kern_time.c revision 1.54.2.4 1 1.54.2.4 nathanw /* $NetBSD: kern_time.c,v 1.54.2.4 2001/11/14 19:16:39 nathanw Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.54.2.4 nathanw #include <sys/cdefs.h>
75 1.54.2.4 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.4 2001/11/14 19:16:39 nathanw Exp $");
76 1.54.2.4 nathanw
77 1.31 thorpej #include "fs_nfs.h"
78 1.54 bjh21 #include "opt_nfs.h"
79 1.34 thorpej #include "opt_nfsserver.h"
80 1.1 cgd
81 1.5 mycroft #include <sys/param.h>
82 1.5 mycroft #include <sys/resourcevar.h>
83 1.5 mycroft #include <sys/kernel.h>
84 1.8 cgd #include <sys/systm.h>
85 1.54.2.1 nathanw #include <sys/lwp.h>
86 1.5 mycroft #include <sys/proc.h>
87 1.8 cgd #include <sys/vnode.h>
88 1.17 christos #include <sys/signalvar.h>
89 1.25 perry #include <sys/syslog.h>
90 1.1 cgd
91 1.11 cgd #include <sys/mount.h>
92 1.11 cgd #include <sys/syscallargs.h>
93 1.19 christos
94 1.37 thorpej #include <uvm/uvm_extern.h>
95 1.37 thorpej
96 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
97 1.20 fvdl #include <nfs/rpcv2.h>
98 1.20 fvdl #include <nfs/nfsproto.h>
99 1.19 christos #include <nfs/nfs_var.h>
100 1.19 christos #endif
101 1.17 christos
102 1.5 mycroft #include <machine/cpu.h>
103 1.23 cgd
104 1.23 cgd /*
105 1.1 cgd * Time of day and interval timer support.
106 1.1 cgd *
107 1.1 cgd * These routines provide the kernel entry points to get and set
108 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
109 1.1 cgd * here provide support for adding and subtracting timeval structures
110 1.1 cgd * and decrementing interval timers, optionally reloading the interval
111 1.1 cgd * timers when they expire.
112 1.1 cgd */
113 1.1 cgd
114 1.22 jtc /* This function is used by clock_settime and settimeofday */
115 1.39 tron int
116 1.22 jtc settime(tv)
117 1.22 jtc struct timeval *tv;
118 1.22 jtc {
119 1.22 jtc struct timeval delta;
120 1.47 thorpej struct cpu_info *ci;
121 1.22 jtc int s;
122 1.22 jtc
123 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
124 1.22 jtc s = splclock();
125 1.22 jtc timersub(tv, &time, &delta);
126 1.54.2.2 nathanw if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
127 1.54.2.2 nathanw splx(s);
128 1.29 tls return (EPERM);
129 1.54.2.2 nathanw }
130 1.29 tls #ifdef notyet
131 1.54.2.2 nathanw if ((delta.tv_sec < 86400) && securelevel > 0) {
132 1.54.2.2 nathanw splx(s);
133 1.29 tls return (EPERM);
134 1.54.2.2 nathanw }
135 1.29 tls #endif
136 1.22 jtc time = *tv;
137 1.38 thorpej (void) spllowersoftclock();
138 1.22 jtc timeradd(&boottime, &delta, &boottime);
139 1.47 thorpej /*
140 1.47 thorpej * XXXSMP
141 1.47 thorpej * This is wrong. We should traverse a list of all
142 1.47 thorpej * CPUs and add the delta to the runtime of those
143 1.47 thorpej * CPUs which have a process on them.
144 1.47 thorpej */
145 1.47 thorpej ci = curcpu();
146 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
147 1.47 thorpej &ci->ci_schedstate.spc_runtime);
148 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
149 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
150 1.22 jtc # endif
151 1.22 jtc splx(s);
152 1.22 jtc resettodr();
153 1.29 tls return (0);
154 1.22 jtc }
155 1.22 jtc
156 1.22 jtc /* ARGSUSED */
157 1.22 jtc int
158 1.54.2.1 nathanw sys_clock_gettime(l, v, retval)
159 1.54.2.1 nathanw struct lwp *l;
160 1.22 jtc void *v;
161 1.22 jtc register_t *retval;
162 1.22 jtc {
163 1.45 augustss struct sys_clock_gettime_args /* {
164 1.22 jtc syscallarg(clockid_t) clock_id;
165 1.23 cgd syscallarg(struct timespec *) tp;
166 1.23 cgd } */ *uap = v;
167 1.22 jtc clockid_t clock_id;
168 1.22 jtc struct timeval atv;
169 1.22 jtc struct timespec ats;
170 1.22 jtc
171 1.22 jtc clock_id = SCARG(uap, clock_id);
172 1.22 jtc if (clock_id != CLOCK_REALTIME)
173 1.22 jtc return (EINVAL);
174 1.22 jtc
175 1.22 jtc microtime(&atv);
176 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
177 1.22 jtc
178 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
179 1.22 jtc }
180 1.22 jtc
181 1.22 jtc /* ARGSUSED */
182 1.22 jtc int
183 1.54.2.1 nathanw sys_clock_settime(l, v, retval)
184 1.54.2.1 nathanw struct lwp *l;
185 1.22 jtc void *v;
186 1.22 jtc register_t *retval;
187 1.22 jtc {
188 1.45 augustss struct sys_clock_settime_args /* {
189 1.22 jtc syscallarg(clockid_t) clock_id;
190 1.23 cgd syscallarg(const struct timespec *) tp;
191 1.23 cgd } */ *uap = v;
192 1.54.2.1 nathanw struct proc *p = l->l_proc;
193 1.22 jtc clockid_t clock_id;
194 1.22 jtc struct timespec ats;
195 1.22 jtc int error;
196 1.22 jtc
197 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
198 1.22 jtc return (error);
199 1.22 jtc
200 1.22 jtc clock_id = SCARG(uap, clock_id);
201 1.22 jtc
202 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
203 1.23 cgd return (error);
204 1.22 jtc
205 1.54.2.3 nathanw return (clock_settime1(clock_id, &ats));
206 1.54.2.3 nathanw }
207 1.54.2.3 nathanw
208 1.54.2.3 nathanw
209 1.54.2.3 nathanw int
210 1.54.2.3 nathanw clock_settime1(clock_id, ats)
211 1.54.2.3 nathanw clockid_t clock_id;
212 1.54.2.3 nathanw struct timespec *ats;
213 1.54.2.3 nathanw {
214 1.54.2.3 nathanw struct timeval atv;
215 1.54.2.3 nathanw int error;
216 1.54.2.3 nathanw
217 1.54.2.3 nathanw if (clock_id != CLOCK_REALTIME)
218 1.54.2.3 nathanw return (EINVAL);
219 1.54.2.3 nathanw
220 1.54.2.3 nathanw TIMESPEC_TO_TIMEVAL(&atv, ats);
221 1.54.2.3 nathanw if ((error = settime(&atv)) != 0)
222 1.29 tls return (error);
223 1.22 jtc
224 1.22 jtc return 0;
225 1.22 jtc }
226 1.22 jtc
227 1.22 jtc int
228 1.54.2.1 nathanw sys_clock_getres(l, v, retval)
229 1.54.2.1 nathanw struct lwp *l;
230 1.22 jtc void *v;
231 1.22 jtc register_t *retval;
232 1.22 jtc {
233 1.45 augustss struct sys_clock_getres_args /* {
234 1.22 jtc syscallarg(clockid_t) clock_id;
235 1.23 cgd syscallarg(struct timespec *) tp;
236 1.23 cgd } */ *uap = v;
237 1.22 jtc clockid_t clock_id;
238 1.22 jtc struct timespec ts;
239 1.22 jtc int error = 0;
240 1.22 jtc
241 1.22 jtc clock_id = SCARG(uap, clock_id);
242 1.22 jtc if (clock_id != CLOCK_REALTIME)
243 1.22 jtc return (EINVAL);
244 1.22 jtc
245 1.22 jtc if (SCARG(uap, tp)) {
246 1.22 jtc ts.tv_sec = 0;
247 1.22 jtc ts.tv_nsec = 1000000000 / hz;
248 1.22 jtc
249 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250 1.22 jtc }
251 1.22 jtc
252 1.22 jtc return error;
253 1.22 jtc }
254 1.22 jtc
255 1.27 jtc /* ARGSUSED */
256 1.27 jtc int
257 1.54.2.1 nathanw sys_nanosleep(l, v, retval)
258 1.54.2.1 nathanw struct lwp *l;
259 1.27 jtc void *v;
260 1.27 jtc register_t *retval;
261 1.27 jtc {
262 1.27 jtc static int nanowait;
263 1.45 augustss struct sys_nanosleep_args/* {
264 1.27 jtc syscallarg(struct timespec *) rqtp;
265 1.27 jtc syscallarg(struct timespec *) rmtp;
266 1.27 jtc } */ *uap = v;
267 1.27 jtc struct timespec rqt;
268 1.27 jtc struct timespec rmt;
269 1.27 jtc struct timeval atv, utv;
270 1.27 jtc int error, s, timo;
271 1.27 jtc
272 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
273 1.27 jtc sizeof(struct timespec));
274 1.27 jtc if (error)
275 1.27 jtc return (error);
276 1.27 jtc
277 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
278 1.54.2.4 nathanw if (itimerfix(&atv) || atv.tv_sec > 1000000000)
279 1.27 jtc return (EINVAL);
280 1.27 jtc
281 1.27 jtc s = splclock();
282 1.27 jtc timeradd(&atv,&time,&atv);
283 1.27 jtc timo = hzto(&atv);
284 1.27 jtc /*
285 1.27 jtc * Avoid inadvertantly sleeping forever
286 1.27 jtc */
287 1.27 jtc if (timo == 0)
288 1.27 jtc timo = 1;
289 1.27 jtc splx(s);
290 1.27 jtc
291 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
292 1.27 jtc if (error == ERESTART)
293 1.27 jtc error = EINTR;
294 1.27 jtc if (error == EWOULDBLOCK)
295 1.27 jtc error = 0;
296 1.27 jtc
297 1.27 jtc if (SCARG(uap, rmtp)) {
298 1.28 jtc int error;
299 1.28 jtc
300 1.27 jtc s = splclock();
301 1.27 jtc utv = time;
302 1.27 jtc splx(s);
303 1.27 jtc
304 1.27 jtc timersub(&atv, &utv, &utv);
305 1.27 jtc if (utv.tv_sec < 0)
306 1.27 jtc timerclear(&utv);
307 1.27 jtc
308 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
309 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
310 1.28 jtc sizeof(rmt));
311 1.28 jtc if (error)
312 1.28 jtc return (error);
313 1.27 jtc }
314 1.27 jtc
315 1.27 jtc return error;
316 1.27 jtc }
317 1.22 jtc
318 1.1 cgd /* ARGSUSED */
319 1.3 andrew int
320 1.54.2.1 nathanw sys_gettimeofday(l, v, retval)
321 1.54.2.1 nathanw struct lwp *l;
322 1.15 thorpej void *v;
323 1.15 thorpej register_t *retval;
324 1.15 thorpej {
325 1.45 augustss struct sys_gettimeofday_args /* {
326 1.11 cgd syscallarg(struct timeval *) tp;
327 1.11 cgd syscallarg(struct timezone *) tzp;
328 1.15 thorpej } */ *uap = v;
329 1.1 cgd struct timeval atv;
330 1.1 cgd int error = 0;
331 1.25 perry struct timezone tzfake;
332 1.1 cgd
333 1.11 cgd if (SCARG(uap, tp)) {
334 1.1 cgd microtime(&atv);
335 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
336 1.17 christos if (error)
337 1.1 cgd return (error);
338 1.1 cgd }
339 1.25 perry if (SCARG(uap, tzp)) {
340 1.25 perry /*
341 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
342 1.25 perry * fake up a timezone struct and return it if demanded.
343 1.25 perry */
344 1.25 perry tzfake.tz_minuteswest = 0;
345 1.25 perry tzfake.tz_dsttime = 0;
346 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
347 1.25 perry }
348 1.1 cgd return (error);
349 1.1 cgd }
350 1.1 cgd
351 1.1 cgd /* ARGSUSED */
352 1.3 andrew int
353 1.54.2.1 nathanw sys_settimeofday(l, v, retval)
354 1.54.2.1 nathanw struct lwp *l;
355 1.15 thorpej void *v;
356 1.15 thorpej register_t *retval;
357 1.15 thorpej {
358 1.16 mycroft struct sys_settimeofday_args /* {
359 1.24 cgd syscallarg(const struct timeval *) tv;
360 1.24 cgd syscallarg(const struct timezone *) tzp;
361 1.15 thorpej } */ *uap = v;
362 1.54.2.1 nathanw struct proc *p = l->l_proc;
363 1.22 jtc struct timeval atv;
364 1.1 cgd struct timezone atz;
365 1.54.2.3 nathanw struct timeval *tv = NULL;
366 1.54.2.3 nathanw struct timezone *tzp = NULL;
367 1.22 jtc int error;
368 1.1 cgd
369 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
370 1.1 cgd return (error);
371 1.54.2.3 nathanw
372 1.8 cgd /* Verify all parameters before changing time. */
373 1.54.2.3 nathanw if (SCARG(uap, tv)) {
374 1.54.2.3 nathanw if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
375 1.54.2.3 nathanw return (error);
376 1.54.2.3 nathanw tv = &atv;
377 1.54.2.3 nathanw }
378 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
379 1.54.2.3 nathanw if (SCARG(uap, tzp)) {
380 1.54.2.3 nathanw if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
381 1.54.2.3 nathanw return (error);
382 1.54.2.3 nathanw tzp = &atz;
383 1.54.2.3 nathanw }
384 1.54.2.3 nathanw
385 1.54.2.3 nathanw return settimeofday1(tv, tzp, p);
386 1.54.2.3 nathanw }
387 1.54.2.3 nathanw
388 1.54.2.3 nathanw int
389 1.54.2.3 nathanw settimeofday1(tv, tzp, p)
390 1.54.2.3 nathanw struct timeval *tv;
391 1.54.2.3 nathanw struct timezone *tzp;
392 1.54.2.3 nathanw struct proc *p;
393 1.54.2.3 nathanw {
394 1.54.2.3 nathanw int error;
395 1.54.2.3 nathanw
396 1.54.2.3 nathanw if (tv)
397 1.54.2.3 nathanw if ((error = settime(tv)) != 0)
398 1.29 tls return (error);
399 1.25 perry /*
400 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
401 1.25 perry * obsolete program would try to set it, so we log a warning.
402 1.25 perry */
403 1.54.2.3 nathanw if (tzp)
404 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
405 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
406 1.8 cgd return (0);
407 1.1 cgd }
408 1.1 cgd
409 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
410 1.1 cgd long timedelta; /* unapplied time correction, us. */
411 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
412 1.1 cgd
413 1.1 cgd /* ARGSUSED */
414 1.3 andrew int
415 1.54.2.1 nathanw sys_adjtime(l, v, retval)
416 1.54.2.1 nathanw struct lwp *l;
417 1.15 thorpej void *v;
418 1.15 thorpej register_t *retval;
419 1.15 thorpej {
420 1.45 augustss struct sys_adjtime_args /* {
421 1.24 cgd syscallarg(const struct timeval *) delta;
422 1.11 cgd syscallarg(struct timeval *) olddelta;
423 1.15 thorpej } */ *uap = v;
424 1.54.2.1 nathanw struct proc *p = l->l_proc;
425 1.8 cgd struct timeval atv;
426 1.54.2.3 nathanw struct timeval *oatv = NULL;
427 1.54.2.3 nathanw int error;
428 1.1 cgd
429 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
430 1.1 cgd return (error);
431 1.17 christos
432 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
433 1.17 christos if (error)
434 1.1 cgd return (error);
435 1.54.2.3 nathanw
436 1.54.2.3 nathanw if (SCARG(uap, olddelta) != NULL) {
437 1.54.2.3 nathanw if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
438 1.54.2.3 nathanw sizeof(struct timeval), B_WRITE) == FALSE)
439 1.54.2.3 nathanw return (EFAULT);
440 1.54.2.3 nathanw oatv = SCARG(uap, olddelta);
441 1.54.2.3 nathanw }
442 1.54.2.3 nathanw
443 1.54.2.3 nathanw return adjtime1(&atv, oatv, p);
444 1.54.2.3 nathanw }
445 1.54.2.3 nathanw
446 1.54.2.3 nathanw int
447 1.54.2.3 nathanw adjtime1(delta, olddelta, p)
448 1.54.2.3 nathanw struct timeval *delta;
449 1.54.2.3 nathanw struct timeval *olddelta;
450 1.54.2.3 nathanw struct proc *p;
451 1.54.2.3 nathanw {
452 1.54.2.3 nathanw long ndelta, ntickdelta, odelta;
453 1.54.2.3 nathanw int s;
454 1.8 cgd
455 1.8 cgd /*
456 1.8 cgd * Compute the total correction and the rate at which to apply it.
457 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
458 1.8 cgd * delta, so that after some number of incremental changes in
459 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
460 1.8 cgd * overshoot and start taking us away from the desired final time.
461 1.8 cgd */
462 1.54.2.3 nathanw ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
463 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
464 1.8 cgd ntickdelta = 10 * tickadj;
465 1.8 cgd else
466 1.8 cgd ntickdelta = tickadj;
467 1.8 cgd if (ndelta % ntickdelta)
468 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
469 1.8 cgd
470 1.8 cgd /*
471 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
472 1.8 cgd * if we want time to run slower; then hardclock can simply compute
473 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
474 1.8 cgd */
475 1.8 cgd if (ndelta < 0)
476 1.8 cgd ntickdelta = -ntickdelta;
477 1.1 cgd s = splclock();
478 1.8 cgd odelta = timedelta;
479 1.1 cgd timedelta = ndelta;
480 1.8 cgd tickdelta = ntickdelta;
481 1.1 cgd splx(s);
482 1.1 cgd
483 1.54.2.3 nathanw if (olddelta) {
484 1.54.2.3 nathanw delta->tv_sec = odelta / 1000000;
485 1.54.2.3 nathanw delta->tv_usec = odelta % 1000000;
486 1.54.2.3 nathanw (void) copyout(delta, olddelta, sizeof(struct timeval));
487 1.8 cgd }
488 1.1 cgd return (0);
489 1.1 cgd }
490 1.1 cgd
491 1.1 cgd /*
492 1.1 cgd * Get value of an interval timer. The process virtual and
493 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
494 1.1 cgd * they can be swapped out. These are kept internally in the
495 1.1 cgd * way they are specified externally: in time until they expire.
496 1.1 cgd *
497 1.1 cgd * The real time interval timer is kept in the process table slot
498 1.1 cgd * for the process, and its value (it_value) is kept as an
499 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
500 1.1 cgd * periodic real-time signals from drifting.
501 1.1 cgd *
502 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
503 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
504 1.1 cgd * routine, called from the softclock() routine. Since a callout
505 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
506 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
507 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
508 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
509 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
510 1.1 cgd * absolute time the timer should go off.
511 1.1 cgd */
512 1.1 cgd /* ARGSUSED */
513 1.3 andrew int
514 1.54.2.1 nathanw sys_getitimer(l, v, retval)
515 1.54.2.1 nathanw struct lwp *l;
516 1.15 thorpej void *v;
517 1.15 thorpej register_t *retval;
518 1.15 thorpej {
519 1.45 augustss struct sys_getitimer_args /* {
520 1.30 mycroft syscallarg(int) which;
521 1.11 cgd syscallarg(struct itimerval *) itv;
522 1.15 thorpej } */ *uap = v;
523 1.54.2.1 nathanw struct proc *p = l->l_proc;
524 1.30 mycroft int which = SCARG(uap, which);
525 1.1 cgd struct itimerval aitv;
526 1.1 cgd int s;
527 1.1 cgd
528 1.30 mycroft if ((u_int)which > ITIMER_PROF)
529 1.1 cgd return (EINVAL);
530 1.1 cgd s = splclock();
531 1.30 mycroft if (which == ITIMER_REAL) {
532 1.1 cgd /*
533 1.12 mycroft * Convert from absolute to relative time in .it_value
534 1.1 cgd * part of real time timer. If time for real time timer
535 1.1 cgd * has passed return 0, else return difference between
536 1.1 cgd * current time and time for the timer to go off.
537 1.1 cgd */
538 1.1 cgd aitv = p->p_realtimer;
539 1.36 thorpej if (timerisset(&aitv.it_value)) {
540 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
541 1.1 cgd timerclear(&aitv.it_value);
542 1.1 cgd else
543 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
544 1.36 thorpej }
545 1.1 cgd } else
546 1.30 mycroft aitv = p->p_stats->p_timer[which];
547 1.1 cgd splx(s);
548 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
549 1.1 cgd }
550 1.1 cgd
551 1.1 cgd /* ARGSUSED */
552 1.3 andrew int
553 1.54.2.1 nathanw sys_setitimer(l, v, retval)
554 1.54.2.1 nathanw struct lwp *l;
555 1.45 augustss void *v;
556 1.15 thorpej register_t *retval;
557 1.15 thorpej {
558 1.45 augustss struct sys_setitimer_args /* {
559 1.30 mycroft syscallarg(int) which;
560 1.24 cgd syscallarg(const struct itimerval *) itv;
561 1.11 cgd syscallarg(struct itimerval *) oitv;
562 1.15 thorpej } */ *uap = v;
563 1.54.2.1 nathanw struct proc *p = l->l_proc;
564 1.30 mycroft int which = SCARG(uap, which);
565 1.21 cgd struct sys_getitimer_args getargs;
566 1.1 cgd struct itimerval aitv;
567 1.45 augustss const struct itimerval *itvp;
568 1.1 cgd int s, error;
569 1.1 cgd
570 1.30 mycroft if ((u_int)which > ITIMER_PROF)
571 1.1 cgd return (EINVAL);
572 1.11 cgd itvp = SCARG(uap, itv);
573 1.54.2.3 nathanw if (itvp &&
574 1.54.2.3 nathanw (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
575 1.1 cgd return (error);
576 1.21 cgd if (SCARG(uap, oitv) != NULL) {
577 1.30 mycroft SCARG(&getargs, which) = which;
578 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
579 1.54.2.1 nathanw if ((error = sys_getitimer(l, &getargs, retval)) != 0)
580 1.21 cgd return (error);
581 1.21 cgd }
582 1.1 cgd if (itvp == 0)
583 1.1 cgd return (0);
584 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
585 1.1 cgd return (EINVAL);
586 1.1 cgd s = splclock();
587 1.30 mycroft if (which == ITIMER_REAL) {
588 1.44 thorpej callout_stop(&p->p_realit_ch);
589 1.1 cgd if (timerisset(&aitv.it_value)) {
590 1.52 thorpej /*
591 1.52 thorpej * Don't need to check hzto() return value, here.
592 1.52 thorpej * callout_reset() does it for us.
593 1.52 thorpej */
594 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
595 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
596 1.44 thorpej realitexpire, p);
597 1.1 cgd }
598 1.1 cgd p->p_realtimer = aitv;
599 1.1 cgd } else
600 1.30 mycroft p->p_stats->p_timer[which] = aitv;
601 1.1 cgd splx(s);
602 1.1 cgd return (0);
603 1.1 cgd }
604 1.1 cgd
605 1.1 cgd /*
606 1.1 cgd * Real interval timer expired:
607 1.1 cgd * send process whose timer expired an alarm signal.
608 1.1 cgd * If time is not set up to reload, then just return.
609 1.1 cgd * Else compute next time timer should go off which is > current time.
610 1.1 cgd * This is where delay in processing this timeout causes multiple
611 1.1 cgd * SIGALRM calls to be compressed into one.
612 1.1 cgd */
613 1.3 andrew void
614 1.6 cgd realitexpire(arg)
615 1.6 cgd void *arg;
616 1.6 cgd {
617 1.45 augustss struct proc *p;
618 1.1 cgd int s;
619 1.1 cgd
620 1.6 cgd p = (struct proc *)arg;
621 1.1 cgd psignal(p, SIGALRM);
622 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
623 1.1 cgd timerclear(&p->p_realtimer.it_value);
624 1.1 cgd return;
625 1.1 cgd }
626 1.1 cgd for (;;) {
627 1.1 cgd s = splclock();
628 1.14 mycroft timeradd(&p->p_realtimer.it_value,
629 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
630 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
631 1.52 thorpej /*
632 1.52 thorpej * Don't need to check hzto() return value, here.
633 1.52 thorpej * callout_reset() does it for us.
634 1.52 thorpej */
635 1.44 thorpej callout_reset(&p->p_realit_ch,
636 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
637 1.1 cgd splx(s);
638 1.1 cgd return;
639 1.1 cgd }
640 1.1 cgd splx(s);
641 1.1 cgd }
642 1.1 cgd }
643 1.1 cgd
644 1.1 cgd /*
645 1.1 cgd * Check that a proposed value to load into the .it_value or
646 1.1 cgd * .it_interval part of an interval timer is acceptable, and
647 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
648 1.1 cgd * than the resolution of the clock, round it up.)
649 1.1 cgd */
650 1.3 andrew int
651 1.1 cgd itimerfix(tv)
652 1.1 cgd struct timeval *tv;
653 1.1 cgd {
654 1.1 cgd
655 1.54.2.4 nathanw if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
656 1.1 cgd return (EINVAL);
657 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
658 1.1 cgd tv->tv_usec = tick;
659 1.1 cgd return (0);
660 1.1 cgd }
661 1.1 cgd
662 1.1 cgd /*
663 1.1 cgd * Decrement an interval timer by a specified number
664 1.1 cgd * of microseconds, which must be less than a second,
665 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
666 1.1 cgd * it. In this case, carry over (usec - old value) to
667 1.8 cgd * reduce the value reloaded into the timer so that
668 1.1 cgd * the timer does not drift. This routine assumes
669 1.1 cgd * that it is called in a context where the timers
670 1.1 cgd * on which it is operating cannot change in value.
671 1.1 cgd */
672 1.3 andrew int
673 1.1 cgd itimerdecr(itp, usec)
674 1.45 augustss struct itimerval *itp;
675 1.1 cgd int usec;
676 1.1 cgd {
677 1.1 cgd
678 1.1 cgd if (itp->it_value.tv_usec < usec) {
679 1.1 cgd if (itp->it_value.tv_sec == 0) {
680 1.1 cgd /* expired, and already in next interval */
681 1.1 cgd usec -= itp->it_value.tv_usec;
682 1.1 cgd goto expire;
683 1.1 cgd }
684 1.1 cgd itp->it_value.tv_usec += 1000000;
685 1.1 cgd itp->it_value.tv_sec--;
686 1.1 cgd }
687 1.1 cgd itp->it_value.tv_usec -= usec;
688 1.1 cgd usec = 0;
689 1.1 cgd if (timerisset(&itp->it_value))
690 1.1 cgd return (1);
691 1.1 cgd /* expired, exactly at end of interval */
692 1.1 cgd expire:
693 1.1 cgd if (timerisset(&itp->it_interval)) {
694 1.1 cgd itp->it_value = itp->it_interval;
695 1.1 cgd itp->it_value.tv_usec -= usec;
696 1.1 cgd if (itp->it_value.tv_usec < 0) {
697 1.1 cgd itp->it_value.tv_usec += 1000000;
698 1.1 cgd itp->it_value.tv_sec--;
699 1.1 cgd }
700 1.1 cgd } else
701 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
702 1.1 cgd return (0);
703 1.42 cgd }
704 1.42 cgd
705 1.42 cgd /*
706 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
707 1.42 cgd * for usage and rationale.
708 1.42 cgd */
709 1.42 cgd int
710 1.42 cgd ratecheck(lasttime, mininterval)
711 1.42 cgd struct timeval *lasttime;
712 1.42 cgd const struct timeval *mininterval;
713 1.42 cgd {
714 1.49 itojun struct timeval tv, delta;
715 1.42 cgd int s, rv = 0;
716 1.42 cgd
717 1.42 cgd s = splclock();
718 1.49 itojun tv = mono_time;
719 1.49 itojun splx(s);
720 1.49 itojun
721 1.49 itojun timersub(&tv, lasttime, &delta);
722 1.42 cgd
723 1.42 cgd /*
724 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
725 1.42 cgd * even if interval is huge.
726 1.42 cgd */
727 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
728 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
729 1.49 itojun *lasttime = tv;
730 1.42 cgd rv = 1;
731 1.42 cgd }
732 1.50 itojun
733 1.50 itojun return (rv);
734 1.50 itojun }
735 1.50 itojun
736 1.50 itojun /*
737 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
738 1.50 itojun */
739 1.50 itojun int
740 1.50 itojun ppsratecheck(lasttime, curpps, maxpps)
741 1.50 itojun struct timeval *lasttime;
742 1.50 itojun int *curpps;
743 1.50 itojun int maxpps; /* maximum pps allowed */
744 1.50 itojun {
745 1.50 itojun struct timeval tv, delta;
746 1.50 itojun int s, rv;
747 1.50 itojun
748 1.50 itojun s = splclock();
749 1.50 itojun tv = mono_time;
750 1.50 itojun splx(s);
751 1.50 itojun
752 1.50 itojun timersub(&tv, lasttime, &delta);
753 1.50 itojun
754 1.50 itojun /*
755 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
756 1.50 itojun * if more than one second have passed since the last update of
757 1.50 itojun * lasttime, reset the counter.
758 1.50 itojun *
759 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
760 1.50 itojun * try to use *curpps for stat purposes as well.
761 1.50 itojun */
762 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
763 1.50 itojun delta.tv_sec >= 1) {
764 1.50 itojun *lasttime = tv;
765 1.50 itojun *curpps = 0;
766 1.50 itojun rv = 1;
767 1.53 itojun } else if (maxpps < 0)
768 1.53 itojun rv = 1;
769 1.53 itojun else if (*curpps < maxpps)
770 1.50 itojun rv = 1;
771 1.50 itojun else
772 1.50 itojun rv = 0;
773 1.50 itojun
774 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
775 1.50 itojun /* be careful about wrap-around */
776 1.50 itojun if (*curpps + 1 > *curpps)
777 1.50 itojun *curpps = *curpps + 1;
778 1.50 itojun #else
779 1.50 itojun /*
780 1.50 itojun * assume that there's not too many calls to this function.
781 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
782 1.50 itojun * behavior, not the behavior of this function.
783 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
784 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
785 1.50 itojun */
786 1.50 itojun *curpps = *curpps + 1;
787 1.50 itojun #endif
788 1.42 cgd
789 1.42 cgd return (rv);
790 1.1 cgd }
791