kern_time.c revision 1.54.2.2 1 1.54.2.2 nathanw /* $NetBSD: kern_time.c,v 1.54.2.2 2001/06/21 20:06:57 nathanw Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.31 thorpej #include "fs_nfs.h"
75 1.54 bjh21 #include "opt_nfs.h"
76 1.34 thorpej #include "opt_nfsserver.h"
77 1.1 cgd
78 1.5 mycroft #include <sys/param.h>
79 1.5 mycroft #include <sys/resourcevar.h>
80 1.5 mycroft #include <sys/kernel.h>
81 1.8 cgd #include <sys/systm.h>
82 1.54.2.1 nathanw #include <sys/lwp.h>
83 1.5 mycroft #include <sys/proc.h>
84 1.8 cgd #include <sys/vnode.h>
85 1.17 christos #include <sys/signalvar.h>
86 1.25 perry #include <sys/syslog.h>
87 1.1 cgd
88 1.11 cgd #include <sys/mount.h>
89 1.11 cgd #include <sys/syscallargs.h>
90 1.19 christos
91 1.37 thorpej #include <uvm/uvm_extern.h>
92 1.37 thorpej
93 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
94 1.20 fvdl #include <nfs/rpcv2.h>
95 1.20 fvdl #include <nfs/nfsproto.h>
96 1.19 christos #include <nfs/nfs_var.h>
97 1.19 christos #endif
98 1.17 christos
99 1.5 mycroft #include <machine/cpu.h>
100 1.23 cgd
101 1.23 cgd /*
102 1.1 cgd * Time of day and interval timer support.
103 1.1 cgd *
104 1.1 cgd * These routines provide the kernel entry points to get and set
105 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
106 1.1 cgd * here provide support for adding and subtracting timeval structures
107 1.1 cgd * and decrementing interval timers, optionally reloading the interval
108 1.1 cgd * timers when they expire.
109 1.1 cgd */
110 1.1 cgd
111 1.22 jtc /* This function is used by clock_settime and settimeofday */
112 1.39 tron int
113 1.22 jtc settime(tv)
114 1.22 jtc struct timeval *tv;
115 1.22 jtc {
116 1.22 jtc struct timeval delta;
117 1.47 thorpej struct cpu_info *ci;
118 1.22 jtc int s;
119 1.22 jtc
120 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
121 1.22 jtc s = splclock();
122 1.22 jtc timersub(tv, &time, &delta);
123 1.54.2.2 nathanw if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
124 1.54.2.2 nathanw splx(s);
125 1.29 tls return (EPERM);
126 1.54.2.2 nathanw }
127 1.29 tls #ifdef notyet
128 1.54.2.2 nathanw if ((delta.tv_sec < 86400) && securelevel > 0) {
129 1.54.2.2 nathanw splx(s);
130 1.29 tls return (EPERM);
131 1.54.2.2 nathanw }
132 1.29 tls #endif
133 1.22 jtc time = *tv;
134 1.38 thorpej (void) spllowersoftclock();
135 1.22 jtc timeradd(&boottime, &delta, &boottime);
136 1.47 thorpej /*
137 1.47 thorpej * XXXSMP
138 1.47 thorpej * This is wrong. We should traverse a list of all
139 1.47 thorpej * CPUs and add the delta to the runtime of those
140 1.47 thorpej * CPUs which have a process on them.
141 1.47 thorpej */
142 1.47 thorpej ci = curcpu();
143 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
144 1.47 thorpej &ci->ci_schedstate.spc_runtime);
145 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
146 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
147 1.22 jtc # endif
148 1.22 jtc splx(s);
149 1.22 jtc resettodr();
150 1.29 tls return (0);
151 1.22 jtc }
152 1.22 jtc
153 1.22 jtc /* ARGSUSED */
154 1.22 jtc int
155 1.54.2.1 nathanw sys_clock_gettime(l, v, retval)
156 1.54.2.1 nathanw struct lwp *l;
157 1.22 jtc void *v;
158 1.22 jtc register_t *retval;
159 1.22 jtc {
160 1.45 augustss struct sys_clock_gettime_args /* {
161 1.22 jtc syscallarg(clockid_t) clock_id;
162 1.23 cgd syscallarg(struct timespec *) tp;
163 1.23 cgd } */ *uap = v;
164 1.22 jtc clockid_t clock_id;
165 1.22 jtc struct timeval atv;
166 1.22 jtc struct timespec ats;
167 1.22 jtc
168 1.22 jtc clock_id = SCARG(uap, clock_id);
169 1.22 jtc if (clock_id != CLOCK_REALTIME)
170 1.22 jtc return (EINVAL);
171 1.22 jtc
172 1.22 jtc microtime(&atv);
173 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
174 1.22 jtc
175 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
176 1.22 jtc }
177 1.22 jtc
178 1.22 jtc /* ARGSUSED */
179 1.22 jtc int
180 1.54.2.1 nathanw sys_clock_settime(l, v, retval)
181 1.54.2.1 nathanw struct lwp *l;
182 1.22 jtc void *v;
183 1.22 jtc register_t *retval;
184 1.22 jtc {
185 1.45 augustss struct sys_clock_settime_args /* {
186 1.22 jtc syscallarg(clockid_t) clock_id;
187 1.23 cgd syscallarg(const struct timespec *) tp;
188 1.23 cgd } */ *uap = v;
189 1.54.2.1 nathanw struct proc *p = l->l_proc;
190 1.22 jtc clockid_t clock_id;
191 1.22 jtc struct timeval atv;
192 1.22 jtc struct timespec ats;
193 1.22 jtc int error;
194 1.22 jtc
195 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
196 1.22 jtc return (error);
197 1.22 jtc
198 1.22 jtc clock_id = SCARG(uap, clock_id);
199 1.22 jtc if (clock_id != CLOCK_REALTIME)
200 1.22 jtc return (EINVAL);
201 1.22 jtc
202 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
203 1.23 cgd return (error);
204 1.22 jtc
205 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
206 1.29 tls if ((error = settime(&atv)))
207 1.29 tls return (error);
208 1.22 jtc
209 1.22 jtc return 0;
210 1.22 jtc }
211 1.22 jtc
212 1.22 jtc int
213 1.54.2.1 nathanw sys_clock_getres(l, v, retval)
214 1.54.2.1 nathanw struct lwp *l;
215 1.22 jtc void *v;
216 1.22 jtc register_t *retval;
217 1.22 jtc {
218 1.45 augustss struct sys_clock_getres_args /* {
219 1.22 jtc syscallarg(clockid_t) clock_id;
220 1.23 cgd syscallarg(struct timespec *) tp;
221 1.23 cgd } */ *uap = v;
222 1.22 jtc clockid_t clock_id;
223 1.22 jtc struct timespec ts;
224 1.22 jtc int error = 0;
225 1.22 jtc
226 1.22 jtc clock_id = SCARG(uap, clock_id);
227 1.22 jtc if (clock_id != CLOCK_REALTIME)
228 1.22 jtc return (EINVAL);
229 1.22 jtc
230 1.22 jtc if (SCARG(uap, tp)) {
231 1.22 jtc ts.tv_sec = 0;
232 1.22 jtc ts.tv_nsec = 1000000000 / hz;
233 1.22 jtc
234 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
235 1.22 jtc }
236 1.22 jtc
237 1.22 jtc return error;
238 1.22 jtc }
239 1.22 jtc
240 1.27 jtc /* ARGSUSED */
241 1.27 jtc int
242 1.54.2.1 nathanw sys_nanosleep(l, v, retval)
243 1.54.2.1 nathanw struct lwp *l;
244 1.27 jtc void *v;
245 1.27 jtc register_t *retval;
246 1.27 jtc {
247 1.27 jtc static int nanowait;
248 1.45 augustss struct sys_nanosleep_args/* {
249 1.27 jtc syscallarg(struct timespec *) rqtp;
250 1.27 jtc syscallarg(struct timespec *) rmtp;
251 1.27 jtc } */ *uap = v;
252 1.27 jtc struct timespec rqt;
253 1.27 jtc struct timespec rmt;
254 1.27 jtc struct timeval atv, utv;
255 1.27 jtc int error, s, timo;
256 1.27 jtc
257 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
258 1.27 jtc sizeof(struct timespec));
259 1.27 jtc if (error)
260 1.27 jtc return (error);
261 1.27 jtc
262 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
263 1.27 jtc if (itimerfix(&atv))
264 1.27 jtc return (EINVAL);
265 1.27 jtc
266 1.27 jtc s = splclock();
267 1.27 jtc timeradd(&atv,&time,&atv);
268 1.27 jtc timo = hzto(&atv);
269 1.27 jtc /*
270 1.27 jtc * Avoid inadvertantly sleeping forever
271 1.27 jtc */
272 1.27 jtc if (timo == 0)
273 1.27 jtc timo = 1;
274 1.27 jtc splx(s);
275 1.27 jtc
276 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
277 1.27 jtc if (error == ERESTART)
278 1.27 jtc error = EINTR;
279 1.27 jtc if (error == EWOULDBLOCK)
280 1.27 jtc error = 0;
281 1.27 jtc
282 1.27 jtc if (SCARG(uap, rmtp)) {
283 1.28 jtc int error;
284 1.28 jtc
285 1.27 jtc s = splclock();
286 1.27 jtc utv = time;
287 1.27 jtc splx(s);
288 1.27 jtc
289 1.27 jtc timersub(&atv, &utv, &utv);
290 1.27 jtc if (utv.tv_sec < 0)
291 1.27 jtc timerclear(&utv);
292 1.27 jtc
293 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
294 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
295 1.28 jtc sizeof(rmt));
296 1.28 jtc if (error)
297 1.28 jtc return (error);
298 1.27 jtc }
299 1.27 jtc
300 1.27 jtc return error;
301 1.27 jtc }
302 1.22 jtc
303 1.1 cgd /* ARGSUSED */
304 1.3 andrew int
305 1.54.2.1 nathanw sys_gettimeofday(l, v, retval)
306 1.54.2.1 nathanw struct lwp *l;
307 1.15 thorpej void *v;
308 1.15 thorpej register_t *retval;
309 1.15 thorpej {
310 1.45 augustss struct sys_gettimeofday_args /* {
311 1.11 cgd syscallarg(struct timeval *) tp;
312 1.11 cgd syscallarg(struct timezone *) tzp;
313 1.15 thorpej } */ *uap = v;
314 1.1 cgd struct timeval atv;
315 1.1 cgd int error = 0;
316 1.25 perry struct timezone tzfake;
317 1.1 cgd
318 1.11 cgd if (SCARG(uap, tp)) {
319 1.1 cgd microtime(&atv);
320 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
321 1.17 christos if (error)
322 1.1 cgd return (error);
323 1.1 cgd }
324 1.25 perry if (SCARG(uap, tzp)) {
325 1.25 perry /*
326 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
327 1.25 perry * fake up a timezone struct and return it if demanded.
328 1.25 perry */
329 1.25 perry tzfake.tz_minuteswest = 0;
330 1.25 perry tzfake.tz_dsttime = 0;
331 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
332 1.25 perry }
333 1.1 cgd return (error);
334 1.1 cgd }
335 1.1 cgd
336 1.1 cgd /* ARGSUSED */
337 1.3 andrew int
338 1.54.2.1 nathanw sys_settimeofday(l, v, retval)
339 1.54.2.1 nathanw struct lwp *l;
340 1.15 thorpej void *v;
341 1.15 thorpej register_t *retval;
342 1.15 thorpej {
343 1.16 mycroft struct sys_settimeofday_args /* {
344 1.24 cgd syscallarg(const struct timeval *) tv;
345 1.24 cgd syscallarg(const struct timezone *) tzp;
346 1.15 thorpej } */ *uap = v;
347 1.54.2.1 nathanw struct proc *p = l->l_proc;
348 1.22 jtc struct timeval atv;
349 1.1 cgd struct timezone atz;
350 1.22 jtc int error;
351 1.1 cgd
352 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
353 1.1 cgd return (error);
354 1.8 cgd /* Verify all parameters before changing time. */
355 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
356 1.24 cgd &atv, sizeof(atv))))
357 1.8 cgd return (error);
358 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
359 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
360 1.24 cgd &atz, sizeof(atz))))
361 1.8 cgd return (error);
362 1.22 jtc if (SCARG(uap, tv))
363 1.29 tls if ((error = settime(&atv)))
364 1.29 tls return (error);
365 1.25 perry /*
366 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
367 1.25 perry * obsolete program would try to set it, so we log a warning.
368 1.25 perry */
369 1.11 cgd if (SCARG(uap, tzp))
370 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
371 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
372 1.8 cgd return (0);
373 1.1 cgd }
374 1.1 cgd
375 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
376 1.1 cgd long timedelta; /* unapplied time correction, us. */
377 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
378 1.1 cgd
379 1.1 cgd /* ARGSUSED */
380 1.3 andrew int
381 1.54.2.1 nathanw sys_adjtime(l, v, retval)
382 1.54.2.1 nathanw struct lwp *l;
383 1.15 thorpej void *v;
384 1.15 thorpej register_t *retval;
385 1.15 thorpej {
386 1.45 augustss struct sys_adjtime_args /* {
387 1.24 cgd syscallarg(const struct timeval *) delta;
388 1.11 cgd syscallarg(struct timeval *) olddelta;
389 1.15 thorpej } */ *uap = v;
390 1.54.2.1 nathanw struct proc *p = l->l_proc;
391 1.8 cgd struct timeval atv;
392 1.45 augustss long ndelta, ntickdelta, odelta;
393 1.1 cgd int s, error;
394 1.1 cgd
395 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
396 1.1 cgd return (error);
397 1.17 christos
398 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
399 1.17 christos if (error)
400 1.1 cgd return (error);
401 1.37 thorpej if (SCARG(uap, olddelta) != NULL &&
402 1.37 thorpej uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
403 1.37 thorpej B_WRITE) == FALSE)
404 1.37 thorpej return (EFAULT);
405 1.8 cgd
406 1.8 cgd /*
407 1.8 cgd * Compute the total correction and the rate at which to apply it.
408 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
409 1.8 cgd * delta, so that after some number of incremental changes in
410 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
411 1.8 cgd * overshoot and start taking us away from the desired final time.
412 1.8 cgd */
413 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
414 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
415 1.8 cgd ntickdelta = 10 * tickadj;
416 1.8 cgd else
417 1.8 cgd ntickdelta = tickadj;
418 1.8 cgd if (ndelta % ntickdelta)
419 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
420 1.8 cgd
421 1.8 cgd /*
422 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
423 1.8 cgd * if we want time to run slower; then hardclock can simply compute
424 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
425 1.8 cgd */
426 1.8 cgd if (ndelta < 0)
427 1.8 cgd ntickdelta = -ntickdelta;
428 1.1 cgd s = splclock();
429 1.8 cgd odelta = timedelta;
430 1.1 cgd timedelta = ndelta;
431 1.8 cgd tickdelta = ntickdelta;
432 1.1 cgd splx(s);
433 1.1 cgd
434 1.11 cgd if (SCARG(uap, olddelta)) {
435 1.8 cgd atv.tv_sec = odelta / 1000000;
436 1.8 cgd atv.tv_usec = odelta % 1000000;
437 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
438 1.8 cgd sizeof(struct timeval));
439 1.8 cgd }
440 1.1 cgd return (0);
441 1.1 cgd }
442 1.1 cgd
443 1.1 cgd /*
444 1.1 cgd * Get value of an interval timer. The process virtual and
445 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
446 1.1 cgd * they can be swapped out. These are kept internally in the
447 1.1 cgd * way they are specified externally: in time until they expire.
448 1.1 cgd *
449 1.1 cgd * The real time interval timer is kept in the process table slot
450 1.1 cgd * for the process, and its value (it_value) is kept as an
451 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
452 1.1 cgd * periodic real-time signals from drifting.
453 1.1 cgd *
454 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
455 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
456 1.1 cgd * routine, called from the softclock() routine. Since a callout
457 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
458 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
459 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
460 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
461 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
462 1.1 cgd * absolute time the timer should go off.
463 1.1 cgd */
464 1.1 cgd /* ARGSUSED */
465 1.3 andrew int
466 1.54.2.1 nathanw sys_getitimer(l, v, retval)
467 1.54.2.1 nathanw struct lwp *l;
468 1.15 thorpej void *v;
469 1.15 thorpej register_t *retval;
470 1.15 thorpej {
471 1.45 augustss struct sys_getitimer_args /* {
472 1.30 mycroft syscallarg(int) which;
473 1.11 cgd syscallarg(struct itimerval *) itv;
474 1.15 thorpej } */ *uap = v;
475 1.54.2.1 nathanw struct proc *p = l->l_proc;
476 1.30 mycroft int which = SCARG(uap, which);
477 1.1 cgd struct itimerval aitv;
478 1.1 cgd int s;
479 1.1 cgd
480 1.30 mycroft if ((u_int)which > ITIMER_PROF)
481 1.1 cgd return (EINVAL);
482 1.1 cgd s = splclock();
483 1.30 mycroft if (which == ITIMER_REAL) {
484 1.1 cgd /*
485 1.12 mycroft * Convert from absolute to relative time in .it_value
486 1.1 cgd * part of real time timer. If time for real time timer
487 1.1 cgd * has passed return 0, else return difference between
488 1.1 cgd * current time and time for the timer to go off.
489 1.1 cgd */
490 1.1 cgd aitv = p->p_realtimer;
491 1.36 thorpej if (timerisset(&aitv.it_value)) {
492 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
493 1.1 cgd timerclear(&aitv.it_value);
494 1.1 cgd else
495 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
496 1.36 thorpej }
497 1.1 cgd } else
498 1.30 mycroft aitv = p->p_stats->p_timer[which];
499 1.1 cgd splx(s);
500 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
501 1.1 cgd }
502 1.1 cgd
503 1.1 cgd /* ARGSUSED */
504 1.3 andrew int
505 1.54.2.1 nathanw sys_setitimer(l, v, retval)
506 1.54.2.1 nathanw struct lwp *l;
507 1.45 augustss void *v;
508 1.15 thorpej register_t *retval;
509 1.15 thorpej {
510 1.45 augustss struct sys_setitimer_args /* {
511 1.30 mycroft syscallarg(int) which;
512 1.24 cgd syscallarg(const struct itimerval *) itv;
513 1.11 cgd syscallarg(struct itimerval *) oitv;
514 1.15 thorpej } */ *uap = v;
515 1.54.2.1 nathanw struct proc *p = l->l_proc;
516 1.30 mycroft int which = SCARG(uap, which);
517 1.21 cgd struct sys_getitimer_args getargs;
518 1.1 cgd struct itimerval aitv;
519 1.45 augustss const struct itimerval *itvp;
520 1.1 cgd int s, error;
521 1.1 cgd
522 1.30 mycroft if ((u_int)which > ITIMER_PROF)
523 1.1 cgd return (EINVAL);
524 1.11 cgd itvp = SCARG(uap, itv);
525 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
526 1.1 cgd return (error);
527 1.21 cgd if (SCARG(uap, oitv) != NULL) {
528 1.30 mycroft SCARG(&getargs, which) = which;
529 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
530 1.54.2.1 nathanw if ((error = sys_getitimer(l, &getargs, retval)) != 0)
531 1.21 cgd return (error);
532 1.21 cgd }
533 1.1 cgd if (itvp == 0)
534 1.1 cgd return (0);
535 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
536 1.1 cgd return (EINVAL);
537 1.1 cgd s = splclock();
538 1.30 mycroft if (which == ITIMER_REAL) {
539 1.44 thorpej callout_stop(&p->p_realit_ch);
540 1.1 cgd if (timerisset(&aitv.it_value)) {
541 1.52 thorpej /*
542 1.52 thorpej * Don't need to check hzto() return value, here.
543 1.52 thorpej * callout_reset() does it for us.
544 1.52 thorpej */
545 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
546 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
547 1.44 thorpej realitexpire, p);
548 1.1 cgd }
549 1.1 cgd p->p_realtimer = aitv;
550 1.1 cgd } else
551 1.30 mycroft p->p_stats->p_timer[which] = aitv;
552 1.1 cgd splx(s);
553 1.1 cgd return (0);
554 1.1 cgd }
555 1.1 cgd
556 1.1 cgd /*
557 1.1 cgd * Real interval timer expired:
558 1.1 cgd * send process whose timer expired an alarm signal.
559 1.1 cgd * If time is not set up to reload, then just return.
560 1.1 cgd * Else compute next time timer should go off which is > current time.
561 1.1 cgd * This is where delay in processing this timeout causes multiple
562 1.1 cgd * SIGALRM calls to be compressed into one.
563 1.1 cgd */
564 1.3 andrew void
565 1.6 cgd realitexpire(arg)
566 1.6 cgd void *arg;
567 1.6 cgd {
568 1.45 augustss struct proc *p;
569 1.1 cgd int s;
570 1.1 cgd
571 1.6 cgd p = (struct proc *)arg;
572 1.1 cgd psignal(p, SIGALRM);
573 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
574 1.1 cgd timerclear(&p->p_realtimer.it_value);
575 1.1 cgd return;
576 1.1 cgd }
577 1.1 cgd for (;;) {
578 1.1 cgd s = splclock();
579 1.14 mycroft timeradd(&p->p_realtimer.it_value,
580 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
581 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
582 1.52 thorpej /*
583 1.52 thorpej * Don't need to check hzto() return value, here.
584 1.52 thorpej * callout_reset() does it for us.
585 1.52 thorpej */
586 1.44 thorpej callout_reset(&p->p_realit_ch,
587 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
588 1.1 cgd splx(s);
589 1.1 cgd return;
590 1.1 cgd }
591 1.1 cgd splx(s);
592 1.1 cgd }
593 1.1 cgd }
594 1.1 cgd
595 1.1 cgd /*
596 1.1 cgd * Check that a proposed value to load into the .it_value or
597 1.1 cgd * .it_interval part of an interval timer is acceptable, and
598 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
599 1.1 cgd * than the resolution of the clock, round it up.)
600 1.1 cgd */
601 1.3 andrew int
602 1.1 cgd itimerfix(tv)
603 1.1 cgd struct timeval *tv;
604 1.1 cgd {
605 1.1 cgd
606 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
607 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
608 1.1 cgd return (EINVAL);
609 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
610 1.1 cgd tv->tv_usec = tick;
611 1.1 cgd return (0);
612 1.1 cgd }
613 1.1 cgd
614 1.1 cgd /*
615 1.1 cgd * Decrement an interval timer by a specified number
616 1.1 cgd * of microseconds, which must be less than a second,
617 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
618 1.1 cgd * it. In this case, carry over (usec - old value) to
619 1.8 cgd * reduce the value reloaded into the timer so that
620 1.1 cgd * the timer does not drift. This routine assumes
621 1.1 cgd * that it is called in a context where the timers
622 1.1 cgd * on which it is operating cannot change in value.
623 1.1 cgd */
624 1.3 andrew int
625 1.1 cgd itimerdecr(itp, usec)
626 1.45 augustss struct itimerval *itp;
627 1.1 cgd int usec;
628 1.1 cgd {
629 1.1 cgd
630 1.1 cgd if (itp->it_value.tv_usec < usec) {
631 1.1 cgd if (itp->it_value.tv_sec == 0) {
632 1.1 cgd /* expired, and already in next interval */
633 1.1 cgd usec -= itp->it_value.tv_usec;
634 1.1 cgd goto expire;
635 1.1 cgd }
636 1.1 cgd itp->it_value.tv_usec += 1000000;
637 1.1 cgd itp->it_value.tv_sec--;
638 1.1 cgd }
639 1.1 cgd itp->it_value.tv_usec -= usec;
640 1.1 cgd usec = 0;
641 1.1 cgd if (timerisset(&itp->it_value))
642 1.1 cgd return (1);
643 1.1 cgd /* expired, exactly at end of interval */
644 1.1 cgd expire:
645 1.1 cgd if (timerisset(&itp->it_interval)) {
646 1.1 cgd itp->it_value = itp->it_interval;
647 1.1 cgd itp->it_value.tv_usec -= usec;
648 1.1 cgd if (itp->it_value.tv_usec < 0) {
649 1.1 cgd itp->it_value.tv_usec += 1000000;
650 1.1 cgd itp->it_value.tv_sec--;
651 1.1 cgd }
652 1.1 cgd } else
653 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
654 1.1 cgd return (0);
655 1.42 cgd }
656 1.42 cgd
657 1.42 cgd /*
658 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
659 1.42 cgd * for usage and rationale.
660 1.42 cgd */
661 1.42 cgd int
662 1.42 cgd ratecheck(lasttime, mininterval)
663 1.42 cgd struct timeval *lasttime;
664 1.42 cgd const struct timeval *mininterval;
665 1.42 cgd {
666 1.49 itojun struct timeval tv, delta;
667 1.42 cgd int s, rv = 0;
668 1.42 cgd
669 1.42 cgd s = splclock();
670 1.49 itojun tv = mono_time;
671 1.49 itojun splx(s);
672 1.49 itojun
673 1.49 itojun timersub(&tv, lasttime, &delta);
674 1.42 cgd
675 1.42 cgd /*
676 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
677 1.42 cgd * even if interval is huge.
678 1.42 cgd */
679 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
680 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
681 1.49 itojun *lasttime = tv;
682 1.42 cgd rv = 1;
683 1.42 cgd }
684 1.50 itojun
685 1.50 itojun return (rv);
686 1.50 itojun }
687 1.50 itojun
688 1.50 itojun /*
689 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
690 1.50 itojun */
691 1.50 itojun int
692 1.50 itojun ppsratecheck(lasttime, curpps, maxpps)
693 1.50 itojun struct timeval *lasttime;
694 1.50 itojun int *curpps;
695 1.50 itojun int maxpps; /* maximum pps allowed */
696 1.50 itojun {
697 1.50 itojun struct timeval tv, delta;
698 1.50 itojun int s, rv;
699 1.50 itojun
700 1.50 itojun s = splclock();
701 1.50 itojun tv = mono_time;
702 1.50 itojun splx(s);
703 1.50 itojun
704 1.50 itojun timersub(&tv, lasttime, &delta);
705 1.50 itojun
706 1.50 itojun /*
707 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
708 1.50 itojun * if more than one second have passed since the last update of
709 1.50 itojun * lasttime, reset the counter.
710 1.50 itojun *
711 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
712 1.50 itojun * try to use *curpps for stat purposes as well.
713 1.50 itojun */
714 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
715 1.50 itojun delta.tv_sec >= 1) {
716 1.50 itojun *lasttime = tv;
717 1.50 itojun *curpps = 0;
718 1.50 itojun rv = 1;
719 1.53 itojun } else if (maxpps < 0)
720 1.53 itojun rv = 1;
721 1.53 itojun else if (*curpps < maxpps)
722 1.50 itojun rv = 1;
723 1.50 itojun else
724 1.50 itojun rv = 0;
725 1.50 itojun
726 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
727 1.50 itojun /* be careful about wrap-around */
728 1.50 itojun if (*curpps + 1 > *curpps)
729 1.50 itojun *curpps = *curpps + 1;
730 1.50 itojun #else
731 1.50 itojun /*
732 1.50 itojun * assume that there's not too many calls to this function.
733 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
734 1.50 itojun * behavior, not the behavior of this function.
735 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
736 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
737 1.50 itojun */
738 1.50 itojun *curpps = *curpps + 1;
739 1.50 itojun #endif
740 1.42 cgd
741 1.42 cgd return (rv);
742 1.1 cgd }
743