kern_time.c revision 1.54.2.20 1 1.54.2.20 nathanw /* $NetBSD: kern_time.c,v 1.54.2.20 2002/10/27 21:12:38 nathanw Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.54.2.4 nathanw #include <sys/cdefs.h>
75 1.54.2.20 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.20 2002/10/27 21:12:38 nathanw Exp $");
76 1.54.2.4 nathanw
77 1.31 thorpej #include "fs_nfs.h"
78 1.54 bjh21 #include "opt_nfs.h"
79 1.34 thorpej #include "opt_nfsserver.h"
80 1.1 cgd
81 1.5 mycroft #include <sys/param.h>
82 1.5 mycroft #include <sys/resourcevar.h>
83 1.5 mycroft #include <sys/kernel.h>
84 1.8 cgd #include <sys/systm.h>
85 1.54.2.5 nathanw #include <sys/malloc.h>
86 1.5 mycroft #include <sys/proc.h>
87 1.54.2.5 nathanw #include <sys/sa.h>
88 1.54.2.5 nathanw #include <sys/savar.h>
89 1.8 cgd #include <sys/vnode.h>
90 1.17 christos #include <sys/signalvar.h>
91 1.25 perry #include <sys/syslog.h>
92 1.1 cgd
93 1.11 cgd #include <sys/mount.h>
94 1.11 cgd #include <sys/syscallargs.h>
95 1.19 christos
96 1.37 thorpej #include <uvm/uvm_extern.h>
97 1.37 thorpej
98 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
99 1.20 fvdl #include <nfs/rpcv2.h>
100 1.20 fvdl #include <nfs/nfsproto.h>
101 1.19 christos #include <nfs/nfs_var.h>
102 1.19 christos #endif
103 1.17 christos
104 1.5 mycroft #include <machine/cpu.h>
105 1.23 cgd
106 1.54.2.19 nathanw static void timerupcall(struct lwp *, void *);
107 1.54.2.5 nathanw
108 1.54.2.5 nathanw
109 1.54.2.5 nathanw /* Time of day and interval timer support.
110 1.1 cgd *
111 1.1 cgd * These routines provide the kernel entry points to get and set
112 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
113 1.1 cgd * here provide support for adding and subtracting timeval structures
114 1.1 cgd * and decrementing interval timers, optionally reloading the interval
115 1.1 cgd * timers when they expire.
116 1.1 cgd */
117 1.1 cgd
118 1.22 jtc /* This function is used by clock_settime and settimeofday */
119 1.39 tron int
120 1.54.2.5 nathanw settime(struct timeval *tv)
121 1.22 jtc {
122 1.22 jtc struct timeval delta;
123 1.47 thorpej struct cpu_info *ci;
124 1.22 jtc int s;
125 1.22 jtc
126 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
127 1.22 jtc s = splclock();
128 1.22 jtc timersub(tv, &time, &delta);
129 1.54.2.2 nathanw if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
130 1.54.2.2 nathanw splx(s);
131 1.29 tls return (EPERM);
132 1.54.2.2 nathanw }
133 1.29 tls #ifdef notyet
134 1.54.2.2 nathanw if ((delta.tv_sec < 86400) && securelevel > 0) {
135 1.54.2.2 nathanw splx(s);
136 1.29 tls return (EPERM);
137 1.54.2.2 nathanw }
138 1.29 tls #endif
139 1.22 jtc time = *tv;
140 1.38 thorpej (void) spllowersoftclock();
141 1.22 jtc timeradd(&boottime, &delta, &boottime);
142 1.47 thorpej /*
143 1.47 thorpej * XXXSMP
144 1.47 thorpej * This is wrong. We should traverse a list of all
145 1.47 thorpej * CPUs and add the delta to the runtime of those
146 1.47 thorpej * CPUs which have a process on them.
147 1.47 thorpej */
148 1.47 thorpej ci = curcpu();
149 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
150 1.47 thorpej &ci->ci_schedstate.spc_runtime);
151 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
152 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
153 1.22 jtc # endif
154 1.22 jtc splx(s);
155 1.22 jtc resettodr();
156 1.29 tls return (0);
157 1.22 jtc }
158 1.22 jtc
159 1.22 jtc /* ARGSUSED */
160 1.22 jtc int
161 1.54.2.5 nathanw sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
162 1.22 jtc {
163 1.45 augustss struct sys_clock_gettime_args /* {
164 1.22 jtc syscallarg(clockid_t) clock_id;
165 1.23 cgd syscallarg(struct timespec *) tp;
166 1.23 cgd } */ *uap = v;
167 1.22 jtc clockid_t clock_id;
168 1.22 jtc struct timeval atv;
169 1.22 jtc struct timespec ats;
170 1.54.2.11 nathanw int s;
171 1.22 jtc
172 1.22 jtc clock_id = SCARG(uap, clock_id);
173 1.54.2.11 nathanw switch (clock_id) {
174 1.54.2.11 nathanw case CLOCK_REALTIME:
175 1.54.2.11 nathanw microtime(&atv);
176 1.54.2.11 nathanw TIMEVAL_TO_TIMESPEC(&atv,&ats);
177 1.54.2.11 nathanw break;
178 1.54.2.11 nathanw case CLOCK_MONOTONIC:
179 1.54.2.11 nathanw /* XXX "hz" granularity */
180 1.54.2.20 nathanw s = splclock();
181 1.54.2.11 nathanw atv = mono_time;
182 1.54.2.11 nathanw splx(s);
183 1.54.2.11 nathanw TIMEVAL_TO_TIMESPEC(&atv,&ats);
184 1.54.2.11 nathanw break;
185 1.54.2.11 nathanw default:
186 1.22 jtc return (EINVAL);
187 1.54.2.11 nathanw }
188 1.22 jtc
189 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
190 1.22 jtc }
191 1.22 jtc
192 1.22 jtc /* ARGSUSED */
193 1.22 jtc int
194 1.54.2.1 nathanw sys_clock_settime(l, v, retval)
195 1.54.2.1 nathanw struct lwp *l;
196 1.22 jtc void *v;
197 1.22 jtc register_t *retval;
198 1.22 jtc {
199 1.45 augustss struct sys_clock_settime_args /* {
200 1.22 jtc syscallarg(clockid_t) clock_id;
201 1.23 cgd syscallarg(const struct timespec *) tp;
202 1.23 cgd } */ *uap = v;
203 1.54.2.1 nathanw struct proc *p = l->l_proc;
204 1.22 jtc int error;
205 1.22 jtc
206 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
207 1.22 jtc return (error);
208 1.22 jtc
209 1.54.2.6 nathanw return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
210 1.54.2.3 nathanw }
211 1.54.2.3 nathanw
212 1.54.2.3 nathanw
213 1.54.2.3 nathanw int
214 1.54.2.6 nathanw clock_settime1(clock_id, tp)
215 1.54.2.6 nathanw clockid_t clock_id;
216 1.54.2.6 nathanw const struct timespec *tp;
217 1.54.2.3 nathanw {
218 1.54.2.6 nathanw struct timespec ats;
219 1.54.2.3 nathanw struct timeval atv;
220 1.54.2.3 nathanw int error;
221 1.54.2.3 nathanw
222 1.54.2.6 nathanw if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
223 1.54.2.6 nathanw return (error);
224 1.54.2.6 nathanw
225 1.54.2.11 nathanw switch (clock_id) {
226 1.54.2.11 nathanw case CLOCK_REALTIME:
227 1.54.2.11 nathanw TIMESPEC_TO_TIMEVAL(&atv, &ats);
228 1.54.2.11 nathanw if ((error = settime(&atv)) != 0)
229 1.54.2.11 nathanw return (error);
230 1.54.2.11 nathanw break;
231 1.54.2.11 nathanw case CLOCK_MONOTONIC:
232 1.54.2.11 nathanw return (EINVAL); /* read-only clock */
233 1.54.2.11 nathanw default:
234 1.54.2.3 nathanw return (EINVAL);
235 1.54.2.11 nathanw }
236 1.22 jtc
237 1.22 jtc return 0;
238 1.22 jtc }
239 1.22 jtc
240 1.22 jtc int
241 1.54.2.5 nathanw sys_clock_getres(struct lwp *l, void *v, register_t *retval)
242 1.22 jtc {
243 1.45 augustss struct sys_clock_getres_args /* {
244 1.22 jtc syscallarg(clockid_t) clock_id;
245 1.23 cgd syscallarg(struct timespec *) tp;
246 1.23 cgd } */ *uap = v;
247 1.22 jtc clockid_t clock_id;
248 1.22 jtc struct timespec ts;
249 1.22 jtc int error = 0;
250 1.22 jtc
251 1.22 jtc clock_id = SCARG(uap, clock_id);
252 1.54.2.11 nathanw switch (clock_id) {
253 1.54.2.11 nathanw case CLOCK_REALTIME:
254 1.54.2.11 nathanw case CLOCK_MONOTONIC:
255 1.22 jtc ts.tv_sec = 0;
256 1.22 jtc ts.tv_nsec = 1000000000 / hz;
257 1.54.2.11 nathanw break;
258 1.54.2.11 nathanw default:
259 1.54.2.11 nathanw return (EINVAL);
260 1.54.2.11 nathanw }
261 1.22 jtc
262 1.54.2.11 nathanw if (SCARG(uap, tp))
263 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
264 1.22 jtc
265 1.22 jtc return error;
266 1.22 jtc }
267 1.22 jtc
268 1.27 jtc /* ARGSUSED */
269 1.27 jtc int
270 1.54.2.5 nathanw sys_nanosleep(struct lwp *l, void *v, register_t *retval)
271 1.27 jtc {
272 1.27 jtc static int nanowait;
273 1.45 augustss struct sys_nanosleep_args/* {
274 1.27 jtc syscallarg(struct timespec *) rqtp;
275 1.27 jtc syscallarg(struct timespec *) rmtp;
276 1.27 jtc } */ *uap = v;
277 1.27 jtc struct timespec rqt;
278 1.27 jtc struct timespec rmt;
279 1.27 jtc struct timeval atv, utv;
280 1.27 jtc int error, s, timo;
281 1.27 jtc
282 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
283 1.27 jtc sizeof(struct timespec));
284 1.27 jtc if (error)
285 1.27 jtc return (error);
286 1.27 jtc
287 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
288 1.54.2.4 nathanw if (itimerfix(&atv) || atv.tv_sec > 1000000000)
289 1.27 jtc return (EINVAL);
290 1.27 jtc
291 1.27 jtc s = splclock();
292 1.27 jtc timeradd(&atv,&time,&atv);
293 1.27 jtc timo = hzto(&atv);
294 1.54.2.20 nathanw /*
295 1.27 jtc * Avoid inadvertantly sleeping forever
296 1.27 jtc */
297 1.27 jtc if (timo == 0)
298 1.27 jtc timo = 1;
299 1.27 jtc splx(s);
300 1.27 jtc
301 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
302 1.27 jtc if (error == ERESTART)
303 1.27 jtc error = EINTR;
304 1.27 jtc if (error == EWOULDBLOCK)
305 1.27 jtc error = 0;
306 1.27 jtc
307 1.27 jtc if (SCARG(uap, rmtp)) {
308 1.28 jtc int error;
309 1.28 jtc
310 1.27 jtc s = splclock();
311 1.27 jtc utv = time;
312 1.27 jtc splx(s);
313 1.27 jtc
314 1.27 jtc timersub(&atv, &utv, &utv);
315 1.27 jtc if (utv.tv_sec < 0)
316 1.27 jtc timerclear(&utv);
317 1.27 jtc
318 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
319 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
320 1.28 jtc sizeof(rmt));
321 1.28 jtc if (error)
322 1.28 jtc return (error);
323 1.27 jtc }
324 1.27 jtc
325 1.27 jtc return error;
326 1.27 jtc }
327 1.22 jtc
328 1.1 cgd /* ARGSUSED */
329 1.3 andrew int
330 1.54.2.5 nathanw sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
331 1.15 thorpej {
332 1.45 augustss struct sys_gettimeofday_args /* {
333 1.11 cgd syscallarg(struct timeval *) tp;
334 1.11 cgd syscallarg(struct timezone *) tzp;
335 1.15 thorpej } */ *uap = v;
336 1.1 cgd struct timeval atv;
337 1.1 cgd int error = 0;
338 1.25 perry struct timezone tzfake;
339 1.1 cgd
340 1.11 cgd if (SCARG(uap, tp)) {
341 1.1 cgd microtime(&atv);
342 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
343 1.17 christos if (error)
344 1.1 cgd return (error);
345 1.1 cgd }
346 1.25 perry if (SCARG(uap, tzp)) {
347 1.25 perry /*
348 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
349 1.25 perry * fake up a timezone struct and return it if demanded.
350 1.25 perry */
351 1.25 perry tzfake.tz_minuteswest = 0;
352 1.25 perry tzfake.tz_dsttime = 0;
353 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
354 1.25 perry }
355 1.1 cgd return (error);
356 1.1 cgd }
357 1.1 cgd
358 1.1 cgd /* ARGSUSED */
359 1.3 andrew int
360 1.54.2.5 nathanw sys_settimeofday(struct lwp *l, void *v, register_t *retval)
361 1.15 thorpej {
362 1.16 mycroft struct sys_settimeofday_args /* {
363 1.24 cgd syscallarg(const struct timeval *) tv;
364 1.24 cgd syscallarg(const struct timezone *) tzp;
365 1.15 thorpej } */ *uap = v;
366 1.54.2.1 nathanw struct proc *p = l->l_proc;
367 1.54.2.6 nathanw int error;
368 1.54.2.6 nathanw
369 1.54.2.6 nathanw if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 1.54.2.6 nathanw return (error);
371 1.54.2.6 nathanw
372 1.54.2.6 nathanw return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
373 1.54.2.6 nathanw }
374 1.54.2.6 nathanw
375 1.54.2.6 nathanw int
376 1.54.2.6 nathanw settimeofday1(utv, utzp, p)
377 1.54.2.6 nathanw const struct timeval *utv;
378 1.54.2.6 nathanw const struct timezone *utzp;
379 1.54.2.6 nathanw struct proc *p;
380 1.54.2.6 nathanw {
381 1.22 jtc struct timeval atv;
382 1.1 cgd struct timezone atz;
383 1.54.2.3 nathanw struct timeval *tv = NULL;
384 1.54.2.3 nathanw struct timezone *tzp = NULL;
385 1.22 jtc int error;
386 1.1 cgd
387 1.8 cgd /* Verify all parameters before changing time. */
388 1.54.2.6 nathanw if (utv) {
389 1.54.2.6 nathanw if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
390 1.54.2.3 nathanw return (error);
391 1.54.2.3 nathanw tv = &atv;
392 1.54.2.3 nathanw }
393 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
394 1.54.2.6 nathanw if (utzp) {
395 1.54.2.6 nathanw if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
396 1.54.2.3 nathanw return (error);
397 1.54.2.3 nathanw tzp = &atz;
398 1.54.2.3 nathanw }
399 1.54.2.3 nathanw
400 1.54.2.3 nathanw if (tv)
401 1.54.2.3 nathanw if ((error = settime(tv)) != 0)
402 1.29 tls return (error);
403 1.25 perry /*
404 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
405 1.25 perry * obsolete program would try to set it, so we log a warning.
406 1.25 perry */
407 1.54.2.3 nathanw if (tzp)
408 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
409 1.54.2.20 nathanw "(obsolete) kernel time zone\n", p->p_pid);
410 1.8 cgd return (0);
411 1.1 cgd }
412 1.1 cgd
413 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
414 1.1 cgd long timedelta; /* unapplied time correction, us. */
415 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
416 1.1 cgd
417 1.1 cgd /* ARGSUSED */
418 1.3 andrew int
419 1.54.2.5 nathanw sys_adjtime(struct lwp *l, void *v, register_t *retval)
420 1.15 thorpej {
421 1.45 augustss struct sys_adjtime_args /* {
422 1.24 cgd syscallarg(const struct timeval *) delta;
423 1.11 cgd syscallarg(struct timeval *) olddelta;
424 1.15 thorpej } */ *uap = v;
425 1.54.2.1 nathanw struct proc *p = l->l_proc;
426 1.54.2.3 nathanw int error;
427 1.1 cgd
428 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
429 1.1 cgd return (error);
430 1.17 christos
431 1.54.2.6 nathanw return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
432 1.54.2.3 nathanw }
433 1.54.2.3 nathanw
434 1.54.2.3 nathanw int
435 1.54.2.6 nathanw adjtime1(delta, olddelta, p)
436 1.54.2.6 nathanw const struct timeval *delta;
437 1.54.2.6 nathanw struct timeval *olddelta;
438 1.54.2.6 nathanw struct proc *p;
439 1.54.2.3 nathanw {
440 1.54.2.6 nathanw struct timeval atv;
441 1.54.2.6 nathanw struct timeval *oatv = NULL;
442 1.54.2.3 nathanw long ndelta, ntickdelta, odelta;
443 1.54.2.6 nathanw int error;
444 1.54.2.3 nathanw int s;
445 1.8 cgd
446 1.54.2.6 nathanw error = copyin(delta, &atv, sizeof(struct timeval));
447 1.54.2.6 nathanw if (error)
448 1.54.2.6 nathanw return (error);
449 1.54.2.6 nathanw
450 1.54.2.6 nathanw if (olddelta != NULL) {
451 1.54.2.6 nathanw if (uvm_useracc((caddr_t)olddelta,
452 1.54.2.6 nathanw sizeof(struct timeval), B_WRITE) == FALSE)
453 1.54.2.6 nathanw return (EFAULT);
454 1.54.2.6 nathanw oatv = olddelta;
455 1.54.2.6 nathanw }
456 1.54.2.6 nathanw
457 1.8 cgd /*
458 1.8 cgd * Compute the total correction and the rate at which to apply it.
459 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
460 1.8 cgd * delta, so that after some number of incremental changes in
461 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
462 1.8 cgd * overshoot and start taking us away from the desired final time.
463 1.8 cgd */
464 1.54.2.6 nathanw ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
465 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
466 1.8 cgd ntickdelta = 10 * tickadj;
467 1.8 cgd else
468 1.8 cgd ntickdelta = tickadj;
469 1.8 cgd if (ndelta % ntickdelta)
470 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
471 1.8 cgd
472 1.8 cgd /*
473 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
474 1.8 cgd * if we want time to run slower; then hardclock can simply compute
475 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
476 1.8 cgd */
477 1.8 cgd if (ndelta < 0)
478 1.8 cgd ntickdelta = -ntickdelta;
479 1.1 cgd s = splclock();
480 1.8 cgd odelta = timedelta;
481 1.1 cgd timedelta = ndelta;
482 1.8 cgd tickdelta = ntickdelta;
483 1.1 cgd splx(s);
484 1.1 cgd
485 1.54.2.3 nathanw if (olddelta) {
486 1.54.2.6 nathanw atv.tv_sec = odelta / 1000000;
487 1.54.2.6 nathanw atv.tv_usec = odelta % 1000000;
488 1.54.2.6 nathanw (void) copyout(&atv, olddelta, sizeof(struct timeval));
489 1.8 cgd }
490 1.1 cgd return (0);
491 1.1 cgd }
492 1.1 cgd
493 1.1 cgd /*
494 1.54.2.5 nathanw * Interval timer support. Both the BSD getitimer() family and the POSIX
495 1.54.2.5 nathanw * timer_*() family of routines are supported.
496 1.54.2.20 nathanw *
497 1.54.2.5 nathanw * All timers are kept in an array pointed to by p_timers, which is
498 1.54.2.5 nathanw * allocated on demand - many processes don't use timers at all. The
499 1.54.2.5 nathanw * first three elements in this array are reserved for the BSD timers:
500 1.54.2.5 nathanw * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
501 1.54.2.5 nathanw * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
502 1.54.2.5 nathanw * syscall.
503 1.1 cgd *
504 1.54.2.5 nathanw * Realtime timers are kept in the ptimer structure as an absolute
505 1.54.2.19 nathanw * time; virtual time timers are kept as a linked list of deltas.
506 1.54.2.19 nathanw * Virtual time timers are processed in the hardclock() routine of
507 1.54.2.19 nathanw * kern_clock.c. The real time timer is processed by a callout
508 1.54.2.19 nathanw * routine, called from the softclock() routine. Since a callout may
509 1.54.2.19 nathanw * be delayed in real time due to interrupt processing in the system,
510 1.54.2.19 nathanw * it is possible for the real time timeout routine (realtimeexpire,
511 1.54.2.19 nathanw * given below), to be delayed in real time past when it is supposed
512 1.54.2.19 nathanw * to occur. It does not suffice, therefore, to reload the real timer
513 1.54.2.19 nathanw * .it_value from the real time timers .it_interval. Rather, we
514 1.54.2.19 nathanw * compute the next time in absolute time the timer should go off. */
515 1.54.2.5 nathanw
516 1.54.2.5 nathanw /* Allocate a POSIX realtime timer. */
517 1.54.2.5 nathanw int
518 1.54.2.5 nathanw sys_timer_create(struct lwp *l, void *v, register_t *retval)
519 1.54.2.5 nathanw {
520 1.54.2.5 nathanw struct sys_timer_create_args /* {
521 1.54.2.5 nathanw syscallarg(clockid_t) clock_id;
522 1.54.2.5 nathanw syscallarg(struct sigevent *) evp;
523 1.54.2.5 nathanw syscallarg(timer_t *) timerid;
524 1.54.2.5 nathanw } */ *uap = v;
525 1.54.2.5 nathanw struct proc *p = l->l_proc;
526 1.54.2.5 nathanw clockid_t id;
527 1.54.2.5 nathanw struct sigevent *evp;
528 1.54.2.5 nathanw struct ptimer *pt;
529 1.54.2.5 nathanw int timerid, error;
530 1.54.2.5 nathanw
531 1.54.2.5 nathanw id = SCARG(uap, clock_id);
532 1.54.2.19 nathanw if (id < CLOCK_REALTIME ||
533 1.54.2.19 nathanw id > CLOCK_PROF)
534 1.54.2.5 nathanw return (EINVAL);
535 1.54.2.5 nathanw
536 1.54.2.5 nathanw if (p->p_timers == NULL)
537 1.54.2.5 nathanw timers_alloc(p);
538 1.54.2.5 nathanw
539 1.54.2.19 nathanw /* Find a free timer slot, skipping those reserved for setitimer(). */
540 1.54.2.5 nathanw for (timerid = 3; timerid < TIMER_MAX; timerid++)
541 1.54.2.19 nathanw if (p->p_timers->pts_timers[timerid] == NULL)
542 1.54.2.5 nathanw break;
543 1.54.2.20 nathanw
544 1.54.2.5 nathanw if (timerid == TIMER_MAX)
545 1.54.2.5 nathanw return EAGAIN;
546 1.54.2.5 nathanw
547 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
548 1.54.2.5 nathanw evp = SCARG(uap, evp);
549 1.54.2.5 nathanw if (evp) {
550 1.54.2.20 nathanw if (((error =
551 1.54.2.5 nathanw copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
552 1.54.2.5 nathanw ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
553 1.54.2.7 nathanw (pt->pt_ev.sigev_notify > SIGEV_SA))) {
554 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
555 1.54.2.5 nathanw return (error ? error : EINVAL);
556 1.54.2.5 nathanw }
557 1.54.2.5 nathanw } else {
558 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
559 1.54.2.19 nathanw switch (id) {
560 1.54.2.19 nathanw case CLOCK_REALTIME:
561 1.54.2.19 nathanw pt->pt_ev.sigev_signo = SIGALRM;
562 1.54.2.19 nathanw break;
563 1.54.2.19 nathanw case CLOCK_VIRTUAL:
564 1.54.2.19 nathanw pt->pt_ev.sigev_signo = SIGVTALRM;
565 1.54.2.19 nathanw break;
566 1.54.2.19 nathanw case CLOCK_PROF:
567 1.54.2.19 nathanw pt->pt_ev.sigev_signo = SIGPROF;
568 1.54.2.19 nathanw break;
569 1.54.2.19 nathanw }
570 1.54.2.5 nathanw pt->pt_ev.sigev_value.sival_int = timerid;
571 1.54.2.5 nathanw }
572 1.54.2.10 nathanw pt->pt_info.si_signo = pt->pt_ev.sigev_signo;
573 1.54.2.10 nathanw pt->pt_info.si_errno = 0;
574 1.54.2.10 nathanw pt->pt_info.si_code = 0;
575 1.54.2.10 nathanw pt->pt_info.si_pid = p->p_pid;
576 1.54.2.10 nathanw pt->pt_info.si_uid = p->p_cred->p_ruid;
577 1.54.2.10 nathanw pt->pt_info.si_addr = NULL;
578 1.54.2.10 nathanw pt->pt_info.si_status = 0;
579 1.54.2.10 nathanw pt->pt_info.si_value = pt->pt_ev.sigev_value;
580 1.54.2.10 nathanw
581 1.54.2.19 nathanw pt->pt_type = id;
582 1.54.2.5 nathanw pt->pt_proc = p;
583 1.54.2.5 nathanw pt->pt_overruns = 0;
584 1.54.2.19 nathanw timerclear(&pt->pt_time.it_value);
585 1.54.2.19 nathanw if (id == CLOCK_REALTIME)
586 1.54.2.19 nathanw callout_init(&pt->pt_ch);
587 1.54.2.20 nathanw else
588 1.54.2.19 nathanw pt->pt_active = 0;
589 1.54.2.20 nathanw
590 1.54.2.19 nathanw p->p_timers->pts_timers[timerid] = pt;
591 1.54.2.19 nathanw
592 1.54.2.5 nathanw return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
593 1.54.2.5 nathanw }
594 1.54.2.20 nathanw
595 1.54.2.5 nathanw
596 1.54.2.5 nathanw /* Delete a POSIX realtime timer */
597 1.54.2.5 nathanw int
598 1.54.2.5 nathanw sys_timer_delete(struct lwp *l, void *v, register_t *retval)
599 1.54.2.5 nathanw {
600 1.54.2.5 nathanw struct sys_timer_delete_args /* {
601 1.54.2.5 nathanw syscallarg(timer_t) timerid;
602 1.54.2.5 nathanw } */ *uap = v;
603 1.54.2.5 nathanw struct proc *p = l->l_proc;
604 1.54.2.5 nathanw int timerid;
605 1.54.2.19 nathanw struct ptimer *pt, *ptn;
606 1.54.2.19 nathanw int s;
607 1.54.2.5 nathanw
608 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
609 1.54.2.5 nathanw
610 1.54.2.20 nathanw if ((p->p_timers == NULL) ||
611 1.54.2.20 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
612 1.54.2.19 nathanw ((pt = p->p_timers->pts_timers[timerid]) == NULL))
613 1.54.2.5 nathanw return (EINVAL);
614 1.54.2.5 nathanw
615 1.54.2.19 nathanw if (pt->pt_type == CLOCK_REALTIME)
616 1.54.2.19 nathanw callout_stop(&pt->pt_ch);
617 1.54.2.19 nathanw else if (pt->pt_active) {
618 1.54.2.19 nathanw s = splclock();
619 1.54.2.19 nathanw ptn = LIST_NEXT(pt, pt_list);
620 1.54.2.19 nathanw LIST_REMOVE(pt, pt_list);
621 1.54.2.19 nathanw for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
622 1.54.2.19 nathanw timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
623 1.54.2.19 nathanw &ptn->pt_time.it_value);
624 1.54.2.19 nathanw splx(s);
625 1.54.2.19 nathanw }
626 1.54.2.20 nathanw
627 1.54.2.19 nathanw p->p_timers->pts_timers[timerid] = NULL;
628 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
629 1.54.2.5 nathanw
630 1.54.2.5 nathanw return (0);
631 1.54.2.5 nathanw }
632 1.54.2.19 nathanw
633 1.54.2.19 nathanw /*
634 1.54.2.19 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken to be
635 1.54.2.19 nathanw * relative to now.
636 1.54.2.19 nathanw * Must be called at splclock().
637 1.54.2.19 nathanw */
638 1.54.2.19 nathanw void
639 1.54.2.19 nathanw timer_settime(struct ptimer *pt)
640 1.54.2.19 nathanw {
641 1.54.2.19 nathanw struct ptimer *ptn, *pptn;
642 1.54.2.19 nathanw struct ptlist *ptl;
643 1.54.2.19 nathanw
644 1.54.2.19 nathanw if (pt->pt_type == CLOCK_REALTIME) {
645 1.54.2.19 nathanw callout_stop(&pt->pt_ch);
646 1.54.2.19 nathanw if (timerisset(&pt->pt_time.it_value)) {
647 1.54.2.19 nathanw timeradd(&pt->pt_time.it_value, &time,
648 1.54.2.19 nathanw &pt->pt_time.it_value);
649 1.54.2.19 nathanw /*
650 1.54.2.19 nathanw * Don't need to check hzto() return value, here.
651 1.54.2.19 nathanw * callout_reset() does it for us.
652 1.54.2.19 nathanw */
653 1.54.2.20 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
654 1.54.2.19 nathanw realtimerexpire, pt);
655 1.54.2.19 nathanw }
656 1.54.2.19 nathanw } else {
657 1.54.2.19 nathanw if (pt->pt_active) {
658 1.54.2.19 nathanw ptn = LIST_NEXT(pt, pt_list);
659 1.54.2.19 nathanw LIST_REMOVE(pt, pt_list);
660 1.54.2.19 nathanw for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
661 1.54.2.19 nathanw timeradd(&pt->pt_time.it_value,
662 1.54.2.19 nathanw &ptn->pt_time.it_value,
663 1.54.2.19 nathanw &ptn->pt_time.it_value);
664 1.54.2.19 nathanw }
665 1.54.2.19 nathanw if (timerisset(&pt->pt_time.it_value)) {
666 1.54.2.19 nathanw if (pt->pt_type == CLOCK_VIRTUAL)
667 1.54.2.19 nathanw ptl = &pt->pt_proc->p_timers->pts_virtual;
668 1.54.2.19 nathanw else
669 1.54.2.19 nathanw ptl = &pt->pt_proc->p_timers->pts_prof;
670 1.54.2.19 nathanw
671 1.54.2.19 nathanw for (ptn = LIST_FIRST(ptl), pptn = NULL;
672 1.54.2.19 nathanw ptn && timercmp(&pt->pt_time.it_value,
673 1.54.2.19 nathanw &ptn->pt_time.it_value, >);
674 1.54.2.19 nathanw pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
675 1.54.2.19 nathanw timersub(&pt->pt_time.it_value,
676 1.54.2.19 nathanw &ptn->pt_time.it_value,
677 1.54.2.19 nathanw &pt->pt_time.it_value);
678 1.54.2.19 nathanw
679 1.54.2.19 nathanw if (pptn)
680 1.54.2.19 nathanw LIST_INSERT_AFTER(pptn, pt, pt_list);
681 1.54.2.19 nathanw else
682 1.54.2.19 nathanw LIST_INSERT_HEAD(ptl, pt, pt_list);
683 1.54.2.19 nathanw
684 1.54.2.19 nathanw for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
685 1.54.2.19 nathanw timersub(&ptn->pt_time.it_value,
686 1.54.2.19 nathanw &pt->pt_time.it_value,
687 1.54.2.19 nathanw &ptn->pt_time.it_value);
688 1.54.2.19 nathanw
689 1.54.2.19 nathanw pt->pt_active = 1;
690 1.54.2.19 nathanw } else
691 1.54.2.19 nathanw pt->pt_active = 0;
692 1.54.2.19 nathanw }
693 1.54.2.19 nathanw }
694 1.54.2.19 nathanw
695 1.54.2.19 nathanw void
696 1.54.2.19 nathanw timer_gettime(struct ptimer *pt, struct itimerval *aitv)
697 1.54.2.19 nathanw {
698 1.54.2.19 nathanw struct ptimer *ptn;
699 1.54.2.19 nathanw
700 1.54.2.19 nathanw *aitv = pt->pt_time;
701 1.54.2.19 nathanw if (pt->pt_type == CLOCK_REALTIME) {
702 1.54.2.19 nathanw /*
703 1.54.2.19 nathanw * Convert from absolute to relative time in .it_value
704 1.54.2.19 nathanw * part of real time timer. If time for real time
705 1.54.2.19 nathanw * timer has passed return 0, else return difference
706 1.54.2.19 nathanw * between current time and time for the timer to go
707 1.54.2.19 nathanw * off.
708 1.54.2.19 nathanw */
709 1.54.2.19 nathanw if (timerisset(&aitv->it_value)) {
710 1.54.2.19 nathanw if (timercmp(&aitv->it_value, &time, <))
711 1.54.2.19 nathanw timerclear(&aitv->it_value);
712 1.54.2.19 nathanw else
713 1.54.2.19 nathanw timersub(&aitv->it_value, &time,
714 1.54.2.19 nathanw &aitv->it_value);
715 1.54.2.19 nathanw }
716 1.54.2.19 nathanw } else if (pt->pt_active) {
717 1.54.2.19 nathanw if (pt->pt_type == CLOCK_VIRTUAL)
718 1.54.2.19 nathanw ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
719 1.54.2.19 nathanw else
720 1.54.2.19 nathanw ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
721 1.54.2.19 nathanw for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
722 1.54.2.19 nathanw timeradd(&aitv->it_value,
723 1.54.2.19 nathanw &ptn->pt_time.it_value, &aitv->it_value);
724 1.54.2.19 nathanw KASSERT(ptn != NULL); /* pt should be findable on the list */
725 1.54.2.19 nathanw } else
726 1.54.2.19 nathanw timerclear(&aitv->it_value);
727 1.54.2.19 nathanw }
728 1.54.2.19 nathanw
729 1.54.2.19 nathanw
730 1.54.2.19 nathanw
731 1.54.2.5 nathanw /* Set and arm a POSIX realtime timer */
732 1.54.2.5 nathanw int
733 1.54.2.5 nathanw sys_timer_settime(struct lwp *l, void *v, register_t *retval)
734 1.54.2.5 nathanw {
735 1.54.2.5 nathanw struct sys_timer_settime_args /* {
736 1.54.2.5 nathanw syscallarg(timer_t) timerid;
737 1.54.2.5 nathanw syscallarg(int) flags;
738 1.54.2.5 nathanw syscallarg(const struct itimerspec *) value;
739 1.54.2.5 nathanw syscallarg(struct itimerspec *) ovalue;
740 1.54.2.5 nathanw } */ *uap = v;
741 1.54.2.5 nathanw struct proc *p = l->l_proc;
742 1.54.2.5 nathanw int error, s, timerid;
743 1.54.2.5 nathanw struct itimerval val, oval;
744 1.54.2.5 nathanw struct itimerspec value, ovalue;
745 1.54.2.5 nathanw struct ptimer *pt;
746 1.54.2.5 nathanw
747 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
748 1.54.2.5 nathanw
749 1.54.2.20 nathanw if ((p->p_timers == NULL) ||
750 1.54.2.20 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
751 1.54.2.19 nathanw ((pt = p->p_timers->pts_timers[timerid]) == NULL))
752 1.54.2.5 nathanw return (EINVAL);
753 1.54.2.20 nathanw
754 1.54.2.20 nathanw if ((error = copyin(SCARG(uap, value), &value,
755 1.54.2.5 nathanw sizeof(struct itimerspec))) != 0)
756 1.54.2.5 nathanw return (error);
757 1.54.2.20 nathanw
758 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
759 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
760 1.54.2.5 nathanw if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
761 1.54.2.5 nathanw return (EINVAL);
762 1.54.2.5 nathanw
763 1.54.2.5 nathanw oval = pt->pt_time;
764 1.54.2.5 nathanw pt->pt_time = val;
765 1.54.2.5 nathanw
766 1.54.2.5 nathanw s = splclock();
767 1.54.2.19 nathanw /* If we've been passed an absolute time, convert it to relative. */
768 1.54.2.19 nathanw if (timerisset(&pt->pt_time.it_value) &&
769 1.54.2.19 nathanw (SCARG(uap, flags) & TIMER_ABSTIME))
770 1.54.2.20 nathanw timersub(&pt->pt_time.it_value, &time,
771 1.54.2.19 nathanw &pt->pt_time.it_value);
772 1.54.2.19 nathanw timer_settime(pt);
773 1.54.2.5 nathanw splx(s);
774 1.54.2.5 nathanw
775 1.54.2.5 nathanw if (SCARG(uap, ovalue)) {
776 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
777 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
778 1.54.2.20 nathanw return copyout(&ovalue, SCARG(uap, ovalue),
779 1.54.2.5 nathanw sizeof(struct itimerspec));
780 1.54.2.5 nathanw }
781 1.54.2.5 nathanw
782 1.54.2.5 nathanw return (0);
783 1.54.2.5 nathanw }
784 1.54.2.20 nathanw
785 1.54.2.5 nathanw /* Return the time remaining until a POSIX timer fires. */
786 1.54.2.5 nathanw int
787 1.54.2.5 nathanw sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
788 1.54.2.5 nathanw {
789 1.54.2.5 nathanw struct sys_timer_gettime_args /* {
790 1.54.2.5 nathanw syscallarg(timer_t) timerid;
791 1.54.2.5 nathanw syscallarg(struct itimerspec *) value;
792 1.54.2.5 nathanw } */ *uap = v;
793 1.54.2.5 nathanw struct itimerval aitv;
794 1.54.2.5 nathanw struct itimerspec its;
795 1.54.2.5 nathanw struct proc *p = l->l_proc;
796 1.54.2.19 nathanw int s, timerid;
797 1.54.2.5 nathanw struct ptimer *pt;
798 1.54.2.20 nathanw
799 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
800 1.54.2.5 nathanw
801 1.54.2.20 nathanw if ((p->p_timers == NULL) ||
802 1.54.2.20 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
803 1.54.2.19 nathanw ((pt = p->p_timers->pts_timers[timerid]) == NULL))
804 1.54.2.5 nathanw return (EINVAL);
805 1.54.2.5 nathanw
806 1.54.2.19 nathanw s = splclock();
807 1.54.2.19 nathanw timer_gettime(pt, &aitv);
808 1.54.2.19 nathanw splx(s);
809 1.54.2.5 nathanw
810 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
811 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
812 1.54.2.5 nathanw
813 1.54.2.5 nathanw return copyout(&its, SCARG(uap, value), sizeof(its));
814 1.54.2.5 nathanw }
815 1.54.2.5 nathanw
816 1.54.2.5 nathanw /*
817 1.54.2.5 nathanw * Return the count of the number of times a periodic timer expired
818 1.54.2.5 nathanw * while a notification was already pending. The counter is reset when
819 1.54.2.5 nathanw * a timer expires and a notification can be posted.
820 1.1 cgd */
821 1.54.2.5 nathanw int
822 1.54.2.5 nathanw sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
823 1.54.2.5 nathanw {
824 1.54.2.5 nathanw struct sys_timer_getoverrun_args /* {
825 1.54.2.5 nathanw syscallarg(timer_t) timerid;
826 1.54.2.5 nathanw } */ *uap = v;
827 1.54.2.5 nathanw struct proc *p = l->l_proc;
828 1.54.2.5 nathanw int timerid;
829 1.54.2.5 nathanw struct ptimer *pt;
830 1.54.2.5 nathanw
831 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
832 1.54.2.5 nathanw
833 1.54.2.20 nathanw if ((p->p_timers == NULL) ||
834 1.54.2.20 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
835 1.54.2.19 nathanw ((pt = p->p_timers->pts_timers[timerid]) == NULL))
836 1.54.2.5 nathanw return (EINVAL);
837 1.54.2.5 nathanw
838 1.54.2.5 nathanw *retval = pt->pt_overruns;
839 1.54.2.5 nathanw
840 1.54.2.5 nathanw return (0);
841 1.54.2.5 nathanw }
842 1.54.2.5 nathanw
843 1.54.2.5 nathanw /* Glue function that triggers an upcall; called from userret(). */
844 1.54.2.5 nathanw static void
845 1.54.2.19 nathanw timerupcall(struct lwp *l, void *arg)
846 1.54.2.5 nathanw {
847 1.54.2.18 nathanw struct ptimer *pt = (struct ptimer *)arg;
848 1.54.2.5 nathanw
849 1.54.2.18 nathanw /* The upcall should be generated exactly once. */
850 1.54.2.18 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
851 1.54.2.18 nathanw sizeof(siginfo_t), &pt->pt_info) == 0)
852 1.54.2.18 nathanw l->l_proc->p_userret = NULL;
853 1.54.2.5 nathanw }
854 1.54.2.5 nathanw
855 1.54.2.5 nathanw
856 1.54.2.5 nathanw /*
857 1.54.2.5 nathanw * Real interval timer expired:
858 1.54.2.5 nathanw * send process whose timer expired an alarm signal.
859 1.54.2.5 nathanw * If time is not set up to reload, then just return.
860 1.54.2.5 nathanw * Else compute next time timer should go off which is > current time.
861 1.54.2.5 nathanw * This is where delay in processing this timeout causes multiple
862 1.54.2.5 nathanw * SIGALRM calls to be compressed into one.
863 1.54.2.5 nathanw */
864 1.54.2.5 nathanw void
865 1.54.2.5 nathanw realtimerexpire(void *arg)
866 1.54.2.5 nathanw {
867 1.54.2.5 nathanw struct ptimer *pt;
868 1.54.2.5 nathanw int s;
869 1.54.2.5 nathanw
870 1.54.2.5 nathanw pt = (struct ptimer *)arg;
871 1.54.2.19 nathanw
872 1.54.2.19 nathanw itimerfire(pt);
873 1.54.2.19 nathanw
874 1.54.2.5 nathanw if (!timerisset(&pt->pt_time.it_interval)) {
875 1.54.2.5 nathanw timerclear(&pt->pt_time.it_value);
876 1.54.2.5 nathanw return;
877 1.54.2.5 nathanw }
878 1.54.2.5 nathanw for (;;) {
879 1.54.2.5 nathanw s = splclock();
880 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value,
881 1.54.2.5 nathanw &pt->pt_time.it_interval, &pt->pt_time.it_value);
882 1.54.2.5 nathanw if (timercmp(&pt->pt_time.it_value, &time, >)) {
883 1.54.2.5 nathanw /*
884 1.54.2.5 nathanw * Don't need to check hzto() return value, here.
885 1.54.2.5 nathanw * callout_reset() does it for us.
886 1.54.2.5 nathanw */
887 1.54.2.20 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
888 1.54.2.5 nathanw realtimerexpire, pt);
889 1.54.2.5 nathanw splx(s);
890 1.54.2.5 nathanw return;
891 1.54.2.5 nathanw }
892 1.54.2.5 nathanw splx(s);
893 1.54.2.5 nathanw pt->pt_overruns++;
894 1.54.2.5 nathanw }
895 1.54.2.5 nathanw }
896 1.54.2.5 nathanw
897 1.54.2.5 nathanw /* BSD routine to get the value of an interval timer. */
898 1.1 cgd /* ARGSUSED */
899 1.3 andrew int
900 1.54.2.5 nathanw sys_getitimer(struct lwp *l, void *v, register_t *retval)
901 1.15 thorpej {
902 1.45 augustss struct sys_getitimer_args /* {
903 1.30 mycroft syscallarg(int) which;
904 1.11 cgd syscallarg(struct itimerval *) itv;
905 1.15 thorpej } */ *uap = v;
906 1.54.2.1 nathanw struct proc *p = l->l_proc;
907 1.1 cgd struct itimerval aitv;
908 1.54.2.5 nathanw int s, which;
909 1.54.2.5 nathanw
910 1.54.2.5 nathanw which = SCARG(uap, which);
911 1.1 cgd
912 1.30 mycroft if ((u_int)which > ITIMER_PROF)
913 1.1 cgd return (EINVAL);
914 1.54.2.5 nathanw
915 1.54.2.19 nathanw if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
916 1.54.2.5 nathanw timerclear(&aitv.it_value);
917 1.54.2.5 nathanw timerclear(&aitv.it_interval);
918 1.54.2.5 nathanw } else {
919 1.54.2.5 nathanw s = splclock();
920 1.54.2.19 nathanw timer_gettime(p->p_timers->pts_timers[which], &aitv);
921 1.54.2.5 nathanw splx(s);
922 1.54.2.5 nathanw }
923 1.54.2.5 nathanw
924 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
925 1.54.2.5 nathanw
926 1.1 cgd }
927 1.1 cgd
928 1.54.2.5 nathanw /* BSD routine to set/arm an interval timer. */
929 1.1 cgd /* ARGSUSED */
930 1.3 andrew int
931 1.54.2.5 nathanw sys_setitimer(struct lwp *l, void *v, register_t *retval)
932 1.15 thorpej {
933 1.45 augustss struct sys_setitimer_args /* {
934 1.30 mycroft syscallarg(int) which;
935 1.24 cgd syscallarg(const struct itimerval *) itv;
936 1.11 cgd syscallarg(struct itimerval *) oitv;
937 1.15 thorpej } */ *uap = v;
938 1.54.2.1 nathanw struct proc *p = l->l_proc;
939 1.30 mycroft int which = SCARG(uap, which);
940 1.21 cgd struct sys_getitimer_args getargs;
941 1.1 cgd struct itimerval aitv;
942 1.45 augustss const struct itimerval *itvp;
943 1.54.2.5 nathanw struct ptimer *pt;
944 1.1 cgd int s, error;
945 1.1 cgd
946 1.30 mycroft if ((u_int)which > ITIMER_PROF)
947 1.1 cgd return (EINVAL);
948 1.11 cgd itvp = SCARG(uap, itv);
949 1.54.2.20 nathanw if (itvp &&
950 1.54.2.3 nathanw (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
951 1.1 cgd return (error);
952 1.21 cgd if (SCARG(uap, oitv) != NULL) {
953 1.30 mycroft SCARG(&getargs, which) = which;
954 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
955 1.54.2.1 nathanw if ((error = sys_getitimer(l, &getargs, retval)) != 0)
956 1.21 cgd return (error);
957 1.21 cgd }
958 1.1 cgd if (itvp == 0)
959 1.1 cgd return (0);
960 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
961 1.1 cgd return (EINVAL);
962 1.54.2.5 nathanw
963 1.54.2.20 nathanw /*
964 1.54.2.5 nathanw * Don't bother allocating data structures if the process just
965 1.54.2.5 nathanw * wants to clear the timer.
966 1.54.2.5 nathanw */
967 1.54.2.20 nathanw if (!timerisset(&aitv.it_value) &&
968 1.54.2.19 nathanw ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
969 1.54.2.5 nathanw return (0);
970 1.54.2.5 nathanw
971 1.54.2.5 nathanw if (p->p_timers == NULL)
972 1.54.2.5 nathanw timers_alloc(p);
973 1.54.2.19 nathanw if (p->p_timers->pts_timers[which] == NULL) {
974 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
975 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
976 1.54.2.5 nathanw pt->pt_overruns = 0;
977 1.54.2.5 nathanw pt->pt_proc = p;
978 1.54.2.5 nathanw pt->pt_type = which;
979 1.54.2.5 nathanw switch (which) {
980 1.54.2.5 nathanw case ITIMER_REAL:
981 1.54.2.19 nathanw callout_init(&pt->pt_ch);
982 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGALRM;
983 1.54.2.5 nathanw break;
984 1.54.2.5 nathanw case ITIMER_VIRTUAL:
985 1.54.2.19 nathanw pt->pt_active = 0;
986 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGVTALRM;
987 1.54.2.5 nathanw break;
988 1.54.2.5 nathanw case ITIMER_PROF:
989 1.54.2.19 nathanw pt->pt_active = 0;
990 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGPROF;
991 1.54.2.5 nathanw break;
992 1.54.2.5 nathanw }
993 1.54.2.5 nathanw } else
994 1.54.2.19 nathanw pt = p->p_timers->pts_timers[which];
995 1.54.2.5 nathanw
996 1.54.2.5 nathanw pt->pt_time = aitv;
997 1.54.2.19 nathanw p->p_timers->pts_timers[which] = pt;
998 1.54.2.19 nathanw
999 1.54.2.19 nathanw s = splclock();
1000 1.54.2.19 nathanw timer_settime(pt);
1001 1.54.2.19 nathanw splx(s);
1002 1.54.2.5 nathanw
1003 1.1 cgd return (0);
1004 1.1 cgd }
1005 1.1 cgd
1006 1.54.2.5 nathanw /* Utility routines to manage the array of pointers to timers. */
1007 1.3 andrew void
1008 1.54.2.5 nathanw timers_alloc(struct proc *p)
1009 1.6 cgd {
1010 1.54.2.5 nathanw int i;
1011 1.54.2.19 nathanw struct ptimers *pts;
1012 1.1 cgd
1013 1.54.2.19 nathanw pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1014 1.54.2.19 nathanw LIST_INIT(&pts->pts_virtual);
1015 1.54.2.19 nathanw LIST_INIT(&pts->pts_prof);
1016 1.54.2.5 nathanw for (i = 0; i < TIMER_MAX; i++)
1017 1.54.2.19 nathanw pts->pts_timers[i] = NULL;
1018 1.54.2.5 nathanw p->p_timers = pts;
1019 1.54.2.5 nathanw }
1020 1.54.2.5 nathanw
1021 1.54.2.15 nathanw /*
1022 1.54.2.15 nathanw * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1023 1.54.2.15 nathanw * then clean up all timers and free all the data structures. If
1024 1.54.2.15 nathanw * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1025 1.54.2.15 nathanw * by timer_create(), not the BSD setitimer() timers, and only free the
1026 1.54.2.15 nathanw * structure if none of those remain.
1027 1.54.2.15 nathanw */
1028 1.54.2.5 nathanw void
1029 1.54.2.15 nathanw timers_free(struct proc *p, int which)
1030 1.54.2.5 nathanw {
1031 1.54.2.19 nathanw int i, s;
1032 1.54.2.19 nathanw struct ptimers *pts;
1033 1.54.2.19 nathanw struct ptimer *pt, *ptn;
1034 1.54.2.19 nathanw struct timeval tv;
1035 1.54.2.5 nathanw
1036 1.54.2.5 nathanw if (p->p_timers) {
1037 1.54.2.5 nathanw pts = p->p_timers;
1038 1.54.2.15 nathanw if (which == TIMERS_ALL)
1039 1.54.2.15 nathanw i = 0;
1040 1.54.2.19 nathanw else {
1041 1.54.2.19 nathanw s = splclock();
1042 1.54.2.19 nathanw timerclear(&tv);
1043 1.54.2.19 nathanw for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1044 1.54.2.19 nathanw ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1045 1.54.2.19 nathanw ptn = LIST_NEXT(ptn, pt_list))
1046 1.54.2.19 nathanw timeradd(&tv, &ptn->pt_time.it_value, &tv);
1047 1.54.2.19 nathanw LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1048 1.54.2.19 nathanw if (ptn) {
1049 1.54.2.19 nathanw timeradd(&tv, &ptn->pt_time.it_value,
1050 1.54.2.19 nathanw &ptn->pt_time.it_value);
1051 1.54.2.19 nathanw LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1052 1.54.2.19 nathanw ptn, pt_list);
1053 1.54.2.19 nathanw }
1054 1.54.2.19 nathanw
1055 1.54.2.19 nathanw timerclear(&tv);
1056 1.54.2.19 nathanw for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1057 1.54.2.19 nathanw ptn && ptn != pts->pts_timers[ITIMER_PROF];
1058 1.54.2.19 nathanw ptn = LIST_NEXT(ptn, pt_list))
1059 1.54.2.19 nathanw timeradd(&tv, &ptn->pt_time.it_value, &tv);
1060 1.54.2.19 nathanw LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1061 1.54.2.19 nathanw if (ptn) {
1062 1.54.2.19 nathanw timeradd(&tv, &ptn->pt_time.it_value,
1063 1.54.2.19 nathanw &ptn->pt_time.it_value);
1064 1.54.2.19 nathanw LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1065 1.54.2.19 nathanw pt_list);
1066 1.54.2.19 nathanw }
1067 1.54.2.19 nathanw splx(s);
1068 1.54.2.15 nathanw i = 3;
1069 1.54.2.19 nathanw }
1070 1.54.2.15 nathanw for ( ; i < TIMER_MAX; i++)
1071 1.54.2.19 nathanw if ((pt = pts->pts_timers[i]) != NULL) {
1072 1.54.2.20 nathanw if (pt->pt_type == CLOCK_REALTIME)
1073 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
1074 1.54.2.19 nathanw pts->pts_timers[i] = NULL;
1075 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
1076 1.54.2.5 nathanw }
1077 1.54.2.20 nathanw if ((pts->pts_timers[0] == NULL) &&
1078 1.54.2.20 nathanw (pts->pts_timers[1] == NULL) &&
1079 1.54.2.19 nathanw (pts->pts_timers[2] == NULL)) {
1080 1.54.2.15 nathanw p->p_timers = NULL;
1081 1.54.2.15 nathanw free(pts, M_SUBPROC);
1082 1.54.2.15 nathanw }
1083 1.1 cgd }
1084 1.1 cgd }
1085 1.1 cgd
1086 1.1 cgd /*
1087 1.1 cgd * Check that a proposed value to load into the .it_value or
1088 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1089 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1090 1.1 cgd * than the resolution of the clock, round it up.)
1091 1.1 cgd */
1092 1.3 andrew int
1093 1.54.2.5 nathanw itimerfix(struct timeval *tv)
1094 1.1 cgd {
1095 1.1 cgd
1096 1.54.2.4 nathanw if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1097 1.1 cgd return (EINVAL);
1098 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1099 1.1 cgd tv->tv_usec = tick;
1100 1.1 cgd return (0);
1101 1.1 cgd }
1102 1.1 cgd
1103 1.1 cgd /*
1104 1.1 cgd * Decrement an interval timer by a specified number
1105 1.1 cgd * of microseconds, which must be less than a second,
1106 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1107 1.1 cgd * it. In this case, carry over (usec - old value) to
1108 1.8 cgd * reduce the value reloaded into the timer so that
1109 1.1 cgd * the timer does not drift. This routine assumes
1110 1.1 cgd * that it is called in a context where the timers
1111 1.1 cgd * on which it is operating cannot change in value.
1112 1.1 cgd */
1113 1.3 andrew int
1114 1.54.2.19 nathanw itimerdecr(struct ptimer *pt, int usec)
1115 1.1 cgd {
1116 1.54.2.19 nathanw struct itimerval *itp;
1117 1.1 cgd
1118 1.54.2.19 nathanw itp = &pt->pt_time;
1119 1.1 cgd if (itp->it_value.tv_usec < usec) {
1120 1.1 cgd if (itp->it_value.tv_sec == 0) {
1121 1.1 cgd /* expired, and already in next interval */
1122 1.1 cgd usec -= itp->it_value.tv_usec;
1123 1.1 cgd goto expire;
1124 1.1 cgd }
1125 1.1 cgd itp->it_value.tv_usec += 1000000;
1126 1.1 cgd itp->it_value.tv_sec--;
1127 1.1 cgd }
1128 1.1 cgd itp->it_value.tv_usec -= usec;
1129 1.1 cgd usec = 0;
1130 1.1 cgd if (timerisset(&itp->it_value))
1131 1.1 cgd return (1);
1132 1.1 cgd /* expired, exactly at end of interval */
1133 1.1 cgd expire:
1134 1.1 cgd if (timerisset(&itp->it_interval)) {
1135 1.1 cgd itp->it_value = itp->it_interval;
1136 1.1 cgd itp->it_value.tv_usec -= usec;
1137 1.1 cgd if (itp->it_value.tv_usec < 0) {
1138 1.1 cgd itp->it_value.tv_usec += 1000000;
1139 1.1 cgd itp->it_value.tv_sec--;
1140 1.1 cgd }
1141 1.54.2.19 nathanw timer_settime(pt);
1142 1.1 cgd } else
1143 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1144 1.1 cgd return (0);
1145 1.54.2.19 nathanw }
1146 1.54.2.19 nathanw
1147 1.54.2.19 nathanw void
1148 1.54.2.19 nathanw itimerfire(struct ptimer *pt)
1149 1.54.2.19 nathanw {
1150 1.54.2.19 nathanw struct proc *p = pt->pt_proc;
1151 1.54.2.19 nathanw
1152 1.54.2.19 nathanw if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1153 1.54.2.20 nathanw /*
1154 1.54.2.19 nathanw * No RT signal infrastructure exists at this time;
1155 1.54.2.20 nathanw * just post the signal number and throw away the
1156 1.54.2.19 nathanw * value.
1157 1.54.2.19 nathanw */
1158 1.54.2.19 nathanw if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1159 1.54.2.19 nathanw pt->pt_overruns++;
1160 1.54.2.19 nathanw else {
1161 1.54.2.19 nathanw pt->pt_overruns = 0;
1162 1.54.2.19 nathanw psignal(p, pt->pt_ev.sigev_signo);
1163 1.54.2.19 nathanw }
1164 1.54.2.19 nathanw } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1165 1.54.2.19 nathanw /* Cause the process to generate an upcall when it returns. */
1166 1.54.2.19 nathanw struct sadata *sa = p->p_sa;
1167 1.54.2.20 nathanw
1168 1.54.2.19 nathanw if (p->p_userret == NULL) {
1169 1.54.2.19 nathanw if (sa->sa_idle)
1170 1.54.2.19 nathanw wakeup(p);
1171 1.54.2.19 nathanw pt->pt_overruns = 0;
1172 1.54.2.19 nathanw p->p_userret = timerupcall;
1173 1.54.2.19 nathanw p->p_userret_arg = pt;
1174 1.54.2.19 nathanw } else
1175 1.54.2.19 nathanw pt->pt_overruns++;
1176 1.54.2.19 nathanw }
1177 1.54.2.19 nathanw
1178 1.42 cgd }
1179 1.42 cgd
1180 1.42 cgd /*
1181 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1182 1.42 cgd * for usage and rationale.
1183 1.42 cgd */
1184 1.42 cgd int
1185 1.54.2.5 nathanw ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1186 1.42 cgd {
1187 1.49 itojun struct timeval tv, delta;
1188 1.42 cgd int s, rv = 0;
1189 1.42 cgd
1190 1.54.2.20 nathanw s = splclock();
1191 1.49 itojun tv = mono_time;
1192 1.49 itojun splx(s);
1193 1.49 itojun
1194 1.49 itojun timersub(&tv, lasttime, &delta);
1195 1.42 cgd
1196 1.42 cgd /*
1197 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1198 1.42 cgd * even if interval is huge.
1199 1.42 cgd */
1200 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1201 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1202 1.49 itojun *lasttime = tv;
1203 1.42 cgd rv = 1;
1204 1.42 cgd }
1205 1.50 itojun
1206 1.50 itojun return (rv);
1207 1.50 itojun }
1208 1.50 itojun
1209 1.50 itojun /*
1210 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1211 1.50 itojun */
1212 1.50 itojun int
1213 1.54.2.5 nathanw ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1214 1.50 itojun {
1215 1.50 itojun struct timeval tv, delta;
1216 1.50 itojun int s, rv;
1217 1.50 itojun
1218 1.54.2.20 nathanw s = splclock();
1219 1.50 itojun tv = mono_time;
1220 1.50 itojun splx(s);
1221 1.50 itojun
1222 1.50 itojun timersub(&tv, lasttime, &delta);
1223 1.50 itojun
1224 1.50 itojun /*
1225 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1226 1.50 itojun * if more than one second have passed since the last update of
1227 1.50 itojun * lasttime, reset the counter.
1228 1.50 itojun *
1229 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1230 1.50 itojun * try to use *curpps for stat purposes as well.
1231 1.50 itojun */
1232 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1233 1.50 itojun delta.tv_sec >= 1) {
1234 1.50 itojun *lasttime = tv;
1235 1.50 itojun *curpps = 0;
1236 1.50 itojun rv = 1;
1237 1.53 itojun } else if (maxpps < 0)
1238 1.53 itojun rv = 1;
1239 1.53 itojun else if (*curpps < maxpps)
1240 1.50 itojun rv = 1;
1241 1.50 itojun else
1242 1.50 itojun rv = 0;
1243 1.50 itojun
1244 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1245 1.50 itojun /* be careful about wrap-around */
1246 1.50 itojun if (*curpps + 1 > *curpps)
1247 1.50 itojun *curpps = *curpps + 1;
1248 1.50 itojun #else
1249 1.50 itojun /*
1250 1.50 itojun * assume that there's not too many calls to this function.
1251 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1252 1.50 itojun * behavior, not the behavior of this function.
1253 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1254 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1255 1.50 itojun */
1256 1.50 itojun *curpps = *curpps + 1;
1257 1.50 itojun #endif
1258 1.42 cgd
1259 1.42 cgd return (rv);
1260 1.1 cgd }
1261