    662   1.54.2.5   nathanw 
    663   1.54.2.5   nathanw 	return (0);
    664   1.54.2.5   nathanw }
    665   1.54.2.5   nathanw 
    666   1.54.2.5   nathanw /* Return the time remaining until a POSIX timer fires. */
    667   1.54.2.5   nathanw int
    668   1.54.2.5   nathanw sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    669   1.54.2.5   nathanw {
    670   1.54.2.5   nathanw 	struct sys_timer_gettime_args /* {
    671   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    672   1.54.2.5   nathanw 		syscallarg(struct itimerspec *) value;
    673   1.54.2.5   nathanw 	} */ *uap = v;
    674   1.54.2.5   nathanw 	struct itimerval aitv;
    675   1.54.2.5   nathanw 	struct itimerspec its;
    676   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    677   1.54.2.5   nathanw 	int timerid;
    678   1.54.2.5   nathanw 	struct ptimer *pt;
    679   1.54.2.5   nathanw 
    680   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    681   1.54.2.5   nathanw 
    682   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    683   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    684   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    685   1.54.2.5   nathanw 		return (EINVAL);
    686   1.54.2.5   nathanw 
    687   1.54.2.5   nathanw 	aitv = pt->pt_time;
    688   1.54.2.5   nathanw 
    689   1.54.2.5   nathanw 	/*
    690   1.54.2.5   nathanw 	 * Real-time timers are kept in absolute time, but this interface
    691   1.54.2.5   nathanw 	 * is supposed to return a relative time.
    692   1.54.2.5   nathanw 	 */
    693   1.54.2.5   nathanw 	if (timerisset(&aitv.it_value)) {
    694   1.54.2.5   nathanw 		if (timercmp(&aitv.it_value, &time, <))
    695   1.54.2.5   nathanw 			timerclear(&aitv.it_value);
    696   1.54.2.5   nathanw 		else
    697   1.54.2.5   nathanw 			timersub(&aitv.it_value, &time, &aitv.it_value);
    698   1.54.2.5   nathanw 	}
    699   1.54.2.5   nathanw 
    700   1.54.2.5   nathanw 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    701   1.54.2.5   nathanw 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    702   1.54.2.5   nathanw 
    703   1.54.2.5   nathanw 	return copyout(&its, SCARG(uap, value), sizeof(its));
    704   1.54.2.5   nathanw }
    705   1.54.2.5   nathanw 
    706   1.54.2.5   nathanw /*
    707   1.54.2.5   nathanw  * Return the count of the number of times a periodic timer expired
    708   1.54.2.5   nathanw  * while a notification was already pending. The counter is reset when
    709   1.54.2.5   nathanw  * a timer expires and a notification can be posted.
    710        1.1       cgd  */
    711   1.54.2.5   nathanw int
    712   1.54.2.5   nathanw sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    713   1.54.2.5   nathanw {
    714   1.54.2.5   nathanw 	struct sys_timer_getoverrun_args /* {
    715   1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    716   1.54.2.5   nathanw 	} */ *uap = v;
    717   1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    718   1.54.2.5   nathanw 	int timerid;
    719   1.54.2.5   nathanw 	struct ptimer *pt;
    720   1.54.2.5   nathanw 
    721   1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    722   1.54.2.5   nathanw 
    723   1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    724   1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    725   1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    726   1.54.2.5   nathanw 		return (EINVAL);
    727   1.54.2.5   nathanw 
    728   1.54.2.5   nathanw 	*retval = pt->pt_overruns;
    729   1.54.2.5   nathanw 
    730   1.54.2.5   nathanw 	return (0);
    731   1.54.2.5   nathanw }
    732   1.54.2.5   nathanw 
    733   1.54.2.5   nathanw /* Glue function that triggers an upcall; called from userret(). */
    734   1.54.2.5   nathanw static void
    735   1.54.2.5   nathanw realtimerupcall(struct lwp *l, void *arg)
    736   1.54.2.5   nathanw {
    737   1.54.2.5   nathanw 	struct ptimer *pt;
    738   1.54.2.5   nathanw 
    739  1.54.2.16   nathanw 	/*
    740  1.54.2.16   nathanw 	 * The LWP that is running doesn't change, so we don't need
    741  1.54.2.13   nathanw 	 * to touch sa_vp.
    742  1.54.2.13   nathanw 	 */
    743   1.54.2.5   nathanw 	pt = (struct ptimer *)arg;
    744  1.54.2.10   nathanw 	sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(siginfo_t),
    745  1.54.2.10   nathanw 	    &pt->pt_info);
    746   1.54.2.5   nathanw 
    747   1.54.2.5   nathanw 	/* The upcall should only be generated once. */
    748   1.54.2.5   nathanw 	l->l_proc->p_userret = NULL;
    749   1.54.2.5   nathanw }
    750   1.54.2.5   nathanw 
    751   1.54.2.5   nathanw 
    752   1.54.2.5   nathanw /*
    753   1.54.2.5   nathanw  * Real interval timer expired:
    754   1.54.2.5   nathanw  * send process whose timer expired an alarm signal.
    755   1.54.2.5   nathanw  * If time is not set up to reload, then just return.
    756   1.54.2.5   nathanw  * Else compute next time timer should go off which is > current time.
    757   1.54.2.5   nathanw  * This is where delay in processing this timeout causes multiple
    758   1.54.2.5   nathanw  * SIGALRM calls to be compressed into one.
    759   1.54.2.5   nathanw  */
    760   1.54.2.5   nathanw void
    761   1.54.2.5   nathanw realtimerexpire(void *arg)
    762   1.54.2.5   nathanw {
    763   1.54.2.5   nathanw 	struct ptimer *pt;
    764   1.54.2.5   nathanw 	struct proc *p;
    765   1.54.2.5   nathanw 	int s;
    766   1.54.2.5   nathanw 
    767   1.54.2.5   nathanw 	pt = (struct ptimer *)arg;
    768   1.54.2.5   nathanw 	p = pt->pt_proc;
    769   1.54.2.5   nathanw 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
    770   1.54.2.5   nathanw 		/*
    771   1.54.2.5   nathanw 		 * No RT signal infrastructure exists at this time;
    772   1.54.2.5   nathanw 		 * just post the signal number and throw away the
    773   1.54.2.5   nathanw 		 * value.
    774   1.54.2.5   nathanw 		 */
    775   1.54.2.5   nathanw 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
    776   1.54.2.5   nathanw 			pt->pt_overruns++;
    777   1.54.2.5   nathanw 		else {
    778   1.54.2.5   nathanw 			pt->pt_overruns = 0;
    779   1.54.2.5   nathanw 			psignal(p, pt->pt_ev.sigev_signo);
    780   1.54.2.5   nathanw 		}
    781   1.54.2.7   nathanw 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
    782   1.54.2.5   nathanw 		/* Cause the process to generate an upcall when it returns. */
    783  1.54.2.16   nathanw 		struct sadata *sa = p->p_sa;
    784   1.54.2.8   nathanw 
    785  1.54.2.16   nathanw 		if (p->p_userret == NULL) {
    786  1.54.2.16   nathanw 			if (sa->sa_idle)
    787  1.54.2.16   nathanw 				wakeup(p);
    788   1.54.2.5   nathanw 			pt->pt_overruns = 0;
    789   1.54.2.5   nathanw 			p->p_userret = realtimerupcall;
    790   1.54.2.5   nathanw 			p->p_userret_arg = pt;
    791  1.54.2.16   nathanw 		} else
    792   1.54.2.5   nathanw 			pt->pt_overruns++;
    793   1.54.2.5   nathanw 	}
    794   1.54.2.5   nathanw 	if (!timerisset(&pt->pt_time.it_interval)) {
    795   1.54.2.5   nathanw 		timerclear(&pt->pt_time.it_value);
    796   1.54.2.5   nathanw 		return;
    797   1.54.2.5   nathanw 	}
    798   1.54.2.5   nathanw 	for (;;) {
    799   1.54.2.5   nathanw 		s = splclock();
    800   1.54.2.5   nathanw 		timeradd(&pt->pt_time.it_value,
    801   1.54.2.5   nathanw 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    802   1.54.2.5   nathanw 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    803   1.54.2.5   nathanw 			/*
    804   1.54.2.5   nathanw 			 * Don't need to check hzto() return value, here.
    805   1.54.2.5   nathanw 			 * callout_reset() does it for us.
    806   1.54.2.5   nathanw 			 */
    807   1.54.2.5   nathanw 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    808   1.54.2.5   nathanw 			    realtimerexpire, pt);
    809   1.54.2.5   nathanw 			splx(s);
    810   1.54.2.5   nathanw 			return;
    811   1.54.2.5   nathanw 		}
    812   1.54.2.5   nathanw 		splx(s);
    813   1.54.2.5   nathanw 		pt->pt_overruns++;
    814   1.54.2.5   nathanw 	}
    815   1.54.2.5   nathanw }
    816   1.54.2.5   nathanw 
    817   1.54.2.5   nathanw /* BSD routine to get the value of an interval timer. */
    818        1.1       cgd /* ARGSUSED */
    819        1.3    andrew int
    820   1.54.2.5   nathanw sys_getitimer(struct lwp *l, void *v, register_t *retval)
    821       1.15   thorpej {
    822       1.45  augustss 	struct sys_getitimer_args /* {
    823       1.30   mycroft 		syscallarg(int) which;
    824       1.11       cgd 		syscallarg(struct itimerval *) itv;
    825       1.15   thorpej 	} */ *uap = v;
    826   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    827        1.1       cgd 	struct itimerval aitv;
    828   1.54.2.5   nathanw 	int s, which;
    829   1.54.2.5   nathanw 
    830   1.54.2.5   nathanw 	which = SCARG(uap, which);
    831        1.1       cgd 
    832       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    833        1.1       cgd 		return (EINVAL);
    834   1.54.2.5   nathanw 
    835   1.54.2.5   nathanw 	if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
    836   1.54.2.5   nathanw 		timerclear(&aitv.it_value);
    837   1.54.2.5   nathanw 		timerclear(&aitv.it_interval);
    838   1.54.2.5   nathanw 	} else {
    839   1.54.2.5   nathanw 		s = splclock();
    840   1.54.2.5   nathanw 		if (which == ITIMER_REAL) {
    841   1.54.2.5   nathanw 			/*
    842   1.54.2.5   nathanw 			 * Convert from absolute to relative time in
    843   1.54.2.5   nathanw 			 * .it_value part of real time timer.  If time
    844   1.54.2.5   nathanw 			 * for real time timer has passed return 0,
    845   1.54.2.5   nathanw 			 * else return difference between current time
    846   1.54.2.5   nathanw 			 * and time for the timer to go off.
    847   1.54.2.5   nathanw 			 */
    848   1.54.2.5   nathanw 			aitv = p->p_timers[ITIMER_REAL]->pt_time;
    849   1.54.2.5   nathanw 			if (timerisset(&aitv.it_value)) {
    850   1.54.2.5   nathanw 				if (timercmp(&aitv.it_value, &time, <))
    851   1.54.2.5   nathanw 					timerclear(&aitv.it_value);
    852   1.54.2.5   nathanw 				else
    853   1.54.2.5   nathanw 					timersub(&aitv.it_value, &time, &aitv.it_value);
    854   1.54.2.5   nathanw 			}
    855   1.54.2.5   nathanw 		} else
    856   1.54.2.5   nathanw 			aitv = p->p_timers[which]->pt_time;
    857   1.54.2.5   nathanw 		splx(s);
    858   1.54.2.5   nathanw 	}
    859   1.54.2.5   nathanw 
    860       1.35     perry 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    861   1.54.2.5   nathanw 
    862        1.1       cgd }
    863        1.1       cgd 
    864   1.54.2.5   nathanw /* BSD routine to set/arm an interval timer. */
    865        1.1       cgd /* ARGSUSED */
    866        1.3    andrew int
    867   1.54.2.5   nathanw sys_setitimer(struct lwp *l, void *v, register_t *retval)
    868       1.15   thorpej {
    869       1.45  augustss 	struct sys_setitimer_args /* {
    870       1.30   mycroft 		syscallarg(int) which;
    871       1.24       cgd 		syscallarg(const struct itimerval *) itv;
    872       1.11       cgd 		syscallarg(struct itimerval *) oitv;
    873       1.15   thorpej 	} */ *uap = v;
    874   1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    875       1.30   mycroft 	int which = SCARG(uap, which);
    876       1.21       cgd 	struct sys_getitimer_args getargs;
    877        1.1       cgd 	struct itimerval aitv;
    878       1.45  augustss 	const struct itimerval *itvp;
    879   1.54.2.5   nathanw 	struct ptimer *pt;
    880        1.1       cgd 	int s, error;
    881        1.1       cgd 
    882       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    883        1.1       cgd 		return (EINVAL);
    884       1.11       cgd 	itvp = SCARG(uap, itv);
    885   1.54.2.3   nathanw 	if (itvp &&
    886   1.54.2.3   nathanw 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    887        1.1       cgd 		return (error);
    888       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
    889       1.30   mycroft 		SCARG(&getargs, which) = which;
    890       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    891   1.54.2.1   nathanw 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    892       1.21       cgd 			return (error);
    893       1.21       cgd 	}
    894        1.1       cgd 	if (itvp == 0)
    895        1.1       cgd 		return (0);
    896        1.1       cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    897        1.1       cgd 		return (EINVAL);
    898   1.54.2.5   nathanw 
    899   1.54.2.5   nathanw 	/*
    900   1.54.2.5   nathanw 	 * Don't bother allocating data structures if the process just
    901   1.54.2.5   nathanw 	 * wants to clear the timer.
    902   1.54.2.5   nathanw 	 */
    903   1.54.2.5   nathanw 	if (!timerisset(&aitv.it_value) &&
    904   1.54.2.5   nathanw 	    ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
    905   1.54.2.5   nathanw 		return (0);
    906   1.54.2.5   nathanw 
    907   1.54.2.5   nathanw 	if (p->p_timers == NULL)
    908   1.54.2.5   nathanw 		timers_alloc(p);
    909   1.54.2.5   nathanw 	if (p->p_timers[which] == NULL) {
    910   1.54.2.5   nathanw 		pt = pool_get(&ptimer_pool, PR_WAITOK);
    911   1.54.2.5   nathanw 		callout_init(&pt->pt_ch);
    912   1.54.2.5   nathanw 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    913   1.54.2.5   nathanw 		pt->pt_overruns = 0;
    914   1.54.2.5   nathanw 		pt->pt_proc = p;
    915   1.54.2.5   nathanw 		pt->pt_type = which;
    916   1.54.2.5   nathanw 		switch (which) {
    917   1.54.2.5   nathanw 		case ITIMER_REAL:
    918   1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGALRM;
    919   1.54.2.5   nathanw 			break;
    920   1.54.2.5   nathanw 		case ITIMER_VIRTUAL:
    921   1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGVTALRM;
    922   1.54.2.5   nathanw 			break;
    923   1.54.2.5   nathanw 		case ITIMER_PROF:
    924   1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGPROF;
    925   1.54.2.5   nathanw 			break;
    926   1.54.2.5   nathanw 		}
    927   1.54.2.5   nathanw 	} else
    928   1.54.2.5   nathanw 		pt = p->p_timers[which];
    929   1.54.2.5   nathanw 
    930   1.54.2.5   nathanw 	pt->pt_time = aitv;
    931   1.54.2.5   nathanw 	p->p_timers[which] = pt;
    932       1.30   mycroft 	if (which == ITIMER_REAL) {
    933   1.54.2.5   nathanw 		s = splclock();
    934   1.54.2.5   nathanw 		callout_stop(&pt->pt_ch);
    935   1.54.2.5   nathanw 		if (timerisset(&pt->pt_time.it_value)) {
    936   1.54.2.5   nathanw 			timeradd(&pt->pt_time.it_value, &time,
    937   1.54.2.5   nathanw 			    &pt->pt_time.it_value);
    938       1.52   thorpej 			/*
    939       1.52   thorpej 			 * Don't need to check hzto() return value, here.
    940       1.52   thorpej 			 * callout_reset() does it for us.
    941       1.52   thorpej 			 */
    942   1.54.2.5   nathanw 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    943   1.54.2.5   nathanw 			    realtimerexpire, pt);
    944        1.1       cgd 		}
    945   1.54.2.5   nathanw 		splx(s);
    946   1.54.2.5   nathanw 	}
    947   1.54.2.5   nathanw 
    948        1.1       cgd 	return (0);
    949        1.1       cgd }
    950        1.1       cgd 
    951   1.54.2.5   nathanw /* Utility routines to manage the array of pointers to timers. */
    952        1.3    andrew void
    953   1.54.2.5   nathanw timers_alloc(struct proc *p)
    954        1.6       cgd {
    955   1.54.2.5   nathanw 	int i;
    956   1.54.2.5   nathanw 	struct ptimer **pts;
    957        1.1       cgd 
    958   1.54.2.5   nathanw 	pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
    959   1.54.2.5   nathanw 	for (i = 0; i < TIMER_MAX; i++)
    960   1.54.2.5   nathanw 		pts[i] = NULL;
    961   1.54.2.5   nathanw 	p->p_timers = pts;
    962   1.54.2.5   nathanw }
    963   1.54.2.5   nathanw 
    964  1.54.2.15   nathanw /*
    965  1.54.2.15   nathanw  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
    966  1.54.2.15   nathanw  * then clean up all timers and free all the data structures. If
    967  1.54.2.15   nathanw  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
    968  1.54.2.15   nathanw  * by timer_create(), not the BSD setitimer() timers, and only free the
    969  1.54.2.15   nathanw  * structure if none of those remain.
    970  1.54.2.15   nathanw  */
    971   1.54.2.5   nathanw void
    972  1.54.2.15   nathanw timers_free(struct proc *p, int which)
    973   1.54.2.5   nathanw {
    974   1.54.2.5   nathanw 	int i;
    975   1.54.2.5   nathanw 	struct ptimer *pt, **pts;
    976   1.54.2.5   nathanw 
    977   1.54.2.5   nathanw 	if (p->p_timers) {
    978   1.54.2.5   nathanw 		pts = p->p_timers;
    979  1.54.2.15   nathanw 		if (which == TIMERS_ALL)
    980  1.54.2.15   nathanw 			i = 0;
    981  1.54.2.15   nathanw 		else
    982  1.54.2.15   nathanw 			i = 3;
    983  1.54.2.15   nathanw 		for ( ; i < TIMER_MAX; i++)
    984   1.54.2.5   nathanw 			if ((pt = pts[i]) != NULL) {
    985   1.54.2.5   nathanw 				if (pt->pt_type == CLOCK_REALTIME)
    986   1.54.2.5   nathanw 					callout_stop(&pt->pt_ch);
    987  1.54.2.15   nathanw 				pts[i] = NULL;
    988   1.54.2.5   nathanw 				pool_put(&ptimer_pool, pt);
    989   1.54.2.5   nathanw 			}
    990  1.54.2.15   nathanw 		if ((pts[0] == NULL) &&
    991  1.54.2.15   nathanw 		    (pts[1] == NULL) &&
    992  1.54.2.15   nathanw 		    (pts[2] == NULL)) {
    993  1.54.2.15   nathanw 			p->p_timers = NULL;
    994  1.54.2.15   nathanw 			free(pts, M_SUBPROC);
    995  1.54.2.15   nathanw 		}
    996        1.1       cgd 	}
    997        1.1       cgd }
    998        1.1       cgd 
    999        1.1       cgd /*
   1000        1.1       cgd  * Check that a proposed value to load into the .it_value or
   1001        1.1       cgd  * .it_interval part of an interval timer is acceptable, and
   1002        1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
   1003        1.1       cgd  * than the resolution of the clock, round it up.)
   1004        1.1       cgd  */
   1005        1.3    andrew int
   1006   1.54.2.5   nathanw itimerfix(struct timeval *tv)
   1007        1.1       cgd {
   1008        1.1       cgd 
   1009   1.54.2.4   nathanw 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1010        1.1       cgd 		return (EINVAL);
   1011        1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1012        1.1       cgd 		tv->tv_usec = tick;
   1013        1.1       cgd 	return (0);
   1014        1.1       cgd }
   1015        1.1       cgd 
   1016        1.1       cgd /*
   1017        1.1       cgd  * Decrement an interval timer by a specified number
   1018        1.1       cgd  * of microseconds, which must be less than a second,
   1019        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1020        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1021        1.8       cgd  * reduce the value reloaded into the timer so that
   1022        1.1       cgd  * the timer does not drift.  This routine assumes
   1023        1.1       cgd  * that it is called in a context where the timers
   1024        1.1       cgd  * on which it is operating cannot change in value.
   1025        1.1       cgd  */
   1026        1.3    andrew int
   1027   1.54.2.5   nathanw itimerdecr(struct itimerval *itp, int usec)
   1028        1.1       cgd {
   1029        1.1       cgd 
   1030        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1031        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1032        1.1       cgd 			/* expired, and already in next interval */
   1033        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1034        1.1       cgd 			goto expire;
   1035        1.1       cgd 		}
   1036        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1037        1.1       cgd 		itp->it_value.tv_sec--;
   1038        1.1       cgd 	}
   1039        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1040        1.1       cgd 	usec = 0;
   1041        1.1       cgd 	if (timerisset(&itp->it_value))
   1042        1.1       cgd 		return (1);
   1043        1.1       cgd 	/* expired, exactly at end of interval */
   1044        1.1       cgd expire:
   1045        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1046        1.1       cgd 		itp->it_value = itp->it_interval;
   1047        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1048        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1049        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1050        1.1       cgd 			itp->it_value.tv_sec--;
   1051        1.1       cgd 		}
   1052        1.1       cgd 	} else
   1053        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1054        1.1       cgd 	return (0);
   1055       1.42       cgd }
   1056       1.42       cgd 
   1057       1.42       cgd /*
   1058       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1059       1.42       cgd  * for usage and rationale.
   1060       1.42       cgd  */
   1061       1.42       cgd int
   1062   1.54.2.5   nathanw ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1063       1.42       cgd {
   1064       1.49    itojun 	struct timeval tv, delta;
   1065       1.42       cgd 	int s, rv = 0;
   1066       1.42       cgd 
   1067       1.42       cgd 	s = splclock();
   1068       1.49    itojun 	tv = mono_time;
   1069       1.49    itojun 	splx(s);
   1070       1.49    itojun 
   1071       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1072       1.42       cgd 
   1073       1.42       cgd 	/*
   1074       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1075       1.42       cgd 	 * even if interval is huge.
   1076       1.42       cgd 	 */
   1077       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1078       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1079       1.49    itojun 		*lasttime = tv;
   1080       1.42       cgd 		rv = 1;
   1081       1.42       cgd 	}
   1082       1.50    itojun 
   1083       1.50    itojun 	return (rv);
   1084       1.50    itojun }
   1085       1.50    itojun 
   1086       1.50    itojun /*
   1087       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1088       1.50    itojun  */
   1089       1.50    itojun int
   1090   1.54.2.5   nathanw ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1091       1.50    itojun {
   1092       1.50    itojun 	struct timeval tv, delta;
   1093       1.50    itojun 	int s, rv;
   1094       1.50    itojun 
   1095       1.50    itojun 	s = splclock();
   1096       1.50    itojun 	tv = mono_time;
   1097       1.50    itojun 	splx(s);
   1098       1.50    itojun 
   1099       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1100       1.50    itojun 
   1101       1.50    itojun 	/*
   1102       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1103       1.50    itojun 	 * if more than one second have passed since the last update of
   1104       1.50    itojun 	 * lasttime, reset the counter.
   1105       1.50    itojun 	 *
   1106       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1107       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1108       1.50    itojun 	 */
   1109       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1110       1.50    itojun 	    delta.tv_sec >= 1) {
   1111       1.50    itojun 		*lasttime = tv;
   1112       1.50    itojun 		*curpps = 0;
   1113       1.50    itojun 		rv = 1;
   1114       1.53    itojun 	} else if (maxpps < 0)
   1115       1.53    itojun 		rv = 1;
   1116       1.53    itojun 	else if (*curpps < maxpps)
   1117       1.50    itojun 		rv = 1;
   1118       1.50    itojun 	else
   1119       1.50    itojun 		rv = 0;
   1120       1.50    itojun 
   1121       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1122       1.50    itojun 	/* be careful about wrap-around */
   1123       1.50    itojun 	if (*curpps + 1 > *curpps)
   1124       1.50    itojun 		*curpps = *curpps + 1;
   1125       1.50    itojun #else
   1126       1.50    itojun 	/*
   1127       1.50    itojun 	 * assume that there's not too many calls to this function.
   1128       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1129       1.50    itojun 	 * behavior, not the behavior of this function.
   1130       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1131       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1132       1.50    itojun 	 */
   1133       1.50    itojun 	*curpps = *curpps + 1;
   1134       1.50    itojun #endif
   1135       1.42       cgd 
   1136       1.42       cgd 	return (rv);
   1137        1.1       cgd }
   1138