kern_time.c revision 1.54.2.3 1 1.54.2.3 nathanw /* $NetBSD: kern_time.c,v 1.54.2.3 2001/09/21 22:36:26 nathanw Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.31 thorpej #include "fs_nfs.h"
75 1.54 bjh21 #include "opt_nfs.h"
76 1.34 thorpej #include "opt_nfsserver.h"
77 1.1 cgd
78 1.5 mycroft #include <sys/param.h>
79 1.5 mycroft #include <sys/resourcevar.h>
80 1.5 mycroft #include <sys/kernel.h>
81 1.8 cgd #include <sys/systm.h>
82 1.54.2.1 nathanw #include <sys/lwp.h>
83 1.5 mycroft #include <sys/proc.h>
84 1.8 cgd #include <sys/vnode.h>
85 1.17 christos #include <sys/signalvar.h>
86 1.25 perry #include <sys/syslog.h>
87 1.1 cgd
88 1.11 cgd #include <sys/mount.h>
89 1.11 cgd #include <sys/syscallargs.h>
90 1.19 christos
91 1.37 thorpej #include <uvm/uvm_extern.h>
92 1.37 thorpej
93 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
94 1.20 fvdl #include <nfs/rpcv2.h>
95 1.20 fvdl #include <nfs/nfsproto.h>
96 1.19 christos #include <nfs/nfs_var.h>
97 1.19 christos #endif
98 1.17 christos
99 1.5 mycroft #include <machine/cpu.h>
100 1.23 cgd
101 1.23 cgd /*
102 1.1 cgd * Time of day and interval timer support.
103 1.1 cgd *
104 1.1 cgd * These routines provide the kernel entry points to get and set
105 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
106 1.1 cgd * here provide support for adding and subtracting timeval structures
107 1.1 cgd * and decrementing interval timers, optionally reloading the interval
108 1.1 cgd * timers when they expire.
109 1.1 cgd */
110 1.1 cgd
111 1.22 jtc /* This function is used by clock_settime and settimeofday */
112 1.39 tron int
113 1.22 jtc settime(tv)
114 1.22 jtc struct timeval *tv;
115 1.22 jtc {
116 1.22 jtc struct timeval delta;
117 1.47 thorpej struct cpu_info *ci;
118 1.22 jtc int s;
119 1.22 jtc
120 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
121 1.22 jtc s = splclock();
122 1.22 jtc timersub(tv, &time, &delta);
123 1.54.2.2 nathanw if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
124 1.54.2.2 nathanw splx(s);
125 1.29 tls return (EPERM);
126 1.54.2.2 nathanw }
127 1.29 tls #ifdef notyet
128 1.54.2.2 nathanw if ((delta.tv_sec < 86400) && securelevel > 0) {
129 1.54.2.2 nathanw splx(s);
130 1.29 tls return (EPERM);
131 1.54.2.2 nathanw }
132 1.29 tls #endif
133 1.22 jtc time = *tv;
134 1.38 thorpej (void) spllowersoftclock();
135 1.22 jtc timeradd(&boottime, &delta, &boottime);
136 1.47 thorpej /*
137 1.47 thorpej * XXXSMP
138 1.47 thorpej * This is wrong. We should traverse a list of all
139 1.47 thorpej * CPUs and add the delta to the runtime of those
140 1.47 thorpej * CPUs which have a process on them.
141 1.47 thorpej */
142 1.47 thorpej ci = curcpu();
143 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
144 1.47 thorpej &ci->ci_schedstate.spc_runtime);
145 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
146 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
147 1.22 jtc # endif
148 1.22 jtc splx(s);
149 1.22 jtc resettodr();
150 1.29 tls return (0);
151 1.22 jtc }
152 1.22 jtc
153 1.22 jtc /* ARGSUSED */
154 1.22 jtc int
155 1.54.2.1 nathanw sys_clock_gettime(l, v, retval)
156 1.54.2.1 nathanw struct lwp *l;
157 1.22 jtc void *v;
158 1.22 jtc register_t *retval;
159 1.22 jtc {
160 1.45 augustss struct sys_clock_gettime_args /* {
161 1.22 jtc syscallarg(clockid_t) clock_id;
162 1.23 cgd syscallarg(struct timespec *) tp;
163 1.23 cgd } */ *uap = v;
164 1.22 jtc clockid_t clock_id;
165 1.22 jtc struct timeval atv;
166 1.22 jtc struct timespec ats;
167 1.22 jtc
168 1.22 jtc clock_id = SCARG(uap, clock_id);
169 1.22 jtc if (clock_id != CLOCK_REALTIME)
170 1.22 jtc return (EINVAL);
171 1.22 jtc
172 1.22 jtc microtime(&atv);
173 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
174 1.22 jtc
175 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
176 1.22 jtc }
177 1.22 jtc
178 1.22 jtc /* ARGSUSED */
179 1.22 jtc int
180 1.54.2.1 nathanw sys_clock_settime(l, v, retval)
181 1.54.2.1 nathanw struct lwp *l;
182 1.22 jtc void *v;
183 1.22 jtc register_t *retval;
184 1.22 jtc {
185 1.45 augustss struct sys_clock_settime_args /* {
186 1.22 jtc syscallarg(clockid_t) clock_id;
187 1.23 cgd syscallarg(const struct timespec *) tp;
188 1.23 cgd } */ *uap = v;
189 1.54.2.1 nathanw struct proc *p = l->l_proc;
190 1.22 jtc clockid_t clock_id;
191 1.22 jtc struct timespec ats;
192 1.22 jtc int error;
193 1.22 jtc
194 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
195 1.22 jtc return (error);
196 1.22 jtc
197 1.22 jtc clock_id = SCARG(uap, clock_id);
198 1.22 jtc
199 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
200 1.23 cgd return (error);
201 1.22 jtc
202 1.54.2.3 nathanw return (clock_settime1(clock_id, &ats));
203 1.54.2.3 nathanw }
204 1.54.2.3 nathanw
205 1.54.2.3 nathanw
206 1.54.2.3 nathanw int
207 1.54.2.3 nathanw clock_settime1(clock_id, ats)
208 1.54.2.3 nathanw clockid_t clock_id;
209 1.54.2.3 nathanw struct timespec *ats;
210 1.54.2.3 nathanw {
211 1.54.2.3 nathanw struct timeval atv;
212 1.54.2.3 nathanw int error;
213 1.54.2.3 nathanw
214 1.54.2.3 nathanw if (clock_id != CLOCK_REALTIME)
215 1.54.2.3 nathanw return (EINVAL);
216 1.54.2.3 nathanw
217 1.54.2.3 nathanw TIMESPEC_TO_TIMEVAL(&atv, ats);
218 1.54.2.3 nathanw if ((error = settime(&atv)) != 0)
219 1.29 tls return (error);
220 1.22 jtc
221 1.22 jtc return 0;
222 1.22 jtc }
223 1.22 jtc
224 1.22 jtc int
225 1.54.2.1 nathanw sys_clock_getres(l, v, retval)
226 1.54.2.1 nathanw struct lwp *l;
227 1.22 jtc void *v;
228 1.22 jtc register_t *retval;
229 1.22 jtc {
230 1.45 augustss struct sys_clock_getres_args /* {
231 1.22 jtc syscallarg(clockid_t) clock_id;
232 1.23 cgd syscallarg(struct timespec *) tp;
233 1.23 cgd } */ *uap = v;
234 1.22 jtc clockid_t clock_id;
235 1.22 jtc struct timespec ts;
236 1.22 jtc int error = 0;
237 1.22 jtc
238 1.22 jtc clock_id = SCARG(uap, clock_id);
239 1.22 jtc if (clock_id != CLOCK_REALTIME)
240 1.22 jtc return (EINVAL);
241 1.22 jtc
242 1.22 jtc if (SCARG(uap, tp)) {
243 1.22 jtc ts.tv_sec = 0;
244 1.22 jtc ts.tv_nsec = 1000000000 / hz;
245 1.22 jtc
246 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
247 1.22 jtc }
248 1.22 jtc
249 1.22 jtc return error;
250 1.22 jtc }
251 1.22 jtc
252 1.27 jtc /* ARGSUSED */
253 1.27 jtc int
254 1.54.2.1 nathanw sys_nanosleep(l, v, retval)
255 1.54.2.1 nathanw struct lwp *l;
256 1.27 jtc void *v;
257 1.27 jtc register_t *retval;
258 1.27 jtc {
259 1.27 jtc static int nanowait;
260 1.45 augustss struct sys_nanosleep_args/* {
261 1.27 jtc syscallarg(struct timespec *) rqtp;
262 1.27 jtc syscallarg(struct timespec *) rmtp;
263 1.27 jtc } */ *uap = v;
264 1.27 jtc struct timespec rqt;
265 1.27 jtc struct timespec rmt;
266 1.27 jtc struct timeval atv, utv;
267 1.27 jtc int error, s, timo;
268 1.27 jtc
269 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
270 1.27 jtc sizeof(struct timespec));
271 1.27 jtc if (error)
272 1.27 jtc return (error);
273 1.27 jtc
274 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
275 1.27 jtc if (itimerfix(&atv))
276 1.27 jtc return (EINVAL);
277 1.27 jtc
278 1.27 jtc s = splclock();
279 1.27 jtc timeradd(&atv,&time,&atv);
280 1.27 jtc timo = hzto(&atv);
281 1.27 jtc /*
282 1.27 jtc * Avoid inadvertantly sleeping forever
283 1.27 jtc */
284 1.27 jtc if (timo == 0)
285 1.27 jtc timo = 1;
286 1.27 jtc splx(s);
287 1.27 jtc
288 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
289 1.27 jtc if (error == ERESTART)
290 1.27 jtc error = EINTR;
291 1.27 jtc if (error == EWOULDBLOCK)
292 1.27 jtc error = 0;
293 1.27 jtc
294 1.27 jtc if (SCARG(uap, rmtp)) {
295 1.28 jtc int error;
296 1.28 jtc
297 1.27 jtc s = splclock();
298 1.27 jtc utv = time;
299 1.27 jtc splx(s);
300 1.27 jtc
301 1.27 jtc timersub(&atv, &utv, &utv);
302 1.27 jtc if (utv.tv_sec < 0)
303 1.27 jtc timerclear(&utv);
304 1.27 jtc
305 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
306 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
307 1.28 jtc sizeof(rmt));
308 1.28 jtc if (error)
309 1.28 jtc return (error);
310 1.27 jtc }
311 1.27 jtc
312 1.27 jtc return error;
313 1.27 jtc }
314 1.22 jtc
315 1.1 cgd /* ARGSUSED */
316 1.3 andrew int
317 1.54.2.1 nathanw sys_gettimeofday(l, v, retval)
318 1.54.2.1 nathanw struct lwp *l;
319 1.15 thorpej void *v;
320 1.15 thorpej register_t *retval;
321 1.15 thorpej {
322 1.45 augustss struct sys_gettimeofday_args /* {
323 1.11 cgd syscallarg(struct timeval *) tp;
324 1.11 cgd syscallarg(struct timezone *) tzp;
325 1.15 thorpej } */ *uap = v;
326 1.1 cgd struct timeval atv;
327 1.1 cgd int error = 0;
328 1.25 perry struct timezone tzfake;
329 1.1 cgd
330 1.11 cgd if (SCARG(uap, tp)) {
331 1.1 cgd microtime(&atv);
332 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
333 1.17 christos if (error)
334 1.1 cgd return (error);
335 1.1 cgd }
336 1.25 perry if (SCARG(uap, tzp)) {
337 1.25 perry /*
338 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
339 1.25 perry * fake up a timezone struct and return it if demanded.
340 1.25 perry */
341 1.25 perry tzfake.tz_minuteswest = 0;
342 1.25 perry tzfake.tz_dsttime = 0;
343 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
344 1.25 perry }
345 1.1 cgd return (error);
346 1.1 cgd }
347 1.1 cgd
348 1.1 cgd /* ARGSUSED */
349 1.3 andrew int
350 1.54.2.1 nathanw sys_settimeofday(l, v, retval)
351 1.54.2.1 nathanw struct lwp *l;
352 1.15 thorpej void *v;
353 1.15 thorpej register_t *retval;
354 1.15 thorpej {
355 1.16 mycroft struct sys_settimeofday_args /* {
356 1.24 cgd syscallarg(const struct timeval *) tv;
357 1.24 cgd syscallarg(const struct timezone *) tzp;
358 1.15 thorpej } */ *uap = v;
359 1.54.2.1 nathanw struct proc *p = l->l_proc;
360 1.22 jtc struct timeval atv;
361 1.1 cgd struct timezone atz;
362 1.54.2.3 nathanw struct timeval *tv = NULL;
363 1.54.2.3 nathanw struct timezone *tzp = NULL;
364 1.22 jtc int error;
365 1.1 cgd
366 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
367 1.1 cgd return (error);
368 1.54.2.3 nathanw
369 1.8 cgd /* Verify all parameters before changing time. */
370 1.54.2.3 nathanw if (SCARG(uap, tv)) {
371 1.54.2.3 nathanw if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
372 1.54.2.3 nathanw return (error);
373 1.54.2.3 nathanw tv = &atv;
374 1.54.2.3 nathanw }
375 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
376 1.54.2.3 nathanw if (SCARG(uap, tzp)) {
377 1.54.2.3 nathanw if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
378 1.54.2.3 nathanw return (error);
379 1.54.2.3 nathanw tzp = &atz;
380 1.54.2.3 nathanw }
381 1.54.2.3 nathanw
382 1.54.2.3 nathanw return settimeofday1(tv, tzp, p);
383 1.54.2.3 nathanw }
384 1.54.2.3 nathanw
385 1.54.2.3 nathanw int
386 1.54.2.3 nathanw settimeofday1(tv, tzp, p)
387 1.54.2.3 nathanw struct timeval *tv;
388 1.54.2.3 nathanw struct timezone *tzp;
389 1.54.2.3 nathanw struct proc *p;
390 1.54.2.3 nathanw {
391 1.54.2.3 nathanw int error;
392 1.54.2.3 nathanw
393 1.54.2.3 nathanw if (tv)
394 1.54.2.3 nathanw if ((error = settime(tv)) != 0)
395 1.29 tls return (error);
396 1.25 perry /*
397 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
398 1.25 perry * obsolete program would try to set it, so we log a warning.
399 1.25 perry */
400 1.54.2.3 nathanw if (tzp)
401 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
402 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
403 1.8 cgd return (0);
404 1.1 cgd }
405 1.1 cgd
406 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
407 1.1 cgd long timedelta; /* unapplied time correction, us. */
408 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
409 1.1 cgd
410 1.1 cgd /* ARGSUSED */
411 1.3 andrew int
412 1.54.2.1 nathanw sys_adjtime(l, v, retval)
413 1.54.2.1 nathanw struct lwp *l;
414 1.15 thorpej void *v;
415 1.15 thorpej register_t *retval;
416 1.15 thorpej {
417 1.45 augustss struct sys_adjtime_args /* {
418 1.24 cgd syscallarg(const struct timeval *) delta;
419 1.11 cgd syscallarg(struct timeval *) olddelta;
420 1.15 thorpej } */ *uap = v;
421 1.54.2.1 nathanw struct proc *p = l->l_proc;
422 1.8 cgd struct timeval atv;
423 1.54.2.3 nathanw struct timeval *oatv = NULL;
424 1.54.2.3 nathanw int error;
425 1.1 cgd
426 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
427 1.1 cgd return (error);
428 1.17 christos
429 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
430 1.17 christos if (error)
431 1.1 cgd return (error);
432 1.54.2.3 nathanw
433 1.54.2.3 nathanw if (SCARG(uap, olddelta) != NULL) {
434 1.54.2.3 nathanw if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
435 1.54.2.3 nathanw sizeof(struct timeval), B_WRITE) == FALSE)
436 1.54.2.3 nathanw return (EFAULT);
437 1.54.2.3 nathanw oatv = SCARG(uap, olddelta);
438 1.54.2.3 nathanw }
439 1.54.2.3 nathanw
440 1.54.2.3 nathanw return adjtime1(&atv, oatv, p);
441 1.54.2.3 nathanw }
442 1.54.2.3 nathanw
443 1.54.2.3 nathanw int
444 1.54.2.3 nathanw adjtime1(delta, olddelta, p)
445 1.54.2.3 nathanw struct timeval *delta;
446 1.54.2.3 nathanw struct timeval *olddelta;
447 1.54.2.3 nathanw struct proc *p;
448 1.54.2.3 nathanw {
449 1.54.2.3 nathanw long ndelta, ntickdelta, odelta;
450 1.54.2.3 nathanw int s;
451 1.8 cgd
452 1.8 cgd /*
453 1.8 cgd * Compute the total correction and the rate at which to apply it.
454 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
455 1.8 cgd * delta, so that after some number of incremental changes in
456 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
457 1.8 cgd * overshoot and start taking us away from the desired final time.
458 1.8 cgd */
459 1.54.2.3 nathanw ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
460 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
461 1.8 cgd ntickdelta = 10 * tickadj;
462 1.8 cgd else
463 1.8 cgd ntickdelta = tickadj;
464 1.8 cgd if (ndelta % ntickdelta)
465 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
466 1.8 cgd
467 1.8 cgd /*
468 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
469 1.8 cgd * if we want time to run slower; then hardclock can simply compute
470 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
471 1.8 cgd */
472 1.8 cgd if (ndelta < 0)
473 1.8 cgd ntickdelta = -ntickdelta;
474 1.1 cgd s = splclock();
475 1.8 cgd odelta = timedelta;
476 1.1 cgd timedelta = ndelta;
477 1.8 cgd tickdelta = ntickdelta;
478 1.1 cgd splx(s);
479 1.1 cgd
480 1.54.2.3 nathanw if (olddelta) {
481 1.54.2.3 nathanw delta->tv_sec = odelta / 1000000;
482 1.54.2.3 nathanw delta->tv_usec = odelta % 1000000;
483 1.54.2.3 nathanw (void) copyout(delta, olddelta, sizeof(struct timeval));
484 1.8 cgd }
485 1.1 cgd return (0);
486 1.1 cgd }
487 1.1 cgd
488 1.1 cgd /*
489 1.1 cgd * Get value of an interval timer. The process virtual and
490 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
491 1.1 cgd * they can be swapped out. These are kept internally in the
492 1.1 cgd * way they are specified externally: in time until they expire.
493 1.1 cgd *
494 1.1 cgd * The real time interval timer is kept in the process table slot
495 1.1 cgd * for the process, and its value (it_value) is kept as an
496 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
497 1.1 cgd * periodic real-time signals from drifting.
498 1.1 cgd *
499 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
500 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
501 1.1 cgd * routine, called from the softclock() routine. Since a callout
502 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
503 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
504 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
505 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
506 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
507 1.1 cgd * absolute time the timer should go off.
508 1.1 cgd */
509 1.1 cgd /* ARGSUSED */
510 1.3 andrew int
511 1.54.2.1 nathanw sys_getitimer(l, v, retval)
512 1.54.2.1 nathanw struct lwp *l;
513 1.15 thorpej void *v;
514 1.15 thorpej register_t *retval;
515 1.15 thorpej {
516 1.45 augustss struct sys_getitimer_args /* {
517 1.30 mycroft syscallarg(int) which;
518 1.11 cgd syscallarg(struct itimerval *) itv;
519 1.15 thorpej } */ *uap = v;
520 1.54.2.1 nathanw struct proc *p = l->l_proc;
521 1.30 mycroft int which = SCARG(uap, which);
522 1.1 cgd struct itimerval aitv;
523 1.1 cgd int s;
524 1.1 cgd
525 1.30 mycroft if ((u_int)which > ITIMER_PROF)
526 1.1 cgd return (EINVAL);
527 1.1 cgd s = splclock();
528 1.30 mycroft if (which == ITIMER_REAL) {
529 1.1 cgd /*
530 1.12 mycroft * Convert from absolute to relative time in .it_value
531 1.1 cgd * part of real time timer. If time for real time timer
532 1.1 cgd * has passed return 0, else return difference between
533 1.1 cgd * current time and time for the timer to go off.
534 1.1 cgd */
535 1.1 cgd aitv = p->p_realtimer;
536 1.36 thorpej if (timerisset(&aitv.it_value)) {
537 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
538 1.1 cgd timerclear(&aitv.it_value);
539 1.1 cgd else
540 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
541 1.36 thorpej }
542 1.1 cgd } else
543 1.30 mycroft aitv = p->p_stats->p_timer[which];
544 1.1 cgd splx(s);
545 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
546 1.1 cgd }
547 1.1 cgd
548 1.1 cgd /* ARGSUSED */
549 1.3 andrew int
550 1.54.2.1 nathanw sys_setitimer(l, v, retval)
551 1.54.2.1 nathanw struct lwp *l;
552 1.45 augustss void *v;
553 1.15 thorpej register_t *retval;
554 1.15 thorpej {
555 1.45 augustss struct sys_setitimer_args /* {
556 1.30 mycroft syscallarg(int) which;
557 1.24 cgd syscallarg(const struct itimerval *) itv;
558 1.11 cgd syscallarg(struct itimerval *) oitv;
559 1.15 thorpej } */ *uap = v;
560 1.54.2.1 nathanw struct proc *p = l->l_proc;
561 1.30 mycroft int which = SCARG(uap, which);
562 1.21 cgd struct sys_getitimer_args getargs;
563 1.1 cgd struct itimerval aitv;
564 1.45 augustss const struct itimerval *itvp;
565 1.1 cgd int s, error;
566 1.1 cgd
567 1.30 mycroft if ((u_int)which > ITIMER_PROF)
568 1.1 cgd return (EINVAL);
569 1.11 cgd itvp = SCARG(uap, itv);
570 1.54.2.3 nathanw if (itvp &&
571 1.54.2.3 nathanw (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
572 1.1 cgd return (error);
573 1.21 cgd if (SCARG(uap, oitv) != NULL) {
574 1.30 mycroft SCARG(&getargs, which) = which;
575 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
576 1.54.2.1 nathanw if ((error = sys_getitimer(l, &getargs, retval)) != 0)
577 1.21 cgd return (error);
578 1.21 cgd }
579 1.1 cgd if (itvp == 0)
580 1.1 cgd return (0);
581 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
582 1.1 cgd return (EINVAL);
583 1.1 cgd s = splclock();
584 1.30 mycroft if (which == ITIMER_REAL) {
585 1.44 thorpej callout_stop(&p->p_realit_ch);
586 1.1 cgd if (timerisset(&aitv.it_value)) {
587 1.52 thorpej /*
588 1.52 thorpej * Don't need to check hzto() return value, here.
589 1.52 thorpej * callout_reset() does it for us.
590 1.52 thorpej */
591 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
592 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
593 1.44 thorpej realitexpire, p);
594 1.1 cgd }
595 1.1 cgd p->p_realtimer = aitv;
596 1.1 cgd } else
597 1.30 mycroft p->p_stats->p_timer[which] = aitv;
598 1.1 cgd splx(s);
599 1.1 cgd return (0);
600 1.1 cgd }
601 1.1 cgd
602 1.1 cgd /*
603 1.1 cgd * Real interval timer expired:
604 1.1 cgd * send process whose timer expired an alarm signal.
605 1.1 cgd * If time is not set up to reload, then just return.
606 1.1 cgd * Else compute next time timer should go off which is > current time.
607 1.1 cgd * This is where delay in processing this timeout causes multiple
608 1.1 cgd * SIGALRM calls to be compressed into one.
609 1.1 cgd */
610 1.3 andrew void
611 1.6 cgd realitexpire(arg)
612 1.6 cgd void *arg;
613 1.6 cgd {
614 1.45 augustss struct proc *p;
615 1.1 cgd int s;
616 1.1 cgd
617 1.6 cgd p = (struct proc *)arg;
618 1.1 cgd psignal(p, SIGALRM);
619 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
620 1.1 cgd timerclear(&p->p_realtimer.it_value);
621 1.1 cgd return;
622 1.1 cgd }
623 1.1 cgd for (;;) {
624 1.1 cgd s = splclock();
625 1.14 mycroft timeradd(&p->p_realtimer.it_value,
626 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
627 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
628 1.52 thorpej /*
629 1.52 thorpej * Don't need to check hzto() return value, here.
630 1.52 thorpej * callout_reset() does it for us.
631 1.52 thorpej */
632 1.44 thorpej callout_reset(&p->p_realit_ch,
633 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
634 1.1 cgd splx(s);
635 1.1 cgd return;
636 1.1 cgd }
637 1.1 cgd splx(s);
638 1.1 cgd }
639 1.1 cgd }
640 1.1 cgd
641 1.1 cgd /*
642 1.1 cgd * Check that a proposed value to load into the .it_value or
643 1.1 cgd * .it_interval part of an interval timer is acceptable, and
644 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
645 1.1 cgd * than the resolution of the clock, round it up.)
646 1.1 cgd */
647 1.3 andrew int
648 1.1 cgd itimerfix(tv)
649 1.1 cgd struct timeval *tv;
650 1.1 cgd {
651 1.1 cgd
652 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
653 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
654 1.1 cgd return (EINVAL);
655 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
656 1.1 cgd tv->tv_usec = tick;
657 1.1 cgd return (0);
658 1.1 cgd }
659 1.1 cgd
660 1.1 cgd /*
661 1.1 cgd * Decrement an interval timer by a specified number
662 1.1 cgd * of microseconds, which must be less than a second,
663 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
664 1.1 cgd * it. In this case, carry over (usec - old value) to
665 1.8 cgd * reduce the value reloaded into the timer so that
666 1.1 cgd * the timer does not drift. This routine assumes
667 1.1 cgd * that it is called in a context where the timers
668 1.1 cgd * on which it is operating cannot change in value.
669 1.1 cgd */
670 1.3 andrew int
671 1.1 cgd itimerdecr(itp, usec)
672 1.45 augustss struct itimerval *itp;
673 1.1 cgd int usec;
674 1.1 cgd {
675 1.1 cgd
676 1.1 cgd if (itp->it_value.tv_usec < usec) {
677 1.1 cgd if (itp->it_value.tv_sec == 0) {
678 1.1 cgd /* expired, and already in next interval */
679 1.1 cgd usec -= itp->it_value.tv_usec;
680 1.1 cgd goto expire;
681 1.1 cgd }
682 1.1 cgd itp->it_value.tv_usec += 1000000;
683 1.1 cgd itp->it_value.tv_sec--;
684 1.1 cgd }
685 1.1 cgd itp->it_value.tv_usec -= usec;
686 1.1 cgd usec = 0;
687 1.1 cgd if (timerisset(&itp->it_value))
688 1.1 cgd return (1);
689 1.1 cgd /* expired, exactly at end of interval */
690 1.1 cgd expire:
691 1.1 cgd if (timerisset(&itp->it_interval)) {
692 1.1 cgd itp->it_value = itp->it_interval;
693 1.1 cgd itp->it_value.tv_usec -= usec;
694 1.1 cgd if (itp->it_value.tv_usec < 0) {
695 1.1 cgd itp->it_value.tv_usec += 1000000;
696 1.1 cgd itp->it_value.tv_sec--;
697 1.1 cgd }
698 1.1 cgd } else
699 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
700 1.1 cgd return (0);
701 1.42 cgd }
702 1.42 cgd
703 1.42 cgd /*
704 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
705 1.42 cgd * for usage and rationale.
706 1.42 cgd */
707 1.42 cgd int
708 1.42 cgd ratecheck(lasttime, mininterval)
709 1.42 cgd struct timeval *lasttime;
710 1.42 cgd const struct timeval *mininterval;
711 1.42 cgd {
712 1.49 itojun struct timeval tv, delta;
713 1.42 cgd int s, rv = 0;
714 1.42 cgd
715 1.42 cgd s = splclock();
716 1.49 itojun tv = mono_time;
717 1.49 itojun splx(s);
718 1.49 itojun
719 1.49 itojun timersub(&tv, lasttime, &delta);
720 1.42 cgd
721 1.42 cgd /*
722 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
723 1.42 cgd * even if interval is huge.
724 1.42 cgd */
725 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
726 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
727 1.49 itojun *lasttime = tv;
728 1.42 cgd rv = 1;
729 1.42 cgd }
730 1.50 itojun
731 1.50 itojun return (rv);
732 1.50 itojun }
733 1.50 itojun
734 1.50 itojun /*
735 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
736 1.50 itojun */
737 1.50 itojun int
738 1.50 itojun ppsratecheck(lasttime, curpps, maxpps)
739 1.50 itojun struct timeval *lasttime;
740 1.50 itojun int *curpps;
741 1.50 itojun int maxpps; /* maximum pps allowed */
742 1.50 itojun {
743 1.50 itojun struct timeval tv, delta;
744 1.50 itojun int s, rv;
745 1.50 itojun
746 1.50 itojun s = splclock();
747 1.50 itojun tv = mono_time;
748 1.50 itojun splx(s);
749 1.50 itojun
750 1.50 itojun timersub(&tv, lasttime, &delta);
751 1.50 itojun
752 1.50 itojun /*
753 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
754 1.50 itojun * if more than one second have passed since the last update of
755 1.50 itojun * lasttime, reset the counter.
756 1.50 itojun *
757 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
758 1.50 itojun * try to use *curpps for stat purposes as well.
759 1.50 itojun */
760 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
761 1.50 itojun delta.tv_sec >= 1) {
762 1.50 itojun *lasttime = tv;
763 1.50 itojun *curpps = 0;
764 1.50 itojun rv = 1;
765 1.53 itojun } else if (maxpps < 0)
766 1.53 itojun rv = 1;
767 1.53 itojun else if (*curpps < maxpps)
768 1.50 itojun rv = 1;
769 1.50 itojun else
770 1.50 itojun rv = 0;
771 1.50 itojun
772 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
773 1.50 itojun /* be careful about wrap-around */
774 1.50 itojun if (*curpps + 1 > *curpps)
775 1.50 itojun *curpps = *curpps + 1;
776 1.50 itojun #else
777 1.50 itojun /*
778 1.50 itojun * assume that there's not too many calls to this function.
779 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
780 1.50 itojun * behavior, not the behavior of this function.
781 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
782 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
783 1.50 itojun */
784 1.50 itojun *curpps = *curpps + 1;
785 1.50 itojun #endif
786 1.42 cgd
787 1.42 cgd return (rv);
788 1.1 cgd }
789